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A B S T R A C T

In this article, a two-node finite strip with eight degrees of freedom for the free vibration analysis of pre-stressed
rotating cylindrical shells is formulated. The circumferential mode shape profiles are described exactly using
trigonometric functions. The axial mode shape profiles are approximated by bar and beam shape functions for
membrane and bending displacements, respectively. In this way, a semi-analytical formulation is facilitated so
that discretisation is required only in the axial direction. The accuracy and convergence of the developed finite
strip are confirmed by comparisons with the analytical results. Excellent agreement is observed both for station-
ary and rotating shells.

1. Introduction

Shells are widely used as constructive elements in many engineering
structures. Their static and dynamic behaviour has been an important
topic in structural design for a long time [1–3]. As a result, the theory of

shells and plates has been covered in a systematic manner in a number
of books [4–11]. For example, an instructive approach to thin shell the-

ory, written in a relatively simple way and adapted to the engineering
level for practical usage, is presented in [12]. On the other hand, some
authors have covered more specific problems related to the design of
shell-like structures [13,14]. For example, the general theory and spe-
cific discussions regarding shells of revolution exposed to a uniform load
can be found in [15]. Such problems are more particular for submarine
or aircraft pressure hull designs with pronounced axial symmetry.

In fact, it is often the case that axisymmetric shells rotate around
the axis of symmetry [16–22,24–30]. Rotating shells of revolution are

found in engineering practice in rotor systems of gas turbine engines,
high-speed centrifugal separators, rotating satellite structures, automo-
tive tyres, etc. Rotation makes their dynamic behaviour significantly
more complex. One of the first investigations into the vibration of ro-
tating structures was carried out by Bryan [16]. He studied the vibra-
tions of a rotating ring and described the travelling modes phenome-
non. These phenomena result from the Coriolis effect, as shown in the
example of infinitely long rotating cylindrical shells [17,18], as well as

in finite rotating cylinders [19,20]. An experimental study on the flex-
ural vibrations of a thin rotating ring is given in [21]. Furthermore, the
influence of pre-stress on the free vibrations of rotating cylinders has
been studied in [22].

Huang and Soedel [24] used nonlinear strain-displacement relation-
ships [23] to formulate the corresponding set of differential equations
of motion for a rotating cylindrical shell. They exactly solved the free
and forced vibration problem of a simply supported cylindrical shell by
assuming simple sine and cosine displacement functions of the circum-
ferential and axial variables. In this case, formulating the eigenvalue/
eigenvector problem results in a characteristic polynomial of the sixth
order. Its solution gives three positive and three negative natural fre-
quencies.

If the shell does not rotate, the polynomial is bicubic. There are
three pairs of positive/negative frequencies characterised by the same
absolute value. This is physically explained through pairs of backward
and forward rotating modes. The two modes of a pair rotate with the
same speed in opposite directions and thus superimpose into a station-
ary mode. The reason why there are three pairs of modes and natural
frequencies is that there are three types of dominant modes: bending
(radial), longitudinal (axial), and shear (circumferential).

If the shell rotates around its axis with a constant speed, then the
polynomial is no longer bicubic. The full sixth order polynomial occurs.
The positive and negative natural frequencies have distinct absolute val-
ues and so-called frequency veering (bifurcation) happens. This means
that the forward and backward rotating modes no longer rotate
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with the same rotation speed and thus cannot superimpose into the
stationary modes (standing waves). As a result, with spinning shells
the modes rotate independently. For example, this phenomenon comes
about with tyres rolling over the road surface [25–29]. This significantly

influences the overall NVH (Noise and Vibration Harshness) character-
istics of the vehicle.

It is very common in the literature on the vibration of cylindrical
shells, either rotating or stationary, to assume that the two ends of the
shell are simply supported [24,30,31]. This type of boundary support is
sometimes referred to as a shear diaphragm set of boundary conditions
[11,12]. The reason why this set of boundary conditions is often used
is that it is probably the only one for which a relatively simple solution
can be obtained analytically. In other words, mode shapes assumed as
appropriate products of trigonometric functions of the circumferential
and axial variables usually satisfy both the differential equations and
the boundary conditions. This results in a mathematically convenient
model.

However, such a model is not necessarily suitable to describe a par-
ticular engineering problem. For example, although it is very instructive
to investigate the dynamics of rotating tyres assuming simply supported
edges of a tyre tread-band [24,30,31], it is difficult to accept, from an
engineering point of view, that the tyre sidewall is infinitely stiff in ra-
dial or tangential directions [28,29].

In the case of cylindrical shells with boundary conditions other than
simply supported ones, the mathematics becomes significantly compli-
cated. Closed-form solutions are now difficult to obtain. A number of
investigations have been undertaken to tackle this problem [33–39].

One of the solutions was obtained by assuming the shell displacement
field as a product of Fourier series in the axial direction, and trigono-
metric functions in the circumferential direction [36]. This procedure
has been recently extended to rotating cylindrical shells [37]. The prob-
lem of the free vibration of a rotating cylindrical shell having arbitrary
boundary conditions can also be solved by employing the Rayleigh-Ritz
method. Such a solution, using characteristic orthogonal polynomials
for displacement variations along the axial direction, can be found in
[38].

A complete analytical solution for free vibrations of a rotating cylin-
drical shell with arbitrary boundary conditions has recently been offered
in [39]. The equations of motion in [39] are based on the strain-dis-
placement relationships of Hermann and Armenakas [23]. Circumferen-
tial tension due to internal pressure or centrifugal forces, as well as an
elastic foundation in both radial and circumferential directions, is taken
into account. The circumferential mode shape profiles are described by
trigonometric functions. The axial profiles are assumed as a sum of eight
weighted exponential functions. Three differential equations of motion
for an assumed circumferential mode number lead to a frequency equa-
tion in the form of a bi-quartic polynomial. Eight cases of the four differ-
ent combinations of the polynomial roots (real, imaginary and complex)
were identified. Hence, the mode shape axial profiles are described in
terms of trigonometric functions, hyperbolic functions and their prod-
ucts. The application of the analytical solution was illustrated in the case
of a cylindrical shell with free-free boundary conditions, and excellent
agreement with the experimentally obtained results was confirmed. The
principal advantage of the analytical procedure [39] is very high accu-
racy confirmed by experiments.

