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�e so�ening elastoplastic models present an unsuitable behavior a�er reaching the yield strength: unbounded strain localization.
Because of the material instability, which is re	ected in the loss of ellipticity of the governing partial di
erential equations, the
solution depends on the discretization. �e present work proposes to solve this dependency using the meshless Finite Points
Method. �is meshfree spatial discretization technique allows enriching the governing equations using gradient’s plasticity and
introducing an internal length scale parameter at the material model in order to objectify the solution.

1. Introduction

�e strain localization phenomenon is usually a precursor
of material failure. In geomaterials such as soils, concrete,
and rocks, strain localization has been observed in many
situations such as triaxial tests in the lab and earth excavation
processes in the �eld [1].

If the classical continuum theory is directly applied to
elastoplastic so�eningmaterials, a loss of ellipticity of the gov-
erning partial di
erential equations occurs, and the boundary
value cannot correctly describe the physical problem [2].�e
strains are localized in zones that have a width related to
the characteristic length of the subdomains that are used in
the discretization. When these subdomains become smaller,
the width of the strain band also decreases without a lower
bound. If the discretization length tends to zero, there is no
energy dissipation, which does not make physical sense [3].
To overcome the loss of ellipticity and the related problems,
an implicit or explicit length scale must be incorporated into

the material description or the formulation of the boundary
value problem [4]. �ese kinds of regularization techniques,
called localization limiters, are usually based on various forms
of enriched continuum theories; see [5–9].

Several proposed strategies consider an internal material
length scale. One strategy introduces nonlocal theories and
gradient methods into the model [10]. �ese concepts can be
related by a Taylor series expansion, as shown by Peerlings et
al. [11].

�e nonlocal constitutive theories hold that the local
state of the material at a given point may not be su�cient
to evaluate the stress at that point. �is statement can be
physically justi�ed by the fact that no real material is an ideal
continuous medium; on a su�ciently small scale, the e
ects
of heterogeneity and discontinuous microstructure become
nonnegligible [7].

�e gradient plasticity formulation [12–15] introduces
higher-order gradient terms of a nonlocal variable into the
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di
erential equation that governs its evolution. �e origins
of these gradient terms are discussed in Groma and Vörös
[16] for di
erent cases that are related to atomic distance,
dislocations, and �nite grain size. Here, the internal material
length scale is implicitly introduced through the regulariza-
tion parameter. �e choice of the variable to be represented
nonlocally depends on the described material behavior and
the chosen approach [17–21].

Furthermore, meshless or meshfree methods possess
intrinsic nonlocal properties. �e approximation functions
are not locally constructed because the support size of the
weight function is greater than the nodal spacing; therefore,
the approximation is inherently nonlocal. �ese nonlocal
properties are used to incorporate an intrinsic length scale
that regularizes the problems of material instabilities [4].

Meshless methods are a family of numerical techniques
that do not require a mesh. In these methods, the body or
the domain is discretized using a collection of points. It is
divided into the local interpolation subdomains, which are
also called clouds.�e clouds consist of one central point (the
star node) and several neighboring points. Generally, these
methods are computationally e�cient and easy to implement,
and they have been successfully used in several applications.
�e general characteristics, classi�cations, advantages, and
disadvantages of these methods have been described in [22–
25].

�is work is focused on a meshless Finite Points Method
(FPM) for the strain localization analysis through a gra-
dient plasticity formulation. �is method uses an implicit
nonlocal approach to represent the global material behavior.
�e present contribution solves the solution-discretization
dependency using the meshless FPM. �is meshfree spa-
tial discretization technique allows enriching the governing
equations using the gradients’ plasticity and introducing
an internal length scale parameter at the material model.
�e same shape functions that conform to the meshless
approximation are used in the gradient additional terms,
which reduces the computational cost.

�e paper is organized as follows. Section 2 introduces
the basic formulation of the meshless FPM and provides
a brief overview of its main features. Section 3 focuses on
the basic formulation of strain gradient plasticity. Section 4
introduces some aspects related to the numerical implemen-
tation. In Section 5, we give several numerical examples.
Conclusions are drawn in Section 6.

