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Abstract. For given elements α1, . . . , αk and β belonging to the ring of in-
tegers A of a number field we consider the set of all k−tuples (a1, . . . , ak) in

Nk for which
∑k

i=1 αiβ
ai divides

∑k
i=1 αiz

ai for any z ∈ A, and prove under
some reasonable assumptions that the set of solutions is finite.

The original motivation for this work comes from a problem raised by J. L.
Selfridge (see Guy [1], problem B47) who asks for what pairs (a, b) does 2a−2b divide
na − nb for all integers n. A related (but more difficult) problem proposed by H.
Ruderman asks to show that if 2a−2b divides 3a−3b, then 2a−2b divides na−nb for
all integers n. This was investigated by B. Velez in [6]. While Ruderman’s problem
is still open, Selfridge’s problem was solved by Pomerance [2], who combined results
of Schinzel [4] with Velez’s work. It turns out that there are exactly 14 solutions.
The problem was also solved by Sun Qi and Zhang Ming Zhi [5].

In this paper we show that the above finiteness result is a particular case of a
more general phenomenon.

Let K be a number field, A = AK its ring of integers and U = UK its group of
units. Let α1, . . . , αk and β be nonzero elements of A. We consider the set of all
k-tuples (a1, . . . , ak) in Nk for which

k∑
i=1

αiβ
ai divides

k∑
i=1

αiz
ai for any z ∈ A.(1)

If k = 1 and β is a unit, (1) holds true for any a1. Therefore, if we want to
obtain a general finiteness result we cannot allow β to be a unit. Even with this
restriction on β the above set might be infinite, as we see in the following example:
A = Z, k = 3, α1 = 1, α2 = −β, α3 = 1. Here we have infinitely many solutions
of the form a1 = n, a2 = n− 1, a3 = 0. For these solutions the moduli

∑3
i=1 αiβ

ai

“degenerate”. The same phenomenon appears in fact also in the original problem
of Selfridge, where we have degenerate solutions a = b. To avoid such situations, in
the following we shall only consider solutions to (1) which also satisfy∑

i∈S
αiβ

ai 6= 0 for any S ⊆ {1, 2, . . . , k}.(2)
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Then we have the following

Theorem 1. Let A be the ring of integers in an algebraic number field and let
α1, . . . , αk and β be nonzero elements of A, β not a unit. Then there are only
finitely many k-tuples (a1, . . . , ak) in Nk satisfying (1) and (2) above.

In case UK is finite (i.e. when K = Q or K is an imaginary quadratic number
field) we can strenghten the conclusion of the above result.

Theorem 2. Let A be the ring of rational integers Z or the ring of integers in
an imaginary quadratic number field and let α1, . . . , αk be nonzero elements of A.
Then there are only finitely many elements β in A for which there exist a1, . . . , ak

in N, not all zero, satisfying (1) and (2) above.

An upper bound for the absolute value of those β appearing in Theorem 2 is given
by |β| ≤ 2k

∑k
i=1 |αi|. Theorem 1 is also effective, although in order to simplify

the presentation we shall not compute explicit bounds for the solutions a1, . . . , ak.
Theorem 1 is established by combining two main estimates which are obtained by
quite different means. In the first of these arguments we establish lower bounds
for the norm of those moduli

∑k
i=1 αiβ

ai which satisfy (2). The second estimate,
which is of independent interest, gives an upper bound for the norm of the ideal
generated by the values of a polynomial at integer points.

1. A lower bound for

∣∣∣Norm
( ∑k

i=1 αiβ
ai

)∣∣∣
Here and throughout the paper Norm(·) stands for NormK/Q(·).
The relation (1) says that

∑k
i=1 αiβ

ai divides the ideal J generated by the ele-

ments of the form
∑k

i=1 αiz
ai with z ∈ A. As a consequence, Norm

( ∑k
i=1 αiβ

ai

)
will divide Norm(J ). Now, if we can show that with finitely many exceptions we
have ∣∣∣Norm

( k∑
i=1

αiβ
ai

)∣∣∣ > Norm(J ),(3)

then Theorem 1 will be proved. In order to accomplish this goal we proceed to
derive a lower bound for the left hand side and an upper bound for the right hand
side of (3). In this section our object is to prove the following

