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I. Introduction

Since the invention of the alternating gradient principle and the
subsequent design of the Brookhaven and CERN proton-synchrotrons
based on this principle, there has been a rapid evolution of the mathe-
matical and physical techniques applicable to charged particle optics.
In this report a matrix algebra formalism will be used to develop the
essential principles governing the design of charged particle beam
transport systems, with a particular emphasis on the design of high-
energy magnetic spectrometers. A notation introduced by John Streib‘”’
has been found to be useful in conveying the essential physical principles
dictating the design of such beam transport systems. In particular to
first order, the momentum dispersion, the momentum resolution, the
particle path length, and the necessary and sufficient conditions for zero
dispersion, achromaticity, and isochronicity may all be expressed as
simple integrals of particular first-order trajectories (matrix elements)
characterizing a system.

This formulation provides direct physical insight into the design of
beam transport systems and charged particle spectrometers. An intuitive
grasp of the mechanism of second-order aberrations also results from
this formalism; for example, the effects of magnetic symmetry on the
minimization or elimination of second-order aberrations is immediately
apparent.

pRpp- et
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The equations of motion will be derived and then the matrix
formalism -introduced, developed, and evolved into useful theorems.
Physical examples will be given to illustrate the applicability of the
formalism to the design of specific spectrometers. It is hoped that the
information supplied will provide the reader with the necessary tools so
that he can design any beam transport system or spectrometer suited to
his particular needs.

The theory has been developed to second order in a Taylor expan-
sion about a central trajectory, characterizing the system. This seems to
be adequate for most high-energy physics applications. For studying
details beyond second order, we have found computer ray tracing
programs to be the best technique for verification of matrix calculations,
and as a means for further refinement of the optics if needed.

In the design of actual systems for high-energy beam transport
applications, it has proved convenient to express the results via a multi-
pole expansion about a central trajectory. In this expansion, the constant
term proportional to the field strength at the central trajectory is the
dipole term. The term proportional to the first derivative of the field
(with respect to the transverse dimensions) about the central trajectory
1s a quadrupole term and the second derivative with respect to the trans-
verse dimensions is a sextupole term, ctc.

A considerable design simplification results at high encrgies if the
dipole, quadrupole, and sextupole functions arec physically separated
such that cross-product terms among them do not appear, and if the
fringing field effects are small compared to the contributions of the
multipole elements comprising the system. At the risk of oversimplifica-
tion, the basic function of the multipole elements may be identified in
the following way: The purpose of the dipole element(s) is to bend the
central trajectory of the system and disperse the beam: that is, it is the
means of providing the first-order momentum dispersion for the system.
The quadrupole element(s) generate the first-order imaging. The sextu-
pole terms couple with the second-order aberrations: and a sextupole
element introduced into the system is a mechanism for minimizing or
eliminating a particular sccond-order aberration that may have been
generated by dipole or quadrupole elements.

Quadrupole elements may be introduced in any one of three
characteristic forms: (/) via an actual physical quadrupole consisting of
four poles such that a first field derivative exists in the field expansion
about the central trajectory; (2) via a rotated input or output face of a
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bending magnet; and (3) via a transverse field gradient in the dipole
elements of the system. Clearly any one of these three fundamental
mechanisms may be used as a means of achieving first-order imaging
in a system. Of course dipole elements will tend to image in the radial
bending plane independent of whether a transverse field derivative does
or does not exist in the system, but imaging perpendicular to the plane
of bend 1s not possible without the introduction of a first-field
derivative.

In addition to their fundamental purpose, dipoles and quadrupoles
will also introduce higher-order aberrations. If these aberrations are
second order, they may be eliminated or at least modified by the intro-
duction of sextupole elements at appropriate locations.

In regions of zero dispersion, a sextupole will couple with and
modify only geometric aberrations. However, in a region where momen-
tum dispersion is present, sextupoles will also couple with and modify
chromatic aberrations.

