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Abstract 
 
A finite thin circular beam element for the out-of-plane vibration analysis of curved beams is presented in this paper. 

Its stiffness matrix and mass matrix are derived, respectively, from the strain energy and the kinetic energy by using the 
natural shape functions derived from an integration of the differential equations in static equilibrium. The matrices are 
formulated with respect to the local polar coordinate system or to the global Cartesian coordinate system in considera-
tion of the effects of shear deformation and rotary inertias. Some numerical examples are analyzed to confirm the valid-
ity of the element. It is shown that this kind of finite element can describe quite efficiently and accurately the out-of-
plane motion of thin curved beams. 
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1. Introduction 

The out-of-plane vibration analysis of curved 
beams is quite complex due to the coupling effects of 
bending and torsion, transverse shear and rotary iner-
tia force. Neglecting these effects may lead to inaccu-
racies in analysis, especially when the ratio of radial 
thickness to curvature radius of a curved beam is 
large (thick circular beam), or when the natural fre-
quency is high for vibration problem even if the ratio 
of radial thickness to curvature radius is very small 
(thin circular beam). 

Davis et al. [1] presented the shape functions of a 
curved beam element, which the effects of transverse 
shear deformation and transverse rotary inertia were 
considered. Their out-of-plane displacements were 
obtained from an integration of the differential equa-
tions of an infinitesimal element in static equilibrium. 
The stiffness and mass matrices were derived from 

the force-displacement relations and the kinetic en-
ergy equations, respectively. The matrices are formu-
lated in the local straight-beam (Cartesian) coordinate 
system rather than in the local curvilinear (polar) co-
ordinate system, and thus a transformation of the 
matrices for the local coordinate system to the one for 
the common global coordinate system is required 
before they are assembled even though the radius of 
curvature for the entire curved beam is constant. Yoo 
and Fehrenbach [2] derived the stiffness and mass 
matrices of a spatial curved beam element by using 
the minimum potential energy theory, where the ef-
fects of warping and rotary inertia due to flexure and 
torsion were considered but the effects of shear de-
formation were neglected. Palaninathan and Chandra-
sekharan [3] derived the stiffness matrix for a spatial 
curved Timoshenko beam element by using Castigli-
ano's theorem, where only the effects of shear defor-
mation are considered. Lebeck and Knowlton [4] 
developed the stiffness matrix of a circular beam ele-
ment using ring theory, where the in-plane motion is 
coupled with the out-of-plane motion due to the un-
symmetrical cross-sectional area, but the effects of  
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Fig. 1. The coordinate system of a circular beam element. 

 
shear deformation are neglected. 

Choi and Lim [5] also developed two general 
curved beam elements based on Timoshenko beam 
theory. The two-node element was formulated from 
constant strain fields and the three-node one was for-
mulated from linear strain fields. The stiffness matri-
ces were derived from the total potential energy theo-
rem in the local curvilinear coordinate system and 
were transformed into the common global Cartesian 
coordinate system. 

Wu and Chiang [6] derived the stiffness and mass 
matrices from the force-displacement relations and 
the kinetic energy equations, respectively. The shape 
functions were modified in order to consider the ef-
fect of shear deformation from the ones given by 
Lebeck and Knowlton [4]. The matrices are formed 
from the out-of-plane motions of a moderately thick 
curved beam with the effects of transverse shear de-
formation, transverse rotary inertia, and torsional 
rotary inertia. 

In this paper, a finite thin circular beam element, 
which considers the effects of transverse shear de-
formation, transverse rotary inertia, and torsional 
rotary inertia, is presented. This kind of element can 
be used in the analysis of thin beam in which the ef-
fect of variation in curvature across the section can be 
neglected. Its stiffness and mass matrices are derived 
from the strain energy and the kinetic energy, respec-
tively, in the same manner as the work of Kim et al. 
[7] for a thin circular beam element with in-plane 
motions. These matrices can be transformed easily 
into the global Cartesian coordinate system. 

 
2. Thin circular beam element 

2.1 Out-of-plane deformations 

The global Cartesian coordinate system of a circu-
lar beam element is shown in Fig. 1. O  is the center 
of curvature of the element. The cross section per-
pendicular to the circumferential direction of the ele-
ment is doubly symmetric with respect to the ξ η−  
plane and the η ζ−  plane, and its area is uniform. 
The radius of the centroidal line passing through the 
center of cross section is a . Half of the subtended 
angle of the element is ( )2 1 2ψ θ θ= − . The nodes 
of the element, 1C  and 2C  are on the centroidal 
line. 