However, the procedure requires the discovery of a proper case
among the eight types of axial mode shapes for which a solution can be
found even for a single cylindrical shell. If a shell structure consists of
n cylindrical shells of different particulars, the number of combinations
to find the proper one is 8n. Hence, although numerical examples solved
in this way may be very useful as benchmarks for the evaluation of var-
ious numerical methods, the analytical procedure is not quite suitable
for practical use.

In practical situations, the problem of the vibration of cylindrical
shells with boundary conditions other than simply supported ones could
be solved by using the finite element method (FEM). In fact, complex
built-up shell structures, which may be approximated by a number of
connected cylindrical or other types of shells, could be conveniently
tackled by the finite element method. For this purpose, special shell fi-
nite elements based on the waveguide finite element method would be
suitable. Such finite element analyses have so far been used to tackle sta-
tionary shell structures [43,44]. Alternatively, the homogeneity of the
cylinder around the circumference and along the axis has been exploited
to post-process the FE model of a small rectangular segment of the cylin-
der using periodic structure theory to obtain the wave characteristics of
a cylinder [45]. Since there is an integer number of wavelengths around
the circumference of a closed circular cylinder, one of the integrals in
the inverse Fourier transform becomes a simple summation, whereas
the other can be resolved analytically using contour integration and the
residue theorem [45].

Although the semi-analytical waveguide approaches of [43–45] may

be very convenient and useful for a variety of problems, none of the
semi-analytical finite element formulations developed so far a) allow
for considering the typical effects of rotation (rotating modes and fre-
quency veering) or b) can take into account the effects of pre-stress
due to possible pressurisation and/or centrifugal forces. Therefore, the
state-of-the-art in the considered field motivates further developments
of finite elements especially tailored to model rotating and pre-stressed
cylindrical shells.

One of the very effective numerical methods which reduces the
two-dimensional problem into a one-dimensional one in the case of sim-
ply supported two opposite edges or shells of revolution is the finite
strip method (FSM) [46]. Due to this advantage, the method is widely
used in the structural analysis of engineering structures. Some recent
publications on different problems are included in the reference list
[47–55]. All the articles are published in the Thin-Walled Structures

journal as a major forum for the development of the finite strip method.
In this paper, a new finite strip for modelling pre-stressed rotating

cylindrical shells is formulated. The energy approach is used with the
strain-displacement relationships given in [23,24] to develop and val-
idate such a special finite strip [46]. The strip element is deliberately
made quite simple, including two nodes and eight degrees of freedom
(d.o.f.). Its reliability is checked in a number of numerical examples
by comparing the numerical results with the analytical ones. Excellent
agreement is observed for all the boundary conditions considered.

2. Strain and kinetic energy of a rotating cylindrical shell

A thin cylindrical shell rotating around its axis of symmetry with
constant angular speed Ω is shown schematically in Fig. 1. The shell di-

mensions are the following: L is the length, a is the radius, and h is the
thickness. The shell mid-surface is defined in the cylindrical coordinate
system, where x and ? are the axial and angular coordinates, respec-
tively. The displacement of a point P on the mid-surface, whose position
is defined by x and ?, is specified by the axial, tangential and radial dis-
placement components u, v and w, respectively, as shown in Fig. 1.

The problem of shell vibration can be analysed by directly solv-
ing differential equations of motion or by minimising the total energy
with assumed mode shapes, i.e. by applying the Rayleigh-Ritz method.
The equations of motion can be derived by considering the equilibrium
of the internal and external forces on an infinitesimally small element
[12]. Differential equations of motion can also be obtained by minimi-
sation of the total energy with respect to displacements, i.e. by applying
Hamilton's principle.
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Fig. 1. Rotating cylindrical shell with: a) the main particulars and displacements, b) finite strips with nodes.

In the case of a rotating cylindrical shell, the latter approach is more
convenient, as shown for example in [38]. Love's simplification [56] al-
lows for the shell strain field to be separated into membrane strains and
bending strains [24]

(1)

where εi are the membrane strains, κi denote the change in curvature
due to the shell bending, and z is the distance of a shell layer from the
reference mid-surface. According to [24], the membrane strains can be
written in the following form:

whereas the bending strain components are given by:

(3)

where Nx and N? are the initial tension forces which can be caused by
either the centrifugal force, which depends on rotational speed, Ω, or
internal pressure, p0, or both

(4)

In fact, the nonlinear (quadratic) terms in the first two equations of
Eq. (2) are introduced in order to capture the geometric stiffness effect
primarily due to these initial tensions.

The three stress components in a shell layer are defined according to
the 2D Hooke's law

(5)

where E is Young's modulus and ν is Poisson's ratio. The strain energy
stored in an infinitesimal shell element of thickness h is

(6)

Substituting Eqs. (1) and (5) into (6) and taking into account that
the infinitesimal shell mid-surface yields

where

(8)

are the membrane stiffness and bending stiffness, respectively. Hence,
the membrane and bending strain energies are uncoupled in (7) since
functions εi and zκj are orthogonal within the shell thickness domain.
Furthermore, by substituting Eqs. (2) and (3) into Eq. (7) one obtains
the expression for the strain energy of an infinitesimal shell element in
terms of derivatives of displacements of different orders of magnitude:

, , , , . The 3rd and 4th order terms can be ignored as small

quantities of a higher order. On the other hand, the zero and the 1st
order terms are static terms and can also be omitted since the shell vi-
brates around the static equilibrium. As a result, the strain energy is re-
duced to the form

(9)

3
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where the strain energy density function is given by

The kinetic energy of an infinitesimal shell element is given by

(11)

where the kinetic energy density function Fk is a product of the specific
mass per unit area and the total velocity squared. The total velocity con-
sists of the velocity components in the axial, circumferential and radial
directions. It also includes contributions due to the shell rotation, i.e.

