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1 Introduction

The risk inherent to a new firm’s life gives value to the option to exit. In this paper, we

quantify this option’s contribution to a new firm’s value using monthly sales histories from

305 new bars in Texas. Doing so requires identifying the fixed costs that exit avoids and the

information that entrepreneurs acquire as their firms age. We accomplish this by estimating a

structural model of firm growth and survival. The estimation distinguishes between persistent

and transitory post-entry shocks and separates these from firms’ different pre-entry scale

decisions. Jovanovic’s (1982) model of entrepreneurial learning and Hopenhayn’s (1992)

model of Markovian firm growth are both special cases nested within it. The model’s point

estimates indicate that firms’ pre-entry scale decisions account for about 40% of their sales’

variance; persistent post-entry shocks to their profitability account for most of the remainder.

All of the growth of surviving firms’ average sales reflects selection. The option to exit

accounts for 124% of a new firm’s value: A firm that must be operated in perpetuity is a

liability. Thus, a policy analysis that fails to examine entrepreneurs’ exit decisions almost

certainly ignores the largest component of a new firm’s value.

Twenty percent of the firms in our sample exit in less than one year. Their monthly exit

rates are low immediately following entry, but they rise quickly after six months. This survival

pattern is consistent with entrepreneurial learning about a firm’s unobservable profitability,

but it can also reflect fixed costs of continuation that vary over time. A reduced-form analysis

of growth and survival cannot distinguish between them, while an identified structural model

that nests them, such as ours, can. We find that entrepreneurial learning plays no role in the

firm’s first year of operation. Instead, fixed costs that are very high in the first month of each

new year and relatively low in the remaining 11 months explain the increase in exit rates.

This pattern is consistent with many of the costs of annual leases for space and equipment

being effectively sunk at the beginning of the year.

The sales of surviving bars in our sample display non-Markovian history dependence:

Their initial sales significantly contribute to forecasts of their sales in subsequent years that

condition on the firm’s recent history. Pakes and Ericson (1998) find a similar result in a long

annual panel of Wisconsin retailers, and interpret this as evidence of Bayesian entrepreneurial

learning. Our analysis builds on theirs, but it accounts for heterogeneity across firms’ pre-

entry scale decisions and transitory shocks observed only by entrepreneurs. We find that these

can fully explain surviving bars’ long history dependence without appealing to entrepreneurial

learning.

The paper’s structural analysis begins with an extension of Jovanovic’s (1982) model of
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firm selection. A firm’s producer surplus is proportional to its sales; and the logarithm of

each firm’s surplus sums the entrepreneur’s choice of scale before entry, post-entry shocks that

persistently affect profit, and transitory shocks. After an entrepreneur observes her profit, she

must decide either to remain open or to exit and avoid future fixed costs. An entrepreneur

only observes her profit and one of the transitory shocks, and she bases her continuation

decision on her posterior belief regarding the persistent shocks. The scale decision affects the

firm’s sales and costs proportionally, so it has no relevance for the entrepreneur’s continuation

decision. Heterogeneity in the scale decisions enters as a random effect in firms’ sales and

fixed costs, and is thus a potential source of sales’ persistence. We follow Jovanovic and

assume that the persistent and transitory shocks unobserved by the entrepreneur have normal

distributions. Hence, the entrepreneur’s posterior beliefs are also normal with a history-

dependent mean and an age-dependent variance. The firm exits when the posterior’s mean

falls below an age-specific threshold.

In our model, the entrepreneur observes her scale decision and one of profit’s transitory

shocks. With this information, she can better forecast her firm’s future than can an ob-

server who relies on the public tax records we use. Thus, the model violates Rust’s (1987)

assumption of conditional independence of unobservables. This makes existing identification

strategies for dynamic discrete choice models, such as Hotz and Miller’s (1993), unavailable.

Nevertheless, the firm histories we observe identify the model’s parameters. We show that

differences between all firms’ initial sales and the initial sales of those that subsequently sur-

vive reveal the distribution of the entrepreneurs’ observations as well as the rules they use

for their exit decisions. Heuristically, if these samples are very similar we conclude that most

observed variation across firms is irrelevant for entrepreneurs’ exit decisions.

We augment the Kalman filter to account for sample selection, and we use it to calcu-

late maximum likelihood estimates of the entrepreneurs’ optimal exit thresholds and all of

the model’s identified structural parameters except firms’ fixed costs. With these in hand,

we can recover the fixed costs using the profit maximization problem’s Bellman equation.

This two-step approach has both computational and substantial advantages. Because it esti-

mates the entrepreneur’s decision rule directly, our first stage avoids the repeated solution of

the entrepreneur’s dynamic programming problem that is inherent to Rust’s (1987) nested

fixed point algorithm. Moreover, the procedure accounts for the entrepreneur’s superior

understanding of her profit maximization problem. For example, time-varying fixed costs as-

sociated with annual lease renewal can manifest themselves in the estimated exit thresholds

even if we fail to appreciate their importance before estimation.

The remainder of the paper proceeds as follows. The next section describes the data,
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Section 3 presents the structural model, and Section 4 considers the theory of its empirical

content. Section 5 discusses the model’s parameter estimates and their implications for the

value of a new firm’s option to close. The final section offers some concluding remarks.

2 Histories of Firm Growth and Survival

Readily available data sources— such as public tax records, business directories, or economic

census records— allow the construction of data documenting the growth and survival of a

cohort of entering firms. Gort and Klepper (1982), Dunne, Roberts, and Samuelson (1988),

Bahk and Gort (1992), Jovanovic and MacDonald (1994), Holmes and Schmitz (1994), and

Pakes and Ericson (1998) have all examined such data sets and characterized their implica-

tions for various aspects of firm and industry growth. Our analysis uses a similar data set

constructed from a panel of Texas alcohol tax returns. The state of Texas collects a 14% tax

on the sale of alcohol for on-premise consumption, and the Texas Alcoholic Beverage Control

Board (TABC) makes these returns publicly available. Returns are filed monthly, and a firm

must file a separate return for each of its establishments. Information included with each

return includes the identity and street address of the establishment’s parent firm, its trade

name, its own street address, the date its alcohol license was issued, the date it was returned

if the establishment no longer operates, and its tax payment for that month.

2.1 Sample Construction

Our observations begin in December, 1993 and end in March, 2001. We divided all sales

observations in our sample by the geometric average of tax returns from the establishment’s

county filed in the same month. This accounts for persistent differences in input prices

across counties, inflation over the sample period, and county-level aggregate fluctuations.

Campbell and Lapham (2004) measure restaurants’ and bars’ aggregate responses to large

county-specific demand shocks. They are an order of magnitude smaller than typical changes

to individual establishments’ sizes. For this reason, we henceforth focus on this idiosyncratic

variation and suppose that the observations of establishments’ survival and scaled sales come

from a stationary environment.

We used alcohol tax identification numbers and the establishments’ street addresses to

group these observations into establishment histories. Our linking process accounts for the

fact that a single establishment may have multiple owners over its lifetime.1 A tax return must

1In our sample, there are numerous instances of an establishment being transferred from an individual
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be filed for each establishment in every month, even if the establishment sold no alcohol for

that month. Therefore, our data contain several reports of zero sales. The data also contain

tax returns with a very low tax payment.2 These apparently reflect unobserved shutdown of

the establishment for part of the month or a very small scale of operation. When constructing

establishment histories, we equate any tax payment of less than $750 with zero. We consider

an establishment to be born in the first month that it pays more than $750 in tax, and we

date its exit in the first month that it fails to pay that amount. If an establishment’s tax

payment temporarily falls below $750, we consider that establishment to have temporarily

shut down. We exclude such establishments from our data set altogether.

Alcohol sales is of primary importance for bars, but restaurants substantially profit from

both alcohol and food sales. So that our sample is as homogeneous as possible in this regard,

we focus only on those establishments that present themselves to the public as bars. To

be included in our sample, a firm’s trade name must include the word “bar” or one of 10

other words indicative of a drinking place, and it must not include the word “restaurant” or

one of 20 words indicating the presence of substantial food service.3 Given the limitations

of the data, this minimizes the risk of falsely including restaurants at the expense of falsely

excluding bars.

There are also substantial differences between multiple establishment firms and their

counterparts that only operate one location. The manager of an incumbent firm’s new

establishment can use that firm’s history and experience to plan its operations and judge

its prospects. An entrepreneur starting a single establishment firm has no such information.

