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Abstract

It is proposed to solve the exact transonic potential flow equation on a

mesh constructed from small volume elements, which can be conveniently

packed around any reasonably smooth configuration. the calculation is

performed on two sets of interlocking cells. The velocity and density are

calculated in the primary cells, and a flux balance is then established

in the secondary cells. The scheme is desymmetrized by the addition of

artificial viscosity in the supersonic zone. Some results are included for a

swept wing and a wing-cylinder combination.

1 Introduction

The purpose of this paper is to propose a method for calculating transonic
potential flows which can be applied to bodies of more or less arbitrary geomet-
ric complexity, given a sufficiently powerful computer. Following the success
of Murman and Cole1,2 in obtaining numerical solutions of the transonic small
disturbance equation, relaxation methods have been used to solve both the tran-
sonic small disturbance and the exact potential flow equations for a variety of
special configurations.3−6 A major difficulty in solving the exact potential flow
equation lies in the construction of sufficiently accurate discrete approximations
to the boundary conditions.

It is proposed here to circumvent the geometric difficulties by deriving a dis-
crete approximation on a mesh constructed from small volume elements which
can be conveniently packed around the body. This leads to a relatively sim-
ple treatment of the exact potential flow equation in conservation form. In its
motivation the scheme is comparable to the finite volume method proposed by

∗This work was supported by the Office of Naval Research under Contract N0C014-77-C-
0032 and also by NASA under Grants NGR 33-016-167 and NGR 33-016-201. The compu-
tations were performed at the ERDA Mathematics and Computing Laboratory, New York
University, under Contract No.EY-76-C-02-3077. *000.
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MacCormack and Rizzi7,8 to treat the Euler equations and other first order
hyperbolic systems of equations. Since, however, the potential flow equation is
of second order, the new scheme is constructed using two sets of interlocking
cells, a primary set in which the velocity and density are calculated from the
potential, and a secondary set in which a flux balance is established.

The scheme can be regarded as a finite element method, adapted to treat
regions of locally supersonic flow by the addition of an artificial viscosity. The
basic formulas in regions of locally subsonic flow could in fact be derived from
the Bateman variational principal.9 Another way to derive these formulas is to
apply the box scheme twice, first in the primary cells and then in the secondary
cells. Thus the scheme for the two sets of cells can also be regarded as a staggered
box scheme, in which difference formulas are used to evaluate transformation
coefficients defining local mappings of each primary box in the computational
domain to a volume element in the physical domain.

2 Formulation

It will be assumed that any shock waves contained in the flows to be computed
are weak enough that the entropy and vorticity generated by the shock waves
can be ignored without introducing serious errors. Consistent with this approx-
imation we shall treat the exact potential flow equation in conservation form.
Using Cartesian coordinates x, y, z we shall write this equation as

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (1)

where ρ is the density and u, v, w are the velocity components. These are cal-
culated as the gradient of the potential Φ.

u = Φx, v = Φy, w = φz. (2)

The flow is assumed to be uniform in the far field with a Mach number M∞.
At the body, the boundary condition is

un = 0 (3)

where un is the normal velocity component. The density is computed from the
isentropic formula.

ρ = {1 +
γ − 1

2
M2

∞
(1 − q2)}

1

γ−1 (4)

where ρ is the ratio of specific heats, and q is the speed,

q2 = u2 + v2 + w2 (5)

With the normalization that q = 1 and p = 1 at infinity, the corresponding
formulas for the pressure p and the local speed of

p =
ργ

γM2
∞

, a2 =
ργ−1

M2
∞

. (6)
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The shock jump conditions are

(a) continuity of Φ, implying a continuity of the tangential velocity com-
ponent;

(b) continuity of ρun, where un is the normal velocity component.

Under the isentropic assumption the normal component of momentum is not
conserved through the shock wave, leading to a body force which is an approxi-
mation to the wave drag. In any finite domain equations (1)− (5) together with
the shock jump relations (a) and (b) are equivalent to the Bateman variational
principle that the integral

I =

∫

Ω

p dΩ (7)

is stationary.