2. The Finite Point Method (FPM)

In this section, we review the basic formulation of the mesh-
less FPM and provide a brief overview of its main features.

�is method was proposed by Oñate et al. [26, 27] to
solve convective-transport and 	uid-	ow problems. Its appli-
cation has been extended to advection-di
usion transport
[28], incompressible-	ow problems [29], elasticity [30, 31],
solid dynamics [32], solidi�cation modeling [33], nonlinear
material behavior problems [34–39], adaptive re�nement
[40, 41], and the large de	ection analysis of 	exible plates
[42]. �e lack of dependence on a mesh or an integration

procedure is an important feature that makes the FPM a truly
meshless method.

To obtain the �nal system of discrete equations, the
FPM approximates the local solution of a partial di
erential
equation at each point of the discretized domain using
a weighted-least-square technique and a point-collocation
procedure. Because the approximation procedure used by this
method is local, it is necessary to de�ne a subdomain Ω� for
each node that contains the neighboring nodes, which are
selected using a suitable criterion [43, 44]. �is collection of
points is called a cloud, and its referential central point is
the star node. For example, a relevant aspect in the de�nition
of clouds is that their superposition must produce the entire
domainΩ,

��⋃
�=1
Ω� = Ω, (1)

where �� is the total number of nodes. Note that the
de�nition of clouds is the basic, initial step in implementing
the FPM approximation using �xed weighted least squares.

2.1. Fixed Weighted-Least-Square Approximation. With the
de�ned discretized domain, let us de�ne a function �(x),
which is approximated by �̂(x); �̂(x) is only valid in the cloudΩ� associated with the star node xk. �e function �(x) is a
linear combination of known functions p(x),

� (x) ≅ �̂ (x) = p
� (x)�k, ∀x ∈ Ω�, (2)

where p(x) is the vector that represents the basis of 

linearly independent functions and �k is a vector of constant
parameters that are only valid in Ω�. �e elements of the
interpolation basis may belong to any function family. Never-
theless, for simplicity, the �rst
monomials polynomials are

used. Examples of this basis in 2D are p�(x) = [1, �, �] for
 = 3 and p�(x) = [1, �, �, �2, ��, �2] for
 = 6.
Because (2) is valid for all�� points of the th subdomain,

the approximations �̂(X) conform to a Vandermonde system
that is given by the relation

u (Xk) ≅ û (Xk) = P (Xk) ⋅ �k, (3)

where

X
k = [xk,1 ⋅ ⋅ ⋅ xk,Nc

]� ,
u (Xk) = [� (xk,1) ⋅ ⋅ ⋅ � (xk,Nc

)]� ,
û (Xk) = [�̂ (xk,1) ⋅ ⋅ ⋅ �̂ (xk,Nc

)]� ,
�k = [��,1 ⋅ ⋅ ⋅ ��,��]� ,

P (Xk) = [[
[

p (xk,1)...
p (xk,Nc

)
]]
]
.

(4)
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In general, the number of points �� that conform to the
cloud is greater than the number of functions 
 that de�ne

the basis; hence, thematrixP(Xk) is usually rectangular.�us,
the interpolation property is lost, and the problem must be
addressed with a numerical approximation. �e coe�cients
of the vector �k must be determined so that the weighted
sums of the squared di
erences between the exact values�(x) and the approximated values �̂(x) of each point are
minimized according to

min
{{{
��∑
�=1
 (xj) ⋅ (�(xj) − �̂(xj))2}}}

, (5)

where (xj) is a �xed weighting function that is de�ned inΩ�
and evaluated for the node xj; see [26, 27]. �e minimization
process described by (6) leads to the expression for the vector
�k:

�k = A
−1 (Xk)B (Xk) � (Xk) , (6)

where �(Xk) represents the unknown parameters that are
sought on the cloud. Ω� is de�ned as

� (Xk) = [$ (xk,1) ⋅ ⋅ ⋅ $ (xk,Nc
)]� . (7)