Accordingly, we exclude any establishment founded by a firm with two or more establishments

in Texas from our data set. There are 305 single-establishment firms in our data set that

were born in the five years beginning in 1994 and ending in 1999. These single establishment

to a corporate entity with the same address. These appear to be legal reorganizations with few immediate
economic implications.

2Some of these reflect operation during only part of the first or last month of the establishments’ operation.
When the given dates of license issuance and return indicate that this is the case, we divide the tax payment
by the fraction of the month the establishment operated. Even after this correction, there remain several tax
returns with very small but positive tax payments. The smallest positive tax payment in our data is under
$1.

3The words that qualify a firm for inclusion in the data set are “bar”, “cantina”, “cocktail”, “drink”,
“lounge”, “pub”, “saloon”, “tap”, and “tavern.” In addition to “restaurant” the words that exclude a
firm from our analysis are “bistro”, “brasserie”, “cafe”, “club”, “diner”, “dining”, “food”, “grill”, “grille”,
“hotel”, ‘oyster”, “restaurante”, “shrimp”, “steak”, “steakhouse”, “sushi”, and “trattoria”. When selecting
this sample, we consider only the trade name listed on the firm’s first tax return that reports a tax payment
greater than $750.
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firms comprise our sample.

2.2 Summary Statistics

Table 1 reports summary statistics from our sample of firms. For each age we consider, one

to thirteen months old, it reports the number of firms that survived to that age; the mean

and standard deviation of sales’ logarithm among these survivors; and the fraction of them

that did not operate in the following month (the exit rate). Selection during these firms’

first year was extensive. Over the course of the year, 20% of the firms exited. Exit rates

in the months immediately after entry are quite low, and no firm exited following its sixth

month. Thereafter firms’ exit rates increase with age until their twelfth month. The exit

rate then falls again to zero after the thirteenth month. This lack of exits continues into the

(unreported) fourteenth month. The inverted “U” shape of firms’ exit rate as a function of

age apparently reflects an initial delay in exit followed by a cleansing of less-profitable firms

at the end of the first year. In this case, firms that survived their first year were relatively

fit and unlikely to have immediately exited.

Unsurprisingly, survivors’ average size increases quickly with age. Initial average sales of

all bars is slightly greater than the average sales of all license holders. After one year, the

survivors’ average size is approximately 27% greater than this overall average. The standard

deviation of firms’ initial sales is 0.87, and this dispersion changes little over the first year.

2.3 Firm Growth

To better understand the importance of entrepreneurs’ learning for their exit decisions, Pakes

and Ericson (1998) advocate examining the persistence of surviving firms’ sales. In particular,

they derive nonparametric predictions from two models of learning. In the model of passive

learning, entrepreneurs apply Bayesian updating to learn about a time-invariant and firm-

specific parameter, as in Jovanovic (1982). This model implies that a firm’s initial sales will

be useful for forecasting its sales throughout its life. In the active learning model, firms

invest to improve their products and processes. Because the outcome of this investment is

stochastic and very successful firms optimally choose to invest little and allow their knowledge

to depreciate, the observation of a firm’s initial sales becomes progressively less relevant for

forecasting its future. Pakes and Ericson test these models’ contrasting predictions using

panels of Wisconsin retail and manufacturing firms. They find that initial sales improve

forecasts of retailers’ future sales, but manufacturers’ sales appear to be Markovian. They
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conclude that an approach to firm dynamics based on Bayesian learning is promising for

retail firms.

We have assessed the properties of our sample of bars by conducting a similar empirical

investigation. We estimated density-weighted average derivatives from the regression of a

firm’s sales on its sales in the previous and first months— all in logarithms— using Powell,

Stock, and Stoker’s (1989) nonparametric instrumental-variables estimator.4 These estimates

rely on no distributional assumptions beyond standard regularity conditions, so they are

appropriate for investigating the importance of a firm’s initial sales on its evolution when the

structural parameters relevant for the survival decision are unknown.

Table 2 reports these estimates as well as standard errors based on their asymptotic

distributions.5 All of the derivative estimates are positive and statistically significant at the

5% level. The derivatives with respect to the previous month’s sales are surprisingly similar

across months. They are nearly all between 0.80 and 0.95. The derivatives with respect

to the firm’s sales in its first month are smaller but not negligible. Furthermore, there is

no apparent tendency for the firm’s initial sales to become less relevant for forecasting as

the firm ages. When the dependent variable is the firm’s sales in the third month, the

derivative with respect to the first month’s sales equals 0.154. This is nearly identical to

the analogous coefficient when the dependent variable is the thirteenth month’s sales, 0.168.

The analogous coefficients in the other months vary from a low estimate of 0.021 to a high of

0.190. Apparently, no first-order Markov process can fit surviving firms’ observed sales well.6

Pakes and Ericson (1998) emphasize that the observable differences between the two mod-

els they consider only apply to very old firms if sales depend on transitory shocks observed

by only the entrepreneur. Thus, any conclusion about the importance of Bayesian learning

based on the application of their methodology to observations of firms’ first years is neces-

sarily suspect. Non-Markovian dynamics can also arise from permanent and unobservable

differences across entrepreneurs’ choices of their firms’ intended scales. Even with a very

4If m(x) denotes the expected value of y given x and f(x) is the density of x, then the regression’s density-
weighted average derivatives are defined as E[(∂m(x)/∂x)f(x)]/E[f(x)], where the expectation is taken with
respect to f(x). If the regression function is linear, then these equal the linear regression coefficients. If
the regression function depends on an element of x only trivially, then the corresponding density-weighted
average derivative equals zero.

5To implement this estimation, we follow Powell, Stock, and Stoker’s (1988) recommendation and use the
bias-reducing kernel discussed by Bierens (1987). Before estimation, we scaled both explanatory variables by
their standard deviations. We used a tenth-order kernel with a bandwidth of 2.

6Expanding the set of regressors to include the past three months’ sales leaves the estimated effect of the
first month’s sales intact.
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long panel of firm histories, Pakes and Ericson’s procedure cannot distinguish between such

unobserved heterogeneity and true Bayesian learning. The structural analysis we pursue next

overcomes these difficulties.

3 A Structural Model of Firm Growth and Survival

In this section, we present a structural model of firm growth and survival in a monopolistically

competitive industry. A firm’s life begins before entry with the choice of its scale. New firms’

different scales reflect heterogeneity across entrepreneurs’ skills. After entry, a persistent

shock and two transitory shocks affect demand for the firm’s single product. The entrepreneur

observes one of the transitory shocks and the sum of the other one with the persistent shock.

She applies Bayes’ rule to optimally infer the persistent shock from her noisy observations.

Continuation requires payment of fixed costs that are not necessarily constant over time, and

the entrepreneur can irreversibly close the firm to avoid them. She chooses to exit when her

optimal inference of the persistent shock falls below a threshold that depends on the firm’s

age. The pre-entry choice of scale proportionally affects the firm’s producer surplus and the

fixed costs required for continuation, so it has no impact on the exit decision. Instead, it

plays the role of a random effect across firms’ sales. Because the entrepreneur observes both

her scale decision and one of the transitory shocks, we cannot perfectly forecast the firm’s

exit with the observations of sales that we use for estimation.

We assume that firms compete anonymously. That is, the behavior of any single firm only

possibly depends on the behavior of other firms through some aggregate statistics. There is no

direct strategic interaction between any two firms. We next discuss this assumption’s content

and empirical plausibility. We then detail the firm’s stochastic environment and optimization

problem. Following this, we consider the entrepreneur’s procedure for optimally assessing

her firm’s future and deciding upon its survival. With the description of firms’ post-entry

evolution in place, we then consider the entrepreneur’s pre-entry choice of its intended scale.

We finish this section by showing how our framework encompasses two prominent models of

firm dynamics.

