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Since the invention of the alternating gradient principle and the

subsequent design of the Brookhaven and CERN proton-synchrotrons

based on this principle, there has been a rapid evolution of the mathe-

matical and physical techniques applicable to charged particle optics.

In this report a matrix algebra formalism will be used to develop the

essential principles governing the design of charged particle beam

transport systems, with a particular emphasis on the design of high-

energy magnetic spectrometers. A notation introduced by John Streib(l)

has been found to be ~seful in conveying the essential physical principles

dictating the design of such beam transport systems. ln particular to

first order, the momentum dispersion, the momentum resolution, the

particle path length, and the necessary and sufficient conditions for zero

dispersion, achromaticity, and isochronicity may all be expressed as

simple integrals of particular first-order trajectories (matrix elements)

characterizing a system.

This formulation provides direct physical insight into the design of

beam transport systems and charged particle spectrometers. An intuitive

grasp of the mechanism of second-order aberrations also results from

this formalism; for example, the effects of magnetic symmetry on the

minimization or elimination ofsecond-order aberrations is immediately

apparent.

.—
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The equations of

formalism tintroduced,

Physical examples will
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motion will be derived and then the matrix

developed, and evolved into useful theorems.

be given to illustrate the applicability of the

formalism to the design of specific spectrometers. It is hoped that the

information supplied will provide the reader with the necessary tools so

that he can design any beam transport system or spectrometer suited to

his particular needs.

The theory has been developed to second order in a Taylor expan-

sion about a central trajectory, characterizing the system. This seems to

be adequate for most high-energy physics applications. For studying

details beyond second order, we have found computer ray tracing

programs to be the best technique for verification of matrix calculations,

and as a means for further refinement of the optics if needed.

.ln the design of actual systems for high-energy beam transport

applications, it has proved convenient to express the results via a multi-

polcexpansion about a central trajectory. in this expansion, the constant

tcrrn proportional to the Iicld strc]lgth at the ccntra] trajectory is the

dipole term. The term proporti(~n~~l to the first derivative of the field

(with respect to the transverse dinlcnsi(lns) about the central tr:ijcctory

is a quadrupolc term and the second derivative with respect to the trans-

verse dimensions is a sextupole tcrrn, etc.

A considerable design simplification results at high cncrgics if the

dipole, quadruple, and sextupole functions arc physically separated

stich that cross-product terms among them do not appear, and if the

fringing field effects are small compared to the contributions of the

multipole elements comprising the systcm. At the risk of oversimplifica-

tion, the basic function of the multipole elements may bc identified in

the following way: The purpose of the dipole element(s) is to bend the—
central trajectory of the systcm and disperse the beam; th;it is, it is the

means of providing the first-order nlomcntLlnl dispersion for the systcm.

The quadruple etement(s) generate the first-order irn:lging. The sextu-

pole terms couple with the second-order aberrations; and a scxtl]polc

element introduced into the systcm is :1 mechanism for minimizing or

etirninating a particuliir second-order aberration that may h:lve been

generated by dipole or quadrupotc elements.

Quadruple elements may bc introduced in any CJIICof (hrcc

chartictcristicfOrms: (/)via an actu:ll physicul qu:tdrupolc consisting (>f

four poles such that a first fitldderivative exists in

about the central traicct(~ry~ (2)-via :i rotated input

the fictd expansion

or output face of a

—
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bending magnet; and (3) via a transverse field gradient in the dipole

elements of the system. Clearly any one of these three fundamental

mechanisms may be used as a means of achieving first-order imaging

in a system. Of course dipole elements will tend to image in the radial

bending plane independent of whether a transverse field derivative does

or does not exist in the system, but imaging perpendicular to the plane

of bend is not possible without the introduction of a first-field

derivative.

In addition to their fundamental purpose, dipoles and quadruples

will also introduce higher-order aberrations. If these aberrations are

second order, they may be eliminated or at least modified by the intro-

duction of sextupole elements at appropriate locations.

In regions of zero dispersion, a sextupole will couple with and

modify only geometric aberrations. However, in a region where momen-

tum dispersion is present, sextupoles will also couple with and modify

chromatic aberrations.

Similar to the quadruple, a sextupole element may be generated in

one of several ways, first by incorporating an actual sextupole, that is,

a six-pole magnet, into the system. However, any mechanism which

introduces a second derivative of the field with respect to the transverse

dimensions is, in effect, introducing a sextupole component. Thus a

second-order curved surface on the entrance or exit face of a bending

magnet or a second-order transverse curvature on the pole surfiaces of a

bending magnet is also a sextupole component.

As illustrations of systems possessing dipole, quadruple, and

sextupole elements, consider _the n = + double-focusing spectrometer

which is widely used for low- and medium-energy physics applications.

Clearly there is a dipole element resulting from the presence of a

magnetic field component along the central trajectory of the spectrom-

eter. A distributed quadruple element exists as a consequence of the

~~= + field gradient. In this particular case, since the transverse imaging

forces are proportional to nl/2 and the radial imaging forces are propor-

tional to (1 – n)l’2, the restoring forces are equal in both planes, hence

the reason for the double focusing properties. In addition to the first

derivative of the field )7 = (rO/BO)(6B/6r), there are usually second- and

higher-order transverse field derivatives present. The second derivative

of the field ~ = +(r~/BO)(62B/br2j introduces a distributed sextupole

along the entire length of the spectrometer. Thus to second order a

typical n = + spectrometer consists of a single dipole with a distributed,

—
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quadrupoie andsextupole superimposed along the entire length of the

dipole element. Higher-order multipoles mayalso represent, but will

be ignored in this discussion.

[n the preceding example the dipole, quadruple, and sextupole

functions are integrated in the same magnet. However, in many high-

energy applications itis often more economical to use separate magnetic

elements for each of the multipole functions. Consider also the SLAC

spectrometers which provide examples of solutions which combine the

multipole functions into a single magnet as well as solutions using

separate multipole elements. Three spectrometers have been designed:

one for a maximum energy of 1.6 GeV/c to study large backward angle

scattering processes, a second for 8 GeV/c to study intermediate for-

ward angle production processes, and finally a 20-GeV/c spectrometer

for small forward angle production. All of these instruments are to be

used in conjunction with primary electron and gamma-ray energies in

the range of 10-20 GeV/c.

The 1.6-GeV/c instrument (Fig. 1) is a single magnet, bending the

Focal plane

Po

~
&

Uniform field regions

Po
Shadedareas indicate

regions possessing sextupole

\_
components of the field

\

4LPI

FIG. 1. 1.6-GeVlc spectrometer.
-.

—
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central trajectory a total of 90°, thus constituting the dipole contribution

to the optics of the system. Two quadruple elements are present in the

magnet; i.e.. input and output pole faces of the magnet are rotated so as

to provide transverse focusing. and the 90° bend provides radial

focusing via the (1 – }Z)12factor characteristic of any dipole magnet.

The net optical result is point-to-point imaging in the plane of bend and

parallel-to-point imaging in the plane transverse to the plane of bend.

The solid angle and resolution requirements of the 1.6-GeV/c spectrom-

eter are such that three sextupole components are needed to achieve

the required performance. In this application, the sextupoles are

generated by machining an appropriate transverse second-order curva-

ture on the magnet pole face at three different locations along the 90°

bend of the system. In summary, the 1.6-GeV/c spectrometer consists of

one dipole, bending a total of 902, two quadruple elements, and a sex-

tupole triplet with the quadruple and sextupole strengths chosen to

provide the first- and second-order properties demanded of the system.

Momentum-measuring counter array,

\

Production-angle-measuring counter array

\
\ >,

>~
?-.

15°
Q3 ~~ ““ I

I o

,,

o

, :;,,.

+- -gg----- “::4:’”

I

~Total path -
I

w

FIG. 2. Magnet arrangement, 8-GeV/c spectrometer.

Optically, the 8-GeV/c spectrometer (Fig. 2) is relatively

consists of two dipoles, each bending 159, making a total of a

simple. It

30° bend,

.—

and three quadruples (two preceding and one following the dipole

elements) to provide point-to-point imaging in the plane of bend and

parallel-to-point imagitig ii the plane transverse to the bending plane.

The solid angle and resolution requirements of the instrument are
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sufficiently modest that no sextupole components are needed. The

penalty paid for not adding sextupole components is that the focal plane

angle with respect to the optic axis at the end of the system is a relatively

small angle (13.70). With the addition of one sextupole element near the

end of the system, the focal plane could have been rotated to a much

larger angle. However, the 13.7° angle was acceptable for the focal plane

counter array and as such it was ultimately decided to omit the addi-

tional sextupole element.

The 20-GeV/c spectrometer (Fig. 3) is a more complex design. The

increased momentum requires an f B. d] twice that of the 8-GeV’cd
spectrometer. The final instrument is composed of four dipole elements

(bending magnets), two bending in one sense and the other two bending

in the opposite sense, so the beam emanating from the instrument is

parallel to the incident primary particles. The first-order imaging is

achieved via four quadruples. The chromatic aberrations generated by

the quadruples in this system are more serious than in the 8-GeV/c case

because of an intermediate image required at the midpoint of the system.

