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A FINITE SAMPLE DISTRIBUTION-FREE PERFORMANCE
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In the discrimination problem the random variable ¢, known to take
values in {1, - -+, M}, is estimated from the random vector X. All that is
known about the joint distribution of (X, ¢) is that which can be inferred
from a sample (X3, 61), « - -, (Xu, 0n) Of size n drawn from that distribution.
A discrimination rule is any procedure which determines a decision é for
6 from X and (X1, 61), - -+, (Xn, 6x). A rule is called k-local if the decision
6 depends only on X and the pairs (X;, 6;) for which X; is one of the k-
closest to X from Xj, ---, X». It is shown that for any k-local discrimi-
nation rule, the mean-square difference between the probability of error
for the rule and its deleted estimate is bounded by A/n where A4 is an
explicitly given small constant which depends only on M and k. Thus
distribution-free confidence intervals can be placed about probability of
error estimates for k-local discrimination rules.

1. Introduction. In the discrimination problem a statistician makes an obser-
vation X, a random vector with values in R?, and wishes to estimate its state 6,
arandom variable known to take values in {1, - .., M}. All that he knows about
the distribution of (X, ) is that which can be inferred froma sample (X, 6,), - - -,
(X,, 0,) of size n drawn from that distribution. The sample, called data, is
assumed to be independent of (X, §). Using X and the data the statistician makes
a decision # for 6 where his rule is any procedure which determines 6 given X
and the data.

The rule which serves as a prototype for the class of rules considered in this
paper is the k-nearest neighbor rule. Introduced by Cover and Hart (1967), this
rule takes § to be the state which occurs most often among the states of the &
closest observations to X from X, --., X,. Two types of ties can occur here.
In the first case, there may be ties in distance to the observation X so that the
k closest observations are not uniquely determined. This case can occur, for
example, when the distribution of X is purely atomic. The second case occurs
when there are several different states which occur most frequently among the
states of the k closest observations to X. To handle both situations, the inde-
pendent sequence Z, Z,, Z,, - - - of random variables, which are i.i.d. with a uni-
form distribution on [0, 1], is generated. We will think of Z as being attached
to X and Z, as being attached to X, fori =1, ..., n. Then X; is closer to X
than X; if
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(2) X — X < |IX — X, or
(b) X — X = I — X,[[and |Z — Z| < |Z ~ Z/] or
(©) X~ XJ|= X = X]}, |Z~ Z| = |Z ~ Z| and i < j.

The k closest observations to X are now uniquely determined and the descrip-
tion of the rule is completed by taking § to be the state which occurs most
frequently among the states of the k closest observations to X. If several states
occur most frequently among the states of the k closest observations to X, the
state with the observation closest to X from those tied is chosen. If (X7, ¢/, Z9)
represents the jth closest observation to X, its state and its attached random
variable, we see that the estimate § of the k-nearest neighbor rule can be written

(1.1) 6 = g(X, Z, (X2, 0%, ZY), - - -, (XE, 0%, ZF))

for some function g. The class of rules with the representation (1.1) for some
g and some k are the rules which we are primarily interested in and will be
called k-local.

The probability of error L,, given the data and attached random variables, is

L,=P{+6|D,}
where
D, = ((Xy 0, Z), - -, (X 0,y Z,)) -

A frequency interpretation of the random variable L, is that m new observations
whose states are estimated by the rule with D, will have mL, discrimination
errors on the average. (Each of these new observations will have a new inde-
pendent “Z” attached to it but the Z,, - .., Z, stay fixed with the data.) The
random variable L, is economically important to the statistician because it
measures the performance of the rule after it is constructed but before it is
applied. His immediate need then is an accurate estimate of L,.
The deleted estimate of L, is given by