(12)

3. Differential equations of motion

3.1. General cylindrical shell

Differential equations of motion are obtained by applying Hamilton's
principle to the total strain (i.e. potential) and kinetic energy [24]. The
total energy of a conservative dynamic system reads

(13)

where the energy density functions Fs and Fk are given by Eqs. (10) and
(12), respectively. The total energy is constant since there is no energy
dissipation due to damping and strain and kinetic energy interchange
from their maximum to zero value with the phase shift.

As a result, in the considered case the following three partial differ-
ential equations are obtained [24]:

(15)

3.2. Cylindrical shell with a closed cross-section and arbitrary boundary
conditions

For a cylindrical shell with a closed cross-section and arbitrary
boundary conditions at the two ends (at x = 0 and x = L, where L is the
length of the shell), the three displacement components can be assumed
in the form

(17)

where ω is a natural frequency. Note that in Eq. (17) the variables are
separated in such a way that displacements are assumed as products of
their axial and circumferential profiles. Each profile is a function of ei-
ther the axial or circumferential coordinate only. The circumferential
profiles are described through an appropriate set of trigonometric func-
tions, whereas the axial profiles are provisionally left open as functions
of the axial variable , , and . Further to this, note that the
arguments of the trigonometric functions of the circumferential coordi-
nate allow for the modal shapes to rotate around the cylinder axis.

Substituting (17) into (16), the system of partial differential equa-
tions is reduced to the system of ordinary differential equations

(18)

(19)

indicating that the assumed displacement circumferential profiles satisfy
the equations of motion. The prime designates a spatial derivative by x.

The system of differential Eqs. (18), (19) and (20) has been solved
in a general form in [39], assuming the displacement functions in the
exponential form

(21)

where α is a complex parameter. Substituting (21) into Eqs. (18), (19)
and (20), the eigenvalue problem is formulated

(22)

where is a symmetric dynamic stiffness matrix. Its determinant
is expanded into an eighth-order polynomial with even exponents (bi-

4
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quartic polynomial), with an unknown parameter α

(23)

As a result, each of the displacement functions is expressed by eight
independent exponential functions with eight complex constants [39].

The above analytical solution is rather involved since eight types of
complex roots of Eq. (23) are possible depending on the shell particu-
lars. Nevertheless, the analytical solutions according to [39] are used in
this paper as a benchmark to cross-check the results obtained by the pre-
sent numerical method, and thus to validate the newly formulated finite
strip.

3.3. Simply supported cylindrical shell

As already mentioned in the introduction, in this special case har-
monic functions can be assumed for the axial profiles of the displace-
ment components , , and . Apart from satisfying the equa-
tions of motion, such axial profiles also satisfy the corresponding shear
diaphragm boundary conditions [12,24]

(24)

The parameter m denotes the mode number which is the number
of half-waves along the length of the shell. Substituting Eq. (24) into
(14)–(16) results in the following eigenvalue problem (see also [24]):

(25)

where

The determinant of the dynamic stiffness matrix in (25) is either a
full sixth-order polynomial for rotating shells, or a bicubic polynomial
for stationary shells.

4. The finite strip

4.1. Stiffness matrix

The cylindrical shell is modelled by a number of finite strips, as
shown in Fig. 1.b). Due to the harmonic variation of the displacement

field in the circumferential direction, the dynamic behaviour of the fi-
nite strip becomes representative by its axial generatrix which behaves
like a sophisticated beam.

In this section the properties of the finite strip of a rotating cylindri-
cal shell are developed by employing the energy approach. The stiffness
matrix is obtained using the strip strain energy (9)

(27)

where Fs is specified by (10), and l is the strip width. Substituting the
assumed displacement functions (17) into (10) and integrating Eq. (27)
over the circumference ?, the strain energy is obtained in the form

where

(29)

and

(30)

The strain energy (28) is time invariant. This is due to the fact that
the rotating modes are characterised by fixed profiles which only rotate
along the circumference.

A relatively simple two nodal line finite strip is introduced next. Am-
plitudes of the displacement components, Eq. (17), are approximated by
the following interpolation functions

(31)

where

5
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(32)

are vectors of the amplitudes of the nodal line displacements, i.e. nodal
displacements for short, Fig. 2. For membrane displacements, ordinary
polynomial bar shape functions are used. For bending displacements,
beam shape functions (Hermitian polynomials) are used:

(33)

where ξ = x/l is the dimensionless axial coordinate.
Substituting expressions (31) into (28) and differentiating the strain

energy with respect to the nodal displacements, a system of eight alge-
braic equations is obtained:

(34)

Submatrices represent integrals of a different com-
bination of the shape function products. They are calculated in the
closed form and given in Appendix A with some comments on their
physical meaning.

The system of algebraic Eq. (34) can be written in the matrix nota-
tion

(35)

where

(36)

is the vector of the nodal displacements, Fig. 2, and [K] is the strip stiff-
ness matrix. The stiffness matrix consists of the eleven submatrices as
follows:

The stiffness matrix is symmetric since the energy approach is used.
It incorporates a geometric stiffness matrix, which is due to the initial
tension forces, and which tend to increase the natural frequencies, as
shown and discussed in Appendix B.

4.2. Mass matrices

Mass matrices are determined from the shell kinetic energy, Eq. (11)

(38)

Fig. 2. Nodal displacements and nodal forces of the finite strip and its cross-section.

6
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Substituting (12) and (17) into (38), one obtains after integration
over the circumference ?

