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ABSTRACT In this paper, a fault-tolerant control (FTC) method for robotic manipulators is proposed to

deal with the lumped uncertainties and faults in case of lacking tachometer sensors in the system. First,

the third-order slidingmode (TOSM) observer is performed to approximate system velocities and the lumped

uncertainties and faults. This observer provides estimation information with high precision, low chattering

phenomenon, and finite-time convergence. Then, an FTC method is proposed based on a non-singular fast

terminal switching function and the TOSM observer. This combination provides robust features in dealing

with the lumped uncertainties and faults, increases the control performance, reduces chattering phenomenon,

and guarantees fast finite-time convergence. Especially, this paper considers both two periods of time,

in which before and after the convergence process takes place. The stability and the finite-time convergence

of the proposed controller-observer technique is demonstrated using the Lyapunov theory. Finally, to verify

the effectiveness of the proposed controller-observer technique, computer simulation on a serial two-link

robotic manipulator is performed.

INDEX TERMS Fault-tolerant control, controller-observer strategy, third-order sliding mode observer,

non-singular fast terminal sliding mode control, robotic manipulators.

I. INTRODUCTION

In the industrial environment, robotic manipulators have

many special applications due to their ability to replace

workers in difficult and dangerous activities such as moving

heavy products, assembling mechanical structures, sheet

metal cutting, etc. Moreover, they can help to improve both

the product quality and quantity, thus saving the cost for

manufacturers. However, robotic manipulators have very

complicated dynamic, from practical viewpoint, they are

arduous or even impossible to obtain the robot’s exact

dynamics, leading to model uncertainties. They are the large

challenges in both theoretical and practical control. In addi-

tion, along with modern industrial applications becoming

increasingly complex, faults more frequently happen in the

system especially in the condition of long-term operation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Alshabi .

Hence, the requirement is to be able to automatically detect

the faults, compensates their effects, and completes the

assigned missions even in the existence of one or more faults

with acceptable performance. In literature, various methods

have been proposed to handle the effects of the uncertainties

and faults. In some papers, the system uncertainties and

faults are approximated separately [1]–[4]. However, using

two separate observers makes the algorithms cumbersome

that leads to resources and time consuming for computation.

In this paper, the faults are treated as additional uncertainties,

thus, the total effects of the lumped uncertainties and faults

in the system are considered.

In order to deal with the lumped uncertainties and

faults, fault-tolerant control (FTC) methods have been

developed [5], [6]. In general, the FTC tactics can be divided

into two categories: passive FTC (PFTC) [7], [8] and active

FTC (AFTC) [9], [10]. In PFTC technique, a robust controller

is designed to compensate the faults without requiring
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information feedback from a fault diagnosis observer. Since

the faults’ effects imposed on the nominal controller of the

PFTC are heavier than that of the AFTC, the nominal con-

troller of the PFTC requires stronger robustness against the

effects of faults. On the other hand, an AFTC is constructed

based on online fault diagnosis technologies. Compared

with the PFTC, the AFTC accommodates higher control

performance when the fault information is approximated

correctly. Therefore, the AFTCmethods are more suitable for

practical applications.

In literature, various control approaches have been devel-

oped for FTC, such as computed torque control [1], [11],

adaptive control [12], [13], neural network control [14], [15],

fuzzy logic control [16]–[18], and sliding mode control

(SMC) [19]–[26], etc. Compared with others, SMC stands

out with superior control properties like fast convergence,

high tracking precision, and robustness against the lumped

uncertainties and faults. In addition, it is pretty simple in

design; therefore, the SMC has been extensively employed to

control robotic manipulator system in literature. Besides the

huge advantages, there still exists some big limitations that

degrade the practical applicability of the conventional SMC,

that are: 1) the finite-time convergence cannot be guaranteed,

2) chattering phenomenon, 3) velocity (and acceleration)

measurements are required.

To overcome the first limitation – the finite-time conver-

gence, the terminal SMC (TSMC) has been developed by

utilizing nonlinear switching functions instead of the linear

one [27], [28]. In addition, it can reach higher exactness

by rigorously selecting parameters. The conventional TSMC,

however, produces two major drawbacks, that are singularity

problem and slower dynamic response compared with the

conventional SMC. To overcome these limitations, the fast

TSMC (FTSMC) [29], [30] and the non-singular TSMC

(NTSMC) [31], [32] have been proposed. However, they

can only handle each problem separately. In order to

resolve the two problems at the same time, the non-singular

fast TSMC (NFTSMC) has been investigated. In addition,

the NFTSMC has the capability to obtain high tracking

error precision and provide feature robustness against the

influence of the lumped uncertainties and faults; therefore,

this control algorithm has been extensively utilized by many

researchers [33]–[36]. Unfortunately, the last two limitations

still remain.