3.1 Imperfect Competition and Firm Dynamics

Bars produce heterogeneous goods and compete with each other in local markets. This

compels us to consider imperfect competition as the most likely market structure for our

sample of firms.
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The theory of competition among a large number of producers offers us two distinct

approaches to consider, monopolistic and oligopolistic competition. In models of monopo-

listic competition such as Dixit and Stiglitz’s (1977), Hart’s (1985), and Wolinsky’s (1986),

producers compete anonymously, and strategic interaction is absent. Idiosyncratic shocks

to demand and cost have no effect on competitors’ optimal actions, so empirical analysis

can proceed by considering each producer’s choice problem in isolation from those of her ri-

vals. Models of oligopolistic competition, such as Prescott and Visscher’s (1977) and Salop’s

(1979), emphasize strategic interaction. A producer’s actions impact the profits of her neigh-

bors in geographic or product space, so shocks that directly influence only one producer’s

profits can affect her competitors indirectly.7

Campbell and Hopenhayn (2005) suggest distinguishing between these possibilities using

cross-market comparisons of producer sizes. A robust prediction of anonymous monopolistic

competition is that the producer size distribution is invariant to market size if factor prices,

consumer demographics, and technology are held constant. For example, a firm’s sales in

Dixit and Stiglitz’s (1977) model equals the product of the constant demand elasticity with

the sunk cost of entry. Models of oligopolistic competition generally predict that increasing

market size erodes producers’ market power. This is true in Salop’s (1979) model of competi-

tion on the circle, where increasing market size— measured with the density of consumers on

the unit circle— decreases the distance between any two firms. This lowers their markups,

so firms must sell more to recover their fixed costs. Hence, with oligopolistic competition we

expect producers’ sizes to be increasing in market size. Campbell and Hopenhayn compare

retailers’ average sales and employment across large and small markets to determine which

of these two approaches is more promising. Their results favor oligopolistic competition.

We have implemented Campbell and Hopenhayn’s procedure for our bars’ parent four-

digit industry, Drinking Places, using exactly the same sample of markets, control variables,

measures of market size, and measures of establishment size that they do. Unlike Camp-

bell and Hopenhayn, we fail to find a statistically significant effect of market size on average

establishment size in Drinking Places. In most of the specifications we have considered, the es-

timated coefficient on market size is negative and statistically insignificant. This cross-market

comparison of establishment sizes does not refute the assumption that bars are monopolistic

competitors.

We now proceed to present our model of firm dynamics under monopolistic competition.

7The observation that consumers view similar goods available at different geographic locations as imperfect
substitutes does not immediately imply that competition is oligopolistically competitive.
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We first discuss the post-entry evolution of a firm of a given scale, and we then detail the

forward-looking scale choice before entry.

3.2 The Stochastic Environment

Consider the life of a single firm, which begins production at time t = 1. The firm is

a monopolistic competitor that produces a single good at a single location. In period t,

consumers demand Qt = eR+Xt+WtP−ε
t units of the firm’s good, where ε > 1 is the absolute

value of the demand elasticity and Pt is its price. The time-invariant demand-shifter R

reflects a pre-entry choice of the intended scale of operation of the firm. Examples of decisions

affecting R for our sample of bars are the centrality of the bar’s location and the installation

of attractions like a music stage or a mechanical bull. The composite random variable Xt+Wt

shifts the demand curve through time, and we explain the properties of its two components

below. Throughout, we adopt conventional notation and reserve capital letters for random

variables and small letters for their realizations.

An affine cost function, ϑQt + eRκt, describes the firm’s technology, with both ϑ and κt

strictly greater than zero. The fixed costs can vary with the age of the firm and are higher

for firms with larger intended scale. In our application to Texas’ bars, time variation in the

fixed cost κt might reflect periodic renewal of leases for equipment or space. The effect of R

on fixed costs reflects the greater expenditure associated with maintaining a larger firm.

It is straightforward to show that the entrepreneur’s profit-maximizing price choice is

constant, Pt =
(

ε
ε−1

)
ϑ. The resulting sales and profits are

eSt = PtQt =

(
ε

ε− 1

)1−ε

eR+Xt+Wtϑ1−ε (1)

and

(Pt − ϑ) Qt − eRκt =

(
1

ε− 1

) (
ε

ε− 1

)−ε

eR+Xt+Wtϑ1−ε − eRκt, (2)

We choose the unit of account to set ϑ = (ε−1)/ε, so that log sales are simply St = R+Xt+Wt

and the firm’s profit equals ε−1eSt − eRκt.

The random variable Xt = At + Ut. Of these, At is the persistent shock to the firm’s

demand and Ut is transitory. The initial value of At is drawn from a normal distribution with

mean µ1 and variance σ2
1. Thereafter, a first-order autoregression governs At’s evolution,

At = µ + ρAt−1 + Zt with Zt ∼ N (0, σ2) (3)
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In (3), ρ > 0 and the disturbances Zt are independent over time

The two series of transitory shocks, {Wt} and {Ut}, are independent over time and from

each other and {Zt}. We assume that they are normally distributed with mean zero and

variances γ2 and η2. The entrepreneur cares about these transitory shocks individually

because she observes only one of them, Wt. She also observes Xt, but Ut and At are hidden

from her. The variance of Wt contributes to the model’s econometric error term. Nontrivial

Bayesian learning about At arises from the variance of Ut.

For concreteness, we have assumed that the pre-entry choice of scale and all post-entry

shocks affect the firm’s demand and not its marginal cost. We could alternatively have

assumed that these variables affect marginal cost as well. If we only have data on sales and

survival, these models are observationally equivalent. In this paper, we restrict attention

to the analysis of such data. We do not address the separate identification of idiosyncratic

demand and cost variation, which would require the observation of firms’ prices.

3.3 Bayesian learning and selection

At the end of each period, the entrepreneur must decide whether or not to close the firm

and exit. Exit is an irreversible decision, and its payoff equals zero. The entrepreneur is

risk-neutral and discounts the firm’s future profits with the constant factor δ < 1.

The normality of Zt and Ut imply that the entrepreneur can use the Kalman filter to

calculate an optimal inference of At given the relevant information at hand, (X1, . . . , Xt) ≡
X̄t.

8 Denote this optimal forecast and its mean squared error with

Ât ≡ E[At|X̄t] and Σt ≡ E
[(

At − Ât

)2
]

.

The Kalman filter calculates Ât and Σt recursively using

Ât = µ + ρÂt−1 + λt(Xt − µ− ρÂt−1), (4)

and Σt = η2λt, where λ1 ≡ σ2
1/ (σ2

1 + η2) and λt ≡ (ρ2Σt−1 + σ2) / (ρ2Σt−1 + σ2 + η2) for

t > 1. The coefficient λt is the Kalman gain, and it measures the informativeness of the

entrepreneur’s observation of Xt. The firm’s sales does not directly reveal Xt, so the en-

trepreneur’s estimate of At is necessarily more accurate than that of an outside observer.

Although the entire history of Xt is, in principle, relevant for the entrepreneur’s exit

decision, Ât, the firm’s age, and R are sufficient for characterizing the distribution of future

8Throughout this paper, we denote the vector (a1, a2, . . . , at) with āt.
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profits. Define vt

(
Ât, St, R

)
to be the value of a firm of age t and intended scale R to an

entrepreneur who estimates At to be Ât and observes current sales to be St. The Bellman

equation that this value function satisfies is

vt

(
Ât, St, R

)
= ε−1eSt − eRκt + δ max{0,Et[vt+1(Ât+1, St+1, R)]}. (5)

The entrepreneur calculates the expectation Et in (5) using the joint distribution of Ât+1 and

St+1 conditional on the available information at time t, for which (t, Ât, R) is sufficient.

The entrepreneur’s optimal exit policy is simple. The expectation in the right-hand side

of (5) is a function of (t, Ât, R) and it is continuous and increasing in Ât. Therefore, there

exists a threshold value αt such that the entrepreneur chooses to exit if and only if Ât ≤ αt.

The firm’s scale, R, has no impact on the exit decision, because it only scales up the firm’s

surplus and fixed costs. Instead, it plays the role of an unobservable (to us) random effect

on the sales observations.

3.4 Pre-Entry Choice of Intended Scale

With the firm’s exit policy and value function in place, we are now prepared to consider

the entrepreneur’s pre-entry choice of intended scale. For a randomly selected entrepreneur,

the cost of entry with scale R is F eτR, where τ > 1. The assumption that the entry cost

is convex in eR reflects limits to entrepreneurs’ abilities, as in Lucas (1978). The positive

random variable F embodies heterogeneity across entrepreneurs in those abilities. With this

cost function, doubling the scale more than doubles the costs of entry. The expected value of

a new firm is a linear function of eR, so equating the marginal cost and benefits of increasing

the firm’s scale for an entrepreneur with ability F yields R = (ln (υ/τ)− ln F ) / (τ − 1),

where υ is the slope of the expected value of new firm with respect to eR. We assume that

ln F has a normal distribution with mean ln (υ/τ) and variance (τ − 1)2ν2 so that R is also

normally distributed, with mean zero and variance ν2.

