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Abstract

We derive a new class of particle methods for conservation laws, which are based on
numerical flux functions to model the interactions between moving particles. The deriva-
tion is similar to that of classical Finite-Volume methods; except that the fixed grid
structure in the Finite—Volume method is substituted by so—called mass packets of par-
ticles. We give some numerical results on a shock wave solution for Burgers equation
as well as the well-known one-dimensional shock tube problem.

1 Introduction

The Smoothed Particle Hydrodynamics method (SPH) as discussed by Monaghan in Ref. [5]
is a quite popular particle scheme for problems governed by conservation laws, like problems
in astrophysics, magneto—hydrodynamics or dense gas simulations. The basic idea behind
the SPH method is to approximate the conservative quantities by a finite set of Lagrangian
particles, which interact via molecular forces obtained from a smoothing procedure of the
underlying conservation law.

A generic feature of conservation laws is that the solution will develop discontinuities as
well as shock waves, even if the initial data are smooth functions. In order to handle this
kind of weak solutions numerically applying the SPH method, one needs to introduce an ar-
tificial viscosity in the SPH formulation. This artificial viscosity is derived from a heuristic
molecular model for interacting particles and, in particular, contains some fit parameters,
which need to be chosen on the basis of numerical experiments.

In classical computational fluid dynamics, the Finite—Volume method is a common simu-
lation scheme for compressible Euler equations and other systems of conservation laws [3].
The main feature in this scheme is, that the discrete quantities are obtained by averaging
the conservative (or even the primitive) quantities over some spatial and fixed cells and
the averaged flux function is approximated by a so—called numerical flux function, which
a—priori includes some numerical viscosity.

Applying a Finite-Volume scheme requires the generation of a spatial grid, which may be
structured or unstructured, and the grid generation becomes quite difficult, if the under-
lying geometry of the problem is complicated. Moreover, if one considers fluid dynamic
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problems, which contain a fluid—structure interaction or some flexible structure within the
flow, one needs to adapt the finite—volume grid in each time step, which again is a nontrivial
procedure. Here, it may be more appropriate to use particle schemes based on Lagrangian
particles, like the SPH method, because these schemes are formulated completely grid—free.
But, one may even try to combine the generic features of a Finite-Volume scheme and a
particle method, namely the concept of a numerical flux function and the flow description
using Lagrangian particles and the aim of the present paper is to demonstrate, how one may
derive a combined Finite-Volume particle scheme. In Section 2, we shortly recall the basic
features of the Smoothed Particle Hydrodynamics method and discuss, how one includes an
artificial viscosity in the equations of motion. A combined Finite—Volume particle scheme is
derived in Section 3 and here we mainly focuse on the way, how to include a numerical flux
function. Some numerical results for two one-dimensional test problems, namely a shock
wave solution for the (inviscid) Burgers equation and the well-known shock tube problem
governed by the (isentropic) Euler equations, are given in Section 4.

2 The Smoothed Particle Hydrodynamics Method

In the following we discuss a popular particle method for compressible Euler equations
(mainly used in astrophysics), namely the Smoothed Particle Hydrodynamics method (SPH)
as discussed by Monaghan in Ref. [5]. The basic idea behind the SPH method is, that each
flow quantity A(t,x), like the velocity or pressure field, is smoothed by a smoothing kernel
W'(x,x,) with respect to a measure associated to the mass density p(¢,x) of the flow,

A(t, x4)
2.1 As(t, :/%W’,*t,*d*
1) (t3) = [ 2R ol x.
IR3
Then, the smoothed quantities are approximated by a set of Lagrangian particles, similar
to a Monte Carlo integration of the integral term appearing in (2.1),

n
A
(2.2) As(t,x) =~ Zmi—lW'(x,xi)
i=1 Pi
Here, the particles are located at the spatial positions x;(¢),i = 1,...,n and, as Lagrangian

particles, they are moving along the trajectories x; = v;, where v;(t) denotes the velocity
of the i—th particle.

The smoothing kernel W(x, X, ) is in general radial symmetric, because there are no preferred
directions in the smoothing procedure, i.e.

