A FINITENESS CRITERION FOR COMPACT VARIETIES OF SURJECTIVE HOLOMORPHIC MAPPINGS

By CAMILLA HORST

It is well known that there exist at most finitely many surjective meromorphic mappings from any compact variety X onto a Riemann surface Y of genus ≥ 2 . There are several possibilities of generalizing this fact to higher dimensions. For instance, the same assertion holds, if Y is a variety of general type (Kobayashi-Ochiai [7]), or if Y is Carathéodory-hyperbolic (Urata [12]). In [8], S. Lang raised the question whether the statement also carries over to algebraic varieties that are hyperbolic in the sense of Kobayashi. A partial answer to this problem has been given by J. Noguchi [11] who proved the finiteness assertion for hyperbolic Kähler manifolds Y with semi-positive canonical bundle. Employing a different approach, we shall show that the semi-positivity condition for $K_{\rm Y}$ may be dropped; however, the smoothness of Y as well as the Kähler condition still remain essential in our considerations.

1. Statement of the results and preliminary remarks

Irreducible reduced complex spaces will be called *varieties*; a *subvariety* of a complex space X is a closed complex subspace that is a variety. For compact complex space X, Y, we let Hol $(X, Y) := \{\alpha : X \rightarrow Y : \alpha \text{ holomorphic}\}$ be endowed with the Douady structure (see [1]). The subset Sur (X, Y) of all surjective α is open in Hol (X, Y) and therefore carries a complex structure with canonical properties. If X is reduced, then Sur (X, Y) is closed in Hol (X, Y), and the group of holomorphic automorphisms Aut (X) is closed in Hol (X, X).

Let X, Y be reduced and compact. If Y is hyperbolic (in the sense of Kobayashi), then Hol(X, Y) is compact and hence so is Sur(X, Y). Furthermore, if X is a torus (i.e., a compact connected complex Lie group), then Hol(X, Y) consists of constant maps only; in particular, Y contains no rational curves. (Compare [6]).

1.1 THEOREM. Let Y be a compact hyperbolic Kähler manifold. Then Sur(X, Y) is finite for all compact varieties X.

As an immediate consequence we obtain

Received May 19, 1989; revised March 28, 1990.

CAMILLA HORST

1.1.1 COROLLARY. Let Y be as above, and let X be any compact variety. Then there exist at most finitely many surjective meromorphic mappings from X onto Y.

In fact, by Hironaka [3], we may assume that X is smooth. Then every meromorphic map from X to Y is holomorphic, since Y contains no rational curves.

Clearly, Theorem 1.1 follows directly from

1.2 THEOREM. Let Y be a compact Kähler manifold such that there exists no non-constant holomorphic map from any torus into Y, and let X be any compact variety.

Then Sur(X, Y) contains no positive-dimensional compact subvarieties.

2. Compact varieties of surjective holomorphic mappings

2.1 LEMMA. Let $\alpha: X \rightarrow Y'$, $\beta: Y' \rightarrow Y$ be surjective holomorphic mappings between compact varieties with β finite and Y' normal.

If $Z \subset \beta \circ \operatorname{Aut}(Y') \circ \alpha := \{\beta \circ \gamma \circ \alpha : \gamma \in \operatorname{Aut}(Y')\}$, then there exists a compact connected complex subgroup T of $\operatorname{Aut}(Y')$ with $Z \subset \beta \circ T \circ \alpha$.

Proof. It suffices to show that the map Aut $(Y') \rightarrow \text{Hol}(X, Y)$, $\gamma \rightarrow \beta \circ \gamma \circ \alpha$, is proper. Clearly, if $(\beta \circ \gamma_n \circ \alpha)$ is a convergent sequence in Hol(X, Y), then $(\beta \circ \gamma_n)$ converges to some g in Hol(Y', Y). Let $U := g^{-1}(Y \setminus B)$, where $B \subset Y$ denotes the branch locus of β . As $\beta \mid \beta^{-1}(Y \setminus B) \rightarrow Y \setminus B$ is finite and locally biholomorphic, the set $V := \{y' \in U : (\gamma_n(y')) \text{ is convergent}\}$ is open and closed in U. Replacing (γ_n) by a suitable subsequence, we may assume that V is non-empty, whence V = U. Then $\gamma' : U \rightarrow Y$, defined by $\gamma'(y') := \lim \gamma_n(y')$, is holomorphic, since so is $g \mid U = \beta \circ \gamma'$. As Y' is normal, γ' extends to $\gamma \in \text{Aut}(Y')$ with $\gamma = \lim \gamma_n$.

For reference purposes, we list some results of [4] and [5], adapted to the present situation.

Let $\phi: X \times Z \to Y$ be a holomorphic map between compact varieties such that all $\phi(\cdot, z)$ are surjective.

2.2 There exist $f: X \to X'$ and $\phi': X' \times Z \to Y$ such that all $\phi(\cdot, z)$ are finite and $\phi = \phi' \circ (f \times id_z)$ (see [4], 2.2).

From now on assume that Y is normal and that all $\phi(\cdot, z)$ are finite.