As a result, the focal plane angle with respect to the central trajectory

would have been in the range of2–4°. As a consequence, sextupoles were

introduced in order to rotate the focal plane to a more satisfactory angle

for the counter array. A final compromise placed the focal plane angle

at 45” with respect to the optic axis of the system via the introduction of

three sextupoles. Thus the 20-GeV/c spectrometer consists of four

dipoles, with an intermediate crossover following the first two dipoles. a

quadruple triplet to achieve first-order imaging, and a sextupole triplet

to compensate for the chromatic

poles. Optically, the 20-GeV/c

aberrations introduced by the quadru-

‘spectrometer is very similar to the

Focal

plane

Q

Q
Q

Q

B

—

FIG. 3. 20-GeV/c spectronleter.
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1.6-GeV/c spectrometer and yet physically it is radically different because

of the method of introducin& the various multipole components.

Having provided some representative examples of spectrometer

design, we now wish to introduce and develop the theoretical tools for

creating other designs.

II. A General First- and Second-Order Theory of

Beam Transport Optics

The fundamental objective is to study the trajectories described b}

charged particles in a static magnetic field. To maintain the desired

generality, only one major restriction will be imposed on the field con-

figuration: Relative to a plane that will be designated as the magnetic

midplane, the magnetic scalar potential v shall be an odd function in the

transverse coordinate ~’ (the direction perpendicular to the midplane),

i.e., P(.Y,}’, ?) = –v(.Y, –j’, t). This restriction greatly simplifies the

calculations, and from experience in designing beam transport systems

it appears that for most applications there is little, if any, advantage to

be gained from a more complicated field pattern. The trajectories ~~ill

be described by means of a Taylor’s expansion about a particular

trajectory (which lies entirely within the magnetic midplane) designated

henceforth as the central trajectory. Referring to Figure 4, the coordinate

I is the arc length _measured along the central trajectory; and ,~>~’Iand 1

form a right-handed curvilinear coordinate system. The results will be

valid for describing trajectories lying close to and making small angles

with the central trajectory.

The basic steps in formulating the solution to the problem are as

follows :

1. A general vector differential equation is derived describing the

trajectory of a charged particle in an arbitrary static magnetic field

which possesses “midplane symmetry. ”

2. A Taylor’s series solution about the central trajectory is then

assumed; this is substituted into the general differential equation and

terms to second-order~n the initial conditions are retained.

3. The first-order coefficients of the Taylor’s expansion (for mono-

energetic rays) satisfy homogeneous second-order differential equations

characteristic of simple harmonic oscillator theory: and the first-order

—
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/~ 7’
Y

B ~, (; ~ t
Central trajectory,

x

T
lies In magnetic midplane

A

I/h = po

o

FIG. 4. Curvilinear coordinate system used in derivation of equations of motion.

—

dispersion and the second-order coefficients of the Taylor’s series satisfy

second-order differential equations having “driving terms. ”

4. The first-order dispersion term and the second-order coefficients

are then evaluated via a Green’s function integral containing the driving

function of the particular coefficient being evaluated and the characteris-

tic solutions of the homogeneous equations.

In other words, the basic mathematical solution for beam transport

optics is simila-r to the theory of forced vibrations or to the theory of the

classical harmonic oscillator with driving terms.

It is useful to express the second-order results in terms of the first-

order coefficients of the Taylor’s expansion. These first-order coefficients

have a one-to-one correspondence with the following five characteristic

first-order trajectories (matrix elements) of the system (identified by their

initial conditions at t = 0), where prime denotes the derivative with

respect to t:

1. The unit sinelike function SX(t) in the plane of bend (the magnetic

midplane) where SX(0) ~ O;-S~(0) = 1 (Fig. 5).
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S.r(t)

Object

P() trajectory
Image

FIG. 5. Sinelike function s,(f) in magnetic midplane.

2. The unit cosine-like function CX([) in the plane of bend where

c.(O) = l;c~(0) = O(Fig. 6).

3. Thedispersion function dY(r)int heplaneo fbendwhered.~(O) =

O;d~(0) =O(Fig. 7).

—

\

FIG. 6. Cosinelike function {’.T(1)in magnetic midplane.

p. + AP

Pu

-.

Fl~, 7. Dispersion funclion fi..(f) in magnelic midplane.
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4. The unit sinelike function SV(t) in the nonbend plane where

s,(O) = O; s;(O) = 1 (Fig. 8).

Y Diane

Sy(t)

—t

Object

m’

Image

FIG. 8. Sinelike function s,(r) in nonbend (y) plane.

5. The unit cosinelike function eV(t) in the nonbend plane where

CV(0)= 1; c;(O) = O (Fig. 9).

j Writing the first-order Taylor’s expansion for the transverse position of

i an arbitrary trajectory at position t in terms of its initial conditions, the

~- above five quantities are just the coefficients appearing in the expansion

i for the transverse coordinates x and y as follows:
i
‘i
i x(t) = cX(t)xO + sX(t)x~ + dX(t)(Ap/pO)

i and

1 y(t)= C.(t)yo + S.(t)y:

;

where X. and y. are the initial transverse coordinates and x: and ,v: are

the initial angles (in the paraxial approximation) the arbitrary ray makes

‘u
FIG. 9. Cosinelike function c,(t) in nonbend (y) plane.

—
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with respect to the central

deviation of the ray from
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trajectory. Ap/pO is the fractional momentum

the central trajectory.

1. TIIe Vector D[~erential Equalion of Motion

We begin with the usual vector relativistic equation of motion for a

charged particle in a static magnetic field equating the time rate of

change of the momentum to the Lorentz force:

P=e(Vx B)

and immediately transform this equation to one in which time has been

eliminated as a variable and we are left only with spatial coordinates.

The curvilinear coordinate system used is shown in Figure 4. Note that

the variable t is not time but is the arc distance measured along the

central trajectory. With a little algebra, the equation of motion is

readily transformed to the following vector forms shown below:

Let e be the charge of the particle, V its speed, P its momentum

magnitude, T its position vector, and T the distance traversed. The unit

tangent vector of the trajectory is dT/dT. Thus, the velocity and momen-

tum of the particle are, respectively, (dT/dT) V and (dT/dT)P. The

vector equation of motion then becomes:

‘$(:p)=ev($xB)
or

- Pd2T
m+#(#)=e(#xB)

where B is the magnetic induction. Then, since the derivative of a unit

vector is perpendicular to the unit vector, d2T/dT2 is perpendicular to

dT/dT. It follows that dP/dT = O; that is, P is a constant of the motion

as expected from the fact that the magnetic force is always perpendicular

to the velocity in a static magnetic field. The final result is:

(1)

2. The Coordinate S~tem

The general right-handed

used is illustrated in Figure 4.

curvilinear coordinate system (x, y, t)

A point 0 on the central trajectory is

—
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designated the origin. The direction of motion of particles on the central

trajectory is designated the positive direction of the coordinate ~. A

point A on the central trajectory is specified by the arc length t measured

along that curve from the origin O to point A. The two sides of the

magnetic symmetry-plane are designated the positive and negative sides

by the sign of the coordinate ~’. To specify an arbitrary point B which

lies in the symmetry plane, we construct a line segment from that point

to the central trajectory (which also lies in the symmetry plane) inter-

secting the latter perpendicularly at A : the point .4 provides one

coordinate t: the second coordinate -r is the length of the line segment

BA, combined with a sign (+) or (–) according as an observer, on the

positive side of the symmetry-plane, facing in the positive direction of

the central trajectory, finds the point on-the left or right side. In other

\vords, .Y,~’, and t form a right-handed curvilinear coordinate system.

To specify a point C \\hich lies off the symmetry-plane, we construct a

line segment from the point to the plane. intersecting the latter per-

pendicularly at B: then B provides the t~vo coordinates, t and Y: the

third coordinate ~ is the length of the line segment CB.

L;’e now define three mutually perpendicular unit vectors (f, j, i).

f is tangent to the central trajectory and directed in the positive t-

direction at the point A corresponding to the coordinate t;.iis perpen-

dicular to the principal trajectory at the same point, parallel to the

symmetry plane, and directed in the positive .Ydirection. O is perpen-

ciicular to the symmetry plane, arid directed away from that plane on its

posi[ile side. -The unit vectors (i, j, f) constitute a right-handed system

and satisfy the relations

The coordinate t is the primary independent variable, and we shall

use the prime to indicate the operation (f/dt.The unit vectors depend

only on the coordinate t, and from differential vector calculus, we may

write

.t’ = 171

j’=o

i’ = –11.c (3)
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where /~([) = I/pO is the curvature of the central trajectory at point A

defined appositive as shown in Figure4.