To eliminate the second limitation – chattering phe-

nomenon, which is caused by the utilizing of a discontinuous

term with a big and fixed gain in reaching phase, the basic

idea is to use an observer to approximate the lumped

uncertainties and faults and then compensates its effects in

the system. By using this method, the switching gain is now

chosen smaller to deal with the effects of the estimation

error instead of the effects of the lumped uncertainties and

faults; thus, the chattering phenomenon is reduced. In the

literature, many researchers have been paid attention to

develop an effective observer to approximate the lumped

uncertainties and faults such as [34], [37]–[47]. With the

learning ability and high accuracy estimation, the neural

network (NN) observer has been widely employed [41]–[43].

On the other hand, the learning ability makes the systemmore

complicated and thus requires higher system configuration

to use online training technique that increases the cost of

devices. The time delay estimation (TDE) method, in [34],

[44], [45], is a simpler technique; however, it needs the

velocity measurement that not usually available in practical.

The sliding mode observer, especially, the third-order sliding

mode (TOSM) observer, in [46], has ability to estimate

the lumped uncertainties and faults with high accuracy and

less chattering. Moreover, the TOSM observer provides

the system velocity (and acceleration) estimation with

finite-time convergence. Therefore, the third limitation of

the SMC is eliminated. Thanks to the above advantages,

the TOSM observer has been broadly utilized in controlling

theory [39], [40], [47].

In this paper, the TOSM observer is used to approximate

the velocities and the lumped uncertainties and faults of

robotic manipulator system. The obtained velocities are

employed in the system to replace the measured velocity and

the estimated uncertainties and faults are applied to reduce

their effects. To achieve high position tracking precision

and stability of the system, a robust control is design based

on a terminal sliding function. Especially, two periods of

time that before and after the convergence process takes

place, are carefully considered. The proposed FTC strategy

affords high tracking accuracy, low chattering phenomenon,

non-singularity, robustness against the effects of the lumped

uncertainties and faults, and finite-time convergence for both

position tracking errors and velocity estimation.

In this paper, the FTC method that combines the NFTSMC

and the TOSM observer is proposed for the robotic manip-

ulator system to surpass the total effects of the lumped

uncertainties and faults. The main contributions of this paper

are given as following:

(1) Proposing an NFTSM switching function based on

estimated state from TOSM observer,

(2) Proposing an FTC method to enhance the tracking

performance of the robotic system under the total effect of

the lumped uncertainties and faults,

(3) Reducing the chattering phenomenon in control

input signals by estimating and compensating the lumped

uncertainties and faults,

(4) Demonstrating the finite-time stability of the switching

function and the robotic system using the Lyapunov stability

theory,

(5) Eliminating the necessary of system velocity measure-

ment in the design procedure,

(6) Considering both two periods of time, in which before

and after the convergence process takes place.

This paper is structured into six parts. Next to the introduc-

tion, the problem statement is presented in Section II. Then,

the TOSM observer is designed for the robotic manipulator

systems in Section III. Section IV presents the design of

the FTC algorithm using the NFTSMC and the TOSM
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observer. In Section V, computer simulations on a serial

two-link robotic manipulator are presented to demonstrate the

effectiveness of the proposed controller-observer algorithm.

Finally, Section VI gives some conclusions.

II. PROBLEM STATEMENT

A. SYSTEM IN NORMAL OPERATION CONDITION

Consider a serial n-link robotic manipulator in normal

operation condition with the dynamic equation as

M (θ) θ̈ + C
(

θ, θ̇
)

+ G (θ) + F
(

θ̇
)

+ τd (t) = τ (t) (1)

where θ, θ̇ , θ̈ ∈ ℜn represent position, velocity, and

acceleration of robot joints, respectively. M (θ) ∈ ℜn×n,
C

(

θ, θ̇
)

∈ ℜn, and G (θ) ∈ ℜn denote the inertia matrix,

the Coriolis and centripetal forces, and the gravitational

force term, respectively. F
(

θ̇
)

∈ ℜn is the friction vector,

τ (t) ∈ ℜn denotes the control input torque, and τd (t) ∈ ℜn

represents the disturbance vector.