2.3 If some $\phi(\cdot, z_0)$ is an unramified covering, then $\phi(\cdot, z) \in \phi(\cdot, z_0)$ Aut (X) for all z. (See [5], 5.1.1). Using 2.1, we conclude: There exists a connected compact complex subgroup $T \subset \operatorname{Aut}(X)$ such that $\phi(\{x\} \times Z) \subset \phi(Tx \times \{z_0\})$ for all x.

2.4 A subset S of Y is called ϕ -invariant, if $\phi(\{x\} \times Z) \subset S$ for all $x \in X$ with $\phi(\{x\} \times Z) \cap S \neq \emptyset$. A ϕ -invariant subvariety of Y that contains no proper ϕ -

invariant subsets will be called ϕ -minimal.

As was shown in ([5], 3.2), there exists a dense open ϕ -invariant $U \subset Y$ together with a proper holomorphic map $p: U \rightarrow U'$ such that all fibres of p are ϕ -minimal subvarieties of Y. If Y is smooth, then p can be chosen smooth as well.

3. The projective case

3.1 THEOREM. Let Y be a projective manifold without rational curves, and let X be any normal compact variety.

For every compact subvariety Z of Sur (X, Y) there exist surjective holomorphic $\alpha: X \rightarrow Y', \beta: Y' \rightarrow Y$ with β finite and Y' normal, such that $\beta \circ \alpha \in Z \subset \beta \circ \operatorname{Aut} Y') \circ \alpha$.

Proof. Let $\phi = (X \times Z \xrightarrow{\phi'} Y' \xrightarrow{\beta} Y)$ be the Stein factorization of the evaluation map $\phi: X \times Z \rightarrow Y$. From Mori's description of the pseudoample cone of a projective manifold [10] we infer that the canonical bundle of Y is numerically effective, and the assertion follows from ([5], 2.2).

As an immediate consequence, we note that 3.1 together with 2.1 proves 1.2 under the additional assumption that Y be projective.

4. Proof of Theorem 1.2

Assuming the contrary, let $Z \subset \text{Sur}(X, Y)$ be a closed subvariety of minimal positive dimension, and denote by $\phi: X \times Z \rightarrow Y$ the evaluation map. By 2.2, we need only consider the case that all $\phi(\cdot, z)$ are finite, and by 2.4, we may assume that Y is ϕ -minimal; moreover, X can be assumed normal. Then, by 3.1, Y can not be projective.

By 2.3, the maps $\phi(\cdot, z)$ can not be unramified coverings. Therefore, Y must contain some subvariety Y' of codimension one. As Y is ϕ -minimal, there exists $x \in X$ with $\emptyset \neq Z_0 := \phi(x, \cdot)^{-1}(Y') \neq Z$. Thus dim $Z_0 = \dim Z - 1$, whence Z = 1 by the minimality assumption on Z.

Let now $Y_0 \subset Y$ be a Moišezon subvariety of maximal dimension, and fix any $z \in Z$. Then the irreducible components X_1, \dots, X_k of $\phi(\cdot, z)^{-1}(Y_0)$ are Moisezon as well, and hence so are the subvarieties $Y_{\kappa} := \phi(X_{\kappa} \times Z), \ \kappa = 1 \dots k$. Clearly, Y_0 is contained in every Y_{κ} , where $Y_0 = Y_1 = \dots = Y_k$ by the maximality of Y_0 . Thus Y_0 is ϕ -invariant and therefore equal to Y. As Y is Kähler, we conclude that Y is projective (compare [9]), a contradiction.

References

 A. DOUADY, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier 16(1966), 1-95.

CAMILLA HORST

- [2] A. FUJIKI, On automorphism groups of compact Kähler manifolds, Invent. math. 44 (1978), 225-258.
- [3] H. HIRONAKA, Bimeromorphic smoothing of a complex-analytic space, Acta math. Vietnam. Vietnam. 2(1977), 103-168.
- [4] C. HORST, Compact varieties of surjective holomorphic endomorphisms, Math. Z. 190 (1985), 499-504.
- [5] C. HORST, Compact varieties of surjective holomorphic mappings, Math. Z. 196 (1987), 259-269.
- [6] Sh. KOBAYASHI, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York 1970.
- [7] Sh. KOBAYASHI, AND T. OCHIAI, Meromorphic mappings into compact complex spaces of general type, Invent, math. 31 (1975), 7-16.
- [8] S. Lang, Higher dimensional diophantine problems, Bull. Amer. Math. Soc. 80 (1974), 779-787.
- [9] B.G. MOIŠEZON, On n-dimensional compact analytic varieties with n algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967), 51-177.
- [10] S. MORI, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
- J. NOGUCHI, Hyperbolic fibre spaces and Mordell's conjecture over function fields, Publ. RIMS 21 (1985), 27-46.
- [12] T. URATA, Holomorphic mappings into a certain compact complex analytic space, Tôhoku Math. J. 33 (1981), 573-585.

CAMILLA HORST MATH. INST. UNIV. THERESIENSTR. 39 8000 MÜNCHEN 2 WEST GERMANY