The equation of motion may now be rewritten in terms of the

curvilinear coordinates defined above. To facilitate this, it is convenient

to express dT/dT and dcT/dTQ in the following forms:

The equation of motion now takes the form

(4)

In this coordinate system, the differential line element is given by:

Differentiating these equations with respect to t,it follows that:
—

T’z = .Y’Q+ j’2 + (1 +- i~x)~

1 d
- – T’ 2 = x’x” + ~“j’” + (i + /Ix)(~Ix’ + ~7’X)
2dt( )

T’ = .fx’ + j]” + (1 + hX)f

and

T“ = .fx” + .f’x’ + jy”+ j’}’ + (] + i?.v)t’ + f(/?X’ + //’x)

Using the differential vector relations of Eq. (3), the expression for T“

reduces to -.

T“ = .f[X” – /~(1 + 17.Y)] + -jj” + i[2/~.Y’+ /1’.Y]
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The vector equation of motion may now be separated into its component

parts with the result:

{
.f [x” –

+

+

+

——

—

A(1 + hx)] – ~
(~’)2 [x’x” + ~)’,,,

+ (1 + I?x)(hx’ + /?’x)]
}

{

I

j j,” – - y’x” + .V’j)” + ( I + Ax)(hx’ + ~’x)]~;,),[- )
{f (2hx’ + h’x) – (’(;,;X) [x’x” + JJ’j”

(1 + hx)(hxf + h’x)])

~ T’(T’ X B)

; T’{.t[y’B, – (1 + A.Y)B,] + j[(l + AX)B.Y– .Y’B:]

+ f[x’Bv – y’Bx]} (5)

Note that in this form, no approximations have been made; the

equation of motion is still valid to all orders in the variables x and .Yand

their derivatives.

If now we retain only terms through second order in x and y and

their derivatives and note that (T’)z = 1+ 2hx + ~, the x and v com-

ponents of the equation of motion become

x “ – h(l + hx) – x’(hx’ + h’x) = (e/P) T’[y’B, – (1 + hx)BV]

j’” — y’(hx’ ~ /?’x) = _(e/P)T’[( I + hx)BY – x’B,] (6)

The equation of motion of the central orbit is readily obtained by

setting x and v and their derivatives equal to zero. We thus obtain:

h = (e/PO) BY(O, O, t) or BPO = PO/e (7)

This result will be useful for simplifying the final equations of motion.

PO is the momentum of a particle on the central trajectory. Note that

this equation establishes the sign convention between h, e, and Bv.

3. Expanded Form of a Magnetic Field Having Median Plane Symmetr!

We now evolve the field components of a static magnetic field

possessing median or midplane symmetry (Fig. 10). We define median
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Dipole Quadruple Sextupole

FTG. 10. illustration of magnetic rnidplane for dipole, quadruple, and sextupole

elements. The magnet polarities may. of course, be reversed.

plane symmetry as follows. Relative to the plane containing the central

trajectory, the magnetic scalar potential q is an odd function in ~’; i.e.,

~(.Y,j’, r) = – V(.Y,–~, t). Stated in terms of the magnetic field com-

ponents B.,. Bu, and B!, this is equivalent tO saYing that:

B,(x, y, f) = B.(x, –j), f)
and

Bt(.Y, y, f ) = – Bt(.Y, –y, t )

It follows immed~ately that on the midplane B. = Bt = O and only Bu

remains nonzero; in other words, on the midplane B is always normal

to the plane. As such, any trajectory initially lying in the midplane will

remain in the midplane throughout the system.

The expanded form ofa magnetic field with median plane symmetry

has been worked out by many people; however, a convenient and com-

prehensible reference is not always available. L. C. Teng(2) has provided

us with such a reference.

For the magnetic field in vacuum, the field may be expressed in

terms of a scalar potential v by B = Vq. * The scalar potential will be

expanded in the curvilinear coordinates about the central trajectory

* For convenience, wc omit the minus sign since we are restricting the problem

to static magnetic fields.
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lying in the median plane ~, = O. The curvilinear coordinates have been

defined in Figure 1 where x is the outward normal distance in the

median plane away from the central trajectory. y is the perpendicular

distance from the median plane, f is the distance along the central

trajectory, and h = h(t) is the curvature of the central trajectory. As

stated previously, these coordinates (x, ~~,and t) form a right-handed

orthogonal curvilinear coordinate system.

As has been stated, the existence of the median plane requires that

~ be an odd function of ~’, i.e., ~(x, ~, /) = –p(x, –y, t). The most

general expanded form of ~ may, therefore, be expressed as follows:

(8)

where the coefficients AQ~+~ . are functions of t.

[n this coordinate system, the differential line element dTis given by

dT2 = dx2 + dy2 + (1 + hx)2(dt)2 (9)

The Laplace equation has the form

Vzp =
1-

(1 + hx) & [
(1 + hx)~

1
— 22q la+— ——

[
In

Zy 12+(l+hx)at (l+hx)~ ‘o flo)

Substitution of Eq. (8) into Eq. (10) gives the following recursion formula

for the coefficients:

+ 3nhA2m+3,. -1 +

where prime means

A with one or more

3n(n–l)h2A2~+3,n_2

+ n(n – I)(n – 2)h3A2m+3,n-3 (1 ])

d/dt, and where it is understood that all coefficients

negative subscripts are zero. This recursion formula

—
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expresses all the coefficients in terms of the midplane field B,(x, O, t):

where
8“BY

()
A—l.n = – functions oft— (12)

dxn ~=o
V=o

Since p is an odd function ofy, on the median plane we have B.. = Bt =

O. The normal (in x direction) derivatives of BU on the reference curve

defines BUover the entire median plane, hence the magnetic field B over

the whole space. The components of the field are expressed in terms of

p explicitly by B = Vp or

where Bt is not expressed in a pure power expansion form. This form can

“be obtained straightforwardly by expanding 1/(1 + hx) in a power series

of Ax and multiplying out the two series; however, there does not seem

to be any advantage gained over the form given in Eq. (13).

The coefficients up to the sixth-degree terms in x and y are given

explicitly below from Eq. (1 1).

h’A~o – Ala – hA12 + h2A11

2h’A; l – 6h2A; o – 6hh’A;o – A14

– hA,3 + 2h2A12 – 2h3A,,

3h’A;, – 18h2A;1 – 18hh’A; l

+ 36h2h’A;o – Als – hA14 + 3h2A13
— 6h3A,2 + 6h4A11 (14)

A 50 = A~o + 2A~2 – 2hA:1 + h“A1l + 4h2A~o + 5hh’Aj0

-. + A14 + 2hA13 – h2A12 + h3All

A A~l – 4hA~o – 6h’A% – 4h’’A;o – 11’’’A;o+ 2A;351 =
— 6hA:2 – 2h’Ai2 + h“A1z + 10h2A;l + 7hh’A; l – 411Jz’’A11

– 3h’2A11 – 16h3A~o – 29h2h’A~o + A1~ + 211A14
— 3h2A10 + 3h3A, z – 3h4A11 (15)

-
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In the special case when the field has cylindrical symmetry about .O,

we can choose a circle with radius pO = l//z = a constant for the

reference curve. The coefficients A~m+ l,n in Eq. (8) and the curvature }1
of the reference curve are then all independent of t.Eqs. (14) and (15)

are greatly simplified by putting all terms with primed quantities equal

to zero.

4. Field Expansion to Second Order Only

If the field expansion is terminated with the second-order terms, the

results may be considerably simplified. For this case, the scalar potential

q and the field B = VT become:

A
3nBU

ln=—
ax’

= functions oft only
~=o
Y=o

and

A 30 = –[A;o + hA1l + Al,]

where prime means the total derivative with respect to t.Then B = V9

from which

Bt(x, y> t) =
1-

(1 + hx): = (1 ;hx)[A~oy + ‘; ’xy ‘“’l (16J

By inspection it is evident that Bx, By, and Bt are all expressed in terms

of Ale, All, and Alz and their derivatives with respect to t.Consider

then BV on the midplane only

BY(x, 0, t) = AIO + Allx + ~A12x2 + . .

dipole - quadruple sextupole etc.

(17)
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The successive derivatives identify the terms as being dipole,

quadruple, sextupole, octupole, etc., in the expansion of the field. To

eliminate the necessity of continually writing these derivatives, it is

useful to express the midplane field in terms of dimensionless quantities

n(t), ~(t), etc., or

BY(X,o, f) = BY(O, o, t)[l – Mhx + ph2x2 + yh3x3 + ] (18)

where as before h(t) = I/pO, and n, ~, and y are functions of t. Direct

comparison of Eqs. (17) and (18) yields

We now make use of Eq. (7), the equation of motion of the central

trajectory:

BY(O, o, t) = hPo/e

Combining Eqs. (7) and (19), the coefficients of the field expansions

become

1 ~2BY
+, A,2=– — ,=0 = ph3(:)

2! 8X2 ~=o

()A;l = – [2nhh’ + )?’h2] : (20)

To second order the expansions for the magnetic field components

may now be expressed in the form:

BX(X,y, t) = (Po/e)[– nh2y + 2~h3xy + ~]

B,,(x, y, t) = (Po/e)[h – 17/72x+ ~h3x2

-. – +(h” – nh3 + 2~h3)y2 + ~~]

B,(x, j’, t) = (PO/e)[h’y – (~’h2 + 2iIhh’ + hh’)x~ + ] (21)

where P. is the momentum of the central trajectory
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5. Identlycation of n and ~ }~itll Pure Quadruple and Sextupole Fields

The scalar potential of a pure quadruple field in cylindrical and in

rectangular coordinates is given by:

T = (BOr2/2a)sin 2a = BOx~’/a (2~~)

where BO is the field at the pole, a is the radius of the quadruple aperture

and r and a are the cylindrical coordinates, such that x = r cos a and

y = r sin a. From B = VP, it follows that

BX = BOy/a and By = BOx/a (2~b)

Using the second of Eqs. (20) and Eqs. (22a) and (22b).