A difficulty with the formulation assuming potential flow is that correspond-
ing to any solution of equation (1) there is a reverse flow solution, in which com-
pression shock waves become expansion shock waves. In fact if central difference
formulas are used throughout the domain, symmetric solutions, containing an
expansion shock at the front and a compression shock at the rear, can be com-
puted for a body with fore and aft symmetry such as an ellipse. This is a
consequence of the absence of entropy from the formulation. In order to obtain
a unique and physically relevant solution the shock jump relations (a) and (b)
must be supplemented by the additional “entropy condition” that discontinuous
expansions are to be excluded from the solution, corresponding to the fact that
entropy cannot decrease in a real flow.

For this purpose the discrete approximation will be desymmetrized by the
addition of artificial viscosity to produce an upwind bias in the supersonic zone.
The added terms will be introduced in a manner such that the conservation
form of equation (1) is preserved. Provided that the solution of the discrete
equations converges in the limit as the cell width is reduced to zero, the correct
shock jump relations consistent with the isentropic assumption will then be a
natural consequence of the scheme.10

3 The Staggered Box Scheme

The basic idea of the numerical scheme is that cubes in the computational do-
main will be separately mapped to distorted cubes in the physical domain by
independent transformations from local coordinates X,Y,Z to Cartesian coor-
dinates x, y, z as illustrated in Figure 1.

The mesh points are the vertices of the mapped cubes, and subscripts i, j, k

will be used to denote the value of a quantity at a mesh point. Subscripts
i + 1

2 , j + 1
2 , k + 1

2 will be used to denote points mapped from the centers of
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the cubes in the computational domain. In developing the difference formulas it
will be convenient to introduce averaging the difference operators through the
notation

µXf =
1

2
(fi+ 1

2
,j,k + fi− 1

2
,j,k)

δXf = fi+ 1

2
,j,k − fi− 1

2
,j,k

with similar formulas for µy, µz, δy, δz. It will also be convenient to use notations
such as

µXXf = µX(µXf)

=
1

4
fi+1,j,k +

1

2
fi,j,k +

1

4
fi−1,j,k

µXY f = µX(µY f)

δXXf = δX(δXf)

= fi+1,j,k + 2fi,j,k + fi−1,j,k

δXY f = δX(δY f)

Numbering the vertices of a particular cube from 1 to 8 as in Figure 1, the local
mapping is constructed by a trilinear form in which the local coordinates lie
in the range − 1

2 ≤ X ≤ 1
2 ,− 1

2 ≤ Y ≤ 1
2 ,− 1

2 ≤ Z ≤ 1
2 , so the vertices are at

Xi = ± 1
2 , Yi = ± 1

2 , Zi = ± 1
2 . Thus if the Cartesian coordinates of the ith vertex

of the mapped cube are xi, yi, zi, the local mapping is defined by

x = 8
8

∑

i=1

xi (
1

4
+ XiX) (

1

4
+ YiY ) (

1

4
+ ZiZ) (8)

with similar formulas for y, z. The potential Φ is assumed to have a similar
form inside the cell:

Φ = 8
8

∑

i=1

Φi (
1

4
+ XiX) (

1

4
+ YiY ) (

1

4
+ ZiZ) (9)

These formulas preserve the continuity of x, y, z and at the boundary between
any pair of cells, because the mappings in each cell reduce to the same bilinear
form at the common face. At the center of a computational cell the derivatives
of the transformation can be evaluated from equation (8) by formulas such as

xX =
1

4
(x2 − x1 + x4 − x3 + x6 − x5 + x8 − x7)

= µY Z δX x

Similarly it follows from equation (9) that

ΦX = µY Z δX Φ, ΦXY = µZ δXY Φ, ΦXY Z = δXY Z Φ
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These formulas are simply an application of the box difference scheme.