When only the out-of-plane deformations with re-
spect to the x y−  plane of a circular beam are con-
sidered, the displacement of the center of cross sec-
tion, C , at an angular position θ  has axial compo-
nent uζ  with respect to a local polar coordinate sys-
tem Cξηζ . The rotation of the cross section at C  
has radial component ξφ  and circumferential com-
ponent ηφ  which are supposed very small. 

The bending curvature ξκ , twist ητ , and shear 
strain ζγ  at C  of a circular beam are, respectively, 
as 
 

( ), / aξ ξ θ ηκ φ φ= −  (1a) 
 

( ), / aη η θ ξτ φ φ= +  (1b) 
 

, /u aζ ξ ζ θγ φ=− +  (1c) 
 
where ,( ) θ  is a partial differential with respect to 
circumferential coordinate θ . 

For a thin beam, the radial thickness is very small 
as compared with the radius of centroidal line and the 
effect of variation in curvature across the cross sec-
tion can be neglected. The internal bending moment 
M ξ , torsional moment M η , and shear force Nζ  at 
the point C  can be expressed as 

 
M EIξ ξ ξκ=  (2a) 
 
M GJη η ητ=  (2b) 
 
N K GAζ ζ ζγ=  (2c) 

 
where A , Iξ , Jη , and Kζ  are the area, the area 
moment of inertia about ξ -axis, the torsional mo-
ment of inertia (Sololnikoff [8]), and the shear coeffi-
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cient of the cross section (Cowper [9]), respectively. 
E  is Young's modulus of the material. G  is        
the shear modulus, which is expressed as 

( )2 1G E ν= +  with the Poisson ratio ν . 
 

2.2 Shape functions 

Out-of-plane forces and moments are applied on 
the cross sections at nodes, 1C  and 2C  of the circu-
lar beam element in equilibrium. 

The internal bending moment, torsional moment, 
and shear force on the cross section at C  can be 
expressed with the internal bending moment 0M ξ , 
torsional moment 0Mη , and shear force 0Nζ  on the 
mid cross section at 0φ=  as 

 
( )0 0 0M M c M aN sξ ξ η ζφ φ= + −  (3a) 

( )0 0 0 0M M s M aN c aNη ξ η ζ ζφ φ=− + − +  (3b) 

0N Nζ ζ=  (3c) 
 

where 
 

sinsφ φ= , coscφ φ= , ( )2 1 2φ θ θ θ= − + . 
 
By substituting Eq. (3) into Eq. (2), the bending 

curvature, twist and shear strain at C  can be ex-
pressed with the internal bending moment, the tor-
sional moment, and the shear force on the mid cross 
section as 

 
( ) 2

5 6B c B s aξκ φ φ= +   (4a) 

( ) 2
4 5 6B B s B c aη ητ β φ φ= − +  (4b) 

4B aζ ζγ α=   (4c) 
 

where 
 

3
4 0B a N EIζ ξ=   (5a) 

2
5 0B a M EIξ ξ=   (5b) 

( )2
6 0 0B a M aN EIη ζ ξ= −   (5c) 

2EI K GAaζ ξ ζα =   (6a) 

EI GJη ξ ηβ =   (6b) 
 
If 0ζα = , then the effect of transverse shear de-

formation is neglected, i.e.. 0ζγ = .  
The radial rotation, circumferential rotation, and 

axial displacement of the cross section at C , which 
are solutions of differential equations obtained by 
substituting Eq. (4) into Eq. (1), are expressed in 
terms of φ  as 

 
( ){ 2 3 4 2 1B c B s B f cξφ φ φ φ= + + −  

( ) }5 4 3 6 3B f s f c B f s aφ φ φ φ φ+ + +   (7a) 

{ 2 3 4 2B s B c B f sηφ φ φ φ= − + +  

( )}5 3 6 4 3B f s B f s f c aφ φ φ φ φ− − −   (7b) 

( )1 2 3 4 1 2 2u B B s B c B f f f sζ φ φ φ φ φ= + − + + −  

 ( )5 2 2 3B f f c f sφ φ φ+ − + +  

( )6 2 4 3B f s f s f cφ φ φ φ+ + −   (7c) 

 
where 

 
1f ζα=    (8a) 

2f ηβ=   (8b) 

( )3 1 2f ηβ= +   (8c) 

( )4 1 2f ηβ= −   (8d)  

 
1B , 2B a , and 3B a  are the constants of inte-

gration of the differential equations. They are the 
rigid body displacement of the center of curvature in 
the axial direction, the rigid body rotation about the 
center of curvature in the radial direction, and the 
rigid body rotation about the center of curvature in the 
circumferential direction at the mid cross section, 
respectively. 