(23 W) = Wil = 1) = 30/ (7

where h denotes the so—called smoothing length, defining the decay of the kernel with
increasing radial distance 7 = ||x — x||. The function f in (2.3) denotes a shape function
(d is the spatial dimension) and from a theoretical point of view, the best choice for the
shape function seems to be a Gaussian kernel. This kernel is reproduced by differentiation
and the Fourier transform itself is again Gaussian, which simplifies the stability analysis of



the SPH method. In practice, it is more appropriate to use kernels with compact support
— otherwise one has to consider long-range interactions between single particles. For a
detailed investigation on various SPH smoothing kernels we refer the reader to Ref. [2].

In the case of an isentropic flow, i.e. P = P(p), the equations of motion in the SPH method
are given by

(2.4) Xi = Vv
. g P, P —
(2.5) v, = — Z mj | — + ? VW;;, VW= VW (x;, Xj)
j=1 i j

where each particle carries the information (m;, x;(t), v4(t)). Moreover, the density field is
obtained via the interpolation formula defined by (2.2), i.e.

—~

n
(2.6) pi =Y miWij, Wij = W(xi,x;)
i=1
The right hand side of (2.5) defines the particle interactions by a force term Fj;

Fj = mim; (% + 5%) VWi
Pi P

between the i—th and j—th particle. This is the reason, why the Gaussian kernel is substi-
tuted by a smoothing kernel with compact support: to reduce the total number of particle
interactions to the order O(n).

Eq. (2.5) as well as (2.6) are not unique in SPH, in the sense that there exist some other
representations for the equations of motion in SPH [5]. E.g., the calculation of a particle
density p; by the interpolation rule (2.6) is referred as “density by summation” and an alter-
native way to obtain the density of a single particle is the so—called “density by continuity
equation”: this approach uses an additional evolution equation of the form

n

d .
(2.7) h > mj(vi — v;) VW,
=1

dt ¢
where p; denotes the density of the i—th particle. Formally, both methods are equal, if the
initial condition for Eq. (2.7) is consistent with the interpolation rule, but due to numerical
integration of (2.7), the results will be different using (2.7) instead of (2.6).

The equations of motion of the SPH method are numerically integrated by standard time—
integration schemes for ordinary differential equations. The most popular scheme — typically
used in SPH applications — is the so—called modified Euler scheme (often referred as a
predictor—corrector scheme). One can show, that the stability of the scheme is nearly
identical to that of a more sophisticated Leapfrog or high—order Runge-Kutta scheme. The
time integration yields a typical CFL-condition for explicit schemes applied to hyperbolic
systems. This CFL-condition needs to be modified by the artificial viscosity term, which is
introduced to handle shock solutions.

Like other numerical schemes for the compressible Euler /Navier—Stokes equations, the SPH
method gets into problems in the low—Mach number limit. The equations of motions (2.4),



(2.5) form a stiff system, because in the equations for the velocities of the SPH particles
appears the inverse Mach number on the right hand side of the equation. Applying an
explicit time integration yields extremely small time steps and there is still a need for
better integration techniques (even some modified SPH formulations) in the low—Mach
number limit.

In order to treat shocks with the SPH method, it is necessary to add an artificial viscosity
term in the evolution equations for the particle velocities, i.e.

) " P, P
v, = —ij (—; + —; -I—Hij) VW,'J'
j=1 i Py

where II;; denotes the artificial viscosity. Numerical experiments showed, that the standard
viscosity terms like the bulk or the von Neumann-Richtmyer viscosity are not appropriate
viscosity terms to be used in the SPH method. Hence, Monaghan proposed a so—called
viscous “pressure” term, which is based on a model for real molecular interactions,

(2.8) IL: — p%'j(_ahciju’ij + th,u?j) o ifp <0
| ’ 0 : else

and
_ (Vi = Vi) = x5)
i = g+ <2

Hij

The additional term £h? in the denominator prevents the term y;; to be singular as x; — x;.
Moreover, the artificial viscosity term (2.8) contains two more fit parameters a and 3, which
are determined (as well as the value for ¢) by numerical experiments, e.g., (o, 8) = (1,2)
and ¢ = 0.01 for problems from gas dynamics (to treat high Mach number shocks) and
(o, 8) = (0.1,0) and ¢ = 0.01 for problems from hydrodynamics.