L, = (1/n) Tty Tipeo

where 8, is the estimate of 6, from X;, Z, and D, with (X;, 0,5 Z,) deleted. (This
definition makes sense, of course, as long as k < n — 1.) Thus ]:n is the pro-
portion of errors made by the rule on the data that defines it, one observation
deleted at a time. Since Ii5,+0, 1s @ validation on independent data, L, might
also be called the cross-validatory estimate of L,. This estimate has been used
in the past as a criterion for selecting a particular discrimination rule among a
class of discrimination rules, the one having the smallest estimate being called
the cross-validatory choice (e.g., see Stone (1974) for a recent summary of the
work done on this problem). Deleted or cross-validatory estimates are not always
easy to compute but, in some cases like the k-nearest neighbor rule, the com-
putation is reasonable and the intuitively efficient use of the data can be taken
advantage of. The deleted estimate is compared briefly with other estimates at
the end of the paper.
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In addition to L,, the current performance of the rule, the statistician is also
interested in its ultimate performance. Assume that there exists a constant L
such that

(1.2) L, — L in probability.

The quantity L measures the effectiveness of the rule for an infinite amount of
data. Indeed, much previous investigation into the nonparametric discrimination
problem centered around exhibiting rules for which (1.2) holds with L = L*,
where L* is the Bayes probability of error. Using such a rule, called asymptot-
ically optimal, at least gives the statistician some limited assurance that he will
do as well as possible with large amounts of data. Beyond this, the statistician
needs to know the value L since a large value could obviate collecting further
data. For the k-nearest neighbor rule, Cover and Hart gave conditions for which
L exists with
EL, - L

and where, for k = 1,
(1.3) L* < L < L¥2 — ML*/(M — 1)].

Wagner (1970) and Fritz (1975) gave conditions for the distribution of (X, 6)
which, for the k-nearest neighbor rule, insured that the convergence in (1.2)
was with probability one. Assuming (1.2), every reasonable estimate of L be-
comes a reasonable estimate of L, for large n and vice versa. Thus L, has been
called a deleted estimate of both L, and L. For some types of rules which satisfy
(1.2), conditions on the distribution of (X, §) have been given in Wagner (1973)
which insure that

(1.4) L,— L in probability,

and, consequently, L, — f,,, — 0 in probability. Cover (1969), using (1.3), also
has discussed the use of the k-nearest neighbor rule with its deleted estimate to
estimate bounds for L*.

If the statistician has a rule which satisfies (1.2) and (1.4), where L is not
necessarily equal to L*, what beyond these statements does he want? He would
undoubtedly like to know, for a given ¢, a« > 0, an n for which

(1.5) (@) P, —L|ze<a
(b) Pf,—Lize<a.

The n must work for all distributions of (X , 8) but could depend on the number

of states M and the dimension 4. It is unfortunate, but not surprising, that an

n cannot be specified for (1.5b). In particular, for 0 < ¢ < $and'd = 1,
supP{lL, — L= ¢} =1

for each local rule, where the supremum is taken over all distributions of
(X, 0). As pessimistic as this observation seems, it only indicates that knowing
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something about the ultimate performance of the rule from a finite amount of
data, uniformly in all problems, requires additional a priori information.

Can then anything be said about the finite sample performance of a local rule
with regard to estimating the current probability of error L,? Restating (1.5a),
does

sup P{|L, — L,| = ¢} —0

for each ¢ > 0? The answer is yes, and L, seems to be a surprisingly good
estimate of L,. ' '

2. Results. The main result of this paper is the following theorem.
THEOREM 2.1. For all d and any k-local rule
2.1 E(L, — L) < (2k + (}))/n + 2k(2k + (}))i/n* + k?Jn? .
Before proving Theorem 2.1 we give a result for a somewhat more general
class of rules. If the rule can be specified by
0 =g.X, 2, D,)

then it is termed symmetric if any reordering of (X, 6, Z), -+, (X, 0,,Z,)