The static deformations represented by Eq. (7) are 
used as the shape functions for the out-of-plane mo-
tion of thin circular beam element. They are com-
posed of the rigid body modes associated with 1B , 

2B a , and 3B a  and the flexible modes associated 
with 4B , 5B , and 6B . The flexible modes are null 
at 0φ= . 

The displacements and rotations at nodes, 1C  and 
2C , can be expressed as 
 
{ } [ ]{ }v a B=   (9) 
 

where 
 

{ } ( )1 1 1 2 2 2
T

v u uξ η ζ ξ η ζφ φ φ φ=   (10a) 
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{ } ( )1 2 3 4 5 6
TB B B B B B B=   (10b) 

( )

( )
( )

( )

2

2

1 2 2

2

2

1 2 2

0 1
0
1
0 1
0
1

c a s a f c a
s a c a f s a

s c f f f s
a

c a s a f c a
s a c a f s a
s c f f f s

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ ψ

⎡ − −⎢
⎢ −⎢
⎢ − − − + +⎢⎡ ⎤ = ⎢⎣ ⎦ −⎢
⎢
⎢ −
⎢
⎢ − + −⎣

  

 

( )
( )

( ) ( )
( )

( )
( ) ( )

4 3 3

3 4 3

2 3 2 4 3

4 3 3

3 4 3

2 3 2 4 3

1

1

f s f c a f s a
f s a f s f c a

f c f s f f s f c
f s f c a f s a

f s a f s f c a
f c f s f f s f c

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

⎤− + ⎥
⎥− + ⎥
⎥− − + − + − ⎥
⎥+ ⎥
⎥
⎥− − −
⎥
⎥− − + + − ⎦

(10c) 

 
The coefficient vector of shape functions, { }B  

then can be expressed in terms of the nodal displace-
ment vector with respect to the local polar coordinate 
system, { }v , as 

 

{ } [ ] { }1B a v−=   (11) 
 
The relationship between the nodal displacement 

vector with respect to the local polar coordinate sys-
tem, { }v  and the nodal displacement vector with 
respect to the global Cartesian coordinate system, 
{ }v , is given by 

 
{ } [ ]{ }v T v=   (12) 

 
where 

 

{ } ( )x1 1 1 2 2 2
T

y z x y zv u uφ φ φ φ=  (13a) 

[ ]

1 1

1 1

2 2

2 2

0 0 0 0
0 0 0 0

0 0 1 0 0 0
0 0 0 s 0
0 0 0 0
0 0 0 0 0 1

c s
s c

T
c
s c

θ θ
θ θ

θ θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (13b) 

 

2.3 Stiffness matrix 

The strain energy of the thin circular beam element 
is  

 

( )2

1

2 2 21
2

V EI GJ K GA ad
θ

ξ ξ η η ζ ζ
θ

κ τ γ θ= + +∫   (14) 

 
By substituting Eq. (4) into Eq. (14), the strain en-

ergy can be expressed in terms of the coefficient vec-
tor of shape functions as 

 

{ } [ ]{ }1
2

T
BV B K B=   (15) 

 
where [ ]BK  is the stiffness matrix with respect to 

{ }B  of the thin circular beam element. The elements 

of the symmetric matrix [ ]BK  are detailed in the 

Appendix. 
By substituting Eq. (11) into Eq. (15), the strain en-

ergy is expressed in terms of the nodal displacement 
vector in the local polar coordinate system as 

 

{ } [ ]{ }1
2

TV v K v=   (16) 

 
where [ ]K  is the stiffness matrix with respect to 

{ }v  of the thin circular beam element as  
 
[ ] [ ] [ ][ ] 1T

BK a K a− −=   (17) 
 
If necessary, the stiffness matrix in the local polar 

coordinate system can be transformed into the global 
Cartesian coordinate system as follows: 

 

[ ] [ ][ ]TK T K T⎡ ⎤=⎢ ⎥⎣ ⎦    (18) 

 
2.4 Mass matrix 

The kinetic energy of the thin circular beam ele-
ment is expressed as 

 

( )2

1

2 2 21
2

T I I Au ad
θ

ξ ξ η η ζ
θ

ρ φ ρ φ ρ θ= + +∫   (19) 

 
where ρ  is the density of the material. Iη  is the 
area moment of inertia about η -axis of the cross 
section. ( )i is the partial differential with respect to 
time t . 