The main advantage of the SPH method is the flow description by moving particles; in
particular it is not necessary to introduce a spatial grid. The method is straightforward
to implement and the equations of motion are given by an n—particle system with binary
interactions, such that one has to integrate a system of ordinary differential equations to
solve the equations of motion. Finally, the SPH scheme is quite flexible concerning different
models; here, we refer the reader to the work by Monaghan, on multi-phase flows, dusty
gas simulations or free surface flows. But, there are even some major drawbacks in the SPH
scheme. The scheme is restricted to time—-dependent and compressible flows, the accuracy
is rather low and it contains some fluctuations, the implementation of boundary conditions
is a bit tricky when dealing with curved boundaries. The heuristic derivation of an artificial
viscosity term to stabilize the flow is not satisfactory; in particular due to the parameters,
which have to be fitted by numerical experiments.

For flows close to the incompressible limit or low—Mach number flows, the system of ordinary
differential equations forms a stiff system. Here, implicit schemes are appropriate, but
costly: the Jacobian does not contain some appropriate structure, such that one applies a
fixed point iteration instead of a Newton method. There exists only a few investigations
on the convergence properties of the SPH method, like the one given by Oelschlager [8]
and Vila [11], recently by Di Lisio, Grenier and Pulvirenti [1]. Hence, even some detailed



investigations on error estimates in the SPH scheme do not exist: one may refer the SPH
method to a Monte Carlo integration, such that the solution should converge with the order
O(1/+4/n), where n denotes the number of particles [5]. Finally, it should be mentioned that
some related particle schemes for compressible flows were recently published by Yserentant
[12], [13], as well as some new results on the SPH method by Morris and Monaghan [7] and
Morris et al. [6].

3 Derivation of a Finite—Volume Particle Method
We consider a system of conservation laws written in the form
(3.1) 8% + V- F(®) =0,

where ® denotes the vector of conservative variables, ® = ®(¢,x), ® € IR™ for t > 0 and
x € Q C IR3. In addition, F(®) defines the flux vector of the conservation laws.

Remark 3.1

We are in particular interested on the derivation of a mixed Finite-Volume particle method
for compressible flows governed by the Euler equations. Then, the conservative variables
are given by ® = (p, pu, pe), where p denotes the density, u the velocity and e the specific
energy. Then, the flux vector is given by

pu
F(@)=| plugu)+p |,
(pe +p)u

where p denotes the pressure.

We start the derivation of the new particle method with some basic notations used in the
following. The conservative quantities defined by the vector ® should be approximated at
each time by a finite set of particles, which are located inside the spatial domain . A
particle, located at time ¢ at the spatial position x;(t), is smeared out using a so—called
mass packet W;(t,x), where W; depends on the particle position x;(t) and the mass packet
is obtained from a generic shape function W (x) via the relation

Wi(t,x) = m;W(x — x;(t)),

where m; denotes the mass of the particle.
Given a set of particles, located at the positions x;(t), ¢ = 1,...,n, one may define a mass
density o(t,x) by

(3.2) o(t,x) = iWi(t,x)

The conservation laws (3.1) should be appoximated by particles; hence we need some other
discrete particle characteristics ®;(¢) for each particle and to derive corresponding equations
of motion for the discrete quantities ®;(t).

In the classical Finite-Volume method the discrete quantities are obtained from averages
over some spatial cell v; with a finite volume V;, where the cells form a fixed grid structure



and, formally, the equations of motion are obtained from a weak form of (3.1) by testing
the conservation laws against characteristic functions I, of the single cells v;.