In realization, since the difference between the mathemat-

ical and practical model, the model functions of the robotic

manipulator can be expressed as

M (θ) = M0 (θ) + 1M (θ) (2)

C
(

θ, θ̇
)

= C0

(

θ, θ̇
)

+ 1C
(

θ, θ̇
)

(3)

G (θ) = G0 (θ) + 1G (θ) (4)

where M0 (θ), C0

(

θ, θ̇
)

, and G0 (θ) represent the nominal

model; the terms 1M (θ), 1C
(

θ, θ̇
)

, and 1G (θ) are the

unmodeled components.

Thus, we can rewrite the robot dynamic equation (1) as

M0 (θ) θ̈ + C0

(

θ, θ̇
)

+ G0 (θ) = τ (t) + 2
(

θ, θ̇ , t
)

(5)

where 2
(

θ, θ̇ , t
)

= −1M (θ) − 1C
(

θ, θ̇
)

− 1G (θ) −
F

(

θ̇
)

− τd (t) denotes the uncertainties of the robot system.

The equation (5) can be transformed to the below form

θ̈ = ϒ
(

θ, θ̇ , t
)

+M−1
0 (θ) τ (t) + 5

(

θ, θ̇ , t
)

(6)

where 5
(

θ, θ̇ , t
)

= M−1
0 (θ) 2

(

θ, θ̇ , t
)

represents the

uncertainty terms of the robotic system and ϒ
(

θ, θ̇ , t
)

=
M−1

0 (θ)
[

−C0

(

θ, θ̇
)

− G0 (θ)
]

represents the nominal func-

tion of the robotic system.

B. SYSTEM IN FAULT AFFECTED OPERATION CONDITION

Nowadays, with modern industrial applications becoming

increasingly complex, faults more frequently happen in a

system especially in the condition of long-term operation.

Therefore, in this paper, we assume that the robot system

works under the effect of faults. Thus, the robot dynamic (6)

becomes

θ̈ = ϒ
(

θ, θ̇ , t
)

+M−1
0 (θ) τ (t) + 5

(

θ, θ̇ , t
)

+ 9
(

θ, θ̇ , t
)

(7)

where 9(θ, θ̇ , t) = ξ (t − Tf )8(θ, θ̇ , t) represents the

unknown but bounded faults that happen at time Tf . The term

ξ (t − Tf ) = diag{ξ1(t − Tf ), ξ2(t − Tf ), . . . , ξn(t − Tf )}
represents the time profile of the unknown faults, in which

ξi
(

t − Tf
)

=
{

0 if t ≤ Tf

1 − e−ζi(t−Tf ) if t ≥ Tf

with ζi > 0 represent the evolution rate, (i = 1, 2, . . . , n).

Remark 1: In robotic manipulator systems, faults can be

actuator faults, sensor faults, and process faults. However,

this paper focus to solve the system with actuator faults.

Therefore, the fault functions 8
(

θ, θ̇ , t
)

are defined as faults

which occur in the actuator.

In this paper, the unknown faults will be treated as

additional uncertainties, thus we consider the total effect of

the lumped uncertainties and faults in the system.

By defining x1 = θ, x2 = θ̇ , x =
[

xT1 xT2

]T
, we transfer

the robot dynamic (7) into the state space form as

ẋ1 = x2

ẋ2 = ϒ(x, t) +M−1
0 (x1) τ (t) + D(x, t) (8)

where D(x, t) = 5 (x, t) + 9 (x, t) represents the lumped

uncertainties and faults.

The main objective of this paper is to design a controller-

observer strategy that deals with the effects of the lumped

uncertainties and faults and achieveminimum tracking errors.

The proposed controller-observer method is designed based

on the assumptions as following:

Assumption 1: The lumped uncertainties and faults D(x, t)

are bounded as

|D(x, t)| ≤ 1D (9)

where 1D is a known positive constant.

Assumption 2: There exists the time derivative of the

lumped uncertainties and faults and they are bounded as
∣

∣

∣

∣

d

dt
D(x, t)

∣

∣

∣

∣

≤ 1Ḋ (10)

where 1Ḋ is a known positive constant. Note that

the assumption 2 is realistic and was used in many

papers [48]–[50].