By substituting Eq. (7) into Eq. (19), the kinetic en-
ergy is expressed in terms of the coefficient vector of 
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shape functions as 

 

{ } [ ]{ }1
2

T

BT B M B=  (20) 

 
where [ ]BM  is the mass matrix with respect to { }B  
of the thin circular beam element. The elements of the 
symmetric matrix [ ]BM  are detailed in Appendix. 

 
2I Aaξ ξµ ρ ρ=    (21a) 
2I Aaη ηµ ρ ρ=   (21b) 

 
If the effect of transverse rotary inertia is neglected, 

then 0ξµ = , i.e. 0Iξρ = . If the effect of torsional 
rotary inertia is neglected, then 0ηµ = , i.e., 

0Iηρ = . 
By substituting Eq. (11) into Eq. (20), the kinetic 

energy is expressed in terms of the nodal displace-
ment vector in the local polar coordinate system as 

 

{ } [ ]{ }1
2

TT v M v=  (22) 

 
where [ ]M  is the mass matrix with respect to { }v  

of the element as  
 

[ ] [ ] [ ][ ] 1T
BM a M a− −=  (23) 

 
If necessary, the mass matrix in the local polar co-

ordinate system can be transformed into the global 
Cartesian coordinate system as follows: 

 

[ ] [ ][ ]TM T M T⎡ ⎤=⎢ ⎥⎣ ⎦  (24) 

 
2.5 Out-of-plane internal forces 

By substituting Eq. (4) into Eq. (2) or from Eqs. (3) 
and (5), the internal bending moment, torsional mo-
ment, and shear force on the cross section at C  can 
be expressed by the coefficients of shape functions as 

 

( )( )2
5 6M EI a B c B sξ ξ φ φ= +  (25a) 

( )( )2
4 5 6M EI a B B s B cη ξ φ φ= − +  (25b) 

( )3 4N EI a Bζ ζ=  (25c) 

3. Validity of the beam element 

3.1 Linear static analysis for a quarter cantilever 
ring with tip load 

A quarter cantilever ring subjected to an axial tip 
load P  is shown in Fig. 2. Its displacements can be 
obtained analytically from Eqs. (3), (5) and (7) by 
considering the geometric and natural boundary con-
ditions at the two ends. The radial rotation Tξφ , cir-
cumferential rotation Tηφ , and axial displacement 

Tuζ  at the tip are 
 

( )
2 1 1

2T
a P
EIξ η

ζ
φ β

⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜ ⎪ ⎪⎟⎜= +⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎪ ⎪⎩ ⎭⎝ ⎠
 (26a) 

( )
2

1
4T

a P
EIη η η

ζ

πφ β β
⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜ ⎪ ⎪⎟⎜= − +⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎪ ⎪⎩ ⎭⎝ ⎠

 (26b) 

( )
3 1 π[ 1 3 ] 2

2 2T
au P
EIζ ζ η η

ζ
α β β

⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜ ⎪ ⎪⎟⎜= + + −⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎪ ⎪⎩ ⎭⎝ ⎠
 (26c) 

 
The results of analytical solutions for the tip rota-

tion and displacement, for which the effects of trans-
verse shear deformation are considered and those 
effects are neglected, are summarized in Table 1. The 
same results as in Table 1 can been obtained by using 
FEM to model the quarter rings with only one, two or 
16 thin circular beam elements because the shape 
functions of the element presented in this paper are 
exact in static state. In our calculations, the following 
factor and parameters are adopted: E = 200 GPa, 
ν = 0.25, ρ = 7830 kg/m3, a = 1 m, A = 6×10-3 
m2, Iξ = 1.8×10-6 m4, Iη = 6.8×10-6 m4, Jη = 
4.506×10-6 m4, Kζ = 0.847 
 

η

ξ

x
O

y

P

θ

a

 
 