Proposition 1. Let A be the ring of integers in an algebraic number field and let
α1, . . . , αk and β be nonzero elements of A, β not a unit. Then there exists a
constant c = c(α1, . . . , αk, β,K) > 0 such that for any (a1, . . . , ak) ∈ Nk satisfying
(2) we have ∣∣∣Norm

( k∑
i=1

αiβ
ai

)∣∣∣ ≥ c
∣∣Norm(β)

∣∣max{a1,... ,ak}
.(4)

In order to prove this result we first establish the following

Lemma 1. Let α1, . . . , αk and β be nonzero complex numbers, |β| 6= 1. Then there
exists a constant c = c(α1, . . . , αk, β) > 0 such that for any (a1, . . . , ak) ∈ Nk

satisfying (2) we have ∣∣∣ k∑
i=1

αiβ
ai

∣∣∣ ≥ c max{|β|a1 , . . . , |β|ak}.(5)
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Remark 1. The statement would be false without the assumption |β| 6= 1. To see
this, let k = 2, α1 = 1, α2 = −1 and β = e2πiθ with θ ∈ R, θ irrational. Then one
can take a2 = 0 and use Dirichlet’s theorem to find an increasing sequence of a1’s
for which the left hand side of (5) decays at least as fast as 1

a1
. Fortunately, we will

not have to deal with this case in the sequel.

To derive Proposition 1 from Lemma 1 we apply (5) to σ(α1), . . . , σ(αk), σ(β)
for any embedding σ of K into C.

The hypothesis (of Proposition 1) that “β is not a unit” implies that |σ(β)| 6= 1
(which is needed for the hypothesis of Lemma 1). To see this note that if |σ(β)| = 1,
then σ(β)σ(β) = 1 and applying σ−1 to this gives ββ = 1, which implies that β is
a unit, contradicting our hypothesis.

By multiplying the corresponding inequalities for all the σ we get

∣∣∣Norm
( k∑

i=1

αiβ
ai

)∣∣∣ ≥ ∏
σ

c
(
σ(α1), . . . , σ(β)

) ∏
σ

max{|σ(β)|a1 , . . . , |σ(β)|ak},

(6)

and we are done since the last product in (6) is not smaller than |N(β)|max{a1,... ,ak}.

Proof of Lemma 1. Observe that the case |β| < 1 reduces to the case |β| > 1. For,
it is enough to write the left hand side of (5) in terms of 1

β , and then to multiply
the inequality by an appropriate power of β.

Hence, let us suppose that |β| > 1. Dividing (5) through by |β|max{a1,... ,ak} and
taking bi := max{a1, . . . , ak} − ai for each i, Lemma 1 states that if b1, . . . , bk are
natural numbers, one of which is 0, then |∑k

i=1 αiβ
−bi | ≥ c > 0. If this is false,

then there would exist an infinite sequence of natural numbers {b1,m, . . . , bk,m}m≥0,
with mini bi,m = 0 for each m, such that

Dm :=
k∑

i=1

αiβ
−bi,m → 0, m →∞.

Now let I be the largest subset of {1, 2, . . . , k} for which there exist natural
numbers γi for each i ∈ I, and an infinite sequence of integers M , such that bi,m = γi

for each i ∈ I,m ∈ M . Evidently nonempty such sets I must exist as there must
be some integer i and some infinite subsequence of integers m with each bi,m = 0
(since there is some such integer i ∈ {1, 2, . . . , k} for every integer m).

Now, since I is the largest such set, we have bi,m → ∞ for each i /∈ I ,m ∈ M .
Thus

Dm →
∑
i∈I

αiβ
−γi , m →∞, m ∈ M.

However this is not 0 by (2), giving a contradiction.