7 Yo

leaves the value of § unchanged with probability one. If (X, 0, Z) and (X,, 6,, Z,)
are two independent observations with their states and attached random vari-
ables let = g,(X, Z, D,)and 6§, = 9.(Xos Zy, D,). . If D,; denotes the sequence
D, with (X, 6,, Z,) deleted then, as before, let

b, = g,_\(Xss Z,, D,;) : l<ign.
THEOREM 2.2. For a symmetric rule l
E(L, — L,y = P{6 + 0;0, % 6.} — 2P{0 + 6; 0, + 6.} + P{6, + 0,; 0, + 6,}
+ (EL,_, — P{0, # 6,; 0, = 6,})/n .
Proor. First, for any g,
E(an) = E(P{é + 0 | Dn})z'
= E(P{0 + 0| D,}P{f, + 6,|D,})
= E(P{0 + 6; 6, = 6,|D,})
=Pl +0;0,+6,).
Next,

1 1
EL,L,) = E(L,, — T Iw,.;oi]) = — Tt ELuKieo,)

~ S EP # 6;6,+ 6,|D,})

YrPO #0600, 0)

1
n
1
n
P{f + 6;0, + 6,} (because of symmetry) .



510 W. H. ROGERS AND TERRY J. WAGNER
Finally, again using symmetry,
B(L7) = — TP 0} + & T, P # 050, % 6))

— EL'IL—I

n

n —

. L P, + 6,56, + 6,)

and Theorem 2.2 follows immediately.
As an application of Theorem 2.2, consider the k-nearest neighbor rule. Look-
ing first at the term

(2.2) PO+ 0;0,+ 6, — P + 6;0,+ 6},
let 6" be the k-NNR estimate of 8 from (X, 6,y Zo), (X;» 0 Z)s - - » (X, 0., Z,)
and let 6 be the k-NNR estimate of 6, from (X,, 8,, Z,), - - -, (X,, 0,, Z,). Then
_P{ # 650, 0} — P{O" 656, % 0,)]
< P({0 + 6; 0, + 6} A {6+ 656, = 0,})
< P({0 = 60} U {6, + 6,'})
2k 3k

SPl+0)+ PO o)< 2K _ 4 K L3k
n+1 n n

Since P{0' + 0;6, + 0,} = P{é + 0; 91 # 0.}, it follows that (2.2) is < 3k/n.
For the term

(2.3) PO, + 0,6, 0} — P{0 +6;0,+0),

let now 6§’ be the k-NNR estimate of 6 from (X, 8,, Z,), (X, Oy, Zy), -+,
(X4 0., Z,) and let 6, be the k-NNR estimate of 4, from (X, 6, Z), (Xys 05 Zy), - - -
(X, 0., Z,). Then, as above,

|P{0 + 66, + 6,) — P{6" + 6; 0, + 6,)]
< P00} + PO+ 6y < X 203k
Because P{0' + 0; 0, + 6,} = P{0, # 0,; 0, + 0,) we see that (2.3) is < 3k/n.
For the last term
2.4) (EL,_, — P, 6,36, + 0,))/n ,

let 6,”, 6, be the k-NNR estimates of 6,, 6, from (X, 9, Z), (X, 6,, Zg), -+,
(X, 0., Z,). Then, as before,

PO, 0,3 0, # 0} — P(0,” + 6,5 6,” = 6,}| < 4k/n
so that (2.4) is bounded above by
(EL,_, — P{6," + 0,; 0, + 6,})|n + dk/n* .

But P{0," = 0,; 6,” # 0} = EL, |, > (EL,_,)* so that the last expression is
bounded above by

(EL,_, — (EL,_,)/n + 4k/n® < 1/4n + 4k/n* .



DISTRIBUTION-FREE PERFORMANCE BOUND 511

Combining all three bounds yields
(2.5) E(L, — L,)* < (6k + })/n + 4k/n*.
Proor oF THEOREM 2.1. Let L, be the probability of error when @ is esti-
mated from X, Z and D, ; and let L, = (X L,;,)/n. Then
(2.6) >t Luw, — L) < X2, P{X; is one of the k closest to X}
=k
so that, for s > 0,

1L, — L] = |Z7 Loy — Lo)*/n* < ket
and

2.7) E(L, — L) < k¥n*.