Fig. 2. A quarter cantilever ring subjected an axial tip load. 
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3.2 Natural vibration analysis for a free ring 

The out-of-plane displacements of a ring, which is 
freely vibrating in a mode having n  nodal diameters 
with a frequency of ω , will take the forms 

 
( )cos sin i t

C Sn n e ω
ξ ξ ξφ θ θ= Φ +Φ  (27a) 

( )cos sin i t
C Sn n e ω

η η ηφ θ θ= Φ +Φ  (27b) 

( )cos sin i t
C Su U n U n e ω

ζ ζ ζθ θ= +  (27c) 
 
The natural vibration equations can be obtained by 

substituting Eq. (27) into Eq. (14) and Eq. (19), inte-
grating around the ring and applying Lagrange’s equ-
ations. For 1n ≥ , there exist two orthogonal modes 
of which the natural frequencies are same, and the 
nodal diameters of one mode are rotated by / 2nπ  
from the nodal diameters of the other. The above 
theoretical results are similar to the ones obtained by 
the previous works (Rao [10]; Kirkhope [11]). 

In order to show the convergence of the thin circu-
lar beam element presented in this paper, the natural 
frequencies of the out-of-plane vibration of a free ring 
 
Table 1. Tip rotations and displacement per unit axial tip load of 
a quarter cantilever ring. 
 

 ζα ≠ 0 ζα = 0 

T Pξφ  (rad/N) 2.7759×10-6 2.7759×10-6 

T Pηφ  (rad/N) -1.5863×10-6 -1.5863×10-6 

Tu Pζ  (m/N) 3.1736×10-6 3.1698×10-6 
 
* ζα = 0 : neglecting the effect of transverse shear deformation. 
 

are computed by using FEM to model the complete 
ring with 16, 32, 48, or 64 elements, and consider all 
the effects of transverse shear deformation, transverse 
rotary inertia, and torsional rotary inertia. The lowest 
eight natural frequencies of the flexible modes com-
puted by using FEM are presented and compared with 
the theoretical values in Table 2. The first mode for 

0n=  is translational rigid body mode and the sec-
ond mode for 1n=  is rotational rigid body mode. It 
is shown that the natural frequencies computed by 
using FEM converged rapidly to the theoretical val-
ues with increasing number of elements. The errors in 
the natural frequencies increase with the number of 
nodal diameters and the order of frequencies. 

To determine the effects of transverse shear defor-
mation, transverse rotary inertia, and torsional rotary 
inertia on the natural frequencies of the out-of-plane 
vibration, the natural frequencies of a free ring are 
computed by using FEM to model the complete ring 
with 80 elements and consider the effects of trans-
verse shear deformation, transverse rotary inertia, and 
torsional rotary inertia. Some natural frequencies of 
the flexible modes computed by using FEM are pre-
sented and compared with the theoretical values in 
Tables 3 and 4. When the effect of torsional rotary 
inertia is neglected, the second natural frequencies of 
some models in Table 3 disappear because the modes 
corresponding to the second frequencies are torsion-
dominant modes. It is shown that the natural frequen-
cies computed by using FEM are very accurate as 
compared with the theoretical values in the all cases. 
It is also shown that the errors in the natural frequen-
cies increase with the number of nodal diameters and 

Table 2. Convergence of natural frequencies of the out-of-plane vibration of a ring. 
 

FEM (Hz) / Error (%) Number 
of nodal 

diameter n  

Theory 
(Hz) 16 elements 32 elements 48 elements 64 elements 

2 37.283 37.289 / 0.016 37.283 / 0.002 37.283 / 0.001 37.283 / 0.000 

3 105.11 105.24 / 0.123 105.13 / 0.014 105.12 / 0.005 105.12 / 0.002 

4 200.70 201.58 / 0.436 200.80 / 0.050 200.74 / 0.017 200.72 / 0.009 

5 322.89 326.40 / 1.089 323.30 / 0.129 323.03 / 0.044 322.96 / 0.022 

0 413.84 416.50 / 0.643 414.51 / 0.160 414.14 / 0.071 414.01 / 0.040 

6 470.72 481.11 / 2.208 472.00 / 0.271 471.16 / 0.094 470.94 / 0.047 

1 585.27 592.75 / 1.278 587.15 / 0.320 586.11 / 0.142 585.74 / 0.080 

7 643.22 667.68 / 3.804 646.43 / 0.499 644.34 / 0.174 643.79 / 0.088 
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the order of frequencies and neglecting the effects of 
transverse shear deformation, transverse rotary inertia, 
and torsional rotary inertia can increase the values of 

natural frequencies of the ring, especially for the 
higher number of nodal diameters. 