(39)

The kinetic energy (39) is also time invariant, as is the strain energy
(28) for the same reason of rotating fixed mode profiles. Furthermore,
substituting expressions (31) into (39) and differentiating the kinetic en-
ergy with respect to the nodal displacements yields

Submatrices , are given in Appendix A.
The system of algebraic Eq. (40) can be written in the matrix form

(41)

where {δ} is a vector of nodal displacements, Eq. (36). Matrix [A] can
be separated into three matrices with respect to the power of frequency
ω

(42)

which are of the following form:

(43)

(44)

(45)

4.3. Finite strip equation

It is well known that a stationary linear conservative dynamic sys-
tem, vibrating freely without external excitation at its natural frequen-
cies, interchanges its vibration energy from a purely potential state,
with respect to the static equilibrium as the reference state at its maxi-
mum amplitude, Esmax, to a purely kinetic state when all vibration am-
plitudes are zero, Ekmax [12]. Hence, the maximum potential energy is
equal to the maximum kinetic energy since there is no energy dissipa-
tion due to damping. This fact is used in the Rayleigh-Ritz method, as-
suming the displacement functions in the form of a series in which the
coordinate functions individually satisfy the geometric boundary condi-
tions. Since the displacements are approximated, the difference of max-
imum energies Π=Esmax-Ekmax is not equal to zero. The relative values

of the unknown coefficients of the series, Ci, as well as the natural fre-
quencies, are determined from the principle of minimum total energy,
∂Π/∂Ci = 0, [57]. If an arbitrary reference state is used for vibration

analysis, Π is equal to a constant whose derivative vanishes.
The same energy approach is employed in the finite element method

and finite strip method. Instead of coordinate functions over the whole
structure, shape functions over the finite element and the finite strip are
used.

Concerning a finite strip of rotating cylindrical shell strain energy
and kinetic energy, Eqs. (28) and (38), respectively, are time invariant
and it is not necessary to search for their maximum values as in the case
of a stationary shell. However, these energies are not balanced at the fi-
nite strip level. Their difference is compensated with the work of nodal
forces, WF, as an external load. Hence the energy balance reads

(46)

where , is a vector of nodal displacements, Eq. (36),
and

(47)

is a vector of the corresponding nodal forces, in which Ni and Si, i =
1,2, are tension and in-plane shear forces, while Qi and Mi, i = 1,2, are
transverse shear forces and bending moments, respectively, Fig. 2. In an
exact solution, the value of Π, Eq. (46), has to be zero, if free vibra-
tions are analysed with respect to a static reference state, while in an
approximated solution it has to be minimum. This is achieved by setting
∂Π/∂{δ} ={0}, which leads to

(48)

since is a unit matrix [I]. Furthermore, taking into account
derivatives of the strain and kinetic energy, Eqs. (35) and (41), and re-
lation (42), one obtains the finite strip equation in the following form:

(49)

Matrix [B], which depends on Ω2, reduces the element stiffness due
to the rotating mass, whereas the geometric stiffness matrix contained
in [K] has the opposite effect. However, the net effect of terms depend-
ing on Ω2 is an increase of natural frequencies.

Generally speaking, the accuracy of the FSM analysis is increased if
the shell is modelled by a larger number of strips. This is particularly
important to properly describe vibration modes with higher axial mode
numbers. In order to facilitate a chain-like assembly of the strip equa-
tions, nodal displacements and forces in the corresponding vectors (36)
and (47) have to be grouped first for the 1st node and then for the 2nd
one

(50)

Consequently, the rows and columns of all matrices in Eq. (49) have
to be rearranged accordingly. Hence, one may write

(51)

The coupling between the membrane and bending deformations is
very strong and is realised by the stiffness matrix [K], Eq. (37). There is
also some weak coupling due to the rotation which is realised through
matrix [C], Eq. (44).
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5. Numerical examples

5.1. Simply supported shell

In order to illustrate the application of the developed finite strip and
to evaluate its accuracy, a number of numerical examples considering
various boundary conditions are presented. First, a free vibration analy-
sis of a simply supported cylindrical shell with the following geometric
particulars and material properties of rubber is carried out using the ex-
ample from [39]:

According to the assumed displacement functions (24), the bound-
ary conditions are: , and

. The shell geometry was modelled with 20 equal finite
strips and the first m×n = 8×10 = 80 natural modes and the corre-
sponding natural frequencies were determined. The natural frequencies

are listed in Table 1, where they are contrasted to the exact values de-
termined according to the procedure described in Section 3.3 [24]. As
can be seen in Table 1, excellent agreement of the numerical and ana-
lytical results is achieved.

The convergence of the natural frequencies to the analytical values
is analysed by increasing the number of finite strips, Ne. The obtained
results are shown in Tables 2–5 for a set of m×n = 8×4 modes. The

convergence is from the above and is quite fast.
The bifurcation of natural frequencies due to the angular velocity,

Ω, for a few characteristic m×n natural modes was calculated using 20
strip elements, and is shown in Fig. 3. The same results were obtained
analytically. In fact, the analytically obtained bifurcation curves per-
fectly overlap with the curves plotted using the present finite strip. The
values of normalising natural frequency in Fig. 3 are those obtained
in the case of Ω = 0, Table 1. For the rotating cylindrical shell, each nat-
ural frequency is split into two values, i.e. a forward (lower) and back-
ward (higher) value. In the case of m × n = 1 × 1, the negative value

of forward frequency ω11 is obtained for . This means that the
rotation speed is higher than the speed of the travelling mode. Such a
case can also be noticed for mode m × n = 3 × 1. The absolute values

of negative natural frequencies are shown in Fig. 3 having in mind the
above meaning .

In addition, a parametric analysis of the internal pressure, p0, was
performed. Fig. 4 shows the increase of natural frequencies due to in-
creased internal pressure. This is a result of an increase in general stiff

Table 1
Natural frequencies of simply supported cylindrical shell, ω [Hz], .

m

n 1 2 3 4 5 6 7 8

1 524.1 783.7 852.8 894.8 946.2 1021.9 1130.4 1276.5
(524.0)* (783.0) (851.1) (891.7) (941.4) (1015.2) (1122.0) (1266.3)

2 303.9 609.1 755.8 840.1 915.3 1005.8 1124.3 1277.3
(303.6) (607.8) (753.6) (836.5) (910.2) (999.0) (1115.8) (1267.0)

3 188.6 458.4 645.2 769.7 873.8 984.6 1117.4 1280.5
(188.3) (456.7) (642.2) (765.4) (868.1) (977.4) (1108.7) (1270.2)

4 150.0 358.2 551.4 702.5 832.9 964.9 1113.8 1288.8
(149.7) (356.4) (547.8) (697.4) (826.4) (957.0) (1104.7) (1278.2)

5 167.6 312.1 490.2 653.0 802.7 953.4 1117.9 1305.0
(167.5) (310.5) (486.4) (647.3) (795.4) (944.9) (1108.2) (1294.0)