3.5 Existing Models of Firm Dynamics

As we noted in the introduction, the model encompasses versions of both Jovanovic’s (1982)

and Hopenhayn’s (1992) models of firm dynamics. Although both models assume a perfectly

competitive market structure, we see the change to a simple version of monopolistic com-

petition as inconsequential for our purposes. The simplest versions of both models assume

that fixed costs are constant over time; κt = κ for all t. Jovanovic’s model of learning about
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time-invariant random profitability sets ρ = 1 and σ2 = 0, while we recover Hopenhayn’s

model with ρ < 1 and η2 = 0. Our versions of both models add a transitory econometric

error term, Wt, and unobservable heterogeneity, R, to make them suitable for estimation.

4 The Model’s Empirical Content

The TABC panel contains observations of each firm’s sales (St) and an indicator for its

survival to age t, which we denote with Nt. Because we do not observe St after the firm’s

exit, we set St = 0 if Nt = 0. The sales observations cover the first T = 12 months in the

firm’s life. The TABC panel data set also records NT+1. That is, the firm’s survival at the

end of the sample period is known. In this section, we describe our sequential procedure for

inferring the structural model’s parameters from the joint distribution of these observations.

In the procedure’s first stage, we treat the exit thresholds (α1, . . . , αT ) ≡ ᾱT as pa-

rameters to be estimated jointly with the parameters that determine the evolution of St.

The procedure’s second stage recovers the sequence of fixed costs κt up to scale using the

first-stage estimates, an assumed value of the discount factor δ, and the Bellman equation.

Unlike Rust’s (1987) nested fixed-point algorithm, our approach to inference separates the

estimation of most of the model’s parameters from the repeated solution of the entrepreneurs’

dynamic programming problem. This separation brings with it a distinct advantage: We es-

timate many of the model’s structural parameters without assuming that the entrepreneurs’

dynamic program is stationary or otherwise specifying firms’ production possibilities beyond

the sample period.

We use the structural model to estimate the content of entrepreneurs’ information without

actually having that information, so it is particularly important to understand the sources

of the model’s identification. We demonstrate next that a sample of infinitely many firm

histories identifies the exit thresholds and the parameters governing the evolution of St, and

we discuss the features of the data that are particularly influential in this inference. We

then consider the first-stage estimation of these parameters and policies using maximum

likelihood. Finally, we show how to recover the sequence of fixed costs in the procedure’s

second stage. With these in hand, we can calculate the value of the firm’s option to exit and

conduct other policy experiments.
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4.1 First-Stage Identification

The structural model decomposes the fluctuations of St into four components, the firm’s

scale (R), the transitory shock observed by the entrepreneur (Wt), and the transitory and

persistent shocks unobserved by the entrepreneur (At and Ut). In our procedure’s first stage,

we estimate the parameters that characterize these shocks’ distributions— ν2, γ2, ρ, σ2
1, σ2,

η2, µ1, and µ— and the entrepreneurs’ optimal exit thresholds ᾱT . The proof of the following

proposition demonstrates that observations of firm histories identify these parameters and

policies.

Proposition. If T ≥ 3, then the joint distribution of
(
S̄T , N̄T+1

)
uniquely determines ν2,

γ2, ρ, σ2
1, σ2, η2, µ1, µ, and ᾱT .

The appendix contains the proposition’s proof. Here we describe the three key insights that

it requires.

Blundell and Preston (1998) identify a consumer’s permanent income process using the

covariance of his current income (a noisy proxy) with his consumption (a forward-looking

choice). The proof adapts their approach to the identification of the parameters that govern

Xt. Consider, for example, the identification of V [X1] = σ2
1 + η2 from the joint distribution

of S1 and N2. The observed value of S1 is a noisy proxy for the model’s true state variable,

Â1 = µ1 + λ1 (X1 − µ1). Its covariance with the forward looking choice N2 is

E[S1N2]− E[S1]E[N2] =
√
V [X1]φ

(
Φ−1 (1− E[N2])

)
, (6)

where Φ(·) and φ(·) are the c.d.f. and p.d.f. of a standard normal random variable. This

immediately identifies V [X1]. Intuitively, if S1 is very useful for predicting N2 in a linear-

in-probabilities model, then much of its variation must arise from the factor that influences

survival, X1. Otherwise, we conclude that R + W1 dominates its variation. The expression

in (6) translates this intuition into a quantitative measure.9

The model contains two distinct sources of persistence in St, autocorrelation of At and

variation of R across firms. Because the model is nonlinear, standard dynamic panel data

techniques for distinguishing between them, such as Blundell and Bond’s (1998), are inap-

plicable. We instead exploit the different implications of random effects and autocorrelation

9Olley and Pakes (1996), Pavcnik (2002), and Levinsohn and Petrin (2003) follow a related identification
strategy. They use nonlinear functions of a continuous decision (investment or materials use) to replace a
firm’s unobserved productivity in the estimation of a production function. We cannot apply this strategy,
because the forward-looking decision we employ is discrete.
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for the impact of selection on the evolution of St. Consider the regression of S2 on S1. In

the absence of selection, this regression would be linear. Because X1 and R contribute to its

error, the regression conditional upon survival will also include a Heckman (1979) selection

correction. That is

E[S2 − E[S2]|S1, N2 = 1] = %(S1 − E[S1]) + ςm(S1). (7)

In (7), m(S1) is the relevant inverse Mills’ ratio, which is known. Hence, we can obtain the

coefficients % and ς from this regression function.

The key to using (7) to separately identify cov[X2, X1] from ν2 is that these two sources

of persistence have very different implications for the Heckman selection correction. Given

S1, learning that the firm survived increases the best estimate of X1 and reduces the best

estimate of R. Hence if persistence in St arises mostly from variation in R, then the coefficient

multiplying the Heckman selection correction is negative. If instead the variance of R is small

relative to the variability and persistence of Xt, then selection increases the expectation of S2.

In addition to this qualitative information, % and ς determine cov[X2, X1] and ν2 uniquely.

We demonstrate this in the proposition’s proof.

The final key insight required by the proof is that of Pakes and Ericson (1998). As we

noted in Section 2, their procedure applied directly to the original data cannot distinguish

between true entrepreneurial learning, transitory shocks observed by entrepreneurs, and per-

manent differences in firms’ scales. To reliably apply their procedure to a sample generated

by our model, we must instead consider the joint distribution of X̄T . From this we can

calculate the linear regression of X3 on X2 and X1,

X3 − E[X3] = β32(X2 − E[X2]) + β31(X1 − E[X1]) + V3. (8)

In (8), V3 is a composite error term. If η2 equals zero, then there is no scope for entrepreneurial

learning, β31 = 0, and β32 = ρ. Otherwise, β31 > 0 and β32 < ρ. It is straightforward to write

β31 and β32 as explicit functions of the model’s structural parameters. These expressions

show that these coefficients directly reveal ρ and η2.

4.2 First-Stage Estimation

With the identification of the parameters’ and policies’ established, we now proceed to con-

sider their estimation using maximum likelihood. This poses no conceptual problems, but

computation of the likelihood is nontrivial because the model involves repeated selection

on the basis of a persistent latent state variable. In the following, we denote the vector of
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parameters and policies estimated in the first-stage with $. Our method of calculating the

likelihood function follows the non-Gaussian state-space approach of Kitagawa (1987), which

utilizes the likelihood’s prediction-error decomposition. If we condition on the realization of

R, then this is

fȲT+1

(
Y T+1|R; $

)
= fY1 (Y1|R; $)

T+1∏
t=2

fYt

(
Yt|Y t−1, R; $

)
, (9)

where Yt ≡ (St, Nt) unless t = T + 1, in which case it equals NT+1.