 

Table 3. Comparison of natural frequencies of the out-of-plane vibration of a ring considering the effect of torsional rotary inertia. 
 

ζα ≠ 0, ξµ ≠ 0 ζα ≠ 0, ξµ = 0 ζα = 0, ξµ ≠ 0 Number 
of nodal 

diameter n  
Theory 

(Hz) 
FEM (Hz) / 
Error (%) 

Theory 
(Hz) 

FEM (Hz) / 
Error (%) 

Theory 
(Hz) 

FEM (Hz) / 
Error (%) 

2 37.283 37.283 / 0.000 37.305 37.305 / 0.000 37.312 37.312 / 0.000 

3 105.11 105.12 / 0.001 105.25 105.26 / 0.001 105.41 105.41 / 0.000 

4 200.70 200.71 / 0.005 201.17 201.18 / 0.005 201.86 201.86 / 0.001 

5 322.89 322.93 / 0.014 324.05 324.09 / 0.014 325.97 325.97 / 0.002 

0 413.84 413.95 / 0.026 413.84 413.95 / 0.026 413.84 413.95 / 0.026 

6 470.72 470.86 / 0.029 473.11 473.24 / 0.029 477.37 477.39 / 0.003 

1 585.27 585.57 / 0.051 585.27 585.57 / 0.051 585.79 586.09 / 0.051 

7 643.22 643.56 / 0.053 647.55 647.91 / 0.054 655.74 655.78 / 0.006 

8 839.33 840.09 / 0.091 846.53 847.32 / 0.093 860.72 860.82 / 0.011 

2 925.91 927.09 / 0.128 925.91 927.09 / 0.128 927.22 928.41 / 0.128 

9 1057.9 1059.5 / 0.143 1069.1 1070.7 / 0.148 1092.0 1092.2 / 0.017 

10 1297.9 1300.7 / 0.215 1314.3 1317.2 / 0.223 1349.1 1349.4 / 0.027 

3 1309.8 1313.2 / 0.257 1309.8 1313.2 / 0.257 1311.9 1315.3 / 0.257 

11 1558.0 1562.8 / 0.308 1581.0 1586.1 / 0.321 1631.6 1632.2 / 0.039 

4 1708.0 1715.4 / 0.437 1708.0 1715.4 / 0.437 1710.8 1718.3 / 0.437 

12 1837.0 1844.8 / 0.426 1868.1 1876.5 / 0.447 1939.0 1940.1 / 0.055 

* ζα = 0 : neglecting the effect of transverse shear deformation. 
* ξµ = 0 : neglecting the effect of transverse rotary inertia. 

 
Table 4. Comparison of natural frequencies of the out-of-plane vibration of a ring neglecting the effect of torsional rotary inertia. 

 

ζα ≠ 0, ξµ ≠ 0 ζα ≠ 0, ξµ = 0 ζα = 0, ξµ ≠ 0 Number 
of nodal 

diameter n  
Theory 

(Hz) 
FEM (Hz) / 
Error (%) 

Theory 
(Hz) 

FEM (Hz) / 
Error (%) 

Theory 
(Hz) 

FEM (Hz) / 
Error (%) 

2 37.336 37.337 / 0.000 37.359 37.359 / 0.000 37.366 37.366 / 0.000 

3 105.30 105.31 / 0.001 105.45 105.45 / 0.002 105.60 105.60 / 0.000 

4 201.10 201.11 / 0.005 201.57 201.58 / 0.005 202.26 202.27 / 0.001 

5 323.55 323.59 / 0.014 324.71 324.76 / 0.014 326.66 326.67 / 0.001 

6 471.70 471.83 / 0.029 474.10 474.23 / 0.029 478.42 478.43 / 0.003 

7 644.56 644.90 / 0.054 648.92 649.27 / 0.055 657.21 657.25 / 0.006 

8 841.07 841.84 / 0.091 848.32 849.11 / 0.093 862.71 862.80 / 0.010 

9 1060.1 1061.6 / 0.144 1071.4 1072.9 / 0.148 1094.5 1094.7 / 0.016 

10 1300.5 1303.3 / 0.215 1317.0 1320.0 / 0.223 1352.3 1352.6 / 0.025 

11 1561.1 1565.9 / 0.308 1584.3 1589.4 / 0.322 1635.6 1636.2 / 0.037 

12 1840.7 1848.5 / 0.427 1872.0 1880.3 / 0.448 1943.9 1944.9 / 0.052 
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3.3 Natural vibration analysis for circular arcs 
The natural frequencies of the out-of-plane vibra-