Additionally, the matrices A(Xk), B(Xk), and W(Xk) are
given as

A (Xk) = P (Xk)W (Xk)P� (Xk) ,
B (Xk) = P

� (Xk)W (Xk) , (8)

andW(Xk) is an�� × �� diagonal matrix de�ned by

W (Xk) = [diag ( (xk,1) ⋅ ⋅ ⋅  (xk,Nc
))] , (9)

where the weighting functions  (xj) are derived to have unit
values near the star node and zero values outside the Ω�
subdomains. Under the FPM, the common selection is the
normalized Gaussian,

 (xj) =
{{{{{
exp (− (ℎ�/')) − exp (− (*/'))

1 − exp (− (*/')) , if ℎ� ≤ *,
0, if ℎ� > *,

(10)

where ℎ� is the distance between the star node and the point
xj, * = - ⋅ ℎmax (max. of ℎ�) is a reference distance, and' = 2 ⋅ *. A detailed description of the e
ects of the constant
parameters - and 2 on the numerical approximation and the
guidelines to set their values are presented in [45]. Other

x

u, w

�(xk,j)

w(xk,j)

xk−2 xk−1 xk xk+1 xk+2

u(xk,j)

û(xk,j)

Ωk

Figure 1: Weighted least squares procedure.

considerations in selecting the function  (xj) can be found
in [26, 27, 46]. Finally, replacing (7) in (2) leads to

�̂ (x) = N
� (x)� (Xk) , (11)

where N(x) is the shape functionmatrix, which is de�ned as

N (x) = p
� (x)C (Xk) , (12)

where C(Xk) = A−1(Xk)B(Xk). Note that according to the
least-square nature of the approximation, �(x) ≅ �̂(x) ̸=$(x); see Figure 1. In other words, the local values of the
approximating function do not �t the nodal unknown values.
Indeed, �̂(x) is the true approximation, which we use to
satisfy the di
erential equation and the boundary conditions.
In this context, $(x) are simply the unknown parameters that
we aim to determine. According to these concepts and (9), it
is possible to obtain

�̂� (x) = N
�
� (x)� (Xk) , �̂�� (x) = N

�
�� (x)� (Xk) ,

(13)

where (⋅)� and (⋅)�� denote the �rst and second space deriva-
tives, respectively. Note that these derivatives are computed
by taking the derivative of the basis functions p(x) in (2).

2.2. Discrete-Equation System and the Point Collocation
Scheme. Let us assume a boundary value problem governed
by the set of di
erential equations with boundary conditions,

5 (�) = 7 in Ω,
8 (�) = 9 on Γ	,
� − �� = 0 on Γ
,

(14)

where5 and8 are di
erential operators and� is the unknown
function of the problem. In solid mechanics problems, 5
and 8 correspond to the equilibrium equations, � is the
displacement �eld, 7 denotes the body forces that act on the
domain Ω, 9 denotes the external tractions on Γ	, and ��
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Figure 2: De�nition of stabilization length for (a) the interior and (b) the boundary nodes.

represents the prescribed values of the unknown function onΓ
.
Using the point collocation scheme [47], the di
erential

equations (14), and the �nal FPM approximation, which is
de�ned in (11), one obtains the system of discrete equations

[(�̂)]� − 7� = 0 in Ω, ; = 1,��,
[8(�̂)]� − 9� = 0 on Γ	, < = 1,�	,
(�̂ − ��)� = 0 on Γ
,  = 1,�
,

(15)

where�� is the number of points inΩ and�	 and�
 are the
numbers of points on the boundaries Γ	 and Γ
, respectively.

2.3. Stabilization Procedure. �e collocation procedure usu-
ally leads to an ill-conditioned system of equations with
unstable and inaccurate results mainly because the point
collocation method cannot satisfy the equilibrium over a
cloud of �nite-sized points by simply sampling the equation
at the star node in the cloud. �ese de�ciencies are more
pronounced in clouds near the boundary Γ	 because the
clouds in these regions are not symmetric [30].