?BV BO P.
=— =

()
—]lJ12 —

ax ~=o a e
y=o

where now we define the quantity kf as follows:

k: = – }tJ?2= (Bo/a)(e/Po) = (Bo/a)(l /Bp) (23)

Similarly for a pure sextupole field,

~ = (Bor3/3a2) sin 3a = (Bo/3a2)[3x2y – y3]

(24)

where B. is the field at the pole and a is the radius of the sextupole

aperture.

Using the third-pati of Eqs. (20) and Eqs. (24)

where we now define the quantity k: as follows:

k: = ~J/3 = (Bo/a2)(e/PO) = (Bo/a2)( 1/Bp) (25)

These identities, Eqs. (23) and (25), are useful in the deri~ ation of the

equations of motion and the matrix elements for pure quadruple and

sextupole fields.

6. Tllc Equal io}ls of A!oti6n iti Tllcir Fi}lal Fornl to Secojld OrdiIr

Having derived Eq. (21), we are no\v in a position t(>sljbstitllte int{}

the general second-order equations of motion. Eq. (6). Combining
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:
Eq. (6) (the equation of motion) with the expanded field components of ‘?

Eq. (21), we find for x
i

x“ — h(l + Ax) – X’(hx’ + h’x)

= (pO/p)T’{(l + hX)[- h + nh2x – ~h3x2 + ~(h” – r?iz3 + 2~h3)J2]

+ /r’j’j” + ‘}

and for y

j’” — y’(hx’ + h’x)

= (pO/P)T’{ – X’h’y – (1 + hx)[l?h2j – 2ph3xJ’] + [

Note that we have eliminated the charge of the particle e in the equations

of motion. This has resulted from the use of the equation of motion of

the central trajectory.

Inserting a second-order expansion for T’ = (Y” +

( 1 + hx)2)1’2 and letting

we finally express the differential equations for .Yand J to second

as follows:

x“ + (1 — )?)h2x = }18 + (2/? – 1 – p)h3x2 + il’xx’ + +hx’2

+ (2 – ~)h2X8 + ~(h” – ??h3 + 2~h3)y2 + h’},~’ – ~h~,’2 –

+ higher-order terms

)’” + llh2Y = 2(8 : /?]h3XY+ h’X~’ – h’X’J’ + h.~’]’ + /lh2}’8

+ higher-order terms

1“’2+

(26) —

order

h82

(27)

(~s)

From Eqs. (27) and (2S) the familiar equations of motion for the

first-order terms may be extracted:

X“ + (1 – Il)h2.x = 116 and ~“ + )lhz)’ = O (29)

Substituting k: = –}lh2 from Eq. (23) into Eqs. (27) and (28). the

second-order equations of motion for a pure quadruple field result b}

taking the timit h -0, h’ ~ O and h“ –~ O. We find that

.YJ+ k;x = k:xs

l’” — k:)’ = – k:J’8

where

k: = (BO/a)(e/PO) = (Bo/a)( 1/Bpo) (30)
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Similarly, to find the second-order equations of motion for a pure

sextupole field, we make use of Eq. (25) ~~13= k: and, again, take the

limit /1-O, 11’-0. and II” ~ O. The results are:

.Y”+ k:(x2– J’z) = o

~?” — 2k:x)’ = o

where

k: = p/73 = (Bo/a2)(e/Po) = (Bo/a2)(l/~Po) (31)

7. T}le Description of tile Trajectories and t}le Coe@cients of t}le Ta}’lor ’s

Expansion

The deviation of an arbitrary trajectory from the central trajectory

is described by expressing x and y as functions of t.The expressions will

also contain xO, YO,xL, j’j and ~, where the SUbSCriPtOindicates that the

quantity is evaluated at r = O; these five boundary values will have the

value zero for the central trajectory itself. The procedure for expressing

x and j’ as a fivefold Taylor expansion will be considered in a general

way using these boundary values, and detailed formulas will be developed

for the calculations of the coefficients through the quadratic terms. The

expansions are written:

Here, the parentheses are symbols for the Taylor coefficients; the first

part of the symbol identifies the coordinate represented by the expan-

sion, and the second indicates the term in question. These coefficients are

functions of t to be determined. The ~ indicates summation over zero

and all positive integer values of the exponents K, ~, W, v, x: however,

the detailed calculations will involve only the terms up to the second

power. The constant term is zero, and the terms that would indicate a

coupling between the coordinates x and y are also zero; this results from

the midplane symmetry. Thus we have.

(Xll)=(yll) =0

(xl Yo)=(Yl~o)=o

(~1Y6)=(Ylxb)=o (33)

.
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Here, the first line is a consequence of choosing x~ = JO = O, while the
,;!

i
second and third lines follow directly from considerations of symmetry. 1

or, more formally, from the formulas at the end of this section.
~

As mentioned in the introduction, it is con~enient to introduce the ~

fottowing abbreviations for the first-order Ta}lor coefficients:
,>
,;
..

(x I .Y~) = C.y(f) (x I-Y:) = S.,,(?) (.Y \8) = d(t)
‘,:

%

(J’ I yo) = cv(~) (j’ Iy~)= s.(r) (34) ,

Retaining terms to second order and using Eqs. (33) and (34), the

Taylor’s expansions of Eq. (32) reduce to the following terms:

c,. Sy d,

.Y = (x I X,)XO + (x I xj).Y: + (.Y] 8)6

+ (.Y\ X:)X8 + (.YI .Y~.Y:).Yo.Y:+ (.YI .Y08).Y03

+(x / x:2).Y~ + (.YI -T:8).T:8 + (.YI 82)82

+(x I j’:)}: + (x I J’oj”:):”o.l’: + (.YI j’;)2)j’;)2

and

Cy Su

.1 = (y [ J’o)j’o + (J’ I J’:)J’:

+(J’ \ Xoj’o)xoj”o + (j’ I -Yoj’;).l-oj’i + (J” I ~bj’o)-t -:j’o

+(J’ I X:j’:).x ij”i + (j’ \ Jos)j’os + (j’ I j’ja).l”ba

Substituting these expansions into Eqs. (27) and (28), we derive

(35)

a di f-

ferentiat equation for each of the first- and second-order coefficients

contained in the Taylor’s expansions for .\- and .1. When this is done. a

systematic pattern evolves, namely,

c;. + k:.c., = o C;+ k:cY = O

S: + k~..$,. = O or s; + k;sv = o

q:+ ~:q.,= ./:, q; + k;g!, = j; (36)

where k; = (1 — 11)112and k? = IIllz for the .Yand j motl~)ns, respec-

tively. The first two of these equations represent the equations of motion

for the first-order rnonoenergetic terms S.Y,c.., s,,, and cu. That there arc

two solutions, one for c and one for s, is a manifestation of the fact

that the differential equation is second order; hence, the tl~o solutions

differ only bv the initial-conditions of the characteristics and (’functions,
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The third differential equation for q is a type form which represents the

solution for the first-order dispersion dXand for any one of the coeffi-

cients of the second-order aberrations in the system where the driving

term ~has a characteristic form for each of these coefficients. The

driving function ~for each aberration is obtained from the substitution

of the Taylor’s expansions of Eq. (35) into the general differential Eqs.

(27) and (28).

The coefficients satisfy the boundary conditions:

c(o) = I c’(o) = o

s(o) = o s’(o) = 1

d(0) = O d’(0) = O

g(o) = o q’(o) = o (37)

The driving term f is a polynomial, peculiar to the particular 9,

whose terms are the coefficients of order less than that of q, and their

derivatives. The coefficients in these polynomials are themselves poly-

nomials in h, h’, . . . with coefficients that are linear functions of n,

P,. For example, for g = (x I x:), we have

f=(2n- 1 – #)h3c: + /l’cXc; + +/?c:? (38)

In Table 1 are listed the~functions for the remaining linear coefficient.

the momentum dispersion d(r) and all of the nonzero quadratic

coefficients, shown in Eq. (35), which represent the second-order aberra-

tions of a system.

The coefficients c and s (with identical subscripts) satisfy the same

_differential equation which has the form of the homogeneous equation

of a harmonic oscillator. Here, the stiffness k2 is a function of I and may

be of either sign. In view of their boundary conditions, it is natural to

consider c and s as the analogs of the two fundamental solutions of a
* simple harmonic oscillator, n’amely cos WI and (sin wf)/w. The function

q is the response of the hypothetical oscillator when, starting at equilib-

rium and at rest, it is subjected to a driving force J

The stiffness parameters k; and k: represent the converging powers

of the field for the two respective coordinates. It is possible for either to

be negative, in which case it actually represents a diverging effect.