tion for clamped-clamped circular arcs with circular 
cross-section are computed by using FEM by consid-
ering all the effects of shear and rotary inertia. The 
circular arcs were modeled with the circular beam 
elements with subtended angle of 1°. 

For the comparison of the numerical results by 
FEM with the theoretical ones, which are presented in 
the works of Howson et al. [12], the shear coefficient 
of circular cross-section Kζ  is 0.89, and Poisson 
ratio ν  is  0.3. 

Table 5 shows that the natural frequencies com-
puted by using FEM are very accurate as compared 
with the theoretical ones for all the two slenderness 
ratios and the three arc angles. The slenderness ratios 
sξ  and frequency parameters λ  in the table 5 are 
defined as 

 
2 /s Aa Iξ ξ=   (28) 

4 /Aa EIξλ ω ρ=   (29) 

 
3.4 Natural vibration analysis for an S shaped beam 

The natural frequencies of the out-of-plane vibra-
tion for a clamped-clamped S shaped beam composed 
of two identical half-rings with circular cross-section 
are computed by using FEM by considering all the 
effects of shear and rotary inertia. The beam was 
modeled with 360 and 36 circular beam elements and 
straight beam elements. Its properties are the same as 
the ones of the above clamped-clamed circular arc  

Table 6. Comparison of frequency parameters of the out-of-
plane vibration of an S-shaped beam. 
 

Using circular beam 
elements 

Using straight beam 
elements Mode 

number 360 
elements

36 
elements

360 
elements 

36 
elements

1 0.59431 0.59431 0.59385 0.59741 

2 0.88651 0.88651 0.88588 0.89084 

3 2.3955 2.3956 2.3933 2.4171 

4 3.4674 3.4678 3.4638 3.5160 

5 6.1575 6.1597 6.1491 6.2894 

6 8.2507 8.2561 8.2390 8.4759 

 

 
 
Fig. 3. Out-of-plane displacements of mode shapes along the S-
shaped beam curve. 
 
with sξ = 20. 

Table 6 shows that the presented circular beam ele-
ment for the natural vibration analysis gives good 
convergence and accuracy as compared with the 

Table 5. Comparison of frequency parameters of the out-of-plane vibration of a circular arc. 
 

Φ= 60˚ Φ= 120˚ Φ= 180˚ 
sξ  Mode 

number Theory* FEM/ 
Error (%) Theory* FEM/ 

Error (%) Theory* FEM/ 
Error (%) 

1 16.885 16.885/ 0.002 4.3094 4.3094/ 0.001 1.7908 1.7908/ 0.003 

2 39.700 39.706/ 0.014 11.796 11.796/ 0.001 5.0324 5.0324/ 0.001 

3 40.934 40.940/ 0.015 22.510 22.511/ 0.006 10.232 10.232/ 0.003 
20 

4 70.581 70.612/ 0.043 23.303 23.304/ 0.003 16.917 16.918/ 0.005 

1 19.454 19.454/-0.001 4.4731 4.4731/ 0.000 1.8182 1.8182/-0.001 

2 54.148 54.148/ 0.001 12.892 12.892/-0.002 5.2415 5.2415/ 0.000 

3 105.86 105.87/ 0.005 26.081 26.081/-0.001 10.989 10.989/-0.001 
100 

4 173.16 173.18/ 0.010 43.684 43.684/ 0.001 18.813 18.813/ 0.002 
 
 * taken from (Howson et al., 1999) 
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straight beam element. 
The S-shaped beam has cyclic symmetry. As 

shown in Fig. 3, modes 1, 3, and 5 are axially sym-
metric modes with zero nodal diameter and modes 2, 
4, and 6 are axially anti-symmetric modes with one 
nodal diameter. 
 