III. DESIGN OF THE THIRD-ODER SLIDING MODE

OBSERVER

In this section, the TOSM observer is designed to approx-

imate the system velocities, which is assumed unavailable

because of the lacking tachometer sensors in the system.

In addition, the lumped uncertainties and faults will be

reconstructed from the estimated signal and then employed

to design the control in the next section.

A. DESIGN OF THE OBSERVER

The TOSM observer is designed for the robotic system (8)

as [23]

˙̂x1 = γ1
∣

∣x1 − x̂1
∣

∣

2/3
sign (x̃1) + x̂2

˙̂x2 = ϒ
(

x̂, t
)

+M−1
0 (x1) τ (t)

+ γ2
∣

∣x1 − x̂1
∣

∣

1/3
sign

(

x1 − x̂1
)

− ẑ
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˙̂z = −γ3 sign
(

x1 − x̂1
)

(11)

where x̂ is the estimator of the true state x, and γi represent

the observer gains, (i = 1, 2, 3).

By subtracting (11) from (8), we can obtain

˙̃x1 = −γ1 |x̃1|2/3 sign (x̃1) + x̃2
˙̃x2 = −γ2 |x̃1|1/3 sign (x̃1) + D(x, t) − d (x̃, t) + ẑ

˙̂z = −γ3 sign (x̃1) (12)

where x̃ = x − x̂ represent the state estima-

tion errors and d (x̃, t) =
[

ϒ
(

x̂, t
)

+M−1
0 (x1) τ

]

−
[

ϒ (x, t) +M−1
0 (x1) τ

]

. We assume that the term d (x̃, τ, t)

and its derivative are bounded as |d (x̃, t)| ≤ 1d and
∣

∣ḋ (x̃, t)
∣

∣ ≤ 1ḋ .

The estimation errors (12) can be rewritten as follow

˙̃x1 = −γ1 |x̃1|2/3 sign (x̃1) + x̃2
˙̃x2 = −γ2 |x̃1|1/3 sign (x̃1) + ẑ0

˙̂z0 = −γ3 sign (x̃1) + ˙̂
1 (x, t) (13)

where ẑ0 = D̂ (x, t) + ẑ with D̂ (x, t) = D (x, t) − d (x̃, t).

The error dynamic (13) is in the standard form of

robust exact second-order differentiator; according to [51],

the stable and finite-time convergence of the differentiator has

completely demonstrated. The observer gains can be selected

as γ1 = α1L
1/3, γ2 = α2L

2/3, and γ3 = α3L where α1 = 2,

α2 = 2.12, α3 = 1.1, and L = 1Ḋ + 1ḋ .

B. UNCERTAINTIES AND FAULTS RECONSTRUCTION

After the convergence time, the estimated states (x̂1, and

x̂2) will reach the true states (x1, and x2), respectively. The

estimation errors (13) becomes

˙̃x1 = −γ1 |x̃1|2/3 sign (x̃1) + x̃2 ≡ 0

˙̃x2 = −γ2 |x̃1|1/3 sign (x̃1) + ẑ0 ≡ 0

˙̂z0 = −γ3 sign (x̃1) + ˙̂
1 (x, t) ≡ 0 (14)

As a result, the estimation errors of the lumped uncer-

tainties and faults, d (x̃, t), will become zero; therefore,

the estimation of the lumped uncertainties and faults are

reconstructed as

D̂ (x, t) =
∫

γ3 sign (x̃1) (15)

As we can see in (15), the obtained signal consists of

an integral operator; hence, the estimation information of

the TOSM observer can be reconstructed directly without

filtration. Consequently, this observer provides estimation

signal with higher accuracy and low chattering than that of

SOSM observer [52]. This estimation information will be

performed to design the FTC method in the next section.

Remark 2: Even if in the ideal sliding motion, we can only

to get the exact estimation information after the convergence

process. When employing the obtained estimation to the

system, the estimation errors which appear in transient time

will affect the selecting parameters of the controller. If we do

not consider these components strictly, it will cause incorrect

in selection of control parameters and thus affect the system

stability.

IV. CONTROLLER DESIGN

In this section, an FTCmethod using NFTSMC is designed to

handle the effects of the lumped uncertainties and faults with

low chattering phenomenon and high tracking performance.

Especially, the control technique is designed based on the

assumption that only the tachometer sensors are unavailable

in the robotic system. The analysing process is divided into

two periods as following.