Similar to the quadrupole, a sextupole element may be generated in
one of several ways, first by incorporating an actual sextupole, that is,
a six-pole magnet, into the system. However, any mechanism which
introduces a second derivative of the field with respect to the transverse
dimensions 1s, in effect, introducing a sextupole component. Thus a
second-order curved surface on the entrance or exit face of a bending
magnet or a second-order transverse curvature on the pole surfaces of a
bending magnet is also a sextupole component.

As illustrations of systems possessing dipole, quadrupole, and
sextupole elements, consider the n = 4 double-focusing spectrometer
which is widely used for low- and medium-energy physics applications.
Clearly there is a dipole element resulting from the presence of a
magnetic field component along the central trajectory of the spectrom-
eter. A distributed quadrupole element exists as a consequence of the
n = % field gradient. In this particular case, since the transverse imaging
forces are proportional to n'/2 and the radial imaging forces are propor-
tional to (1 — #n)*'2, the restoring forces are equal in both planes, hence
the reason for the double focusing properties. In addition to the first
derivative of the field n = (r,/B,)(0B/or), there are usually second- and
higher-order transverse field derivatives present. The second derivative
of the field B = L(r2/B,)c*B/ar?) .introduces a distributed sextupole
along the entire length of the spectrometer. Thus to second order a
typical n = 4 spectrometer consists of a single dipole with a distributed
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quadrupole and sextupole superimposed along the entire length of the
dipole element. Higher-order multipoles may also be present, but will
be ignored in this discussion.

In the preceding example the dipole, quadrupole, and sextupole
functions are integrated in the same magnet. However, in many high-
energy applications it is often more economical to use separate magnetic
elements for each of the multipole functions. Consider also the SLAC
spectrometers which provide examples of solutions which combine the
multipole functions into a single magnet as well as solutions using
separate multipole elements. Three spectrometers have been designed:
one for a maximum energy of 1.6 GeV/c to study large backward angle
scattering processes, a second for 8 GeV/c to study intermediate for-
ward angle production processes, and finally a 20-GeV/c spectrometer
for small forward angle production. All of these instruments are to be
used in conjunction with primary electron and gamma-ray energies in
the range of 10-20 GeV/c.

- The 1.6-GeV/c instrument (Fig. 1) is a single magnet, bending the

Focal plane

0]

PO

o0 /ﬁL

2

Uniform field regions

00 X Shaded areas indicate |
{ regions possessing sextupole
CT— components of the field

FiG. 1. 1.6-GeV/c spectrometer.
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central trajectory a total of 90°, thus constituting the dipole contribution
to the optics of the system. Two quadrupole elements are present in the
magnet; i.e., input and output pole faces of the magnet are rotated so as
to provide transverse focusing, and the 90° bend provides radial
focusing via the (1 — »)''? factor characteristic of any dipole magnet.
The net optical result is point-to-point imaging in the plane of bend and
parallel-to-point imaging in the plane transverse to the plane of bend.
The solid angle and resolution requirements of the 1.6-GeV/c spectrom-
eter are such that three sextupole components are needed to achieve
the required performance. In this application, the sextupoles are
generated by machining an appropriate transverse second-order curva-
ture on the magnet pole face at three different locations along the 90°
bend of the system. In summary, the 1.6-GeV/c spectrometer consists of
one dipole, bending a total of 90°, two quadrupole elements, and a sex-
tupole triplet with the quadrupole and sextupole strengths chosen to
provide the first- and second-order properties demanded of the system.

Momentum-measuring counter array

Production-angle -measuring counter array
\ .
DS

15°

L:}  Ep——

|
e
i

:‘ - Total path

Fi1G. 2. Magnet arrangement, 8-GeV/c spectrometer.

Optically, the 8-GeV/c spectrometer (Fig. 2) is relatively simple. It
consists of two dipoles, each bending 15°, making a total of a 30° bend,
and three quadrupoles (two preceding and one following the dipole
elements) to provide point-to-point imaging in the plane of bend and
parallel-to-point imagirg in the plane transverse to the bending plane.
The solid angle and resolution requirements of the instrument are
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sufficiently modest that no sextupole components are needed. The
penalty paid for not adding sextupole components is that the focal plane
angle with respect to the optic axis at the end of the system is a relatively
small angle (13.7°). With the addition of one sextupole element near the
end of the system, the focal plane could have been rotated to a much
larger angle. However, the 13.7° angle was acceptable for the focal plane
counter array and as such it was ultimately decided to omit the addi-
tional sextupole element.