6 218.7 316.2 468.4 630.4 791.0 955.8 1133.6 1331.7
(218.7) (315.1) (465.0) (624.6) (783.4) (946.8) (1123.4) (1320.3)

7 289.0 359.7 485.7 638.7 802.6 976.2 1163.9 1371.1
(289.1) (359.1) (483.0) (633.4) (795.2) (967.0) (1153.4) (1359.4)

8 373.3 430.4 536.3 677.2 839.0 1016.5 1210.7 1424.7
(373.5) (430.1) (534.4) (672.9) (832.2) (1007.7) (1200.2) (1412.9)

9 470.0 520.2 612.8 742.5 899.3 1077.2 1274.8 1493.5
(470.3) (520.2) (611.6) (739.1) (893.4) (1069.0) (1264.8) (1481.9)

10 578.5 625.2 709.6 830.3 981.4 1157.6 1356.4 1577.8
(578.9) (625.4) (708.9) (827.8) (976.5) (1150.3) (1347.0) (1566.5)

()* - Analytical solution.

Table 2
Convergence of natural frequencies of simply supported cylindrical shell, ω [Hz], , n = 1.

m

Ne 1 2 3 4 5 6 7 8

2 571.2 902.7 961.9 1034.3 1260.3 2043.4 80,308.0 92,737.2
4 536.2 811.1 896.0 939.0 1039.7 1122.2 1377.0 1522.6
6 529.2 795.7 873.9 927.2 991.4 1068.5 1227.2 1432.0
8 526.8 790.0 864.3 913.0 972.4 1057.7 1180.0 1354.8
10 525.6 787.3 859.5 905.6 961.7 1042.9 1158.6 1315.4
20 524.1 783.7 852.8 894.8 946.2 1021.9 1130.4 1276.5
Analytical 524.0 783.0 851.1 891.7 941.4 1015.2 1122.0 1266.3
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Table 3
Convergence of natural frequencies of simply supported cylindrical shell, ω [Hz], , n = 2.

m

Ne 1 2 3 4 5 6 7 8

2 357.0 910.3 981.3 1038.5 1040.5 1586.1 3613.4 97,489.4
4 317.4 648.3 814.3 944.9 1025.9 1040.5 1361.4 1464.7
6 309.6 626.1 782.7 878.3 966.7 1040.6 1224.2 1424.0
8 306.8 617.9 770.0 860.7 943.5 1040.6 1175.1 1366.8
10 305.6 614.1 764.0 852.1 931.8 1027.6 1153.0 1316.4
20 303.9 609.1 755.8 840.1 915.3 1005.8 1124.3 1277.3
Analytical 303.6 607.8 753.6 836.5 910.2 999.0 1115.8 1267.0

Table 4
Convergence of natural frequencies of simply supported cylindrical shell, ω [Hz], , n = 3.

m

Ne 1 2 3 4 5 6 7 8

2 242.2 922.1 996.6 1046.2 1560.8 1966.3 3486.7 3794.0
4 201.7 507.9 715.7 955.3 1030.7 1178.4 1396.3 1552.2
6 194.0 479.9 680.7 816.7 932.1 1093.1 1229.1 1448.4
8 191.4 469.4 663.7 794.8 906.0 1025.2 1170.0 1387.0
10 190.2 464.6 655.7 784.1 892.4 1008.1 1147.3 1320.3
20 188.6 458.4 645.2 769.7 873.8 984.6 1117.4 1280.5
Analytical 188.3 456.7 642.2 765.4 868.1 977.4 1108.7 1270.2

Table 5
Convergence of natural frequencies of simply supported cylindrical shell, ω [Hz], , n = 4.

m

Ne 1 2 3 4 5 6 7 8

2 195.7 937.3 1010.4 1058.0 2081.1 2396.4 4033.8 4368.3
4 160.4 412.7 634.7 970.9 1046.7 1201.6 1422.8 1578.6
6 154.1 381.5 595.0 759.8 898.4 1115.7 1245.4 1471.5
8 152.0 369.9 573.8 733.2 870.5 1010.1 1169.0 1415.9
10 151.1 364.7 564.0 719.9 854.5 990.9 1145.7 1329.9
20 150.0 358.2 551.4 702.5 832.9 964.9 1113.8 1288.8
Analytical 149.7 356.4 547.8 697.4 826.4 957.0 1104.7 1278.2

ness with the increase in the geometric stiffness due to the tensioning
effect caused by pressurisation.

5.2. Free shell

Free vibration analysis of the cylindrical shell having the same geo-
metric and material properties as in the previous example is performed
for the case of free boundary conditions at the two ends of the shell.
Natural frequencies calculated using 20 equal finite strips are listed in
Table 6. They are compared with the analytically determined values ac-
cording to the procedure presented in [39] and summarised in Section
3.2. Small discrepancies can be noticed only for the higher axial mode
profiles. Parameter m denotes the number of vibration nodes of the ax-
ial mode profile. Some of the natural modes corresponding to the first 3
× 3 m × n combinations are shown in Fig. 5.

Some characteristic natural modes are shown in Fig. 6. They are
identical to the analytically determined modes [39]. Natural modes with
m = 0 and m = 1 are known as the Rayleigh-type and Love-type
mode, respectively, following the nomenclature suggested in [11]. It is
interesting that both symmetric and antisymmetric axial mode profiles
are curved at the ends. The curvature is increased by increasing the
wave number n in a circumferential direction [39]. This phenomenon

manifests the effect of the boundary conditions. A more detailed analy-
sis of the mode shapes of free-free shells can be found in [35,39–42].

5.3. Clamped shell

A clamped steel cylindrical shell with the following geometric par-
ticulars and physical properties is considered next:

The values of the first 9 natural frequencies are listed in Table 7 and
are compared with those determined by FEM [58]. Discrepancies

(52)

show very good agreement of the natural frequencies determined in

9
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Fig. 3. Bifurcation of normalised natural frequencies of a rotating simply supported cylindrical shell.

two different ways. The corresponding natural modes are shown in Fig.
7 in an axonometric view.