A. DESIGN OF NFTSM SWITCHING FUNCTION

The tracking errors and velocity errors are defined as

following

e = x1 − xd (16)

ˆ̇e = x̂2 − ẋd (17)

where xd , ẋd represent the desired trajectories and velocities,

respectively.

In order to design the control input, an NFTSM switching

function based on TOSM observer is chosen as the following

expression

ŝ = ˆ̇e+ 2κ1

1 + exp(−µ1(|e| − φ))
e

+ 2κ2

1 + exp(µ2(|e| − φ))
|e|α sign (e) (18)

where κ1, κ2, µ1, µ2 are positive constants, 0 < α < 1 and

φ =
(

γ2
γ1

)1/(1−α)
.

Based on the SMC theory, when the system operates in the

sliding mode, the following constraints are satisfied:

ŝ = 0

˙̂s = 0 (19)

Therefore, the sliding mode dynamics can be obtained as

ˆ̇e = − 2κ1

1 + exp(−µ1(|e| − φ))
e

− 2κ2

1 + exp(µ2(|e| − φ))
|e|α sign (e) (20)

Theorem 1: For the sliding mode dynamics (20), the

origin, e, is defined as the stable equilibrium point and the

state trajectories of the dynamic system (20) converge to zero

in the finite-time.

Proof:We can acquire the time derivative of the tracking

errors (16) as

ė = ẋ1 − ẋd

= x2 − ẋd (21)

According to the definition of the estimation errors in

part III, the velocity errors (17) can be rewritten as

ˆ̇e = x̂2 − ẋd

= x2 − ẋd − x̃2 (22)
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After the convergence estimation errors, the estimated

states, x̂2, will reach the true states, x2. Therefore, the velocity

errors (22) become

ˆ̇e = x2 − ẋd = ė (23)

Consider the Lyapunov function candidate as

V1 = 1

2
e2 (24)

Differentiating the Lyapunov function (24) with respect to

time and substituting the result from (20), we obtain

V̇1 = eė

= − 2κ1

1 + exp(−µ1(|e| − φ))
e2

− 2κ2

1 + exp(µ2(|e| − φ))
|e|α+1

< 0 (25)

It is shown that V1 > 0 and V̇1 < 0, hence, the

origin, e, of the sliding mode dynamic (20) is stable and

the state trajectories e and ė converge to zero in the finite-

time. Consequently, the tracking velocity errors ˆ̇e converge to
zero in the finite-time. Therefore, the theorem 1 is completely

demonstrated.

B. DESIGN OF FTC METHOD

1) BEFORE THE CONVERGENCE TIME

To achieve the control objective for the robotic system (8),

a controller-observer technique is described in Theorem 2.

Theorem 2: For the robotic manipulator system (8), if the

control input signal is designed as (26-28), then the system is

stable, and the tracking error converges to zero in finite time.

The control law is designed as below

τ = −M0(x1)
(

τeq + τsw
)

(26)

with the equivalent control law, τeq, and the switching control

law, τsw, are designed as following

τeq = −ẍd + ϒ(x, t) + γ2 |x̃1|1/3 sign (x̃1) +
∫

γ3 sign(x̃1)

+ ė

























2κ1

1 + exp(−µ1(|e| − φ))

+2κ1µ1sign (e) exp(−µ1(|e| − φ))
[

1 + exp(−µ1(|e| − φ))
]2

+ 2κ2α

1 + exp(µ2(|e| − φ))
|e|α−1

− 2κ2µ2 exp(µ2(|e| − φ))
[

1 + exp(µ2(|e| − φ))
]2

|e|α

























(27)

τsw = (1d + µ) sign
(

ŝ
)

(28)

where µ is a small positive constant.

Proof: We can acquire the time derivative of the

switching function (18) as

˙̂s = d

dt
ˆ̇e

+ ė





2κ1
1+exp(−µ1(|e|−φ))

+ 2κ1µ1sign(e) exp(−µ1(|e|−φ))

[1+exp(−µ1(|e|−φ))]2

+ 2κ2α
1+exp(µ2(|e|−φ))

|e|α−1− 2κ2µ2 exp(µ2(|e|−φ))

[1+exp(µ2(|e|−φ))]2
|e|α



 (29)

Taking the time derivative of velocity errors and substitut-

ing the second equation of the TOSM observer (11) yields

d

dt
ˆ̇e = ˙̂x2 − ẍd

= −ẍd + ϒ(x̂, t) +M−1
0 (x1) τ

+ γ2 |x̃1|1/3 sign (x̃1) +
∫

γ3 sign (x̃1)