A similar approach is used in the following; but the system (3.1) should be approximated
by particles, i.e. we need a different set of test functions, which are related with the particle
positions x;(t). This set of test functions is obtained using the mass packets W;(t,x) of the
particles given above: in particular, we define test functions ¥;(¢,x) in the form

Wi(t, x)

(33) \I’i(t’x) = O'(t X) )

where the mass density o(t,x) is defined by (3.2). These test functions possess similar
properties like the characteristic functions I, used in the standard Finite-Volume schemes,
in particular they yield a partition of the unity, i.e.

n
(3.4) > T(t,x) =1
i=1
for all t > 0 and x € IR? and we obtain straightforward the relation
D VL T(t,x) =0
i=1

Moreover, we may define for each particle a (time-dependent) “volume” V;(t) given by

Vilt) = [ it x)ax

Now we test the conservation laws (3.1) against the new set of test functions ¥;(¢, x), i.e.
we consider the weak form given by

(3.5) / (8B +V - F(®)) Ui(t, x)dx = 0
for all ¢ = 1,...,n, which yields the equations
(3.6) % [ w08 x0dx = [ (0 0dx + [ F@)(E 0Vl x)dx

Remark 3.2

We consider for a moment the system of conservation laws as a pure Cauchy problem, i.e.
on the whole spatial domain Q = IR3. Hence, there appear no boundary integrals in the
formula given above. The situation changes, if Q is a bounded domain in IR? and the
boundary integrals need to be evaluated using the prescribed boundary conditions.

For the two terms on the right hand side of (3.6), one obtains the following expressions.

Proposition 3.3
With the notations given above, we have

VW;(t,x)

s VWi(t, x))

—%i(0)¥;(tx) =0

67 ax) = (O



Proof
We compute, using &;W; = —x; VW;,

BTt %) = —m(:e)%ig) +:Zi(;))22xj(t)vw y
’ ) j=1

VWi(x)  ;(t,x) " . (x
O'(t,x) + ( X) ;X](t)ij( )

oa(t,
-3 (3500 1 im0 )

where in the last step we used the normalization condition (3.4). [

= —x(t)

Proposition 3.4
The term V¥;(t,x) may be expressed in the symmetric form

(3.8) i(t, x) i < (t,x vw{;(i;) — U,(t,x)

VW,(t,x)
a(;, x) >

Proof
We compute first

Zv(it(’t)’:)? S IW; (%),

i=1

V¥,(t,x) = VWi(t,x) —

o(t,x)

and applying (3.4) in the same way as above yields (3.8). [
Using the two propositions given above, we obtain from the weak form of our conservation
laws the expression

d (4 30 dx = n . . VWi(x) o N VW;(x) .
&/ (¢, x)Ti(t, x)d —; / F(®)(t, >(%<t, Vot~ WX )d
VW;(x)

(3.9) +é ( / B(t, %) (kj(t)\Pi(t,x)fo) k(8 T(t, x) ZZS?) dx)

The term on the left hand side of the equation above yields an appropriate expression to
define discrete and averaged quantities, which may be related to particle characteristics.
Hence, we define together with the volume V;(t) of a particle the discrete characteristics
®;(¢t) via the relation

(3.10) B(t) = % / B(t, %) (£, x)dx

and the term on the left hand side of (3.9) is then substituted by the expression d({g;} i)

In the next step, we have to explain how to evaluate the two integrals on the right hand
side of (3.9). For the second term we use the approximation

(3.11)/¢(t,m)‘1’z’(t,x) YWigx ~ /qnp (t, x)dx - (/ Wi(t’x)vwf(t’x)dx)

o(t,x) o?(t,x)

= ’71]



where the (time-dependent) coefficients ~y;; are given by

tt) = [ PRI g

We use this kind of approximation, because the discrete quantities of our particles are given
by (3.10) and we divide the integral on the left hand side of (3.11) into two integrals, where
the first one yields exactly these quantities.

Hence, the complete expression reads

n CwwW, . YW no .
(3.12) ) / S (xj\pi?f Y ) dx = 3 (®iijyi; — ®j%iji)
=1

j=1

Concerning the first term, we use an approximation, which corresponds to a Finite—Volume
method, i.e. we apply the approximation

(3.13) Z/F ( Wi _ VOV_V)dXN Zﬂ” 9(®:, ®;,niy)

where the coefficients 3;; are given by 3;; = 7;; — 7j; and the normal vector n;; is obtained
from the equation
Bij

1y

Moreover, the function g(-, -, -) is related with a numerical flux function as used in standard
Finite—Volume schemes, e.g., we propose the consistency relation g(®, ®,n) = F(®).
Together with the two approximations (3.12) and (3.13), we obtain the equations of motion
for our new particle scheme in the form
d n
dt(V@ Zlﬁz]g @,,Cb],n”) + .Zl(’}/ijkj@i — 7jiki@j)