The first term in (9), the density of Y1, is known. We calculate the prediction-error de-

composition’s remaining terms recursively. We initialize the recursion with fÂ1
(â1|Y1, R; $),

which is normal with known mean and variance. To calculate the likelihood function’s re-

maining terms, suppose that fÂt−1

(
ât−1|Ȳt−1, R; $

)
is known. We consider three separate

cases. If the firm exits production following period t− 1, then Nt = 0 and the relevant term

in the likelihood function is the probability of exit conditional on the observed history.

fYt

(
(0, 0)|Ȳt−1, R; $

)
=

∫ αt−1

−∞
fÂt−1

(
ât−1|Ȳt−1, R; $

)
dât−1 (10)

Following exit, the evolution of St is trivial and the remaining terms in the prediction error

decomposition identically equal one. In the second case, the firm continues production fol-

lowing period t− 1, but t = T + 1 so the data do not contain the realized value of St. In this

case of right censoring, the final term in the prediction error decomposition is

fYT+1

(
1|ȲT , R; $

)
=

∫ ∞

αT

fÂT

(
âT |ȲT , R; $

)
dâT (11)

In the final case, the firm produces in period t < T + 1, so Nt = 1. For this case, the

term of interest in the likelihood function can be written as

fYt

(
(St, 1)|Ȳt−1, R; $

)
=

∫ ∞

αt−1

1√
ρ2Σt−1 + σ2 + η2 + γ2

φ

(
St − µ− ρât−1 −R√
ρ2Σt−1 + σ2 + η2 + γ2

)

× fÂt−1

(
ât−1|Ȳt−1, R; $

)
dât−1

(12)

Equation (12) follows from Bayes’ rule and the definition of Ât−1.

This final case is the only one in which we wish to continue the recursion. To do so, we

must calculate fÂt

(
ât|Ȳt, R; $

)
, which is

fÂt

(
ât|Ȳt, R; $

)
=

∫∞
αt−1

fÂt,St
(ât, St|ât−1, R; $) fÂt−1

(
ât−1|Ȳt−1, R; $

)
dât−1

fYt

(
Yt|Ȳt−1, R; $

) . (13)
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The distribution of
(
Ât, St

)
conditional on Ât−1 and R is bivariate normal, so both terms in

the integrand of (13) are known. Therefore, the recursion can continue.

Iterating on (12) and (13) until the individual either exits or is right censored produces

the likelihood function at any given choice of $ for a fixed value of R. We obtain the

unconditional likelihood function by calculating the expectation of this density with respect

to R. In practice, evaluating the likelihood function requires approximating these integrals.

We do so using Gaussian quadrature procedures. Maximization of the resulting likelihood

function is straightforward; and the corresponding maximum-likelihood estimate, $̂, has the

usual distributional properties.

4.3 Second-Stage Estimation

With $̂ in hand, we can proceed to exploit the entrepreneur’s Bellman equation to estimate

the remaining identified structural parameters. First, we fix the discount factor δ at a

value consistent with a 5% annual rate of interest. Rust’s (1994) nonidentification result

for Markovian dynamic discrete choice models shows that this assumption is unavoidable.

Next, note that the Bellman equation (5) and the linearity of the producer’s surplus, ε−1eSt ,

and the fixed costs, eRκt, in eR together imply that exit decisions are governed by the scaled

Bellman equation

gt

(
Ât, Xt + Wt

)
= eXt+Wt − εκt + δ max{0,Et[gt+1(Ât+1, Xt+1 + Wt+1)]}. (14)

In (14), gt

(
Ât, Xt + Wt

)
= εvt

(
Ât, St, R

)
/eR.10 Given an infinite sequence {εκt} and the

parameters estimated in the first stage, we can iterate equation (14) to recover the scaled

value function gt. Obviously, multiplying ε by a positive constant and dividing the sequence

{κt} by that same constant yields an observationally equivalent model. Therefore, we will

focus on estimating {εκt}. This only recovers fixed costs up to scale, but we use this to

express a firm’s fixed costs as a fraction of its expected first-period surplus, εκt/E[eX1+W1 ].

Note that this ratio does not depend on its intended scale R.11

The Bellman equation (14) suggests a simple procedure for estimating {εκt} from the first-

stage estimates of the model’s other parameters and of the exit thresholds: Choose the scaled

10This alternative representation of the exit decision process clarifies the contribution of R to the data-
generating process. It shows that R influences only the firm’s sales and not its exit decisions.

11Alternatively, we could have used the ratio εκt/E[eXt+Wt |Nt = 1]. This measure of period t’s fixed
costs relative to the expected producer surplus would reflect both the evolution of fixed costs and the typical
growth of surviving firms, so it is not as easily interpreted as the expression we prefer.
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fixed costs so that the corresponding optimal exit thresholds mimic the estimated thresholds.

A practical problem is that we do not have estimates of αt for t > T . We circumvent this

in our application by assuming that εκt follows an annual cycle. That is, εκt+12 = εκt. This

specification of the scaled fixed costs captures the annual lease cycles mentioned in Section

3. The first T optimal exit thresholds can then be expressed as a known smooth function

of $ and εκ̄12, ᾱT ($, εκ̄12). We estimate the vector of fixed costs with the minimizer of the

distance between these optimal thresholds and their first-stage estimates, ˆ̄αT ,

ε̂κ̄12 = arg min
εκ̄12

(
ˆ̄αT − ᾱT ($̂, εκ̄12)

)′ V̂( ˆ̄αT )−1
(
ˆ̄αT − ᾱT ($̂, εκ̄12)

)
,

where V̂( ˆ̄αT ) is a consistent estimator for the variance-covariance matrix of ˆ̄αT . This estima-

tor of the scaled fixed costs has well-known statistical properties.

Once we have estimated {εκt}, it is straightforward to estimate the expected value of a

new firm relative to its expected first-period surplus. Recall from Subsection 3.4 that υeR

is the expected value of a new firm with intended scale R. The Bellman equation (14), the

first stage parametes, and {εκt} together yield ευ = E
[
g1

(
Â1, X1 + W1

)]
. Using this, we

can estimate the expected value of a new firm relative to its first-period producer’s surplus,

ευ/E[eX1+W1 ], by simply plugging in our estimates of these parameters. We can also easily

compute the value of a new firm if it must be operated in perpetuity. The difference between

these two gives the value of the option to close the firm.

5 Empirical Results

In this section, we report the results from estimating the model’s parameters by maximum

likelihood using the sample of 305 new bars described in Section 2. We first demonstrate

that the maximum likelihood estimate of η2 is zero. This implies that entrepreneurs observe

At without error and do no not learn. We then estimate a version of our model in which η2 is

constrained to equal zero. We find that post-entry idiosyncratic shocks have a half life of 47

months and account for approximately 60% of sales’ variance. The remaining 40% of sales’

variance is due to heterogeneity in pre-entry scale decisions. We conclude with a presentation

of the second-stage estimates of the model’s fixed costs and the policy experiments that yield

the value of the firm’s option to exit.
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5.1 First-Stage Estimates

We first discuss the estimation of η2, which determines the speed and extent of entrepreneurial

learning. Figure 1 summarizes our results. For values of η2 between zero and 0.45, it plots

the value of the likelihood function after enveloping out the other elements of $. The result

is clear: The likelihood function attains its maximum at η2 = 0. That is, our maximum like-

lihood estimates imply that entrepreneurs observe the persistent component of profit without

error. We have conducted the same exercise for several alternative specifications of our model,

and they have all yielded this result. Thus, we find no evidence that entrepreneurial learning

contributes to the dynamics of the firms in this sample.

Table 3 reports the first-stage maximum likelihood estimates of a version of our model in

which η2 is constrained to equal zero. Below each estimate is its asymptotic standard error,

which we calculated using the outer product estimate of the information matrix. Recall from

Section 2 that no firm in our sample exited following its sixth month. In light of our identi-

fication proof’s reliance on selection, this led us to suspect that our data are uninformative

regarding the sixth month’s exit threshold. To determine whether or not this was the case,

we fixed α6 at a variety of large and negative values and chose the other elements of $ to

maximize the likelihood function. The resulting parameter estimates are nearly invariant to

our choice of α6. Accordingly, we present here estimates based on setting α6 to −2.5.

Consider first the estimates of µ1, σ1, γ, and ν; which jointly determine the distribution

of firms’ initial sizes. The estimate of µ1, 0.069, is virtually identical to the unconditional

mean of firms’ initial size reported in Table 1. However, the standard error attached to this

estimate is relatively large, 0.055. The estimates of σ1, γ, and ν are 0.714, 0.167, and 0.581.

These imply that the standard deviation of S1 equals 0.94, which is above the estimated

standard deviation of 0.87. At these parameter estimates, the pre-entry choice of location

quality accounts for 38% of the variance of S1. The persistent post-entry shock accounts for

most of S1’s remaining variance. We conclude from this that entrepreneurs gain significant

information about their firm’s prospects immediately after entry. However, firms’ initial sales

also embody substantial heterogeneity of pre-entry scale decisions.