Addition of k; and k; yields

--

‘w

k:+k; =h2 (39)

-.



x
)

x
)

x
)

x
)

x
)

x
)

x
)

x
)



SYSTEM AND SPECTROMETER DESIGN 97

For a specific magnitude ofh, A: and k; may be varied by adjusting n, but

the total converging power is unchanged; any increase in one converging

power is at the expense of the other, The total converging power is

positive; this fact admits the possibility of double focusing.

A special case of interest is provided by the uniform field; here

h = const. and n = O; then k: = hz and k; = O. Thus, there is a

converging effect for x resulting in the familiar semicircular focusing,

which is accompanied by no convergence or divergence of y.

Another important special case is given by n = +; here, k% = k;

= h2/2. Thus, both coordinates experience an identical positive con-

vergence, and Cx = CUand SX = SY;that is, in the linear approximation,

the two coordinates behave identically, and if the trajectory continues

through a sufficiently extended field, a double focus is produced.

The method of solution of the equations for c and s will not be

discussed here, since they are standard differential equations. The most

suitable approach to the problem must be determined in each case. In

many cases it will be a satisfactory approximation to consider h and n,

and therefore k2 also, as uniform piecewise. Then, c ands are represented

in each interval of uniformity by a sinusoidal function, a hyperbolic

function, or a linear function off, or simply a constant. Using Eq, (36),

it follows for either the x or y motions that:

; (es’ - c’s) = o

Upon integrating and using the initial conditions on c and s in Eq. (37),

we find
Cs’ – c’s = 1 (40)

This expression is just the determinant of the first-order transport

matrix representing either the x or y equations of motion. It can be

demonstrated that the fact that the determinant is equal to one is

equivalent to Liouville’s theorem, which states that phase areas are
“

conserved throughout the system in either the x or y plane motions.

The coefficients q are evaluated using a Green’s function integral

J
q = ‘J(~)G(t, ~) d~ (41)

o

where

G(f, T) = s(f)c(T) – s(T)c(t) (42)
and

J

t

J
q = ‘([) ~~(~)c(~) d7 – C(t) :/(T)S(T) dr (43)

--
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To verify this result, it should be noted that this equation, in conjunction

with Eq. (40), reduces the last of Eq. (36) to an identity, and that the

last pair of Eq. (37) follows readily from this proposed solution. In ,,

particular, if~ = O, then q = O. Th~n it will be seen from Table I that

several coefficients are absent, including the linear terms that would

represent a coupling between x and y. Frequently, the absence of a

particular coefficient is obvious from considerations of symmetry.

Differentiation of Eq. (43) yields

/

t

/
q’ = “(f) ~f(7)~(~) ~T – c’(t) ‘f(T)~(T) dT

o

and

j

t

j
q“ = ,f + $“(t) ~f(T)C(T)dT – c“(t)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘f(T)~(T)dT

o

(44)

The driving terms tabulated in Table 1, combined with Eqs. (43)

and (44), complete the solution of the general second-order theory. It

now remains to find explicit solutions for specific systems (>relements of

systems.

8. Transformation from Curvilinear Coordinates to a Rectangular

Coordinate System and TRANSPORT Notation

All results so far have been expressed in terms of the general

curvilinear coordinate system (x, y, r). It is useful to transform these

results to the rectangular coordinate system (x, y, z), shown in Figure 4,

to facilitate matching boundary conditions between the various com-

ponents comprising a beam transport system. This is accomplished by

introducing-the-angular coordinates O and p defined as follows (again,

using the paraxial ray approximation tan 0 = 8 and tan ~ = q):

dy _ y’ y’

‘=~–~=l+hx
(45)

where, as before, prime means the derivative with respect to /.

Using these definitions and those of Eqs. (34) and (35), it is now

possible to express the Taylor’s expansions for x, e, y, and ~ in terms

of the rectangularcomdi nate system. For the sake of completeness and

to clearly define the notation used, the complete Taylor’s expansions for
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x, 0, Y, and ~ at the end ofa system as a function of the initial vari;~bles

are given below:

Cx x.Y (Iy
~2._7

x = (x iXO)XO + (x Ido)60 + (:F)8

+ (x Ix:)x; + (x \Xodo)xoeo + (x \.Y06)X08

+ (x ] 6;)8; + (x ]e~a)e~a + (x I82)82

+ (x ]y:).v:+ (x Iyopo)yop~ + (x Iqg)qg

c; s; d:

e=(e

+ (6

+ (6

+ (e

Cu

x~)xo + (e I do)eo + (8

x:)x: + (eI Xoeo)xoe. + (e

e:)e: + (e I eo8)eo8+ (e

Y:)Y:+ (e I Y090)Y090 + (e

Y = (Y IYO)YO + (y I qo)qo

Using the definitions of Eq (45), the coefficients appearing in Eq. (46)

may be easily related to those appearing in Eq. (35). At the same time,

we will introduce the abbreviated notation used in the Stanford

TRANSPORT Program(3) where the subscript 1 means x; 2 means e,

3 means y; 4 means 0, and 6 means 8. The subscript 5 is the path length

difference 1 between an arbitrary ray and the central trajectory. Rij will

be used to signify a first-brder matrix element and Tijk will signify a
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second-order matrix element. Thus. we may write Eq. (46) in the general

form

.Y,= $ R,jXj(0) +~ ~ Tij.Xj(”)~k(o)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
)=1 j=lk=j

(47)

where

.Y~= x, X2 = 9,x3 = -v,x4 = ~,x~=[,andx~=s

denotes the subscriptnotation.

Using Eq. (45) defining d and p, the following identities among the

\ arious matrix element definitions result:

For the Taylor’s expansions for x we have:

Tlaz = (x

T 134 = (x

T_ 14~ = (~

For the 6 terms we have.

y~j

Y090) = (x I YoY&)

v:) = (~ IY:z)

—

(48)
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ZGG= (o I ~z) = (X’ I 82) - A(t) d.y d:T

,,, = (e] y;) = (x’ I y:)T

23, = (e Iyopo) = (x’ Iyoy:)T

,44 = (0 I p:) = (x’ I y:2)T

For the y terms in the Taylor’s expansion:

R,, = (y I y,) = c,

R3q = (y I PO) = (y ~y:) = .Yy

313 = (Y I XOYO)T

T314 = (Y I xoqo) = (y I xoj’b) + /?(0)su

T (323 = y

324 = (YT

T -(336 — Y

346 = (YT

and finally for the q terms we have:

R4~ =(TIYO) =( Y’IYO)=:(YIYO)= c:

R 44 = (9

T -(413 — P

T -(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA414 — 9

T -(423 — q

424 = (PT

T -(436 — q

446 = (9T

101

(49)

(50)

All of the above terms are understood to be evaluated at the terminal

point of the system except for the quantity A(O)which is to be evaluated

at the beginning of the system. In practice, /~(0) will usually be equal to

h(~); but to retain the formalism, we show them as being different here.

All nonlisted matrix elements are equal to zero.
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9. First- and Second-Order Matrix Fornlalism of Beanl Transport Optics ~

The solution of first-order beam transport problems using matrix :

algebra has been extensively documented. (J-6) However, it does not

seem to be generally known that matrix methods may be used to solve

second- and higher-order beam transport problems. A general proof of

the validity of extending matrix algebra to include second-order terms

has been given by Brown, Belbeoch, and Bounin(7) the results of which

are summarized below in the notation of this report and in TRANS-

PORT notation.

Consider again Eq. (47). From ref. 3, the matrix formalism may be

logically extended to include second-order terms by extending the

definition of the column matrices xi and Xj in the first-order matrix

algebra to include the second-order terms as shown in Tables II–V. In

addition, it is necessary to calculate and include the coefficients shown

in the lower right-hand portion of the square matrix such that the set of

simultaneous equations represented by Tables II–V are valid. Note that

the second-order equations, represented by the lower right-hand portion

of the matrix, are derived in a straightforward manner from the first-

order equations, represented by the upper left-hand portion of the

matrix. For example, consider the matrix in Table II; we see from row 1

that

x = CXXO+ sXOO+ dX8 + second-order terms

Hence, row 4 is derived directly by squaring the above equation as

follows: _ _

X2 = (CXXO + Sxdo + dX8)2

= C:X;+ 2cXsXx000+ 2CXdXx08 + S;8;+ 2SXdx908 + d:82

The remaining rows are derived in a similar manner.

If now xl = ~lxO represents the complete first- and second-order

transformation from O to 1 in a beam transport system and X2 = ~zxl

is the transformation from 1 to 2, then the first- and second-order

transformation from O to 2 is simply X2 = ~2xl = MZMIXO; where Ml

and ~2 are matrices fabricated as shown in Tables 11 and 111 in our

notation or as shown in Tables IV and V in TRANSPORT notation.