4. Conclusions 

A finite thin circular beam element for the out-of-
plane vibration analysis of curved beams is presented. 
It can describe quite efficiently and accurately the 
out-of-plane motions of thin circular beams in which 
the secondary effects of transverse shear deformation, 
transverse rotary inertia, and torsional rotary inertia 
can be considered partially or totally. This kind of 
beam element gives exact results for linear static 
problems in the case of concentrated loads because 
the shape functions of the element are exact in static 
state. The natural frequencies obtained by using this 
kind of element converge rapidly to the theoretical 
values with increasing number of elements. The nu-
merical results for the natural frequencies of circular 
arcs of various geometric conditions are in excellent 
agreement with the theoretical ones. The presented 
circular beam element can be utilized easily and effi-
ciently for precise out-of-plane vibration analysis of 
curved beams composed of circular arcs. 
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Appendix 

The matrix [ ]BK  is symmetric and any element 
not defined is zero. 

 

( )3/Bij BijK EI a kξ=  

( )44 2Bk η ζβ α ψ= +  

46 2Bk sηβ ψ=  

( ) ( )55Bk s c s cηψ ψ ψ β ψ ψ ψ= + + −  

( ) ( )66Bk s c s cηψ ψ ψ β ψ ψ ψ= − + +  

 
The matrix [ ]BM  is symmetric and any element 

not defined is zero. 
 

( )Bij BijM Aa mρ=  

11 2Bm ψ=  

13 2Bm sψ=−  

( ) ( )15 2 32 2Bm f s f s cψ ψ ψ ψ ψ=− − + −  

( )( )22 2 1Bm s cξ ξ ηµ ψ µ µ ψ ψ ψ= + − + −  
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( ) ( )( )24 2 1 22 2Bm f s f f s cξµ ψ ψ ψ ψ ψ=− − + + −  

 ( ) ( )21 f s cξ ηµ µ ψ ψ ψ− − + −  

( ) ( )26 3
1 1 2
2Bm f s c cξ ηµ µ ψ ψ ψ ψ=− − + −  

     ( )( )4 2 4f f f s cηµ ψ ψ ψ+ + + −  

( )( )33 2 1Bm s cξ ξ ηµ ψ µ µ ψ ψ ψ= + − + +  

( ) ( )35 3
1 1 2
2Bm f s c cξ ηµ µ ψ ψ ψ ψ=− − + −  

             ( ) ( )( )2 4 22f s f f s cξψ ψ µ ψ ψ ψ− − + + −  

( ) ( )22 3
44 2 1 2

24
3Bm f s f fξµ ψ ψ ψ= − + +  

          ( ) ( )1 2 24 f f f s cψ ψ ψ− + −  

         ( ) ( )2
21 f s cξ ηµ µ ψ ψ ψ+ − + −  

( )( ){ }(46 2 3 1 2 2 42Bm f f f f f f sξµ ψ= + + +  

         )cψ ψ− ( ) ( )4 2 4 2f f f f s cηµ ψ ψ ψ− + + −  

         ( ) ( )2 3
1 1 2
2

f f s c cξ ηµ µ ψ ψ ψ ψ+ − + −  

          ( ) ( )2
1 2 32 2 2f f f s c sψ ψ ψ ψ ψ− + + −  

( ) ( )( )2 2 2
55 2 4 24Bm f s f f s cξψ ψ µ ψ ψ ψ= − + − −  

         ( )2 34 f f s cψ ψ ψ− −  

         ( ) ( )4 2 3 2f f f s c cξµ ψ ψ ψ ψ+ + −  

         ( ) 2 3 2
3

1 11 2
3 2

f sξ ηµ µ ψ ψ ψ
⎛⎜+ − + −⎜⎜⎝

 

         1 12 2
2 4

c sψ ψ ψ
⎞⎟− + ⎟⎟⎟⎠

2 3
3

2
3

fξµ ψ+  

( ){ }( )22
66 4 2 4Bm f f f s cηµ ψ ψ ψ= + + −  

        ( ) ( )4 2 4 3 2f f f f s c cηµ ψ ψ ψ ψ− + + −  

        ( ) 2 3 2
3

1 11 2
3 2

f sξ ηµ µ ψ ψ ψ
⎛⎜+ − + +⎜⎜⎝

 

        1 12 2
2 4

c sψ ψ ψ
⎞⎟+ − ⎟⎟⎟⎠

2 3
3

2
3

fξµ ψ+  
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