= −ẍd + ϒ(x, t) +M−1
0 (x1) τ + d (x̃, t)

+ γ2 |x̃1|1/3 sign (x̃1) +
∫

γ3 sign (x̃1) (30)

Substituting (29) into (30) yields

˙̂s = −ẍd + ϒ(x, t) +M−1
0 (x1) τ + d (x̃, t)

+ γ2 |x̃1|1/3 sign (x̃1) +
∫

γ3 sign (x̃1)

+ ė





2κ1
1+exp(−µ1(|e|−φ))

+ 2κ1µ1sign(e) exp(−µ1(|e|−φ))

[1+exp(−µ1(|e|−φ))]2

+ 2κ2α
1+exp(µ2(|e|−φ))

|e|α−1 − 2κ2µ2 exp(µ2(|e|−φ))

[1+exp(µ2(|e|−φ))]2
|e|α





(31)

Employing the control input (26-28) into (31), we achieve

˙̂s = −(1d + µ) sign
(

ŝ
)

+ d (x̃, t) (32)

Consider the Lyapunov function candidate as

V2 = 1

2
ŝT ŝ (33)

Differentiating the Lyapunov function (33) with respect to

time and substituting the result from (32), we obtain

V̇2 = ŝT ˙̂s
= ŝT

(

−(1d + µ) sign
(

ŝ
)

+ d (x̃, t)
)

= −(1d + µ)

n
∑

i=1

∣

∣ŝi
∣

∣ + d (x̃, t)T ŝ ≤ −µ

n
∑

i=1

∣

∣ŝi
∣

∣

≤ −µ
∥

∥ŝ
∥

∥ = −
√
2µV

1/2
2 < 0, ∀ŝ 6= 0 (34)

According to the stability theory in [53], it can be

concluded that the robotic system (8) is stable and the

tracking error converges to zero after finite time. Thus,

the Theorem 2 is completely demonstrated.

2) AFTER THE CONVERGENCE TIME

In this part, we consider the control law after the con-

vergence process. After the convergence time, the term

γ2 |x̃1|1/3 sign (x̃1) in the equivalent control law (27) converts

to zero; therefore, the control law (26-28) will become

τ = −M0(x1)
(

τeq + τsw
)

(35)

τeq = −ẍd + ϒ(x, t) +
∫

γ3 sign(x̃1)

+ė















2κ1
1+exp(−µ1(|e|−φ))

+ 2κ1µ1sign(e) exp(−µ1(|e|−φ))

[1+exp(−µ1(|e|−φ))]2

+ 2κ2α
1+exp(µ2(|e|−φ))

|e|α−1

− 2κ2µ2 exp(µ2(|e|−φ))

[1+exp(µ2(|e|−φ))]2
|e|α















(36)

VOLUME 9, 2021 31229



V.-C. Nguyen et al.: Finite-Time FTC Using Non-Singular Fast Terminal Sliding Mode Control and TOSM Observer

FIGURE 1. Two-link robotic manipulator.

τsw = (1d + µ) sign
(

ŝ
)

(37)

Generally, the control law in (35-37) is employed

to the system; however, the missing of the component

γ2 |x̃1|1/3 sign (x̃1) leads to incorrect in selecting parameters

and may affect the operation of the system at the initial

stage and when faults happen. Therefore, this paper performs

the control law in (26-28) instead of the control law

in (35-37).

The proposed controller-observer technique provides some

superior control properties such as high tracking control pre-

cision with finite-time convergence, faster dynamic response,

low chattering phenomenon, non-singularity, velocity mea-

surement elimination and robustness against the lumped

uncertainties and faults. Its efficiency will be demonstrated

in the simulation part.

V. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of the proposed FTC

technique, computer simulations are performed on a serial

two-link robotic manipulator which is presented in Fig.1. The

detailed dynamic model of the two-link robot is given as

following

Inertia term

M (θ ) =
[

M11 M12

M21 M22

]

where

M11 = m1l
2
c1 + m2(l

2
1 + l2c2 + 2l1lc2cos(θ )) + I1 + I2

M12 = M21 = m1l
2
c2 + m2lc2l1cos(θ) + I2

M22 = m2l
2
c2 + I2

Coriolis and centripetal term

C(θ, θ̇ ) =
[

−2m2l1lc2 sin(θ)θ̇1θ̇2 − m2l1lc2 sin(θ2)θ̇
2
2

m2l1lc2 sin(θ2)θ̇
2
1

]

Gravitational term

G(θ )

=
[

m1glc1 cos(θ1) + m2g (l1 cos(θ1) + lc2 cos(θ1 + θ2))

m2lc2g cos(θ1 + θ2)

]

with the values of parameters are given in Table 1.