Equation (1) will now be represented as a flux balance. For this purpose we
introduce a secondary set of cells interlocking with the primary cells as illus-
trated in Figure 2.
In the computational domain the faces of the secondary cells span the midpoints
of the primary cells. Since one secondary cell overlaps eight primary cells, in
each of which there is a separate transformation, the secondary cells do not nec-
essarily have smooth faces when they are mapped to the physical domain, but
this is not important since their purpose is simply to serve as control volumes
for the flux balance.

In order to derive the formula for the flux balance it is convenient to resort
to tensor notation. Let the Cartesian and local coordinates be

x1 = x, x2 = y, x3 = z

X1 = X, X2 = Y, X3 = Z

The appearance of a repeated index in any formula will be understood to imply a
summation over that index. Let H be the transformation matrix with elements
∂xi

∂Xj and let h be the determinant of H. Let G be the matrix HT H with elements

gij =
∂xk

∂Xi

∂xk

∂Xj
(10)

Then G is the metric tensor. Also let gij be the elements of G−1. Then the
contravariant velocity components are

U = U1, V = U2, W = U3

where

U i = gij ∂Φ

∂Xj
(11)

It may be verified by applying the chain rule for partial derivatives that equation
(1) can be written in the local coordinate system as

∂

∂Xi
(ρhU i) = 0 (12)

This corresponds to a well known formula for the divergence of a contravariant
vector. In the computation of the density from equation (4) we now use the
formula

q2 = U i ∂Φ

∂Xi
(13)

Also at a boundary S(x, y, z) = constant, the condition that the normal velocity
component is zero becomes

U i ∂S

∂Xi
= 0
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The mesh will be generated so that the boundary will coincide with faces of
cells adjacent to the boundary. Thus the boundary condition will reduce to a
simple form such as V = 0 on a cell face.

The formula for the local flux balance can now be written down by a second
application of the box scheme on the secondary cells. Thus equation (12) is
approximated by

µY Z δX (ρhU) + µZX δY (ρhV ) + µXY δZ (ρhW ) = 0. (14)

The physical interpretation of the quantities ρhU, ρhV, ρhW is that they are
the fluxes across the faces of the secondary cell. Consequently this formula is
equivalent to calculating the flux across the part of a face of a secondary cell
lying in a particular primary cell by using values for ρ, h, U, V,W calculated at
the center of that primary cell.

Adjacent to the body the flux balance is established on secondary cells
bounded on one or more faces by the body surface as illustrated in Fig 3.
There is no flux across these faces and equation (14) is correspondingly modified.

Observe that equation (14) could also be derived from the Bateman varia-
tional principle. Suppose that the integral I defined by equation (7) is approx-
imated by summing the volume of each primary cell multiplied by the pressure
at its mid-point. Then on setting the derivative of I with respect to each nodal
value Φi,j,k equal to zero to represent the fact that I is stationary, one recovers
equation (14). In a finite element method using isoparametric trilinear elements
the contribution of each cell would be calculated by an internal integration over
the cell, allowing for the fact that according to the trilinear formulas p is not
constant inside the cell.

The use of values of ρ, h, U, V,W calculated at the centers of the primary cells
in equation (14), instead of values averaged over the relevant faces, simplifies
the formulas at the expense of a ”lumping error”. Fortunately the contributions
to the lumping error from adjacent primary cells offset each other. In fact, if we
suppose the vertices of the cells to be generated by a global mapping smooth
enough to allow Taylor series expansions of x, y, z as functions of X,Y,Z, then
it can be seen from the interpretation of equation (14) as a box scheme that the
local discretization error is of second order.