The parameters that govern the evolution of At are ρ, σ, and µ. The estimate of ρ is 0.985,

indicating that post-entry shocks have persistent effects on firms’ sizes. This is estimated

with great precision— its standard error equals 0.0002, so we can reject the hypothesis that

it equals one and Zt permanently changes firm sizes. This implies that the relatively small

firms that compose our sample do not obey Gibrat’s law even after correcting for selection.

An increase in Zt that increases current sales by one percent increases sales twelve and
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twenty-four months later by 0.84% and 0.70%.

The estimate of the intercept µ implies an estimate of the mean of At’s ergodic distribution

of 0.093, which is only slightly above our estimate of µ1. The difference between them is

insignificant at any conventional level. This implies that mean log sales would not grow

much in the absence of exits. Selection explains nearly all the growth in the data. We have

also estimated a version of the model with age-dependent intercepts, but do not reject the

assumption that the intercepts are constant.12 Thus, we do not find evidence of systematic

firm growth, such as that arising from the gradual acquisition of a clientele, as the firm ages.

The estimated standard deviation of Zt is 0.161. This implies that the standard deviation

of At’s ergodic distribution is 0.94. This is substantially and significantly above the estimate

of σ1, so the dispersion of an entering cohort’s sizes increases with its age in the absence of

exit. In fact, the dispersion of firm sizes neither increases nor decreases with the cohort’s

age, so selection offsets this underlying increase in variation.

The final estimates to report are those describing the entrepreneurs’ exit policy, ᾱ12. The

estimate of the initial exit threshold is −1.65. The implied probability that a firm exits

following its first month is 0.008. The estimated exit thresholds tend to rise with the firm’s

age. The estimate of α2 is −1.53, while that for α12 is −0.54. Entrepreneurs apparently

become more selective when deciding on continuation of their operations during the course

of the firms’ first year. There is no Bayesian learning in this specification of the model, and

we have estimated very little drift in average sales. Therefore, accounting for these changes

in the entrepreneurs’ exit policies requires parallel changes in their fixed costs. We measure

these changes below with the procedure’s second stage.

To help gauge how well the estimated model fits the data, Table 4 reports the implied

population values of the summary statistics that we considered in Section 2.13 Like the raw

exit rates in Table 1, the exit rates implied by our model are low in the first half of the year,

and high in the remainder. Substantial increases in mean sales again reflect the importance

of selection effects. Consistently with the data and despite the importance of selection, sales’

standard deviation does not decrease substantially as the cohort ages. Quantitatively, the

exit rates increase faster in the model than in the data. The estimated model’s exit rates in

the ninth and eleventh months are particularly high compared to their empirical counterparts.

Mean sales in the first 9 months are matched well by the model. The large selection effects

in the ninth and eleventh months, however, cause the model to overstate the growth of mean

sales between months 9 and 10 and months 11 and 12, and to generate a small decrease in

12The Appendix shows that such extensions of the model with age-dependent parameters are identified.
13We calculated these summary statistics using 100, 000 simulated firm histories from the estimated model.
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sales’ standard deviation in these months that is absent from the data.14

Similarly, Table 5 provides the population version of the nonparametric regression of sur-

viving firms’ log sales on their log sales in the previous and first months. Recall from Section

2 that its empirical counterpart shows that sales in the first month help predicting current

sales conditional on sales in the previous month. The model generates a similar pattern

of non-Markovian dynamics, even though the estimated model contains no entrepreneurial

learning–the source of non-Markovian dynamics emphasized by Pakes and Ericson (1998).

Instead, unobserved heterogeneity in the scale of operations and transitory shocks observed

by the entrepreneurs are sufficient to generate the observed non-Markovian dynamics in our

short panel of bars.

5.2 Second-Stage Estimates and the Value of the Option to Exit

Table 6 reports estimates of the fixed costs as a fraction of the average first-period producer

surplus, εκt/E[eX1+W1 ]. Below each estimated fixed cost is an estimate of its asymptotic

standard error.15 The most remarkable result is that the fixed costs in the first period are

some 10 times larger than the first period’s producer surplus. A claim on a surplus that is on

average above the per-period fixed costs in the remaining 11 months of the year compensates

for this somewhat. Note that the relative fixed costs are estimated to be particularly low

in the seventh month, reflecting the observed low exit rate after six months. We do not

estimate the fixed costs very precisely. The standard error on the first period’s cost is 1.80.

The other estimates’ standard errors are comparable to this when expressed as a fraction

of the corresponding fixed costs. However, all of the estimated fixed costs are statistically

different from zero at conventional sizes. Overall, the sum of the estimated fixed costs equals

14.59 times the expected first-period producer surplus. The standard error for this sum is

2.26.

Our estimates indicate that fixed costs are high at the start of each new year. We

interpret this as the effect of an annual lease cycle. Signing a lease for space or equipment

that is difficult to break effectively sinks its proscribed costs. This explains why exit rates

14We could pursue a better match of the data by allowing the variances of the structural shocks to vary
over time. The analysis in the Appendix shows that such an extended model is identified. However, we think
the simplicity of our present setup outweighs a slightly better match with the data.

15Because we set η2 = 0, the optimal exit thresholds follow an annual cycle. In this special case, we can
recover ε̂κ̄12 as the solution to a set of linear equations based on the assumed optimality of ̂̄α12. We calculate
these equations’ coefficients and intercepts by simulating a large number of firm histories that begin with
Ât = α̂t. The reported standard errors account for the resulting simulation error.
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are high near the end of the year, when next year’s lease costs can still be avoided, and low

at the beginning of the year, when the returns on the investment in the lease have not yet

materialized.

With estimates of the model’s structural parameters in hand, we finally compute the value

of the option to close a new firm. In the model, a newly created firm is worth 29.7 times

its expected first-period surplus. The value of the entrepreneur’s exit option is an important

component of this. Consider a hypothetical new firm that faces the same sales process as

the bars in our sample but has no option to exit. Our estimates imply that such a firm is a

liability: Its estimated value is −7.0 times its expected first-period surplus. The fixed costs’

standard errors naturally affect these estimates. The 95% confidence interval for a new firm’s

value is (22.8, 36.7), and the corresponding interval for its value if operated in perpetuity is

(−20.8, 6.7). Together, these estimates imply that the exit option accounts for 124% of the

value of a new firm. The corresponding 95% confidence interval is (0.75, 1.73). The width of

this interval is not small, but it does imply that the option to exit accounts for most of the

value of a new firm.

6 Conclusion

Risk and selection dominate a firm’s first year. Although new bars differ considerably in

their intended scales, persistent post-entry shocks account for the majority of their sales’

cross-sectional variation. Immediately after entry, only very unfavorable shocks induce an

entrepreneur to exit. As the firm’s first anniversary approaches, the entrepreneur raises her

standards for continuation. Firms’ exit rates correspondingly increase over the course of the

first year. In principle, this behavior is consistent with Bayesian learning about persistent

shocks: The entrepreneur delays her exit decision until her posterior beliefs about profitability

are sufficiently tight. However, our estimates indicate that entrepreneurs observe their bars’

persistent shocks without error. Instead, the increased selectivity reflects a substantial fixed

cost incurred at the beginning of each year.

We conclude that a new firm’s value arises mostly from the option to operate it only after

favorable shocks. Hence, an analysis of small business policy that ignores entrepreneurs’

exit decisions almost certainly fails to capture its primary effect on firms’ values. Our esti-

mates directly characterize these decisions as well as the informational differences between

entrepreneurs and policy makers with access only to public information. Hence, they can

support the quantitative evaluation of information-constrained policy interventions. One
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relevant example is the taxation of entrepreneurship.

The owner of an existing firm that expands by creating a new establishment faces a prob-

lem similar to that of an entering firm. In both cases, the new venture carries substantial risk.