6. Conclusion

Considering the vibration analysis of rotating cylindrical shells with
arbitrary boundary conditions, there exist a number of analytical so-
lutions in the relevant literature, but they are all rather complicated.
The use of analytical procedures to model more complex shell structures
would be rather involved. Therefore, special waveguide shell finite ele-
ments were developed in the past. However, none of the existing wave

guide shell finite elements are able to take into account the rotation ef-
fects or the initial stress effects (i.e. pressurisation).

In this paper, a new two node finite strip with eight degrees of free-
dom for the free vibration analysis of rotating and pre-stressed cylin-
drical shells is formulated. In order to develop the stiffness and mass
matrices of the finite strip, simple bar and beam shape functions are
used. The element stiffness matrix is shown to be a sum of an ordinary
stiffness matrix and a geometric stiffness matrix. The geometric stiffness
matrix is due to the initial tension forces. On the other hand, the iner-
tia matrix is composed of three mass matrices. The first one is the ordi-
nary mass matrix related to squared natural frequencies (inertia load),
the second one is related to the squared angular velocity (centrifugal

10
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Fig. 4. Increase of natural frequencies of a simply supported cylindrical shell due to inter-
nal pressure.

load), and the third mass matrix is related to the multiple of a natural
frequency and angular velocity (Coriolis load). The stiffness and mass
matrices are composed of eleven submatrices which are effectively spa-
tial integrals of products of different combinations of the shape func-
tions and their derivatives. These integrals were calculated exactly and
are given in Appendix A such that the proposed finite strip method can
be used without further numerical burden.

The application of the developed finite strip is illustrated by nu-
merical examples considering different boundary conditions at the two
ends of the shell: simply supported, free, and clamped. The reliability of
the finite strip was evaluated by an accuracy analysis and convergence
analysis. A parametric analysis was also performed in order to appreci-
ate the effects of the angular velocity and pre-stress on natural frequen-
cies. It can be seen that the veering of the natural frequencies due to the
Coriolis effect, as well as their upward shift due to pressurisation and
the centrifugal effect, can be very accurately simulated.

Nowadays, the vibrations of rotating tyres are being extensively in-
vestigated primarily due to their importance in the Noise and Vibration
Harshness (NVH) of a road vehicle. The cylindrical finite strip devel-
oped in this paper can be used to model the belt of a rotating tyre. In
order to model a tyre sidewall, a conical of a toroidal finite strip would
be necessary. In order to reduce the number of finite strips necessary to
accurately model a shell structure, a sophisticated finite strip with an
increased number of nodes and possibly faster convergence may also be
considered.

Another problem related to the designing of shells of revolution is
the forced vibrations and resonance phenomenon. Forced vibrations are
widely analysed by the mode superposition method. Concerning cylin-
drical shells, they can be stationary with load travel in a circumferential
direction [12]. Another interesting problem is the rotating cylindrical
shell with a stationary dynamic load. Such an effect exists for an auto-
mobile tyre rolling on a smooth surface, [12]. In both cases, it is inter-
esting to determine the critical load angular speed and the shell rolling
speed, respectively, which equal the natural frequency of the structure.
This challenging problem, in which the structure dynamic response is
significantly increased, is a subject for further investigation.

Table 6
Natural frequencies of free cylindrical shell, ω [Hz], .

m

n 0 1 2 3 4 5 6 7

0 Rigid body 818.1 839.4 890.2 904.9 935.9 991.1 1078.1
translation along x (817.3)* shear (839.0) (887.9) (900.4) (929.5) (982.6) (1067.5)
rotation about x 878.1 bending

(877.6) bending 884.7
(883.9)
longitudinal

1 Rigid body Rigid body 773.5 849.9 883.6 924.0 984.6 1075.2
translation along z rocking about z (772.3) (847.4) (879.2) (917.4) (975.9) (1064.6)

661.4
(661.0)

2 15.2 20.7 549.1 718.9 822.9 885.4 966.7 980.5
(15.2) (20.6) (547.8) (716.4) (818.4) (879.5) (958.1) (978.6)

3 43.0 50.0 371.5 596.8 740.9 841.5 942.0 1058.6
(43.0) (50.0) (370.2) (593.7) (736.0) (834.8) (933.2) (1047.9)

4 82.3 89.9 273.0 491.0 661.3 793.2 917.4 1052.4
(82.3) (89.8) (271.9) (487.8) (655.9) (785.9) (908.3) (1041.6)

5 133.0 140.6 244.5 426.7 602.6 755.4 900.6 1053.5
(133.0) (140.6) (243.7) (423.7) (597.1) (747.8) (891.2) (1042.4)

6 194.8 202.5 268.9 410.1 576.0 738.2 898.5 1066.3
(194.8) (202.4) (268.5) (407.7) (570.9) (730.6) (888.9) (1055.1)

7 268.0 275.5 326.7 436.5 585.1 747.2 915.9 1094.6
(267.9) (275.4) (326.4) (434.7) (580.8) (740.1) (906.5) (1083.5)

8 352.4 359.7 405.1 495.8 627.6 783.8 955.1 1140.6
(352.3) (359.7) (405.0) (494.5) (624.1) (777.6) (946.4) (1129.8)

9 448.3 455.2 498.7 578.7 697.5 846.2 1016.4 1205.0
(448.2) (455.2) (498.6) (577.8) (694.8) (840.9) (1008.5) (1194.8)

10 555.5 562.1 605.3 679.5 789.5 931.1 1098.4 1287.7
(555.4) (562.0) (605.2) (678.9) (787.5) (926.9) (1091.4) (1278.2)

()* Analytical solution

11
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Fig. 5. Natural modes of the free cylindrical shell (m,n).
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Appendix A. Submatrices of the stiffness and mass matrices

(A1)

(A2)

(A3)
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Fig. 6. Natural modes of the free cylindrical shell: circumferential and axial mode pro-
files, .

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

It is worth mentioning that some of the above submatrices have the
following physical meanings:

EA[K]1 - bar stiffness matrix,

Table 7
Natural frequencies of clamped cylindrical shell, ω [Hz], .