The introduction of lumped quantities in equation (14) is the source, how-
ever, of another difficulty. this is most easily seen by considering the case of
incompressible flow in Cartesian coordinates. Setting h = 1, ρ = 1, equation
(14) reduces in the two dimensional case to

µY Y δXXΦ + µXXδY Y Φ = 0

This is simply the rotated Laplacian as illustrated in Figure 4. The odd and
even points are decoupled, leading to two independent solutions as sketched. In
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fact µY Y δXXΦ and µXXδY Y Φ are separately zero for Φ = 1 at odd points, −1
at even points.
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To overcome this difficulty, observe that it is due to the evaluation of the
flux across the face labeled AB in Figure 5 using a value of calculated at the
point A.
If we add a compensation flux ε ∆Y ΦXY across AB, the point at which ΦX

is effectively evaluated is shifted from A to B as is increased from 0 to 1/2.
Taking the cell height ∆Y as unity, consistent with the trilinear formula (8),
the addition of similar compensation terms on all faces produces the scheme

µY Y δXX Φ + µXXδY Y Φ − ε δXXY Y Φ = 0

Notice that setting ε = 1
2 yields the standard five point scheme for Laplace’s

equation, while setting ε = 1
3 yields the nine point fourth order accurate scheme.

In order to compensate for the lumping error in equation (14) in a similar
manner, we first calculate influence coefficients giving the effective weight of
δXXΦ, δY Y Φ, δZZΦ in equation (14) when the dependence of ρ on ΦX ,ΦY ,ΦZ

is accounted for. These are

AX = ρh

(

g11 −
U2

a2

)

AY = ρh

(

g22 −
V 2

a2

)

AZ = ρh

(

g33 −
W 2

a2

)

(15)

Now define
QXY = (AX + AY ) µZ δXY Φ. (16)

with similar formulas for QY Z , QZX , and

QXY Z = (AX + AY + AZ) δXY Z Φ (17)

Then the final compensated equation is

µY Z δX (ρhU) + µZX δY (ρhV ) + µXY δZ (ρhW )

−ε

{

µZ δXY QXY + µX δY Z QY Z + µY δZX QZX −
1

2
δXY Z QXY Z

}

= 0

(18)
where 0 ≤ ε ≤ 1

2 . This procedure has proved effective in suppressing high
frequency oscillations in the solution.

This completes the definition of the discretization scheme for subsonic flow.
It remains to add an artificial viscosity to desymmetrize the scheme in the
supersonic zone. Instead of equation (12) we shall satisfy the modified flux
balance equation

∂

∂X
(ρhU + P ) +

∂

∂Y
(ρhV + Q) +

∂

∂Z
(ρhW + R) = 0
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where the added fluxes P,Q and R are proportional to the cell width in the phys-
ical domain.Thus the correct conservation law will be recovered in the limit as
the cell width decreases to zero. The added terms are designed to produce an
upwind bias in the supersonic zone. As in the case of previous schemes for
solving the potential flow equation in conservation form5,6, they are modeled on
the artificial viscosity of the nonconservative rotated difference scheme,4 which
has proved reliable in numerous calculations.

First we introduce the switching function

µ = max

[

0,

(

1 −
a2

q2

)]

Then P,Q,R are constructed to that

P approximates − µ |U | δX ρ

Q approximates − µ |V | δY ρ

R approximates − µ |W | δZ ρ

with an upwind shift in each case. Since µ = 0 when q < a, the added terms
vanish in the subsonic zone. In the numerical scheme equation (18) is actually
modified by the addition of the terms

δXP + δY Q + δZR

In order to form P,Q,R we first construct

P̂ = µh
ρ

a2

(

U2 δXX + UV µXY δXY + WU µZX δZX

)

Φ

Q̂ = µh
ρ

a2

(

UV µXY δXY + V 2 δY Y + V W µY Z δY Z

)

Φ

R̂ = µh
ρ

a2

(

WU µZX δZX + V W µY Z δY Z + W 2 δZZ

)

Φ

Then

Pi+ 1

2
,j,k =

{

P̂i,j,k if U > 0

P̂i+1,j,k if U < 0

with similar shifts for Q, R.