However, the owner of an expanding firm has his previous experience as a guide. Presumably,

the new establishment imperfectly copies the firm’s older businesses. For the manufacturing

sector; Dunne, Roberts, and Samuelson (1988) documented that establishments founded by

expanding firms are larger and more likely to survive than other entrants without previous

industry experience. The measurement of how these new establishments’ first years depend

on their parent firms’ histories is a natural application for this paper’s framework. A related

application is the measurement of the sunk costs of exporting, which Roberts and Tybout

(1997) characterized for Columbian manufacturing. Our future research will investigate these

important aspects of firm growth.
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Appendix

The time-invariance of the model’s parameters plays a limited role in the proposition’s proof. To make this
explicit, we consider a slightly more general model in which the parameters vary over time. In obvious
notation, the parameters of this model are ν2, γ̄2

T , ρ̄T , σ̄2
T , η̄2

T , µ̄T , and ᾱT . In this appendix, we prove

Proposition. The distribution of
(
S̄T , N̄T+1

)
uniquely determines ν2; γ̄2

T ; λ1ρ2, ρ3, . . . , ρT ; σ2
1 + η2

1 , ρ2
2Σ1 +

σ2
2 , σ2

3 , . . . , σ2
T ; η2

2 , . . . , η2
T ; µ1, µ2 + ρ2µ1, µ3, . . . , µT ; and (α1 − µ1) /σ2

1 , α2, . . . , αT .

This proposition implies that all of the model’s parameters except µ1, α1, σ2
1 , η2

1 , σ2, and ρ2 are identified.
Complete identification requires one additional restriction, such as ρ2 = ρ3. For T ≥ 3, the model of Section
3 imposes this and additional restrictions. Hence the proposition stated in Section 4 follows as a corollary.

The proposition’s proof requires some new notation. Recall that St = Nt(Xt + Wt + R). Write the
transition for Xt conditional on X̄t−1 as Xt = βt

(
X̄t−1

)
+ Vt, with βt(X̄t−1) ≡ µt + ρtÂt−1 and Vt ≡

ρt(At−1 − Ât−1) + Zt + Ut. Note that the regression functions βt can be computed recursively using the
Kalman filter and that β1 = µ1. The disturbance Vt is normally distributed with mean zero and variance
ω2

t ≡ ρ2
t Σt−1 + σ2

t + η2
t and is independent of X̄t−1; the processes {Vt} and {Wt} and mutually independent

and independent over time. The recursive specification for the survival process is

Nt =

{
1 if Nt−1 = 1 and Xt−1 > τt−1

(
X̄t−2

)

0 otherwise
,

with τt

(
X̄t−1

) ≡ λ−1
t

[
αt − βt

(
X̄t−1

)]
+ βt

(
X̄t−1

)
. Note that βt and τt are both affine functions. They

are therefore uniquely determined by their restrictions to any set in Rt−1 that is not contained in a linear
subspace of Rt−1.

The proof proceeds in four steps. We first prove

Lemma 1 (Identification of the distribution of intended scales). ν2 is identified from the distribution
of (S̄2, N̄2).

Next, define scaled sales to be S∗t ≡ Nt(St −R). We exploit Lemma 1 to prove

Lemma 2 (Identification of the scaled data distribution). The distribution of (S̄∗T , N̄T+1) is identified
from the distribution of (S̄T , N̄T+1).

Lemma 2 ensures that we can apply

Lemma 3 (Identification of γ̄2
T , ω̄2

T , β̄T , and τ̄T ). The distribution of
(
S̄∗T , N̄T+1

)
uniquely determines

the parameters ω̄2
T and γ̄2

T and the functions β̄T and τ̄T .

With these lemmas in place, Lemma 4 delivers the proposition’s conclusion.

Lemma 4 (Identification of the structural parameters from ω̄T , β̄T , and τ̄T ). Given ω̄T , β̄T , and τ̄T ,
the following parameters of the structural model are uniquely determined: λ1ρ2, ρ3, . . . , ρT ; σ2

1 + η2
1 , ρ2

2Σ1 +
σ2

2 , σ2
3 , . . . , σ2

T ; η2
2 , . . . , η2

T ; µ1, µ2 + ρ2µ1, µ3, . . . , µT ; and (α1 − µ1) /σ2
1 , α2, . . . , αT .

We now present the lemmas’ proofs.
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Proof of Lemma 1. Write the regression of X1 on S1 as X1 = ι + ζS1 + E1, where ζ ≡ ω2
1/

(
ω2

1 + γ2
1 + ν2

)
,

ι ≡ β1 (1− ζ), and E1 ≡ (1− ζ) (X1 − β1)− ζ (W1 + R). By construction, E1⊥⊥S1, E [E1] = 0, and V [E1] =
χ2 ≡ ω2

1 (1− ζ). Hence, we can write

Pr (N2 = 1|S1) = Φ
(

ι + ζS1 − τ1

χ

)
.

Because Pr (N2 = 1|S1) is data, this identifies χ/ζ = γ2
1 + ν2 and (ι− τ1) /χ. Because V [S1] = ω2

1 + γ2
1 + ν2

and E[S1] = β1 are data, we can also identify ω2
1 , ζ, and χ2.

Next, consider the autoregression of S2 on S1 without accounting for selection, E [S2|S1] = ξ+ψS1. Here,
ψ ≡ (

β21ω
2
1 + ν2

)
/

(
ω2

1 + ν2 + γ2
1

)
and ξ ≡ β2(β1) − ψβ1, with β21 ≡ dβ2(x)/dx = ρ2λ1. The residual from

this regression is E2 ≡ (β21 − ψ) (X1 − β1) + (1− ψ)R + V2 + W2 − ψW1. We have that

E [E1E2] = (1− ζ) (β21 − ψ) ω2
1 + ζψ

(
γ2
1 + ν2

)− ζν2.

Because ζ/χ, (ι− τ1) /χ, and χ are identified and (see Heckman, 1979)

E [S2|S1, N2 = 1] = ξ + ψS1 +
E [E1E2]

χ

φ
(

ι+ζS1−τ1
χ

)

Φ
(

ι+ζS1−τ1
χ

)

both ψ and E [E1E2] are identified. Using that ζ, ω2
1 , and γ2

1 + ν2 are already known, this identifies ν2.

Proof of Lemma 2. Denote the densities of S̄t and S̄∗t on {Nt = 1} by fS̄t
(·|Nt = 1) and fS̄∗t

(·|Nt = 1),
respectively. Because R is independent of (S̄∗t , N̄T+1), we have that

fS̄t

(
s1, . . . , st|N̄T+1

)
=

∫ ∞

−∞
fS̄∗t

(
s1 − r, . . . , st − r|N̄T+1

)
φ

( r

ν

)
dr (15)

on {Nt = 1}. The left-hand side of (15) is data and ν is identified by Lemma 1. Thus, a standard de-
convolution argument establishes that fS̄∗t

(·|N̄T+1) is identified on {Nt = 1}.16 This immediately identifies
the distributions of S̄∗T on {NT+1 = 1} and {NT = 1, NT+1 = 0}. Using that S∗t+1 = · · · = S∗T = 0 on
{Nt+1 = 0}, we can in addition identify the distribution of S̄∗T on {Nt = 1, Nt+1 = 0} for t = 1, . . . , T − 1.
Because the distribution of N̄T+1 is data, this identifies the distribution of (S̄∗T , NT+1).

Proof of Lemma 3. The proof proceeds recursively. It is helpful to define ~S∗t and ~Nt+1 to be the random
vectors (S∗t , . . . , S∗T ) and (Nt+1, . . . , NT+1). Denote their joint density with X̄t−1 by f~S∗t , ~Nt+1,X̄t−1

(·). We
begin with the assumption that this density for a particular age t is known. For t = 1, f~S∗1 , ~N2,X̄0

(·) is simply
the density of the data. We first show that βt, ω2

t , τt and fWt can be recovered from f~S∗t , ~Nt+1

(·|X̄t−1

)
. We

then demonstrate that these parameters in turn identify f~S∗t+1, ~Nt+2,X̄t
(·) if t < T , allowing the recursion to

continue.
We begin with the identification of βt, ω2

t and τt. This requires only the knowledge of the expected value
of S∗t conditional on X̄t−1, the conditional probability of survival, and the expected value of S∗t given this

16See Feller (1971) for an introduction to deconvolution. Formally, the right-hand side of (15) is a t-variate
convolution of fS̄∗t

(·|Nt = 1) and the singular t-variate density of (R, . . . , R).
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history and survival to period t + 1. On {Nt = 1}, these are

E[S∗t |X̄t−1] = βt(X̄t−1),

E[Nt+1|X̄t−1] = 1− Φ
(

τt(X̄t−1)− βt(X̄t−1)
ωt

)
, and

E[S∗t |X̄t−1, Nt+1 = 1] = βt(X̄t−1) + ωt

φ
(

τt(X̄t−1)−βt(X̄t−1)
ωt

)

1− Φ
(

τt(X̄t−1)−βt(X̄t−1)
ωt

) ,

where Φ(·) and φ(·) are the cumulative distribution function and density function of a standard normal
random variable. Because the distribution of (S∗t , Nt+1) conditional on X̄t−1 is assumed to be known, these
three equations immediately yield ω2

t and the restrictions of βt and τt to the support of X̄t−1 on {Nt = 1}.
Because the support of X̄t−1 on {Nt = 1} is not contained in any linear subspace of Rt−1, this identifies βt

and τt.
To obtain γ2

t , note that the probability density of S∗t conditional on X̄t−1 can be written as

fS∗t

(
s|X̄t−1

)
=

∫ ∞

−∞

1
ωt

φ

(
x− βt

(
X̄t−1

)

ωt

)
φ

(
s− x

γt

)
dx (16)

on {Nt = 1}. Applying a standard deconvolution argument establishes that γ2
t is identified.