In addition to the notation used previously, let 01., ; be the estimate of 4, from
the data with both ((X;, 6,, Z,)) and (X, 6,, Z;) deleted and let L, ; denote the
probability of error when @ is estimated from the data with both (X, 6,, Z;) and
(X;, 0;, Z;) deleted. Then

P 1
E(L,— L) = 7 E{ 37 (Ith,00 — Luo)}

1
)

(2.8) 7 ~ 7 2T E(I[ﬁiqeoi] — L)

1
T 2izi Elig 200 — Law)id;200 — Laii)] -
Because L, is the best mean-square estimate of /I ., from the data with
(X, 6, Z;) deleted we conclude that
E(Ithe0y — Law)* = Elipro — Pl6, =+ 6] <}
and the first term of (2.8) is bounded by 1/4n.

The second term of (2.8) is split up as follows.

1
] 2liti E[(’[éi#i] - Lm))(][éj#j] — L))

1
(2-9) = Pl Zi#i E(Iléi;edi] - I[é,-‘,-;eai])(][ﬁj#j] - an)
1 :
(2'10) + F Zi#;{' E(I[ﬁh"*e?’] - Lﬂ(i,j))(’[éj#ﬂj] - L‘n(j))
1 .
(2°1 1) + ‘,ﬁ P E(Lmi,j> - Ln(i))(l[éj#]-] - Lmj)) :

For i # j, we see that each term in (2.9) is bounded in absolute value by the
probability that X; is one of the k-nearest neighbors of X;. This probability is
less than or equal to k/(n — 1) so that (2.9) is bounded by k/n. For (2.10) we
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see that the expectation of each term is 0 by first taking the conditional expec-
tation given the data with (Xj, 6,, Z;) deleted. For example,

E(I[t?i,,-ﬁi] - Lmi.j))(’[éj*oj] —L,;)
= E(E((I[ﬁi,j;eei] - Ln(i,h)(ltéjﬁjl — L) | Day))
= E(I[ﬁi,,-#oi] — Ly, ) (Laiyy — Luisy)) =0
where we notice that Iy, ..p; — Ly, is a function of D,,;. Using the same argu-
ment that led to (2.6), we see that (2.11) is < k/n. Collecting bounds yields

(2.12) EL, — L) < [2k + D)]/n -
Writing E(L, — L,)* as
EL, — L, +2EL, — L)L, — L,) + E(L, — L,)

we see that (2.1) follows from (2.7), Schwarz’s inequality, and (2.12).
For a k-local rule let 5 be the right-hand side of (2.1). We have the following
immediate corollaries of Theorem 2.1.

COROLLARY 1. P[|L, — L,| = ¢] < b/e*.
COROLLARY 2. P[L* > L, + ¢] < b/’

3. Remarks. The result (2.1) can be weakened to the form A/n by taking A4
to be the sum of the numerators of the right-hand side of (2.1). So far as we
know, our bounds are not sharp, especially for kK > 1. All possible constant
A’s satisfy 4 = } as can be seen by considering rules which do not depend on
the data. In this case, kK = 0 and the sum in f,,, is a Bernoulli sequence whose
random variables have an expectation equal to the probability of error of the
rule. If p is this probability of error then E(L, — L,)* = p(1 — p)/nand A must
be at least % to cover the case p = 1.

A Monte Carlo experiment was carried out to ascertain how sharp the bound
(2.1) might be in a realistic situation. The experiment involves drawing a sam-
pleofsizenwithd =1, M =2, P[0 = 1} = P{f =2} = L and P[X < x|0 = i}
having the densities

(3.1) filx) = 2x 0<x<1
fl¥) =2-2x 0<xx1.

TABLE 1
Monte Carlo results for the nearest neighbor rule
with the densities given in (3.1)

n navg (Ly — L)? navg (in — L)? navg (II:n — Ln)?

50 .053 .369 .302
100 .052 .360 .301
250 .051 .418 .356

500 .052 .357 .301
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For this problem L, and L, are both easily calculated for the nearest neighbor
rule. The results of 500 samples of size n are shown in Table 1. The best bound
presented in this paper for nE(L, — L,)* is 2.25 which is considerably larger
than the values in the table. In addition, a measure of normality was computed
indicating that (L,, L,) converged to a normal distribution in the Monte Carlo
as n — oo.