A stabilized form of the governing equation is used in
this work.�is formulation is derived from the �nite calculus
(FIC) procedure that was described in [28, 48]. �e FIC
method is based on imposing the typical balance laws of
mechanics over a �nite-sized domain. �en, the unknown
�elds are approximated within the �nite domain using a
Taylor series expansion and retaining the higher-order terms
over those used in the standard in�nitesimal approach [26–
28, 30]. �is method naturally introduces new terms in
the governing di
erential equation, and these terms have

stabilization features. �e stabilized form of (15), which uses
the FIC method, is

[5(�̂) − 12ℎ�
A
A��5(�̂)]� − 7� = 0 in Ω,

[8(�̂) − 12ℎ�C�
A
A��5(�̂)]� − 9� = 0 on Γ	,

(�̂� − ��) = 0 on Γ
,

(16)

where C� denotes the components of the unit normal to
the boundary Γ	 and ℎ� denotes the stabilization-length
parameters that are obtained from

h
� = [E�min

E�min
] ; (17)

see Figure 2.
�e e�ciency of the FIC stabilization procedure in the

context of FPM and solid mechanics has been presented in
[30–32, 35, 41].

3. Strain Gradient Plasticity Formulation

In this section, we present the basic formulation of strain
gradient plasticity. We start from the de�nition of the non-
local approach and obtain the implicit gradient form of the
accumulated plastic strain.

�e nonlocal variable H(x) is de�ned from the internal
variable H(x) as the weighted average over a domainV in the
vicinity of point x [49]:

H (x) = ∫
V

J (x, K) H (K) EK, (18)

where the weight function J depends only on the distance |x−K|; hence, J ≡ J(x, K). A possible choice for J is the Gaussian
weight function, as proposed in [50].
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�e weight function J introduces the internal length
scale M, which is considered a material parameter with the
dimension of length. �is parameter de�nes the dimension
of the neighborhood that a
ects the nonlocal function. Note
that the average is extended to the whole domain V, but
because of the shape of theweight function the internal length
scale M de�nes the region of the body that surrounds point x,
which signi�cantly in	uences the behavior at that point [51].

In this work, the local accumulated plastic strain N(x)
is considered the evolutionary internal variable. �en, the
explicit nonlocal gradient formulation N(x) of this plastic
strain becomes [11]

N (x) = N (x) − M2∇2N (x) . (19)

To obtain the implicit gradient formulation of the accu-
mulated plastic strain N, (19) is rewritten as

N (x) = N (x) + M2∇2N (x) . (20)

Several advantages of using an implicit formulation instead of
an explicit formulation have been reported in the literature.
For example, the continuity requirements for the shape
functions in numerical simulations are lower, the dynamical
behavior is more realistic, a better approximation of the
underlying nonlocal integral model is provided, and the
singularities in the strain �eld are more adequately damped
(see [11, 52–54]).

�e implicit formulation of (20) introduces the gradient
e
ects and is accompanied by the boundary condition

∇N (x) ⋅ n = 0, (21)

where n is the outward unit normal to the boundary. In the
literature, there is no agreement respect to the physical sense
of this boundary condition. Nevertheless, some thermody-
namical aspects related to the nonlocal residual energy have
been interpreted by Polizzotto [55].

In the nonlocal gradient plasticity formulation, the scalar
yield function is de�ned by

Q (�, N, ∇2N) = R (N) − Rth (N, ∇2N) , (22)

where � is the stress tensor and the threshold stress in
so�ening is given by

Rth (N, ∇2N) = Rth0 + ℎ ⋅ (N − M2∇2N) , (23)

and parameter ℎ is the linear so�ening modulus.
More details about strain gradient plasticity and some

thermodynamics aspects can be found in [1–4, 21, 56].

4. Numerical Implementation

Some aspects related to the numerical implementation of this
proposal are shown in this section.

�e elastoplastic constitutive model is expressed by the
stress-strain relationship

� = D : (� − ��) , (24)

where � and �� are the total and the plastic strain tensors,
respectively, andD is the elastic moduli tensor.

�e rate-type stress-strain relationship obtained from
(24) is given by

�̇ = D : (�̇ − �̇�) , (25)

which can be rewritten as

�̇ = D : (�̇ − ̇Um) , (26)

where ̇U is the plastic multiplier, which is given by

̇U = Ṅ, (27)

andm is the gradient to the yield surface, which is de�ned in
(22).