.
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III. Reduction of the General First- and Second-Order
Theory to the Case of the Ideal Magnet

Section IIofthis reportwasdevoted to thederivationof thegeneral

second-order differential equations of motion of charged particlesin a

static magnetic field, In Section 11 no restrictions were placed on the

variation of the field along the central orbit, i.e., h, n, and # were assumed

to be functions of r. As such, the final results were left in either a differen-

tial equation form or expressed in terms of an integral containing

the driving function~(t), and a Green’s function G(?, T) derived from the

first-order solutions of the homogeneous equations. We now limit the

generality of the problem by assuming h, M, and ~ to be constants over

the interval of integration. With this restriction, the solutions to the

homogeneous differential equation [Eq. (36) ~f Sec. 11]are the following

simple trigonometric functions:

—

Cx(f)= COS kXr SX(?) = (l/kX) sin kxf

Cv(t) = COS k,,t s,,(I) = (]/k,,) sin kvt

where now

(52)

k: = (1 – n)h2, k; = nhz, and h = I/Po

become constants of the motion. pO is the radius of curvature of the

central trajectory. - -

The solution of the inhomogeneous differential equations [the third

of Eqs. (36)] for the remaining matrix clcmcnts is solved as indicated in

Section 11, using the Green’s functions integral Eq. (41) and the driving

functions listed in Table 1. With the restrictions that kX and k, are

constants, the Green’s functions reduce to the following simple trigono-

metric forms:

CX(t, ~) = (l/ky) sin kX(t – T)

and

G,(/UT) = (l/k,,) sin k,,(~ – T) (53)

The resulting matrix elements are tabulated below in terms of the key

integrals listed in Table VI, the five characteristic first-order matrix

elements SX,CX,dX, c,, and .SYand the constants h, n, and P.
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The constants }Z~nd ~ are defined by the midplane field expansion

[Eq. (18) of Sec. 11]:

or, from Eq. (19) of Section 11:

For a pure quadruple, the matrix elements are derived from those

~ = O. k: = k; and k; = —k:, whereof the general case by letting:~

k: = – ]1112= (BO/a)(l/Bp)

and then taking the limit /Z~ O. The results are:

R,, = COS k~t

R 12 = (l/k,) sin k,t

T 116 = ~k~t sin k~t

~,, = (1/2k,) sin kqt – (t/2) cos kqtT

R 21 = –k, sin kqt

R 22 = COS k~t

‘T,lj = (kq/2)[kq? cos kqt + sin kqt]

T 226 = +kqt sin kqt

R = cosh kqt

R~~ = (l/kd) sinh k,t

T 336 = —~k~t sinh k,[t

T 346 = :
[

~ sinh k,t – t cosh k~t.——

q 1

.? 43 = k,, sinh k,t

R44 = cosh kit

T13G_= ~(kq/2)[kqt cosh k(,t+ sinh kqt]

T 446 = —~kqt sinh kqt (55)

all nonlisted matrix elements are identically zero.

—
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2. Matri.~ Ele~?~e\~tsfor a P~rz Se.~tlipole Field

For a pure sextupole, the matrix elements are derived from those

of the general case by letting

p)l’ = k; = (B,,’a2)(l /Bp)

and then taking the limit 1/~ O. The results are:

R,l =1

Rt12 =

T —+,~:t~
111 =

T _+~;t3
112 =

T ~Q~= –-l~fk:t’

T1Z3 = ~k;tz

T +~:t3
134 ‘.

T -~-kzt ~144= 12 s

R21=0

R 22 = 1

T 211 = –k:t

T 212 =
–k:t2

T222 = –~k;t3

T 233 = k:t

T 234
= ~:[2

T
1~2 3

244 = ~ ~t

R = 1
—

R;; -=t

T 313
= k:t2

T
lh.2 3

314 =Tst

T
lk2 3

323 =~~t

T ~k2t4324=6s

R 43 =0

R144 =

T 413 = 2k;t

TzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA414 = k;t2

T 423 = kft2

- T4~4 = ~k?t3

.

(56)

All nonlisted matrix elements are identically zero.
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3. First- aII(l SeLo}I~/-Or~/cr ,Jf~~rri.r El~~f)leflts jor a Cl{rre(i, Illclitled i’

.Ilog~~e[ic Fie[(f Bol{il(/ar~l
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*-
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Nlfitrix elements for the fringing iields of bending magnets have ~

been derived using an impul~e ~ipproximati{~ll.’y~) These computations, ‘

combined ~vith a correction term(g) to the R43 elements (to correct

for the finite extent of actual fringing fields), have produced results ‘

~vhich are in jubstarttial agreement with precise ray-tracing calculations

and ~~i[h experimental rne:lsurements made on actual magnets.

We introduce four ne~v \ariables (ii]ustrated in Fig. 11); the angle

of inclination ~1 of the entrance Pace of a bending magnet, the radius-of

curvature RI of the entrance fuce, the angle of inclination ~2 of the exit

face, and the radius of cur~ature RJ of the exit face. The jign con~ention

of~l and ,3: is considered positive for positi~e focusing in the transverse

(j) direction. The sign con~ention for R, and R, is positive if the field

boundary is convex out\\ard: (a positi~e R represents a negative sextu-

pole component of strength. k~L = –(// ‘2R) jecJ ~). The sign conven-

tions adopted here are in agreement with Penner,(4) and Brown,

Belbeoch, and Bounin.(7)

\
\>

\
/,

+
Z1

/

‘,

‘“\,‘y,,

R2
/A

/

4

,’

/

po= I/h

,//

FIG. 11. Field boundaries for bending magnets.

PI, ~~, Rl, and R, used in the matrix elements for field boundaries of bending

Definition of the quantities

magnets. The quantities have a positive sign convention as illustrated in the figure.
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The results of these calculations yield the following matrix elements

for the fringing fields of the entrance face of a bending magnet:

R –133 —

RO34 =

T 313 = /7 tan2 PI

All nonlisted matrix elements are equal to zero. The quantity 41 is the

correction to the transverse focal length when the finite extent of the

fringing field is included.(g)

~~1= Kjlg sec ~1(1 + sin2 ~1) + higher order terms in (hg)

where g = the distance between the poles of the magnet at the central

orbit (i. e., the magnet gap) and

BU(D)is the magnitude of the fringing field on the magnetic nlid-

.

plane at a position =. Gis the perpendicular (iistance measured from the

entrance Pdce of the magnet to the point in question. B. is the asynlpt(>tic

value of B,(z) well inside the magnet entrance. Tvpica] ~’alues of h- ft>r

actual magnets may range from 0.3 to 1.0 depending upon the detailed

shape of the magnet profile and the location of the energizing coils.
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The matrix elements for the fringing fields of the exit face of a

bending magnet are:

R,l =

RzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 =

T 111 =

T 133 =

R21 =

R 22 =

T 211 =

T212 =

T216 =

T 233 =

T 234 =

R 33 =

R 34 =

T 313 =

R 43 =

R 44 =

T413 =

1

0

(h/2) tan2 ~2

– (h/2) sec2 ~2

–l/fX =htan P2

1

(h/2 R,)sec3P2 –h2(n +~tan2~2)tan~2

– h tan2 ~2

–h tan ~2

h2(n – ~ tan2 ~2) tan ~2 – (h/2R2 sec3 ~2

h tan2 ~2

1

0

–JI tanz ~z

–l/fv = –h tan (F2 – +2)

1

–(J7/R2)sec3~2 +h2(2n+ sec2~2)tan P2

1414 = JItan2 ~2

T423 = h sec2 ~z

T43, = Jz tan ~2 - hYzsec2(@z - @z)
—

All nonlisted matrix elements are zero.

(58)

42 = Khg sec P,(1

and K is evaluated for

+ sin2 ~z) + higher order terms in (hg)

the exit fringing field.

4. Matrix Eiementsfor a Dr\~t Distance

For a drift distance of length L, the matrix eleme~ts are simply as

follows:

:.,
?.

—

R,, = R,, “= R~, = R44 = RJ5 = R,’j = 1

R12 = R34 = L

All remaining first- and second-order matrix elements are zero.
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Some Useful First-Order Optical Results Derived

from the General Theory of section II (1011)

We have shown in Section II, Eq. (47), that beam transport optics

may be reduced to a process of matrix multiplication. To first order,

this is represented by the matrix equation

X1(l) = $ R,,.Y,(o) (j9)
J=l

where

We” have also proved that the determinant IR I = 1 results from the

basic equation of motion and is a manifestation of Lioutille’s theorem

of conservation of phase space volume.

The six simultaneous linear equations represented by Eq. (j9) may

be expanded in matrix form as follows:

1
‘x(t)

e(t?

y(t)

~(t)

l(t)

8(t)

——

where the transform

pOsitiOn T = t.

R,l Rlz O 0 0 R,,

R ~1 R,z O 0 0 R,,

o 0 R,, R3, O 0

0 0 R,, R,, O 0

R ,1 R,, O 0 1 R,,

000001,

x~

e.

Yo

To

/0

80

.