The 20-GeV/c spectrometer (Fig. 3) is a more complex design. The
increased momentum requires an dl' B-dl twice that of the 8-GeV/c

spectrometer. The final instrument is composed of four dipole elements
(bending magnets), two bending in one sense and the other two bending
in the opposite sense, so the beam emanating from the instrument is
parallel to the incident primary particles. The first-order imaging is
achieved via four quadrupoles. The chromatic aberrations generated by
the quadrupoles in this system are more serious than in the 8-GeV/c case
because of an intermediate image required at the midpoint of the system.
As a result, the focal plane angle with respect to the central trajectory
would have been in the range of 2-4°, As a consequence, sextupoles were
introduced in order to rotate the focal plane to a more satisfactory angle
- for the counter array. A final compromise placed the focal plane angle
at 45° with respect to the optic axis of the system via the introduction of
three sextupoles. Thus the 20-GeV/c spectrometer consists of four
dipoles, with an intermediate crossover following the first two dipoles, a
quadrupole triplet to achieve first-order imaging, and a sextupole triplet
to compensate for the chromatic aberrations introduced by the quadru-
poles. Optically, the 20-GeV/c Qspectrometer is very similar to the

Fi1G. 3. 20-GeV/c spectrometer.
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1.6-GeV/c spectrometer and yet physicallyitis radically different because
of the method of introducing the various multipole components.

Having provided some representative examples of spectrometer
design, we now wish to introduce and develop the theoretical tools for
creating other designs.

II. A General First- and Second-Order Theory of
Beam Transport Optics

The fundamental objective is to study the trajectories described by
charged particles in a static magnetic field. To maintain the desired
generality, only one major restriction will be imposed on the field con-
figuration: Relative to a plane that will be designated as the magnetic
midplane, the magnetic scalar potential ¢ shall be an odd function in the
transverse coordinate ) (the direction perpendicular to the midplane),
e, o(x,r,t) = —qg(x, —y, ). This restriction greatly simplifies the
calculations, and from experience in designing beam transport systems
it appears that for most applications there is little, if any, advantage to
be gained from a more complicated field pattern. The trajectories will
“be described by means of a Taylor’s expansion about a particular
trajectory (which lies entirely within the magnetic midplane) designated
henceforth as the central trajectory. Referring to Figure 4, the coordinate
t is the arc length measured along the central trajectory; and x, v, and ¢
form a right-handed curvilinear coordinate system. The results will be
valid for describing trajectories lying close to and making small angles
with the central trajectory.

The basic steps in formulating the solution to the problem are as
follows:

. A general vector differential equation is derived describing the
trajectory of a charged particle in an arbitrary static magnetic field
which possesses “midplane symmetry.”

2. A Taylor’s series solution about the central trajectory is then
assumed; this is substituted into the general differential equation and
terms to second-order in the initial conditions are retained.

3. The first-order coefficients of the Taylor’s expansion (for mono-
energetic rays) satisfy homogeneous second-order differential equations
characteristic of simple harmonic oscillator theory: and the first-order
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Central trajectory,
lies in magnetic midplane

Magnetic midplane

0]
F1G. 4. Curvilinear coordinate system used in derivation of equations of motion.

dispersion and the second-order coefficients of the Taylor’s series satisfy
_ second-order differential equations having “driving terms.”

4. The first-order dispersion term and the second-order coefficients
are then evaluated via a Green’s function integral containing the driving
function of the particular coefficient being evaluated and the characteris-
tic solutions of the homogeneous equations.

In other words, the basic mathematical solution for beam transport
optics is similar to the theory of forced vibrations or to the theory of the
classical harmonic oscillator with driving terms.

It 1s useful to express the second-order results in terms of the first-
order coefficients of the Taylor’s expansion. These first-order coefficients
have a one-to-one correspondence with the following five characteristic
first-order trajectories (matrix elements) of the system (identified by their
initial conditions at ¢ = 0), where prime denotes the derivative with
respect to f:

/. The unit sinelike function s.(¢) in the plane of bend (the magnetic
midplane) where 5.(0) = 0: 5.(0) = 1 (Fig. 5).