However, the yield function Q(�, N, ∇2N) (Equation (22))
and the plastic multiplier ̇U (Equation (27)) evolve according
to the loading-unloading or the Kuhn-Tucker conditions and
the consequent consistency (or persistency) condition, which
establishes that the stress state should persist on the yield
surface for the plastic 	ow to occur:

Q (�, N, ∇2N) ⩽ 0,
̇U ⩾ 0,

Q (�, N, ∇2N) ⋅ ̇U = 0.
(28)

During the plastic 	ow, the stress point must remain on
the yield surface according to the equation

̇Q (�, N, ∇2N) = d

d9 (�, N, ∇2N) = 0, (29)

which is known as the Prager’s consistency condition.
Considering the above dependencies, (29) can be rewrit-

ten as

AQ
A� : �̇ +

AQ
AN Ṅ +

AQ
A∇2N∇2Ṅ = 0, (30)

which corresponds to the consistency condition equation
under plastic deformation gradients.

�e plastic consistency equation for a time step Δ9 can be
approximated using a Taylor series to yield

dQ
d9 (�, N, ∇2N)

YYYYYYYY	+Δ	
≈ Q (�, N, ∇2N)YYYYY	 + AQ

A�
YYYYYYYY	 : Δ� +

AQ
AN
YYYYYYYY	 ΔN +

AQ
A∇2N

YYYYYYYY	 Δ∇
2N,
(31)

where the increments correspond to

Δ� = 	+Δ	� − 	�, (32a)

ΔN = 	+Δ	N − 	N, (32b)

Δ∇2N = 	+Δ	∇2 N − 	∇2 N. (32c)
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Figure 3: Uniaxial tensile test statement.
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Figure 4: Uniaxial tensile test: stress-displacement curves for several discretizations.

If a�er a time step Δ9, the plastic 	ow condition has been
reached at any point; that is, (dQ/d9)(�, N, ∇2N)|	+Δ	 = 0; (31)
can be reworked to give

AQ
A�
YYYYYYYY	 : Δ� +

AQ
AN
YYYYYYYY	 ΔN +

AQ
A∇2N

YYYYYYYY	 Δ∇
2N = − Q (�, N, ∇2N)YYYYY	 .

(33)

It should be noted that, in this work, all gradient terms are
obtained using the same shape functions that conform to the
FPMmeshless approximation (see (13)):

∇2N ≈ N
�
�� (x) N (Xk) , (34)

which reduces the computational cost.
More details about the numerical implementation issues

can be found in [2, 10, 57–59]. On the other hand, numerical
implementation aspect in the meshfree context can be found
in [1, 4, 60].

5. Numerical Examples

5.1. Uniaxial Tensile Test. �is numerical problem is based
on the reference solution that was presented by de Borst and
Muehlhaus [2].�e central tenth of the bar is weakened (10%
reduction in the Young’s modulus) to induce localization,
as shown in Figure 3. �e numerical tests are displacement
controlled. �e nondimensional geometrical and material
parameters are summarized in Table 1.

Table 1: Uniaxial tensile test. Geometrical and material parameters
(nondimensional).

Meaning Symbol Value

Elasticity modulus \ 20000
Initial yield stress R� 2
So�ening modulus ℎ −2000
Length of bar ^0 100
Length of weakened part _� 10
Internal length scale M 5
Prescribed displacement �� 0.02

For an internal length scale of M/^0 = 0.05, di
erent
equidistant discretizations have been studied (see Figure 4).
As shown in that �gure, dependence on the discretization
becomes negligible for nodal densities of 161 and beyond.

5.2. Biaxial Compression Test. Next, the classical biaxial
compression test [61] is analyzed using the nonlocal plastic
model with the proposed linear so�ening. �e weakened
imperfection at the le� bottom corner of the geometry is
used to illustrate the discretization insensitivity, as shown
in Figure 5. �e numerical results are compared with those
shown by Rodŕıguez-Ferran et al. [58]. �e initial yield stress
of the weakened area is reduced by 10%, and the study is
performed for three di
erent discretizations.�e nondimen-
sional material parameters are summarized in Table 2.
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Figure 5: Biaxial compression test: problem statement.