(60)

ion is from an initial position 7 = L to a final

The zero elements R13 = RIA = Rz~ = RZ4 = R~l = RaQ = R.ll

= R,lz = R3G = RqG = O in the R matrix are a direct consequence of

midplane symmetry. If midplane symmetry is destroyed, these elements

will in general become nonzero. The zero elements in column five occur

because the variables x, e, ~. p, and 8 are independent of the path

length difference 1.The zeros in row six result from the fact that we have

restricted the problem to static magnetic fields, i.e., the scalar momentum

is a constant of the motion.

We have already attached a physical significance to the nonzero

matrix elements in the first %ur~ows in terms of their identification with

characteristic first-order trajectories. We now wish to relate the elements

appearing in column six with those in row five and calculate both sets
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in terms of simple integrals of the characteristic first-order elements

cX(t) = Rll and s.(t) = Rlz. In order to do this, we make use of the

Green’s integral, Eq. (43) of Section II, and of the expression for the

differential path length in curvilinear coordinates

dT = [(d.Y)2 + (dy)2 + (1 + hx)2(dt)2]’2 (61)

used in the derivation of the equation of motion.

1. First-Order Dispersion

The spatial dispersion dx(t) of a system at position t is derived

using the Green’s function integral, Eq. (43), and the driving term

~ = h(T)for the dispersion (see Table 1). The result is

-t

J j

t

dX(t) = Al, = ST(f)Cx(T)h(T) dr – cX(t) S..(7)/?(7) d7 (62)
o 0

where T is the variable of integration. Note that h(7) dT = da is the

differential angle of bend of the central trajectory at any point in the

system. Thus first-order dispersion is generated only in regions where

the central trajectory is deflected (i.e., in dipole elements.) The angular

dispersion is obtained by direct differentiation of dY(t) with respect to t;

j

t

d:(t) = R2, = ~i(f)

j

cx(T)h(T) d7 – cj(t) f sX(~)/?(7) d~ (63)
o 0

where

—
c:(t) = R21 and s~(r) = R22-

2. First-Order Path Length

The first-order path length difference is obtained by expanding

Eq. (61) and retaining only the first-order term, i.e.,

/

t

/–lo=(T– t)= X( T)h(T) dT + higher order terms
o

from which

J

t

j

t

/=x.

j

t

cX(T)h(T) dr + 60 sX(7)h(7) dT + /0 + 8 dy(T)/l(T) dT

o 0 0

= RSIXO + R5260 + 10 + R56~ (64)

—
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Inspection of Eqs. (62)–(64)yie1ds the following useful theorems:

A. Achrornaticity

A system is defined as being achromatic if dy(t) = di(t) = O.

Therefore it follows from Eqs. (62) and (63) that the necessary and

sufficient conditions for achromaticity are that

J
t

J
t

s-y(T)h(T)dT = cx(T)h(T)dT = o
0 0

(65)

Bycomparing Eq. (64) with Eq. (65), wenotethat ifasystemisachro-

matic, all particles of the same momentum will have equal (first-order)

path lengths through the system.

B. Isochronicity

It is somewhat unfortunate that this word has been used in the

literature: since it is applicable -only to highly relativistic particles.

Nevertheless, from Eq. (64) the necessary and sufficient conditions that

the first-order path length of all particles (independent of their initial

momentum) will be the same through a system are that

j

t

j

t

j

t

cX(7)h(7) d7 = sy(r)h(7) dT = dX(T)h(T) d~ = O (66)
o 0 0

3. First-Order Imaging

First-order point-to-point imaging in the x plane occurs when x(t)

is independent of the initial angle 8.. This can only be so when
—

s.(t) = R12 = o (67)

Similarly, first-order point-to-point imaging occurs in the y plane when

Su(t) = R~4 = o

First-order parallel-to-point imaging occurs

is independent of the initial particle position

Cx(t) = Rll = o

(68)

in the x plane when x(t)

Xo. This will occur only if

(69)

and correspondingly in the y plane, parallel-to-point imaging occurs

when

—
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4. Magnl~cation

For point-to-point imaging in the x plane, the magnification is

given by

.Y(t)
M. = — = 1~1,1= lc,x(~)l

Xo

and in the ]’ plane by

M, = IR331 = Ic,(f)l (71)

5. First-Order lMotnentu~?z Resolution

For point-to-point imaging the first-order momentum resolving

power RI (not to be confused with the matrix R) is the ratio of the

momentum dispersion to the image size: Thus

R dy(t )
R, = — =

R1~;o Cx(t)xo

For point-to-point imaging [sX(t) = O] using Eq. (62), the dispersion at

an image is

)dx(t) = – c.%(t) “SX(r)~(7) d7 (72)
o

from which the first-order momentum resolving power RI becomes

dY(t )

J

t

- ~lxo -= — = Sx(T)h(T) dT
Cx(t ) o

(73)

where X. is the source size.

6. Zero Dispersion

For point-to-point imaging, using Eq. (72), the necessary and

sufficient condition for zero dispersion at an image is

J
t

Sx(T)h(T) dT = O
0

(74)

For parallel-to-point imaging [i.e., cX(t) = O], the condition for zero

dispersion at the image is

.“

.

!
t

Cx(T)h(T)d7 = O (75)
o

1
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7. Focal Let~gtll

It can be readily demonstrated from simple lens theory(4) that the

physical interpretations of Rzl and RA3are:

c~(f) = RQ1 = – I/fx and c~(r) = R+3 = – l/~Y (76)

where ~X and fv are the system focal lengths in the .~ and y planes,

respectively? between ~ = O and 7 = t.

8. E1’alliatiorl of tile First-Order ~Matri.~for I~ieai .ifagr~ets

From the results of Section III, we conclude that for an ideal

magnet the matrix elements of R are simple trigonometric or hyperbolic

functions. The general result for an element of length L is

R=

1 sin~L
cos k,L

E “’
o 0

–kx sin kxL cos k.yL o 0

0 0
lsink L

cos kvL
~y

o 0 –k, sin k,L COS kgL

I

h

E
sin k.xL ;[l - 0 0

[

- corkxL]

o- 0 0 0

0

0

0

0

COSkxL]

o

0

; [kxL
x

– sin k.xL]

1

(77)

where for a dipole (bending) magnet, we have defined

For a pure quadruple, the R matrix is evaluated by letting

k: = k; and k; = –k;

and taking the limiting case /Z-0, where

k: = – /?lz2 = (BO/a)(l/Bp)

—



... +

124 K. L. BROWN

Taking these limits, the R matrix for a quadruple is:

R=

1
COSk~L

~
sin kqL o 0 0 0

– k, sin k,L COSk~L o 0 0 0

0 0 cosh kQL # sinh k~L O 0
q

o 0 kq sinh kqL cosh kqL O 0

0 0 0 0 1 0

0 0 0 0 0 1
L

(78)

Note, that the trigonometric and hyperbolic functions wil! interchange

if the sign of BO is reversed.

9. The R Matri.~ Transfornled to the Principal Planes

The positions Z of the principal planes of a magnetic element

(measured from its ends) may be derived from the following matrix

equation:

RPP =

—

100 Oox

Rlo21 Oox

001 000

0 0 R,, 100

xx

00

1 –Z,x o 0

0100

0 0 1 –Zz,

0001

0000

0000

00

00

00

00

10

01

Solving this equation, tie have

21X = (Rzz– 1)/R21

R

Xxxx

o 001.

I–zl,yoooo

010000

00 1 –z,, o 0

000100

000010

000001

22X = (Rll – 1)/R21

Z2V= (R3q– 1)/R43

(79)

(80)
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For the ideal magnet, the general result for the transformation

matrix RPP between the principal planes is

R PP =

1 0 0 0 0 0

–k,r sin kxL 1 0 0 0 (/~k.,) sin k., L

o 0 1 0 0 0

0 0 – k, sin kyL 1 0 0 (81)

(82)

Correspondillgly, for the ideal quadruple, R,,p is deri~’ed by

letting

k?. = k: and k; = –k:

and taking the limit 1?+ O for each of the matrix elenlents. The result

is:

I

1 0 0 0 0 0

–k, sin kqL 1 0 0 0 0

I
@-

RPP= o

I o

1 0

0 1 0 0 0

0 kq sinh k,L 1 0 0

0

0

0

0

0

0

where now

Z. = (l/k,) tan (k,L/2)

Z, = (l/k,) tanh (kqL12)

1

0

0

1-

(83) -

( 84)

V. Some General Second-OrderTheorems Derived from
the General Theory of Section II

-.
We have established in Section 11 that any second-order aberra-

tion coefficient q may be evaluated via the Green’s function integral,

Eq. (43), i.e.,

q =
J

s(t) ‘J(T)C(T) dT –
I

c(t) ‘f(T)s(T) dT
o 0
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A second-order aberration may therefore be determined as soon as a ~
..4
*

first-order solution for the system has been established, since the poly - ~

nomiai expressions for the driving termsj(~) ha~e ~ill been expressed tis j,

functions of the characteristic first-order matrix elements (Table 1).
.!

Usually one is interested in knoyving the value of the aberration at an

image point of which there are two cases of interest, point-to-point

imaging s(l) = O and parallel-to-point imaging c(r) = O.