J j=

(3.14)

together with the (time-dependent) coefficients +;; and f3;; as defined above. On the other
hand, we have still the freedom to choose, how particles should move, because the terms
x; are not specified up to now and obviously there are two generic choices for the particle
velocities: the first one, from which we recover the standard Finite-Volume method, is to
use spatially fixed positions for the particles, i.e. x; =0forallt¢ > 0and¢=1,...,n. Then,
as a consequence, we obtain that even the volumes of the particles are time—independent, i.e.
V; = 0 and the particle positions may be interpreted as the cell centers of a grid structure
used in Finite—Volume methods.

The second generic choice — the one, we are mainly interested in — is to choose Lagrangian
particles to approximate our conservation laws, i.e. we define x; = u;, where u; denotes the
velocity of the i—th particle. Then even the volumes of the particles will change, because
particles are moving and the equations of motion as given in (3.14) are not closed: on the
left hand side appears the product V;®;, whereas the right hand side only contains the
discrete conservative quantities ®;. Hence, in order to close the equations of motion, we



need an additional equation for the volumes of particles. Here, one should remember the
definition of the particle volumes in the form

Vilt) = [ wiax

This equation might even be interpreted — dividing the equation by V; — as an integral
average of the unity, similar to the definition of the discrete quantities ®;. Hence, to obtain
an equation for the volumes, it is appropriate to add the trivial equation
ot

where u(t,x) = 1, for all t > 0 and x € IR3 to the system of conservation laws. Then, the
equations for the volumes read

dv; "

d—; = Z(’Yijuj — Yjili)

j=1

A basic property of numerical schemes for conservation laws is the conservation property,
which should hold on the discrete level applying a discrete approximation for the exact
solution. This property is a—priori included in a standard Finite-Volume formulation, but
even incorporated in the particle scheme presented above.

Lemma 3.5
The Finite—Volume particle method defined by the equations of motion (3.14) fulfills the

discrete conservation property
d
3 (S -0

i

if the numerical flux function g fulfills the symmetry condition
(3.15) 9(®i, ®5,ni5) = 9(2j, i, nji)

Proof
From the equations of motion (3.14) it follows, together with the symmetry condition (3.15)

d d
Bl B, — 2 v,
&<;Wz» j;&mz)

= =Y (Bij9(®i, @5, nij) + vjidi®; — viji;8s)

i,J
= > (vilg(®5, @i, nji) + 2:®5) — 7ij (9(Di, Bj, mij) + ;P3))
1,
=0



Example 3.6
As a first example we consider the well-known Burgers equation

u+ f(u)e =0, fu)=u?/2

Besides the spatial position z;(t), each particle carries the additional quantities u;(t) and
the particle volume V;(¢). The equations of motion read

dzi _ w

a2

du,- n UsUj

@ - By 5 i
i=1

dv; 1&

— = 5> (riguj — vjiws)

dt 2 &~

In Section 4, we discuss the Burgers equation in more detail and give some numerical
results using an upwind scheme for the numerical flux function g;;. Moreover, the numerical
solution u(t, z) is obtained via the interpolation formula

u(t,x) = ——

and

4 Numerical Examples

In the following we give some numerical results applying the Finite—Volume particle method
derived in the previous section and compare the results with a classical Finite-Volume
scheme. We restrict ourselve to simple one—dimensional problems, because we are mainly
interested in investigating the general possibility to use a numerical flux function in combi-
nation with moving particles. As smoothing kernel for the Finite-Volume particle method
we use a third order polynomial truncated at a smoothing length h defined by

zlz? a2 | 1 .
(4.1) W(eh)={ 2 ~Shtr @ lzl<h
0 : |zl >h

with derivative

0 ;x| >h

The kernel is chosen to fulfill the conditions

/ W(z;h)dze = 1
[7h7h]

W«x;h):{ 658 6%+ lal <h

W(h;h) = W(—h;h)=0
W'(h;h) = W'(—h;h) =0

10



Moreover, we have the symmetry W'(—z;h) = —W'(z;h) and therefore

/ W'(z;h)dz =0
[_hah]