Mode no. 1 2 3 4 5 6 7 8 9

n 6 5 7 4 8 9 7 3 8

FSM 133.0 139.1 146.3 168.6 173.9 211.3 226.1 226.2 233.1
FEM 132.1 138.2 145.5 167.8 173.0 210.2 223.0 225.6 229.7
ε(%) 0.68 0.62 0.62 0.46 0.54 0.48 1.39 0.30 1.47

13
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Fig. 7. Natural modes of the clamped cylindrical shell, .

ρA[K]2 - bar mass matrix,
EI[K]4 - beam stiffness matrix,
N[K]5 - beam geometric stiffness matrix,
k[K]6 - beam restoring stiffness matrix,
ρA[K]6 - beam mass matrix.

Symbols A and I denote a cross-sectional area and its moment of in-
ertia, respectively, N is an axial force and k is the stiffness of an elastic
foundation. Submatrix [K]6 appears in both the stiffness and the mass
matrix Eqs. (37) and (45).

Appendix B. Geometric stiffness matrix

The general stiffness matrix [K], Eq. (37), consists of: a) ordinary
stiffness matrix without the initial tension forces, Nx = N? = 0,
Eq. (4); b) ordinary geometric stiffness matrix with tension forces
due to the internal pressure Nx = ap0/2 and N? = ap0, Eq. (4); and
c) the specific geometric stiffness matrix due to the centrifu-
gal force induced by the angular velocity. The general stiffness matrix
is . Both geometric stiffness matrices in-
crease natural frequencies.

The matrix is interesting for buckling the stability analysis. It
can be expressed in the form:

(B1)

where

(B2)

The finite strip equation for the stability analysis reads

(B3)

where pcr is the critical external pressure which causes buckling. The
linear stability analysis can be performed in an ordinary way through
the finite element method, leading to an eigenvalue formulation for the
determination of the critical pressure.

References

[1] H. Aron, Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig
gekrümmten elastischen Schale. (The equilibrium and the motion of an infinitely
thin, arbitrarily curved elastic shell), J. Math. (Crelle) 78 (1874).

[2] A.E.H. Love, On the small free vibrations and deformations of thin elastic shells,
Philos. Trans. R. Soc. Lond. 179A (1888).

14



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

I. Senjanović et al. Thin-Walled Structures xxx (2017) xxx-xxx

[3] J.W.S. Rayleigh, On the Infinitesimal Bending of Surfaces of Revolution, Math. Soc.
Proc. 13, London, 1882.

[4] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill
Book Company, New York, 1959.

[5] V.V. Novozhilov, The Theory of Thin Elastic Shells, P. Noordhoff, Gromingen, The
Netherlands, 1964.

[6] W. Flügge, Statik and Dynamik der Schalen (Statics and Dynamics of Shells),
Springer-Verlag, Berlin, 1934.

[7] A.L. Goldenveizer, Theory of Thin Shells, Pergamon Press, Elmsford, New York,
1961.

[8] V.Z. Vlasov, General Theory of Shells and Its Applications in Engineering (transla-
tion from Russian), NASA TTF-99, U.S. Governmental Printing Office, Washington,
D.C, 1964.

[9] J.E. Gibson, Linear Elastic Theory of Thin Shells, Pergamon Press, London, 1965.
[10] L.H. Donnell, Beams, Plates, and Shells, McGraw-Hill, New York, 1976.
[11] A.W. Leissa, Vibrations of Shells, NASA SP-288, U.S. Government Printing Office,

Washington, D.C., 1973.
[12] W. Soedel, Vibrations of Shells and Plates 3rd edition, Marcel Dekker Inc, New

York, 2004(revised and expanded).
[13] C.T.F. Ross, Pressure Vessels Under External Pressure: Statics and Dynamics, Else-

vier Applied Science, London, 1990.
[14] Group of Authors, in E. E. Allmenidinger, (Ed.), Submersible Vehicle System De-

sign, SNAME, Jersey City, 1990.
[15] I. Senjanović, Theory of Shells of Revolution, Ship Research Institute, Zagreb,

1972.
[16] G.H. Bryan, On the Beats in the Vibrations of a Revolving Cylinder or Bell. In:

Proc. of the Camb. Philos. Soc. 101–111, 1880.
[17] R.A. Di Taranto, M. Lessen, Coriolis acceleration Effect on the vibration of a rotat-

ing thin-walled circular cylinder, J. Appl. Mech. 31 (1964) 700–701.
[18] A.V. Srinivasan, G.F. Lauterbach, Traveling waves in rotating cylindrical shells, J.

Eng. Ind. ASME 93 (1971) 1229–1232.
[19] A. Zohar, J. Aboudi, The free vibrations of a thin circular finite rotating cylinder,

Int. J. Mech. Sci. 15 (1973) 269–278.
[20] T. Saito, M. Endo, Vibration of finite length, rotating cylindrical shells, J. Sound

Vib. 107 (1986) 17–28.
[21] M. Endo, K. Hatamura, M. Sakata, O. Taniguchi, Flexural vibration of a thin rotat-

ing ring, J. Sound Vib. 92 (1984) 261–272.
[22] J. Padovan, Natural frequencies of rotating prestressed cylinders, J. Sound Vib.

31 (1973) 469–482.
[23] G. Herrmann, A.E. Armenakas, Dynamic Behavior of Cylindrical Shells under Ini-

tial Stress, Proc. 4th U.S. Nat. Congr. Appl. Mech, ASME, 203-213, 1962.
[24] S.C. Huang, W. Soedel, On the forced vibration of simply supported rotating cylin-

drical shells, J. Acoust. Soc. Am. 84 (1) (1988) 275–285.
[25] C. Gonzalez Diaz, P. Kindt, J. Middelberg, S. Vercammen, C. Thiry, R. Close, J.

Leyssens, Dynamic behaviour of a rolling tyre: experimental and numerical analy-
ses, J. Sound Vib. 364 (2016) 147–164.

[26] J. Lee, S. Wang, P. Kindt, B. Pluymers, W. Desmet, Identification of the direction
and value of the wave length of each mode for a rotating tire using the phase dif-
ference method, Mech. Syst. Signal Process. 68–69 (2016) 292–301.