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

1

1.2

R
B
/(
b 0
�
y
)

�/L0

37 × 19 nodes

61 × 31 nodes

85 × 43 nodes
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Figure 6: Biaxial compression test: results for di
erent discretizations.

Table 2: Biaxial compression test: material parameters (nondimen-
sional).

Meaning Symbol Value

Elasticity modulus \ 11920

Poisson’s ratio ] 0.3

Initial yield stress R� 100

So�ening modulus ℎ −400
Internal length scale M 0.5

Prescribed displacement V� −1.5

�e results are clearly discretization-insensitive and con-
sistent with Rodŕıguez-Ferran et al. [58], as shown in the
force-displacement curves in Figure 6 and the deformation
patterns and the equivalent plastic strain in Figure 7.

5.3. Sensitivity Test for Biaxial Compression. �is example
is a variation of the biaxial compression test, which was
presented in the previous section. �e goal is to illustrate the
imperfection-size insensitivity (Figure 10). �e initial yield

Table 3: Sensitivity test for biaxial compression: material parame-
ters (nondimensional).

Meaning Symbol Value

Elasticity modulus \ 11920

Poisson’s ratio ] 0.3

Initial yield stress R� 100

So�ening modulus ℎ −400
Internal length scale M 0.5

Prescribed displacement V� −2.4

stress of the weakened areas was reduced by 10%, and the

study was performed for two imperfection sizes, as shown

in Figure 8. �e numerical results are compared with those

shown by Rodŕıguez-Ferran et al. [58]. �e nondimensional

material parameters are summarized in Table 3.

�e results are clearly insensitive to the size of the

imperfection and consistent with Rodŕıguez-Ferran et al.

[58], as shown in the force-displacement curves in Figure 6
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Figure 7: Biaxial compression test: deformation pattern and equivalent plastic strain for (a) 37 × 19 nodes, (b) 61 × 31 nodes, and (c) 85 × 54
nodes.

in addition to the deformation patterns and the equivalent
plastic strain in Figure 9.

5.4. DiagonallyWeakened Biaxial Tensile Test. In this numer-
ical example, a localization strain band is induced in a
weakened area on the diagonal, as shown in Figure 11. �e
numerical results are compared with those shown by Liebe
et al. [62]. �e initial yield stress of the weakened area was
reduced by 20%, and the study is performed for two di
erent
discretizations. �e nondimensional material parameters are
summarized in Table 4.

�e results are discretization-insensitive and consistent
with Liebe et al. [62], as shown in the reaction-displacement
curves in Figure 12, in addition to the deformation patterns
and the equivalent plastic strain in Figure 13.

6. Conclusions

A meshless Finite Point Method for the strain localization
analysis using a gradient plasticity formulation has been
presented.

Table 4: Diagonally weakened biaxial tensile test: material parame-
ters (nondimensional).

Meaning Symbol Value

Elasticity modulus \ 50000

Poisson’s ratio ] 0.3

Initial yield stress R� 25

So�ening modulus ℎ −15
Internal length scale M 0.5

Prescribed displacement V� 0.2

�is meshfree spatial discretization technique allows
enriching the governing equations using the gradients’ plas-
ticity and introducing an internal length scale parameter at
the material model.

�e di
erentiability order of the polynomial base of
approximation allows us to use the same shape function to
approximate the displacements �eld and the internal plastic
deformation variable, which reduces the computational cost.
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Figure 8: Sensitivity test for biaxial compression: (a) a small and (b) a large imperfection.
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Figure 9: Sensitivity test for biaxial compression: the deformation patterns and the equivalent plastic strain for (a) small and (b) large
imperfections.
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Figure 12: Diagonally weakened biaxial tensile test: reaction-displacement curves for two discretizations.
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Figure 13: Diagonally weakened biaxial tensile test: examples of the deformation pattern and the equivalent plastic strain for a discretization
of 33 × 33 nodes.
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�e numerical results, which were obtained using the
proposed technique, demonstrate that the solution and the
response are independent of the discretization density.
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