Readers may wonder if their favorite method of breaking ties will work. For
example, suppose one uses the k-nearest neighbor rule with k = 7, but finds,
for a particular value x to be classified, that there are fifteen neighbors within
the sphere which contains the first seven as previously defined. One reasonable
way to try to break this tie now is to take a vote of these fifteen neighbors. One
might even modify the concept of a local rule to include this situation; how-
ever, the conditions required to obtain comparable results for such modifications
are not clear. . :

Other error rate estimates have been studied (see the review paper by Toussaint
(1974)). The resubstitution estimate of L, (or L) is given by

1
ﬁn = — Z;‘ ][3j¢0j]
n

where 5j = 9(X;, 0;, D,) is an estimate using all the data. L, is frequently an
optimistic estimate of L, (or L) even when it is a consistent estimate of L (Glick
(1972), Toussaint (1974)). In particular, when used with the single nearest
neighbor rule it always yields an estimate of 0 when P{X < x|f = i} has a
probability density for each i = 1, ..., M. The holdout method has a number
[,0 < I < 1, and counts the frequency of errors on the last In observations using
the first n — In observations and g (we have assumed In is an integer). This
method is forever subject to a balancing between the twin perils of a large bias
with large / and a large variance with small /. Moreover, if £, denotes the hold-
out estimate of L, with / fixed then

E(L'n - Ln)z g (EL'n - Ef‘n)z

a quantity which, for the single nearest neighbor rule, can be shown to goto0
at an arbitrarily slow algebraic rate following the example in Cover (1968).

We have assumed throughout that ¢, is a random variable. If we wish to
assume, for example, that 6,6, - --, 0, is a deterministic sequence chosen by
nature then there are M probabilities of error

Li=P0+j|(Xy0,2) (X 0,,Z,), 0=/}, 1<;<M.

A deleted estimate of L,7 consists of counting the frequency of errors made on
the observations with states equal to j by using the data and deleting, one at a
time, those observations that are being estimated. The bound (2.5) continues
to hold for E(L,7 — L,%)?* with the n on the right-hand side of that inequality
replaced by n;, the number of observations in the data with state j.
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Finally Theorem 2.1 holds when X takes values in an arbitrary metric space,
where we note that some of the properties of the metric, like the triangle in-
equality, are not needed.

Acknowledgment. Tom Cover has generously shared with us his ideas on
nonparametric discrimination over an extended period of time. The results of
this paper are as much his as ours.

REFERENCES

[1]1 Cover, T. (1968). Rates of convergence of nearest neighbor procedures. Proc. Ist Annual
Hawaii Conf. on System Science 413-415.

[2] Cover, T. (1969). Learning in pattern recognition. In Methodologies of Pattern Recognition
(S. Watanabe, ed.) 111-132. Academic Press, New York.

[3] Cover, T. and HART, P. (1967). Nearest neighbor pattern classification. IEEE Trans. Infor-
mation Theory IT-11 21-27.

[4] FriTz, J. (1975). Distribution-free exponential error bound for nearest neighbor pattern
classification. IEEE Trans. Information Theory IT-21 552-557.

[5] Grick, N. (1972). Sample-based classification procedures derived from density estimators.
J. Amer. Statist. Assoc. 67 116-122.

[6] StoNE, M. (1974). Cross validation choice and assessment of statistical predictors. J. Roy.
Statist. Soc. Ser. B 111-147.

[7] ToussaINT, G. (1974). Bibliography on estimation of misclassification. IEEE Trans. Infor-
mation Theory 1T-20 472-479.

[8] WaGNER, T. (1971). Convergence of the nearest neighbor rule. IEEE Trans. Information
Theory IT-17 566-571.

[9] WaGNER, T. (1973). Deleted estimates of the Bayes risk: Ann. Statist. 1 359-362.

THE RAND CORPORATION DEPARTMENT OF ELECTRICAL ENGINEERING
1700 MAIN STREET UNIVERSITY OF TEXAS
SANTA Monica, CALIFORNIA 90406 AUSTIN, TExAs 78712