[27] P. Kindt, C.G. Diaz, S. Vercammen, C. Thiry, J. Middelberg, B. Kimble, J. Leyssens,
Effects of rotation on the tire dynamic behavior: experimental and numerical
analyses, Tire Sci. Technol. 41 (4) (2013) 248–261.

[28] W.R. Graham, Modelling the vibration of tyre sidewalls, J. Sound Vib. 332 (21)
(2013) 5345–5374.

[29] C. Lecomte, W.R. Graham, M. Dale, A shell model for tyre belt vibrations, J. Sound
Vib. 329 (10) (2010) 1717–1742.

[30] Y.-J. Kim, J.S. Bolton, Effects of rotation on the dynamics of a circular cylindrical
shell with application to tire vibration, J. Sound Vib. 275 (2004) 605–621.

[31] L.R. Molisani, R.A. Burdisso, D. Tsihlas, A coupled tire structure/acoustic cavity
model, Int. J. Solids Struct. 40 (2003) 5125–5138.

[32] V.Z. Vlasov, Basic Differential Equations in the General Theory of Elastic Shells,
NACA TM 1241 (translated from 1944 Russian version), 1951.

[33] K. Forsberg, Influence of boundary conditions on the modal characteristics of thin
cylindrical shells, AIAA J. 2 (12) (1964) 2150–2157.

[34] V.I. Weingarten, On the free vibration of thin cylindrical shells, Aerospace corpora-
tion, Systems research and planning division, Report No. TDR.169(3560.30)TN-3,
El Segundo, California, 1962.

[35] G.B. Warburton, Vibration of thin cylindrical shells, J. Mech. Eng. Sci. 7 (4) (1965)
399–407.

[36] H. Chung, Free vibration analysis of circular cylindrical shells, J. Sound Vib.
74 (1981) 331–350.

[37] S. Sun, S. Chu, D. Cao, Vibration characteristics of thin rotating cylindrical shells
with various boundary conditions, J. Sound Vib. 331 (2012) 4170–4186.

[38] S. Sun, D. Cao, Q. Han, Vibration studies of rotating cylindrical shells with arbi-
trary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz
method, Int. J. Mech. Sci. 68 (2013) 180–189.

[39] N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen,
Analytical solution for free vibrations of rotating cylindrical shells having free
boundary conditions, Eng. Struct. 132 (2017) 152–171.

[40] N. Alujević, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S.Vercammen, A
simplified tire model based on a rotating shell, Proceedings of the 4th International
Tyre Colloquium, University of Surrey, Surrey, 2015.

[41] N. Alujevic, N. Campillo-Davo, P. Kindt, W. Desmet, B. Pluymers, S. Vercammen, A
simplified model of a rotating tire using cylindrical shells with free ends supported
by an elastic foundation, Proceedings of ISMA2014, Katholieke Universiteit Leu-
ven, Leuven, 2014.

[42] N. Alujevic, P. Kindt, B. Pluymers, P. Sas, W. Desmet, N. Campillo-Davo, Simplified
rotating tire models based on cylindrical shells with free boundary conditions, Pro-
ceedings of FISITA 2014, World Automotive Congress, 30 Percy Street, London,
art.nr. F2014-NVH-084, 2014.

[43] S. Finnreden, M. Fraggstedt, Waveguide finite element for curved structures, J.
Sound Vib. 312 (2008) 644–671.

[44] P. Sabiniarz, W. Kropp, A waveguide finite element aided analysis of the wave
field on a stationary tyre, not in contact with the ground, J. Sound Vib. 329 (2010)
3041–3064.

[45] J.M. Renno, B.R. Mace, Calculating the forced response of cylinders and cylindrical
shells using the wave and finite element method, J. Sound Vib. 333 (2014)
5340–5355.

[46] Y.K. Cheung, Finite Strip Method in Structural Analysis, Pergamon Press, Oxford,
1976.

[47] J.G. Hancock, C.H. Pham, Buckling analysis of thin-walled sections under localised
loading using the semi-analytical finite strip method, Thin-Walled Struct.
86 (2015) 35–46.

[48] H.R. Naderian, H.R. Ronagh, Buckling analysis of thin-walled cold-formed steel
structural members using complex finite strip method, Thin-Walled Struct.
90 (2015) 74–83.

[49] A. Naghsh, M.M. Saadatpour, M. Azhari, Free vibration analysis of stringer stiff-
ened general shells of revolution using a meridional finite strip method,
Thin-Walled Struct. 94 (2015) 651–662.

[50] H. Assaee, H. Hasani, Forced vibration analysis of composite cylindrical shells us-
ing spline finite strip method, Thin-Walled Struct. 97 (2015) 207–214.

[51] J.C.G. Verschaeve, A weighted extended B-spline solver for bending and buckling
of stiffened plates, Thin-Walled Struct. 107 (2016) 580–596.

[52] M. Khezri, M. Abbasi, K.J.R. Rasmussen, A combined meshfree/finite strip method
for analysis of plates with perforations and cracks, Thin-Walled Struct. 111 (2017)
113–125.

[53] S.S. Ajeesh, S.A. Jayachandran, A constrained spline finite strip method for the
mode decomposition of cold-formed steel sections using GBT principles,
Thin-Walled Struct. 113 (2017) 83–93.

[54] M.A. Rendall, G.J. Hancock, K.J.R. Rasmussen, The generalised constrained finite
strip method for thin-walled members in shear, Thin-Walled Struct. 117 (2017)
294–302.

[55] A. Borkovic, S. Kovacevic, D.D. Milasinovic, G. Radenkovic, O. Mijatovic, V. Gol-
ubovic-Bugarski, Geometric nonlinear analysis of prismatic shells using the
semi-analytical finite strip method, Thin-Walled Struct. 117 (2017) 63–88.

[56] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed, Dover,
New York, 1927.

[57] R. Szilard, Theories and Applications of Plate Analysis, John Wiley & Sons, 2004.
[58] MSC NASTRAN Installation and Operations Guide MSC Software, MSC 2005

15


	
	
	