The motivation for these formulas is provided by the following analysis.
When equation (12) is represented explicitly in quasilinear form, its leading
terms are

ρh

a2

{

(a2 − q2)Φss + a2(∆Φ − Φss)
}

= 0

where s is the local flow direction, and ∆ is the Laplacian. In the transformed
coordinate system

∂Φ

∂s
=

U i

q

∂Φ

∂Xi
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so the leading terms of Φss are UiUj

q2

∂2Φ
∂Xi∂Xj . According to the rotated difference

scheme one should use upwind difference formulas to evaluate Φss at supersonic
points, as illustrated in Figure 6. Now the upwind formula for ΦXX can be
regarded as an approximation to ΦXX − ∆XΦXXX . Similarly the upwind for-
mula for ΦXY yields an added term 1

2 ∆X ΦXXY + 1
2 ∆Y ΦXY Y and so on.

The use of these formulas in the evaluation of ρh
a2 (a2 − q2)Φss thus produces an

effective artificial viscosity

−
ρh

a2

(

1 −
a2

q2

){

∆X U (U ΦXXX + V ΦY XX + W ΦZXX)

+ ∆Y V (U ΦXY Y + V ΦY Y Y + W ΦZY Y )

+ ∆Z W (U ΦXZZ + V ΦY ZZ + W ΦZZZ)

}

assuming that U, V,W are positive. Since ∂ρ
∂(q2) = − ρ

2a2 it follows from equation

(13) that

ρX = −
ρh

a2
(UΦXX + V ΦXY + WΦXZ)

Thus on setting ∆X = 1, consistent with equation (8), leading terms of −
(

∂
∂x

)

(µ U δX ρ)
are

−
ρh

a2

(

1 −
a2

q2

)

∆X

(

UΦXXX + V ΦY XX + WΦZXX

)

which can be seen to be the desired quantity. Note that the construction of
the artificial viscosity is based on the presumption of a smooth mesh in the
supersonic zone.

Finally it remains to devise an iterative procedure for solving the nonlinear
algebraic equations which result from the discretization. Following the same
reasoning as was used for the iterative solution of the rotated difference scheme
and earlier schemes in conservation form,4−6 this is accomplished by embedding
the steady state equation in an artificial time dependent equation. Thus we
solve a discrete approximation to

∂

∂X
(ρhU + P ) +

∂

∂Y
(ρhV + Q) +

∂

∂Z
(ρhW + R)

= αΦXT + βΦY T + γΦZT + δΦT

where the coefficients α, β, γ are chosen to make the flow direction timelike, as
in the steady state, and controls the damping.

The complete numerical scheme thus calls for the following steps:

1. Calculate the contravariant velocity components and the density in each
primary cell using the box scheme.
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2. Calculate the flux balance on each secondary cell by a second application
of the box scheme.

3. Add compensation terms to offset the effect of lumping errors.

4. Add artificial viscosity at points where the flow is locally supersonic to
desymmetrize the scheme and enforce the entropy condition.

5. Add time dependent terms to embed the steady state equation in a con-
vergent time dependent process which evolves to the solution.

4 Results

The finite volume scheme has been used in a number of calculations for swept
wings and wing-cylinder combinations, and some results of these calculations
are included in this section.1 The scheme must be provided with the Cartesian
coordinates of each mesh point. The meshes for our calculations have been gen-
erated by sequences of global mappings. This has the advantage of producing a
smooth distribution of mesh points. In contrast with earlier methods in which
the equation of motion was explicitly transformed, 4-6 these mappings are now
used only to calculate the coordinates of the mesh points.