4.1 The Burgers Equation

In this section we give numerical results obtained for a Riemann problem of the Burgers
equation

u+ f(u)e =0, flu)=—

with initial data
1 : z2<0
u(0,2) = { 0 : z>0

and compare the Finite—Volume particle method with a classical Finite—~Volume scheme.
A standard Finite—Volume method may be written in the form

At
(4.2) U;-H—l = U? - A—x(g(U?, U?+1) - g(“?—l; U?))

where g denotes the numerical flux function, Az, respectively, At the space and time
discretization of the Finite-Volume method and discrete quantities u? = u(nAt,jAz).
In particular, we use an upwind scheme for the numerical flux function, such that g(v, w) =
f(v), because the solution of the Riemann problem and therefore the characteristic speed is
positive. The corresponding discrete equations applying a Finite—Volume particle method
and an explicit, first order time integration are given by

dt = el At ()
(4.3) s VA P (g £ ) = vjif ()

n
(Vu)it = (Vu)p = At X (Big(uf, ) = vig ()l + 75 (a7 i)
j:
where the numerical flux function g is given by

g(ui, uj) = { fluw)) @ i<z

fluj) : x>z

Hence, each particle carries besides its spatial position the discrete quantities (Vu); and V;,
where the latter one defines the volume of a particle, (Vu); the aritificial quantity “Volume
- Velocity” and we need to evaluate the numerical flux function g using the ratios (Vu);/V;,
1 =1,...,n. Moreover, we consider Lagrangian particles, i.e. the particles are moving with
velocity (Vu);/(2V5).

The simulations are performed on the spatial interval [—5 : 5] using 100 discrete points,
either based on a equidistant grid, when applying the Finite-Volume method, or 100 parti-
cles, when applying the Finite—Volume particle method, where at initial time, the particles
are located at the mid points of the corresponding Finite-Volume grid. The smoothing

11



length h is given by h = 1.8 Az, where Az denotes the length of a spatial cell in the Finite—
Volume scheme. The time step At is equal to At = 0.05 and, as mentioned above, we use a
simple explicit, first order time integration. Moreover, the geometry coeflicient «;; and ~;;
are obtained via numerical integration.

In Fig. 4.1, we compare the numerical results obtained from the Finite-Volume method
(4.2) and the Finite—Volume particle scheme (4.3) after 20 time steps, i.e. at time ¢t = 1,
the corresponding results at time ¢ = 4 are given in Fig. 4.2.

T T T T T T
1 SS9 ALY =
+
0.8 | o 4
+
0.6 —
04 | —
4
. fod
0.2 Finite-Volume ¢ B
Finite-Volume Particle +
+
0 $90 090 PPPOPOPPOOOPPPPIOOOOPD N aad
1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

Fig. 4.1 Numerical Solutions for Burgers Equation at t =1

The numerical results indicate, that the concept of a numerical flux function implemented in
a particle scheme yields an appropriate smoothing of the shock wave, which is slightly larger
compared to a classical Finite-Volume scheme, due to the smoothing length 4 = 1.8Az. On
the other hand, it is not necessary to include an artificial viscosity term in the equations
of motions, because the numerical flux function itself yields a sufficiently large numerical
viscosity to surpress oscillations.
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Fig. 4.2 Numerical Solutions for Burgers Equation at t =4

A further advantage of the new Finite—Volume particle approach compared to the standard
SPH scheme is, that the numerical results turn out to be quite robust when changing the

12



smoothing length h of the smoothing kernel. Fig. 4.3 shows the numerical results obtained
for two different values for the smoothing length, namely h = 1.2Az, i.e. a smaller value
compared to the results given in Fig. 4.2, and h = 2.4Axz, i.e. a larger value compared to
the previous choice h = 1.8Az.

l-$®®$®$$$®$$®$®®®$00 Ef
+ = 2.
4+ ©
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04 -

0.2 | -

1 2 3 4
Fig. 4.3 Influence on the Smoothing Length A

Decreasing the smoothing length yields, as expected, a better resolution of the shock wave,
without producing any kind of oscillations.