2. An upper bound for Norm(J )

Let A be the ring of integers in an algebraic number field K. Let g(x) ∈ A[x],
g(x) =

∑k
i=1 αix

ai , where α1 6= 0, a1 > a2 > . . . > ak, a = max(a1, 3), ∆ =∏k
i=2(a1 − ai), and denote by J = J (g) the ideal of A generated by the set
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{g(z) : z ∈ A}. Then we have the following

Proposition 2. There are constants c1, c2, c3, c4 > 0, depending on k and K only,
such that

Norm(J ) ≤ c1 |Norm(α1)|c2 exp
(
c3a

c4
log log a

)
.

The proof is based on Lemmas 2 and 3 below. From Lemma 2 one gets a bound
for the norm of any prime ideal P which divides J . Then Lemma 3 gives a bound
for the power of P which enters into J .

Lemma 2. Let α1, . . . , αk, a1, . . . , ak, g(x), ∆ and J be as in Proposition 2, and
let P be a prime dividing J . Then at least one of the following holds true:

(i) P divides α1,(7)

(ii) Norm(P)− 1 divides ∆.(8)

Proof. A/P is a finite field with N(P) = q = pd elements, say. Since P divides J
we know that for any z in A g(z) lies in P . Let ri = 0 if ai = 0, and otherwise let
ri be the least positive residue of ai (mod q − 1). Define h(x) :=

∑k
i=1 αix

ri . For
every y ∈ A/P we have yq = y , so that each yri = yai , and thus h(y) = g(y) = 0.
Now, h(x)(=

∑q
j=0 hjx

j) has degree < q, and q distinct roots, and thus must vanish
modulo P . Thus for any l, we have

∑k
i=1,ai≡l(mod q−1) αi =

∑k
j=0,j≡l(mod q−1) hj =

0 in A/P . In particular,
∑k

i=1,ai≡a1(mod q−1) αi ≡ 0(modP). If there is some i > 1
with ai ≡ a1(mod q − 1), then q − 1 divides ai − a1 which divides ∆ ; if there is
no such i, then, from the line above, P divides α1. This concludes the proof of the
lemma.

Let α1, . . . , αk, a1, . . . , ak, g(x) and ∆ be as above. Let p be a prime number
and P a prime ideal of A which lies over p. We denote by e(P) the ramification
index of P and by vP (z) the exponent of P which enters in z, where z is any element
or ideal of A. Let J̃ = J̃ (g) be the ideal generated by the set {g(z) : z ∈ A \ P}.
We have

Lemma 3.

vP (J̃ ) ≤
(

1 +
1

Norm(P)− 1

)k−1(
vP (α1∆) + Norm(P)

)
−Norm(P).(9)

Proof. We proceed by induction. The result is clear if k = 1. In this case J̃ is
principal, generated by α1, and (9) becomes an equality. Let us take a general k.
We want to reduce the number of terms in g(x) to be able to use the induction
hypothesis. To accomplish this the idea is to divide g(x) by xak and then take its
derivative. Observe that (α1∆) is left unchanged by these operations. While the
first operation produces no loss in (9), the second one might decrease its left hand
side. We intend to show that the loss is not too big.

Let z be an arbitrary element in A \ P . We need to give a lower bound for
vP(f ′(z)), where f(x) = g(x)x−ak . At this point we fix a positive integer r whose
value will be made explicit later. Further, we choose a positive integer m which we
want to be as small as possible, satisfying the following property:

For any y ∈ Pm all the terms with n > r in the Taylor expansion f(z+y) = f(z)+
f ′(z) y + · · ·+ f(n)(z)yn

n! + · · · satisfy vP
(

f(n)(z)yn

n!

)
≥ vP (J̃ ). Here f(z) =

∑
i αiz

bi
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(where bi = ai − ak), and so one has vP
(

f(n)(z)
n!

)
≥ 0. Therefore it is enough to

choose an m such that for any n > r we have

m n ≥ vP(J̃ ).

To insure this, we take m to be the smallest integer greater than or equal to vP(J̃ )
r+1 .

Now let y1, . . . , yr be distinct elements in Pm. We consider the above Taylor
expansions for y1, . . . , yr and put them in the form


f ′(z) y1 + · · ·+ f(r)(z)yr

1
r! = t1

...
...

...

f ′(z) yr + · · ·+ f(r)(z)yr
r

r! = tr.