TABLE 1. parameters of the 2-link robot.

All simulation in this paper is accomplished by employing

the MATLAB/Simulink with the sampling time 10−3s. The

desired trajectories of robot are assumed as

θd =
[

1.2 cos
(

t
/

7
)

− 0.7

sin
(

t
/

6 + π
/

2
)

− 0.4

]

(38)

The robot frictions and disturbances are assumed as

F(θ̇ ) =
[

1.9 cos (2q̇1)

1.05 cos (q̇2)

]

(39)

τd =
[

2.5 sin (t) + 0.4 cos(π t)

cos (t) + 0.6 sin (t/π)

]

(40)

To validate the property in handling the fault effects, two

cases of faults are assumed to impact the robot system. Firstly,

simple faults81 are assumed to be occurred to joint 1 at Tf =
10s and to joint 2 at Tf = 20s. Secondly, complex faults 82

are assumed to be occurred to both joints at Tf = 10s.

81 =
[

−9.7 cos(π t/7+π/5)

8.2 cos(π t/5+π/4)

]

(41)

82 =









−3.02θ21 + sin (θ2) + 6.1 cos(θ̇1) + 4.5θ̇2
+0.7 sin (2t/π)

1.5θ1 + 3.2 cos (θ2) + 2.3 sin(2θ̇1) + 9.2θ̇2
+0.5 cos (t/π)









(42)

The selected parameters of the controller and observer

methods in the simulations are shown in Table 2.

In the first part of simulation, a comparison of the esti-

mation results between the TOSM observer and the SOSM

observer is performed. In Fig. 2 and Fig. 3, the achieved

velocity estimation errors when faults 81 and 82 occur,

are presented, respectively. The results show that the TOSM

observer provides the estimation information with higher

accuracy than that of the SOSM observer. According to [52],

the SOSM observer needs a lowpass filter to rebuild the

estimated signal of the lumped uncertainties and faults.

This filtration process causes time delay and estimation

errors, that reduce the estimation performance of the SOSM

observer. Fortunately, this limitation is removed in the TOSM
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TABLE 2. parameters of the controller/observer methods.

FIGURE 2. The velocity estimation errors are supplied by SOSM observer
and TOSM observer at each joint when faults 81 occur.

FIGURE 3. The velocity estimation errors are supplied by SOSM observer
and TOSM observer at each joint when faults 82 occur.

observer. The estimation results of the lumped uncertainties

and faults are presented from Fig. 4 to Fig. 7. In both

two cases of faults, the TOSM observer provides higher

estimation performance and less chattering than that of the

SOSM observer. However, the time response of the TOSM

FIGURE 4. The estimation of the lumped uncertainties and faults are
supplied by SOSM observer and TOSM observer at each joint when faults
81 occur.

FIGURE 5. The estimation of the lumped uncertainties and faults are
supplied by SOSM observer and TOSM observer at each joint when faults
82 occur.

observer is slower. This is also the main limitation of the

TOSM observer that needs to improve.

In the second part, a comparison of the proposed FTC

algorithm with the control law in (35-37) and the control

techniques which are designed based on the conventional

SMC (Appendix A) and the NTSMC (Appendix B) is

performed to demonstrate its superior control properties. The

tracking position and the tracking error at each joint when the

simple faults 81 occur are displayed in Fig. 8 and Fig. 10,

respectively. As in the results, the real trajectories provided

by the proposed FTC method track the desired trajectories

with higher accuracy than the FTC methods that are designed

based on the conventional SMC and the NTSMC. Compared

with the control law in (35-37), the tracking performance

that provided by the proposed controller is similar after the

convergence process. However, by performing the additional

term γ2 |x̃1|1/3 sign (x̃1), the proposed FTC method provides
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FIGURE 6. The estimation errors of the lumped uncertainties and faults
are supplied by SOSM observer and TOSM observer at each joint when
faults 81 occur.

FIGURE 7. The estimation errors of the lumped uncertainties and faults
are supplied by SOSM observer and TOSM observer at each joint when
faults 82 occur.