Thus for point-to-point imaging,

where r = { is the locution of an image and ~c~(f)l= ,M is the first-order

spatial magnification at the image, and for parallel-to-point imaging,

where ~ = r is the position of the image and s(f) is the angular dispersion

at the image.

If a system possesses first-order optical symmetries, then it can be

immediately determined if a given second-order aberration is identically

zero as a consequence of the first-order symmetry. We observe that for

point-to-point imaging a second-order aberration coefficient q will be

identically zero if_the_product of the corresponding driving term J(7)

and the first-order matrix element s(7) form an odd function about the

midpoint of the system.

As an example of this, consider the transformation between

principal planes for the two symmetric achromatic systems illustrated

in Figures 12 and 13. We assume in both cases that the elements of the

system have been chosen such as to transform an initial parallel beam

of particles into a final parallel beam, i.e., Rzl = —l/~X= Ofor midplane

trajectories. We further assume parallel-to-point imaging at the mid-

point of the system. With these assumptions, the first-order matrix

transformation for midplane trajectories between principal planes is:

[

x(t) .

x’(t)

~(t) . [

–1 o 0
= o –1 o

001

x(o)

x’(o)

8(0) 1

—
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B’

FIG. 12. Three bending magnet achromatic system. A and B are locations of
principal planes.

Thus c.y(~) = – 1> ~.Y(~)= ‘~ c~(f) = ‘~ ‘~(t) = – 1’ and ‘f course

d.(r) = d~.(r) = O. About the midpoint of the system, the followlng

symmetries exist for the characteristic first-order matrix elements and

for the curvature ~~(~)= l/pO of the central trajectory; we classify them

as being either odd or even functions about the midpoint of the system.

The results are:

dx(T) = even /2(r) = even
cY(7) = odd s,,(T) = even

s~(7) = odd d~(7) = odd j?’(~) = odd
c;.(7) = even

/
—

c~ A
I/

trajectory PO

-. Cx

FIG. 13. Achromatic system with quadruple at center to achieve achromatic

imaging. The principal planes are located at centers of the bending magnets.

—
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As a consequence of these symmetries, the following second-order

coefficients are uniquely zero for the transformation between principal

planes.

This result is valid, independent of the details of the fringing fields of

the magnets, provided symmetry exists about the midpoint.

I. Optical Symmetries in n = & Magnetic SJ’stems

In magnetic optical systems composed of n = j magnets having

normal entry and exit of the central trajectory (i. e., nonrotated entrance

and exit faces), several general mathematical relationships result from

the n“= ~ symmetry. Since k: = (1 – n)hz and k: = nh”, for n = 4

it follows that CX(7) = CU(T) and SX(T) = SU(T) at any position r along

the system; thus as is well known, an n = ~ system possesses first-order

double focusing properties.

In addition to the above first-order results, at any point t in an

n = ~ system, the sums of the following second-order aberration

coefficients are constants independent of the distribution or magnitude

(~h3) of the sextupole components throughout the system:

(X I X:2) + (x I Yi2) = a constant independent of ~h3

2(x I x;) + (Y I XOYO) = a constant independent of ~h3

(X I XOXi~+ (Y I ~oYh) = a Gonstant independent of #h3

(X I XO$)+ (Y IY08) = a constant independent of ~h3

2(x I X:2) + (Y I x~y~) = a constant independent of ~h3

(X I x:8) + (Y IY&8)= a constant independent of ~h3

(X I x3) + (X [y:) = a constant independent of ~h3

(X\ XOX~)+ (XI YOYj)= a constant independent of ~h3 (85)

Similarly,

(x’ \ x~2) + <x’ l-y&2)= a constant independent of #h3

2(x’ I x:) + (y’ I Xoyo) = a constant independent of ~h3

.,”

—

(X’ I xox~) + (y’ I Xoy:) = a constant independent of ~h3
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(x’ I x,8) + (~’ I ~o~) = a constant independent of ~A3

2(x’ ] X:2) + (~’ I x~~~) = a constant independent of ~k3

(x’ j X~8) + (~’ ] ~~~) = a constant independent of ~k3

(x’ \ x8) + (x’ \ Y;) = a constant independent of ~}t3

(x’ ] XOxj) + (x’ ] yoy~) = a constant independent of ~A3 (86)

Of the above relations, the first is perhaps the most interesting in that

it shows the impossibility of simultaneously eliminating both the

(x I X:2)and (x I y~2)aberrations in an n = ~ system; i.e., either (x I X:2)

or (x I yJ2) may be eliminated by the appropriate choice of sextupole

elements, but not both.

—

VI. An Approximate Evaluation of the Second-Order

Aberrations for High-Energy Physics

Quite often it is desirable to estimate the magnitude of various

second-order aberrations in a proposed system to obtain insight into

what constitutes an optimum solution to a given problem. A consider-

able simplification occurs in the formalism in the high-energy limit

where POis very much greater than the transverse amplitudes of the -

first-order trajectories and where the dipole, quadruple, and sextupole

functions are physically separated into individual elements. It is also

assumed that fringing-field effects are small compared to the contribu-

tions of the various multipole elements.

Under these circumstances, the second-order chromatic aberrations

are generated predominately in the quadruple elements; the geometric

aberrations are generated in the dipole elements (bending magnets); and,

depending upon their location in the system, the sextupole elements

couple with either the chromatic or geometric aberrations or both.

We have tabulated in Tables VII–IX the approximate formulas for

the high-energy limit for three cases of interest: point-to-point imaging

in the x (bend) plane, Table VII; point-to-point imaging in the y

(non bend) plane, Table VIII; and parallel-to-point imaging in the y

plane, Table IX.



130 K. L. BROWN

TABLE VII

Applying the Greens’ Function Solution, Eq. (22), in the High-Energy Limit

as Defined Above for Point-to-Point Imaging in the x (bend) Plane, the

Second-Order Matrix Elements Reduce to the Values Shown

TABLE VIII

For Point-to-Point Imaging in they (nonbend) Plane, Eq. (23), the

HQh-Energy Limit Yields the Values Given

—
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TABLE IX

For Parallel-( Line) -to-Point Imaging in the y (Nonbend) Plane,

the High-Energy Limit Yields the Values Shown

131

Eq. (24),

.

For the purpose of clearly illustrating the physical principles in-

volved, we assume that the amplitudes of the characteristic first-order

matrix elements CX,SX,dx, Cy, and Su are constant within any given

quadruple or sextupole element, and we define the strengths of the

quadruple and sextupole elements as follows:

/

L

k: dr = k:L~ z ~
o f,

,, where Lq is the effective length of the quadruple, and where l/f~ = k,

sin kQL is the reciprocal of the focal length of the gth quadruple; and
I

for the jth sextupole of length L,, we define its strength as
;,

I

1

L
~,

k: dr = k~L, = S,
o

!,
The results are given in the tables in terms of integrals over the bending

magnets and summations over the quadruple and sextupole elements.

Note that under these circumstances the quadruple and sextupole

/ contributions to the aberration coefficients are proportional to the

amplitudes of the characteristic first-order trajectories within these

elements, whereas the dipole contributions are proportional to the

derivatives of the first-order trajectories within the dipole elements.
!
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As an example of the above concepts, we shall calculate the angle #

between the momentum focal plane and the central trajectory for some

representative cases.

For point-to-point imaging, it may be readily verified that

!
f

dx(i) 1

()
Sx da

tan+=– — A,xo
Cx(i) m) = *) = (= (87)

where the subscript o refers to the object plane and the subscript i to the

image plane.

Let us now consider some representative quadruple configurations

and assume that the bending magnets are placed in a region having a

large amplitude of the unit sinelike function SX(so as to optimize the

first-order momentum resolving power R,).

Consider the simple quadruple configuration shown in Figure 14
with the bending magnets located in the region between the quadruples

and s: ~ O in this region. For these conditions, ~1 = 11,SX= 11at the

quadruples, and ~z = /3. From Table VII, we have:

where we make use of the fact that (/3/[1) = MX = – cX(i). M. is the

first-order magnification of the system.

Hence, - - _

/

t
S. da

tan~=.o
(xl I Xj8) = a (88)

fl
Sx fz Focal

P i
-.

I

FIGURE 14
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fl
Focal

plane

/$

I

FIGURE 15

2. Case II

For a single quadruple, Figure 15, the result is similar

tan #.= Ka/(1 + MX) (89)

except for the factor K < 1 resulting from the fact that s, cannot have

the same amplittie in the bending magnets as it does in the quadruple.

Therefore

3. Case III

Now let us consider a

/

i

SX da = K!la
o

symmetric four-q uadrupole array, Figure 16,

such that we have an intermediate image. Then

(x, I x:$) = –2cX(i)ll[l +“(11//,)] = twice that for Case I—

because of symmetry, cX(i) = MX = 1. Thus, we conclude -

tan ~ = –(a/2)[1 + (~~/~s)l (90)

In other words, the intermediate image has introduced a factor of t;vo

in the denominator and has changed the sign of ~.

.

FIGURE 16
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