From our choice of m and the inequality vP(f(z)) ≥ vP (J̃ ) it follows that
t1, . . . , tr satisfy vP(tj) ≥ vP (J̃ ) for j = 1, . . . , r.

We treat this as a Vandermonde linear system in unknowns f ′(z), . . . , f(r)(z)
r!

and get from Cramer’s rule

f ′(z) =

∣∣∣∣∣∣∣
t1 y2

1 . . . yr
1

...
...

...
tr y2

r . . . yr
r

∣∣∣∣∣∣∣∏r
i=1 yi

∏
1≤i<j≤r(yj − yi)

.(10)

Here we do not want the denominator to be divisible by a high power of P and
for this reason we assume in what follows that the yi’s lie in Pm \ Pm+1 and that
their images in Pm/Pm+1 are distinct. Therefore we restrict the possible values of
r to the set {1, . . . , Norm(P) − 1} and then the existence of such yi’s is assured.
Under these assumptions the exponent of P in the denominator in (10) equals
mr + m r(r−1)

2 = mr(r+1)
2 . On the other hand, in the numerator one can select

P to the power vP (J̃ ) from the first column, P2m from the second column, and
so on until we select Prm from the last column, which makes a total exponent of
vP(J̃ ) + m

(r(r+1)
2 − 1

)
. Thus

vP(f ′(z)) ≥ vP(J̃ )−m =
[ r

r + 1
vP(J̃ )

]
.

We now see that here we want r be as large as possible. Hence we take r =
Norm(P) − 1 and conclude that if J̃ (f ′) denotes the ideal generated by the set
{f ′(z) : z ∈ A \ P}, then

vP (J̃ (f ′)) ≥
[(

1− 1
Norm(P)

)
vP(J̃ (g))

]
.

From the induction hypothesis we get

vP(J̃ (f ′)) ≤
(
1 +

1
Norm(P)− 1

)k−2(
vP (α1∆) + Norm(P)

)
−Norm(P).

On combining these estimates one derives immediately the required bound for
vP(J̃ ), which concludes the proof of the lemma.
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Since J (g) divides J̃ (g) one has the following

Corollary 1. The inequality (9) holds true with J̃ replaced by J .

We now take advantage of the fact that the right hand side of (9) as a function
of P , with K, k and g fixed, is bounded: the coefficient of vP(α1 ∆) is bounded by
2k−1 and moreover the function h(x) =

(
1 + 1

x−1

)k−1
x − x is bounded as x →∞.

Taking these into account we infer the following

Corollary 2. There are integers c5, c6 > 0 depending only on k and K such that
with the above notations we have vP(J ) ≤ c6 vP(α1∆) for any P for which vP (J ) ≥
c5.

Proof of Proposition 2. Let us decompose J = J1J2 where J1 contains those
primes P for which vP(J ) < c5 and J2 those primes P for which vP(J ) ≥ c5.

Then Corollary 2 shows that J2 divides (α1∆)c6 . As a consequence

Norm(J2) ≤ |Norm(α1∆)|c6 = |Norm(α1)|c6 |∆|c6[K:Q].

Since |∆| ≤ ak−1 = exp((k − 1) log a) and log a ≤ a
c4

log log a uniformly in a for c4

large enough, one clearly has a bound of the required type for Norm(J2). Now let
J0 =

∏
P prime
P|J1

P .

Since J1 divides J c5
0 one has Norm(J1) ≤ (Norm(J0))c5 . Therefore we are

done if we can provide a bound of the required type for J0. In order to do this
we first remove from J0 all the divisors of 2 (if there are any). Their product is
“swallowed” by the constant c1 anyway. We also remove from J0 any divisor of α1.
Their product divides α1 and then its norm is bounded by |Norm(α1)|.