FIGURE 8. Desired trajectories and joint angles are supplied by SMC,
NTSMC, NFTSMC, and the proposed controller-observer technique at each
joint when faults 81 occur.

faster response at the initial stage and when faults happen.

For the case of the complex faults 82, the similar results are

obtained and shown in the Fig. 9 and Fig. 11.

FIGURE 9. Desired trajectories and joint angles are supplied by SMC,
NTSMC, NFTSMC, and the proposed controller-observer technique at each
joint when faults 82 occur.

FIGURE 10. Tracking errors are supplied by SMC, NTSMC, NFTSMC, and
the proposed controller-observer technique at each joint when faults 81
occur.

FIGURE 11. Tracking errors are supplied by SMC, NTSMC, NFTSMC, and
the proposed controller-observer technique at each joint when faults 82
occur.

The additional term γ2 |x̃1|1/3 sign (x̃1) also influences to

the convergence of the switching function. As shown in the
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FIGURE 12. Switching functions are supplied by SMC, NTSMC, NFTSMC,
and the proposed controller-observer technique at each joint when faults
81 occur.

FIGURE 13. Switching functions are supplied by SMC, NTSMC, NFTSMC,
and the proposed controller-observer technique at each joint when faults
82 occur.

FIGURE 14. Control inputs are supplied by SMC, NTSMC, NFTSMC, and the
proposed controller-observer technique at each joint when faults 81
occur.

Fig. 12 and Fig. 13, the switching function of the proposed

FTC method converges to zero faster compared with other

FIGURE 15. Control inputs are supplied by SMC, NTSMC, NFTSMC, and the
proposed controller-observer technique at each joint when faults 82
occur.

controllers in both cases of faults. In other words, the sliding

motion can be faster reached. In term of the control input

torque, the simulation results for both cases of faults of

controllers at each joint are presented in Fig. 14 and Fig. 15,

respectively. As shown in the figures, by using the proposed

FTC algorithm, the chattering phenomenon in the control

inputs are reduced due to the compensation of the estimated

uncertainties and faults.

VI. CONCLUSION

In this paper, an FTC method using the NFTSMC and

the TOSM observer for the robotic manipulator system is

proposed. The TOSM observer showed its capability to

estimate system velocities; thus, the need of tachometers in

the system is eliminated. In addition, the obtained lumped

uncertainties and faults are utilized to compensate their

effects to the system, thus the tracking performance of the

proposed controller-observer method is improved. Moreover,

the two stages of time that before and after the convergence

time, are carefully analyzed. The proposed FTC method

provides advanced control features such as high position

tracking precision with fast finite-time convergence, less

chattering phenomenon, and robustness against the effects

of the lumped uncertainties and faults. The superior control

properties of the proposed controller-observer algorithm

are fully demonstrated by the simulation results. Further,

the proposed method can be applied to the systems that have

form of the second-order dynamic systems.

APPENDIX

A. DESIGN OF CONVENTIONAL SMC

With the position and velocity errors are described in (16-

17), the conventional switching function based on the TOSM

observer is chosen as

ŝ = ˆ̇e+ ce (43)

where c is a positive constant.
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The control law is designed as below

τ = −M0(x1)
(

τeq + τsw
)

(44)

τeq = −ẍd + ϒ(x, t) +
∫

γ3 sign(x̃1) + cė (45)

τsw = (1d + µ) sign
(

ŝ
)

(46)

where µ is a small positive constant.

B. DESIGN OF NTSMC

With the position and velocity errors are described in (16-17),

the non-singular terminal switching function based on TOSM

observer is chosen as in [54]

ŝ = ˆ̇e+ β1e+ β2 exp(−λt)
(

eT e
)−α

e (47)

where β1, β2 are positive constants, 0 < α < 1, and λ > 0.

The control law is designed as below

τ = −M0(x1)
(

τeq + τsw
)

(48)

τeq = −ẍd + ϒ(x, t) +
∫

γ3 sign(x̃1) + β1ė+ β2A

(49)

τsw = (1d + µ) sign
(

ŝ
)

(50)

where µ is a small positive constant and the term

A = [(−λ) exp(−λt)
(

eT e
)−α

e

+ (−2α) exp(−λt)
(

eT e
)−α−1 (

eT ė
)

e

+ exp(−λt)
(

eT e
)−α

ė].
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