4.2 Shock Tube Problem

Here, we consider the simplified shock tube problem by restricting to the one-dimensional
isentropic Euler equations given by

with U = (u1,uz), flux function F(U) = (ug,u3/u; + P(u1))?, pressure P = cu], ¢ > 0 and

initial conditions
1
ur <0
ui () = { , -

uf >0

and ug(z) = 0 for € IR. Moreover, to obtain a homogeneous flux, i.e. F(aU) = aF(U),
a € IR, we further restrict to the case v = 1. As numerical flux function we use a flux
vector splitting scheme based on Steger and Warming, which yields

gUV)=ATU) U+ A (V)V
where the matrices AT and A~ are defined by

AT =TAFT !

13



with AT = diag(A\f,\S), A1, A2 the eigenvalues of (DF)(U), T the matrix of right eigen-
vectors and A7 = max{)\;,0}, A\; = min{)\;,0}. In particular, one obtains the expressions

.
Uz
AL, A2 >0
(u%/u1+P(u1)> 172
0 AL A2 <0
AT(U)U =4
1 [ u2+ P(u)
2( (u+a)2u1 )\1<0,)\2>0
1 uz—P(ul) .
\ 2( (u—a)2u1 ) : )\1>0,)\2<0

with A\; = u —a, Ao = u+ a and u = uy/uy, a> = P/u; as well as

( 0 : A1,>\2>0

V2
DAL, A2 <0
(U%/U1+P(’l}1)> 12

A=(V)V = vy — P(
1 2 Ul)
o A < 0,2 >0
1 U2+P(U1) A1 >0, <0

| 2\ (v+ a)?v;

with A\ = v —a, A2 = v+ a and v = va/v1, a® = P/vy.

Applying a Finite-Volume scheme for the shock tube problem yields the discrete equations
n+1 n At n n n n

(4.4) Uj =U;j' - A_x(g(Uj ) j+1) - Q(Uj—b U; )

For the Finite-Volume particle method using an explicit first order time integration, we

have the equations of motion

( :II?_H = z+ Atf(Uzn, Vzn)
n
VI = VP A S (i (U], V) = (U, V)
J:

4.5 3
(4.5) VUMt = (VU — At '21 (ﬁijg(Uin’ Ui)-
]:

Yii (UL, VIUP + 3 f (UF, VU

\

where the function f(U;) defines, how the particles should move in time and the numerical
flux g is given by

~ (7T, N g(Ui,Uj) T, < Zj
g(UZ;U]) - { g(Uj,Uz) x; Z xj

4.2.1 The Case v} =1.1 and ] =1

In the first simulation, we consider a small variation in the density between the two initial
states, separated by a membrane in the tube. In particular, we use a density of 1.1 in the
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left part and a density of 1.0 in the right part of the shock tube. Hence, one expects a
moderate density shock wave moving to the right and a moderate rarefaction wave moving
to the left, together with a density plateau separating these two states.

The simulations are performed on the spatial interval [—10 : 10] and we again use 100
points to approximate the exact solution. Moreover, we use the same parameter like in
the previous section, i.e. the smoothing length A is given by h = 1.8Axz and the time
step is given by At = 0.05. Fig. 4.4 and 4.5, respectively, show the density and velocity
profiles at time ¢t = 4, i.e. after 80 time steps, applying the Finite-Volume scheme (4.4)
and the Finite-Volume particle method (4.5), where the particles are moved with velocity
F (Ui, Vi) = (Vug)i/(Vu)s, i.e. the term f(U;, V;) exactly denotes the (discrete) velocity of
the i—th particle, and therefore corresponds to the idea of Lagrangian particles.

1.12 T T T T T T T T
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Fig. 4.4 Density Profile
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Fig. 4.5 Velocity Profile

The discrete particle characteristics (VU); and V; together with the particle positions z; at
time ¢ = 4 are shown in Fig. 4.6. The results show, that the particle volumes as well as the
products of the discrete density and the volume remain nearly constant at the initial value
20/Az and the same holds for the particle momentum, which remains close to zero.
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Fig. 4.6 Discrete Particle Characteristics

4.2.2 The Case v} =1 and u] =0.125

For the second configuration we increase the density variation between the left and right
part of the shock problem to u! /u} = 8 using the values u} = 1 and u} = 0.125. Hence, one
may expect the formation of a strong density shock wave moving to the right together with
a strong rarefaction wave moving to the left. Moreover, in contrast to the previous case, the
flow will develop a non—vanishing velocity profile within the shock tube. The simulations
use the numerical parameters as in Section 4.2.1, i.e. we compute the numerical solution
on the interval [—10 : 10] using 100 discrete points.