Hence we are left with a square free divisor of J , call it J3, which is relatively
prime to 2α1. Now Lemma 2 implies that for any prime divisor P of J3, Norm(P)−
1 divides ∆. One cannot derive from this that their product still divides ∆ since the
numbers Norm(P) − 1 are by no means relatively prime. However, the fact that
any positive divisor of ∆ equals Norm(P) − 1 for at most [K : Q] prime ideals P
shows that

∏
P|J3

(Norm(P)−1) divides (
∏

d|∆ d)[K : Q], which equals ∆
1
2 [K : Q]σ0(∆),

where σ0(∆) denotes the number of divisors of ∆.
For σ0(∆) one has the upper bound (see Ramanujan [3])

σ0(∆) ≤ c(ε)∆
log 2+ε
log log ∆

for any ε > 0. At the same time observe that since Norm(P) ≥ 3 if P divides J3,
one has crude inequalities of the type Norm(P) < (Norm(P) − 1)2, therefore

Norm(J3) <
( ∏
P|J3

(Norm(P)− 1)
)2

.

When the above inequalities are combined we find a bound of required type for
Norm(J3). This concludes the proof of Proposition 2.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let (a1, . . . , ak) satisfy (1) and (2) with a = max{a1, . . . , ak},
a ≥ 3. We consider the polynomial g(x) =

∑k
i=1 αix

ai . Here some of the ai’s
might be equal but the corresponding coefficients cannot cancel in view of (2). In
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particular deg(g(x)) = a and the leading coefficient α equals
∑

ai=a αi. Now (1)
says that g(β) divides J (g). From (3), Proposition 1 and Proposition 2 one derives

c(α1, . . . , αk, β,K)|Norm(β)|a ≤ c1|Norm(α)|c2 exp
(
c3a

c4
log log a

)
.(11)

Since |Norm(β)| > 1 (11) clearly gives us an upper bound for a. Therefore the set
of solutions (a1, . . . , ak) is finite, which concludes the proof of Theorem 1.

Proof of Theorem 2. We proceed by induction on k. The case k = 1 is clear. Let
k ≥ 2 and assume the result true for 1, 2, . . . , k − 1. Fix α1, . . . , αk in A and let
β be such that (1) and (2) are satisfied for nonnegative integers a1, . . . , ak not all
zero. Two cases may appear:

(I) There exist i, j ∈ {1, . . . , k}, i 6= j, such that ai = aj . Then the num-
bers a1, . . . , aj−1, aj+1, . . . , ak will satisfy (1) and (2) in which one keeps the same
β and replaces the k-tuple (α1, . . . , αk) by the (k − 1)-tuple (α1, . . . , αi−1, αi +
αj , . . . , αj−1, αj+1, . . . , αk).

Therefore, by the induction hypothesis it follows that there are only finitely many
β for which the above can happen.

(II) The numbers a1, . . . , ak are distinct. Suppose a1 > . . . > ak. We consider
the polynomial f(x) =

∑k
i=1 αix

ai and its relation with the following nonzero
Vandermonde determinant:∣∣∣∣∣∣∣∣∣

1 . . . 1
2a1 . . . 2ak

...
...

...
2(k−1)a1 . . . 2(k−1)ak

∣∣∣∣∣∣∣∣∣ .

We add its columns multiplied by α1, . . . , αk and obtain a new column that
doesn’t vanish and has f(1), f(2), . . . , f(2k−1) as entries. Thus f(r) 6= 0 for some
r ∈ {1, 2, . . . , 2k−1}. We have

|f(r)| ≤
k∑

i=1

|αi| 2(k−1)ai < 2(k−1)a1

k∑
i=1

|αi|.(12)

On the other hand, if |β| ≥ 2
∑

2≤i≤k |αi|
|α1| , then∣∣∣ ∑

2≤i≤k

αiβ
ai

∣∣∣ ≤ ∑
2≤i≤k

|αi| |β|ai ≤ |α1| |β|a1

2

and this implies

|f(β)| ≥ |α1| |β|a1

2
.(13)

The rings A under consideration have the property that the absolute value of
any nonzero element of A is ≥ 1. Therefore the divisibility f(β)|f(r) implies the
inequality |f(β)| ≤ |f(r)|. But the right hand side in (13) is larger than that of

(12) if |β| is large enough, for example if |β| > 2k
∑k

i=1 |αi| ≥ 2k ∑k
i=1 |αi|
|α1| , and this

completes the proof of Theorem 2.

We note that in the above proof one can replace “2” in the Vandermonde deter-
minant by any element of A that is not a root of unity.
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