We will now show that f~S∗t+1, ~Nt+2,X̄t
(·) is identified. The independence of Wt from ~Wt+1 and X̄T im-

plies that the joint distribution of Wt and Xt conditional upon
(
X̄t−1, ~S∗t+1,

~Nt+1

)
displays independence.

Therefore, the probability density of S∗t conditional on these variables is

fS∗t

(
s|X̄t−1, ~S∗t+1, ~Nt+1

)
=

∫ ∞

−∞
fXt

(
x|X̄t−1, ~S∗t+1, ~Nt+1

)
φ

(
s− x

γt

)
dx (17)

on {Nt = 1}. The left-hand side of (17) and fWt are known, so deconvolution yields fXt

(
·|X̄t−1, ~S∗t+1,

~Nt+1

)

on {Nt = 1}. We can immediately recover the distribution of
(
X̄t, ~S∗t+1,

~Nt+1

)
on {Nt+1 = 1} ⊂ {Nt = 1}

by multiplying this conditional distribution by the known joint distribution of the conditioning variables.
Using that both ~S∗t+1 and ~Nt+1 are identically zero on {Nt+1 = 0}, we can then construct the distribution

of
(
X̄t, ~S∗t+1,

~Nt+1

)
. Thus, the recursion may continue.

Proof of Lemma 4. This proof is straightforward. It is available from the authors upon request.
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Table 1: Summary Statistics from the First 13 Months in the Lives of New Texas Bars(i)

Age(ii) Firms Sales’ Mean(iii) Sales’ Standard Deviation Exit Rate(iv)

1 305 0.06 0.87 0.003

2 304 0.08 0.89 0.016

3 299 0.10 0.86 0.007

4 297 0.11 0.85 0.020

5 291 0.12 0.85 0.017

6 286 0.11 0.87 0.000

7 286 0.11 0.89 0.028

8 278 0.17 0.84 0.004

9 277 0.17 0.86 0.032

10 268 0.20 0.86 0.019

11 263 0.20 0.89 0.042

12 252 0.23 0.89 0.032

13 244 0.27 0.87 0.000

Notes: (i) See the text for details regarding the sample’s construction. (ii) Age is measured

in months and equals one for a firm filing its first tax return. (iii) Sales are measured in

logarithms and are relative to the sales of all establishments selling alcoholic beverages for

on-premise consumption, whether or not we classify them as bars. (iv) The exit rate is defined

as the number of firms operating in month t that do not operate in month t + 1 divided by

the number of firms operating in month t.
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Table 2: Regression Estimates of Sales on Previous and First Months’ Sales(i)

Logarithm of Sales in

Age(ii) Previous Month First Month

3 0.809 0.154

(0.010) (0.010)

4 0.778 0.190

(0.008) (0.008)

5 0.942 0.021

(0.008) (0.008)

6 0.859 0.088

(0.008) (0.008)

7 0.880 0.086

(0.010) (0.009)

8 0.851 0.132

(0.009) (0.008)

9 0.905 0.073

(0.005) (0.005)

10 0.916 0.058

(0.006) (0.006)

11 0.894 0.062

(0.006) (0.006)

12 0.830 0.122

(0.009) (0.007)

13 0.822 0.168

(0.008) (0.007)

Notes: (i) For the third to thirteenth months, this table reports Powell, Stock, and Stoker’s

(1989) instrumental variable density-weighted average derivative estimates for single-index

regression models of log sales on the logarithms of sales in the previous and first months.

Standard errors are reported in parentheses below each estimate. For each month, the es-

timation was conducted using the sample of firms that survived to that month. (ii) Age is

measured in months and equals one for a firm filing its first tax return.
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Table 3: Maximum Likelihood Estimates(i)

Parameter σ1 σ ρ γ ν µ1 µ

Estimate 0.714 0.161 0.985 0.167 0.581 0.069 0.0014

Standard Error(ii) (0.076) (0.005) (0.000) (0.004) (0.000) (0.055) (0.0030)

Parameter α1 α2 α3 α4 α5 α6

Estimate -1.65 -1.53 -1.44 -1.38 -1.34 -2.50

Standard Error(ii) (0.068) (0.038) (0.049) (0.029) (0.033) (·)

Parameter α7 α8 α9 α10 α11 α12

Estimate -1.22 -1.26 -0.83 -0.79 -0.64 -0.54

Standard Error(ii) (0.032) (0.063) (0.040) (0.039) (0.040) (0.025)

Notes: (i) This specification assumes that entrepreneurs face no signal extraction problem

(η2 = 0). (ii) The standard errors are calculated using an estimate of the information matrix

based on the outer product of the scores. See the text for further details.
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Table 4: Model Summary Statistics(i)

Age(ii) Firms(iii) Sales’ Mean Sales’ Standard Deviation Exit Rate(iv)

1 100.0 0.07 0.94 0.008

2 99.2 0.08 0.93 0.007

3 98.5 0.10 0.93 0.007

4 97.8 0.11 0.92 0.007

5 97.1 0.12 0.92 0.006

6 96.5 0.13 0.92 0.000

7 96.5 0.13 0.93 0.016

8 95.0 0.15 0.92 0.006

9 94.5 0.16 0.92 0.069

10 88.0 0.25 0.89 0.026

11 85.6 0.28 0.88 0.053

12 81.1 0.33 0.86 0.049

Notes: (i) The reported statistics are calculated from a synthetic sample of 100, 000 firm

histories drawn from the estimated model. (ii) Age is measured in months and equals one

for a newly born firm. (iii) The number of firms is measured in thousands. (iv) The exit rate

is defined as the number of firms operating in month t that do not operate in month t + 1

divided by the number of firms operating in month t.
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Table 5: Model Population Regression of Sales on Previous and First Months’ Sales(i)

Logarithm of Sales in

Age(ii) Previous Month First Month

3 0.663 0.325

4 0.705 0.238

5 0.765 0.191

6 0.797 0.150

7 0.818 0.142

8 0.842 0.119

9 0.867 0.123

10 0.839 0.114

11 0.872 0.092

12 0.875 0.075

Notes: (i) For the third to twelfth months, this table reports the density-weighted average

derivatives from the regression of log sales on the logarithms of sales in the previous and first

months for surviving firms. These are calculated by applying Powell, Stock, and Stoker’s

(1989) estimator to a synthetic sample of 100, 000 firm histories drawn from the estimated

model. (ii) Age is measured in months and equals one for a newly born firm.
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Table 6: Estimated Fixed Costs as Fractions of First Month’s Producer’s Surplus(i)

Age(ii) 1 2 3 4 5 6

E[eR]εκ/E[eS1 ] 10.23 0.19 0.24 0.30 0.33 0.44

(1.80) (0.06) (0.05) (0.06) (0.06) (0.05)

Age(ii) 7 8 9 10 11 12

E[eR]εκ/E[eS1 ] 0.06 0.28 0.21 0.68 0.55 1.09

(0.00)(iii) (0.03) (0.02) (0.19) (0.14) (0.40)

Notes: (i) This table reports the minimum-distance estimates of each month’s scaled fixed

costs as described in Subsection 4.3. (ii) Age is measured in months and equals one for a

firm filing its first tax return. (iii) The reported standard error is less than 0.01.
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Figure 1: Maximum Likelihood Estimation of η2
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