In contrast to the previous example, where we considered a “weak” shock tube problem,
the particles are moved according to the discrete velocity f(U;, V;) = (Vuz);/(Vuq);, which
corresponds to the (discrete) momentum of a particle: the velocity profile within the shock
tube will be of the order O(1), such that in the rarefaction region the distance between
two neighbouring particles will increase significantly and one should consider a variable
smoothing length (or some other kind of adaptivity), when applying Lagrangian particles.
This effect is reduced in the current simulation using the artificial velocity (Vuz)i/(Vu1);,
i.e. the momentum of a particle, which still fits into the derivation of the Finite-Volume
particle scheme given by (3.14). Moreover, one may expect, due to the strong discontinuity
in the initial condition, that the evaluation of the ratio of two computed quantities, which
is necessary to determine the velocity of Lagrangian particles, may lead to numerical errors
significantly larger than the original ones.

The resulting density and velocity profile are presented in Fig. 4.7 and 4.8, respectively,
again we show the results after 80 time steps, i.e. at time t = 4.
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Fig. 4.7 Density Profile

At the transition between the rarefaction wave and the density plateau, both schemes show
some irregularities; in particular, the Finite-Volume particle method yields a small velocity
overshoot close to the transition point. One reason for this, is that applying the Finite-
Volume particle scheme in conservation form, the velocity profile u(¢, z) is computed using
the interpolation formula

_ 1 " (V’u,z), -
wlto2) = s D ), ()

i=1

and one has to use the ratio of the two discrete quantities (Vuy); and (Vusg);, i.e. small
deviations from the “exact” value may yield large deviations in the quotient.
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Fig. 4.8 Velocity Profile

The corresponding discrete particle characteristics together with the spatial positions are
shown in Fig. 4.9. First of all, one may observe, that the particle positions are no longer
equidistant due to non—vanishing velocity profile: the distance between particles in the
rarefaction region increases, whereas the distance decreases along the density plateau. On
the other hand, the particle volumes increase in the rarefaction region and therefore, slightly
decrease along the density plateau.
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Fig. 4.9 Discrete Particle Characteristics

The irregularity in the velocity profile applying the Finite~Volume particle scheme is caused
by a small deviation in the discrete conservative quantities close to the transition between
the density plateau and the rarefaction regions and clearly amplified when calculating the
ratio of the discrete quantitities.

5 Conclusion

One of the drawbacks applying the SPH method for, e.g. the compressible Euler equations,
is the concept of the artificial viscosity, which is necessary to resolve shock wave solutions.
On the other hand, the method seems to be quite attractive due to its completely grid—free
formulation. Using a Finite-Volume scheme, a numerical viscosity is a—prior: included via
the use of a numerical flux function and this directly stabilizes the scheme when computing
shock waves.

In the current investigation we concentrated on the idea to combine the advantages of a
particle scheme, i.e. the grid—free formulation, with the concept of a numerical flux func-
tion as used in the classical Finite—Volume method. The combination between the two
approaches was achieved using a special class of test functions, which are obtained from
a generic smoothing kernel localized at the current particle positions. The resulting equa-
tions of motions for the discrete particle set contain terms, which include a numerical flux
function similar to the standard Finite-Volume scheme, and some correction terms due to
moving particles. Hence, a numerical viscosity and therefore a stabilization is a—priori con-
tained and no artificial viscosity term need to be included in the equations of motion.

The new particle method was tested against a classical Finite-Volume scheme for a Rie-
mann problem of the Burgers equation as well as the one-dimensional shock tube problem
governed by the isentropic Euler equations and the numerical results were quite promis-
ing. On the other hand, a further investigation of the scheme from a theoretical as well as
numerical point of view is necessary and currently under investigation.
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