The following procedure has been used to generate the mesh for a swept
wing. First we introduce parabolic coordinates in planes containing the wing
section by the transformation

X̄ + iȲ =

{

{x − x0(z) + i(y − y0(z))}

t(z)

}
1

2

Z̄ = z

where z is the spanwise coordinate, x0(z) and y0(z) define a singular line located
just inside the leading edge, and t(z) is a scaling factor which can be adjusted so
that the wing chord is covered by the same number of cells at every span station.
The effect of this transformation is to unwrap the wing to form a shallow bump

Ȳ = S(X̄, Z̄)

as illustrated in Figure 7. Then we use a shearing transformation

X = X̄, Y = Ȳ − S(X̄, Z̄), Z = Z̄

to map the wing surface to the plane Y = 0. We now lay down a rectangular co-
ordinate system in the X,Y,Z space, and finally generate the volume elements
by the reverse sequence of transformations from X,Y,Z to x, y, z. The vortex

1We would like to thank Frances Bauer for her valuable help in performing many of the
numerical computations and obtaining the graphical output.
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sheet trailing behind the wing is assumed to coincide with the cut generated by
the sheared parabolic coordinate system.

The mesh for the wing-cylinder calculations has been generated by a sim-
ple extension of this procedure, in which the cylinder is mapped to a vertical
slit by a preliminary Joukowsky transformation, as sketched in Figure 8. With
the fuselage thus compressed into the symmetry plane, we then use the same
sequence of mappings as for a swept wing on a wall. The use of a vertical slit
rather than a horizontal slit, as was used by Newman and Klunker for small
disturbance calculations,12 allows the wing to be shifted vertically so that both
low and high wing configurations can be treated.

Figure 9 shows the result of a calculation for the ONERA M6 wing, for which
experimental data is available.13 The calculation was performed on a sequence
of meshes. After the calculation on each of the first two meshes, the number of
intervals was doubled in each coordinate direction, and the interpolated result
was used as the starting point for the calculation on the next mesh. The fine
mesh contained 160 intervals in the chordwise x direction, 16 intervals in the
normal y direction, and 32 intervals in the spanwise z direction, for a totally of
81920 cells. 100 relaxation cycles were used on each mesh. Such a calculation
requires about 90 minutes on a CDC 6600 or 20 minutes on a CDC 7600. Sep-
arate pressure distributions are shown for stations at 20, 45, 65 and 95 percent
of the semi-span. The pressure coefficient at which the speed is locally sonic
is marked by a horizontal line on the pressure axis, and the experimental data
is overplotted on the numerical result, using circles for the upper surface and
squares for the lower surface. The calculation did not include a boundary layer
correction. It can be seen, however, that the triangular shock pattern is quite
well captured, and that the calculated pressure distribution is a fair simulation
of the experimental result. The result of this calculation is also in quite good
agreement with the result of a previous calculation using the nonconservative
rotated difference scheme.14

Figure 10 shows the result for the same wing mounted on a low and position
on a cylinder. The configuration is scaled so that the radius of the cylinder is
0.25, while the wing tip station is 1.25. No experimental data is available in this
case. The calculation shows an increase of lift, particularly near the wing root.
This is to be expected, because the cylinder is set at the same angle of attack
as the wing and will generate an upwash. The problem of computing the flow
past a wing-fuselage combination is discussed at greater length in a companion
paper,15 in which an alternative mesh generating scheme is proposed.

5 Conclusion

The results displayed in Figures 9 and 10 serve to indicate the promise of the
finite volume scheme. Its main advantage is the relative ease with which it can
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be adapted to treat a variety of complex configurations. Since the treatment of
interior points is independent of the particular mappings used to generate the
mesh, topologically similar configurations can be treated by the same flow com-
putation routine, provided that suitable mappings can be found to map them
to the same computational domain.

This flexibility is achieved at the expense of an increase in the amount of time
required for the computations, unless a very large memory capacity is available,
because of the need to perform a numerical inversion o the transformation matrix
defining the local mapping in each cell. If the inverse transformation coefficients
are not saved they must be recalculated at every cycle. In this form the scheme
requires about 50 percent more time than the rotated difference scheme to treat
a swept wing on an equal number of mesh points. It is worth noting that
the computing time could be substantially reduced by restricting the use of
distorted cells to an inner region surrounding the body, with a transition to
Cartesian coordinates in the outer region.
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