80 K. L. BROWN

Object Central

Py trajectory image

FiG. 5. Sinelike function s.(¢) in magnetic midplane.

2 The unit cosine-like function c,(¢) in the plane of bend where
c(0) = 1; ¢x(0) = 0 (Fig. 6).

3. The dispersion function d.(t) in the plane of bend where ¢ (0) =
0; d-(0) = 0 (Fig. 7).

Central

trajectory

cx(t) P
0

Central
trajectory

F1G. 7. Dispersion function d(1) in magnetic midplane.
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4. The unit sinelike function s,(¢) in the nonbend plane where
5,00) = 0; 5,(0) = 1 (Fig. 8).

Y plane

sy (t) Po
——— ——

Object Image

Loo———

Fi1G. 8. Sinelike function s,(¢) in nonbend (y) plane.

5. The unit cosinelike function c¢,(¢) in the nonbend plane where
c,(0)y = 1; ¢,(0) = 0 (Fig. 9).

Writing the first-order Taylor’s expansion for the transverse position of
an arbitrary trajectory at position ¢ in terms of its initial conditions, the
above five quantities are just the coefficients appearing in the expansion
for the transverse coordinates x and y as follows:

x(t) = c.t)xo + s.t)xo + d(t)(Ap/po)
and
- M) = cy(t)yo + s(yo

where x, and y, are the initial transverse coordinates and x; and y; are
the initial angles (in the paraxial approximation) the arbitrary ray makes

|
—t po | My

F1G. 9. Cosinelike function ¢,(¢) in nonbend (y) plane.
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with respect to the central trajectory. Ap/p, 1s the fractional momentum
deviation of the ray from the central trajectory.

1. The Vector Differential Equation of Motion

We begin with the usual vector relativistic equation of motion for a
charged particle in a static magnetic field equating the time rate of
change of the momentum to the Lorentz force:

P = ¢(V x B)

and immediately transform this equation to one in which time has been
eliminated as a variable and we are left only with spatial coordinates.
The curvilinear coordinate system used is shown in Figure 4. Note that
the variable r is not time but is the arc distance measured along the
central trajectory. With a little algebra, the equation of motion is
readily transformed to the following vector forms shown below:

Let e be the charge of the particle, V its speed, P its momentum
magnitude, T its position vector, and T the distance traversed. The unit
tangent vector of the trajectory is dT/dT. Thus, the velocity and momen-
tum of the particle are, respectively, (dT/dT)V and (dT/dT)P. The
vector equation of motion then becomes:

d (dT dT
or

§ sz_T+d_T(d_P)_ dT B)
ar? T ar \dr _e<ﬁ %

where B is the magnetic induction. Then, since the derivative of a unit
vector is perpendicular to the unit vector, d*T/dT? is perpendicular to
dT/dT. It follows that dP/dT = 0; that is, P is a constant of the motion
as expected from the fact that the magnetic force is always perpendicular
to the velocity in a static magnetic field. The final result is:

=~ plar * (1)

2
d*T e (a’T B)
2. The Coordinate System

The general right-handed curvilinear coordinate system (x, y, t)
used is illustrated in Figure 4. A point O on the central trajectory is
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designated the origin. The direction of motion of particles on the central
trajectory is designated the positive direction of the coordinate 7. A
point A on the central trajectory is specified by the arc length ¢ measured
along that curve from the origin O to point 4. The two sides of the
magnetic symmetry-plane are designated the positive and negative sides
by the sign of the coordinate . To specifv an arbitrary point B which
lies in the symmetry plane, we construct a line segment from that point
to the central trajectory (which also lies in the symmetry plane) inter-
secting the latter perpendicularly at 4: the point 4 provides one
coordinate ¢; the second coordinate x is the length of the line segment
BA, combined with a sign (+) or (=) according as an observer, on the
positive side of the symmetry-plane, facing in the positive direction of
the central trajectory, finds the point on'the left or right side. In other
words, x, v, and ¢ form a right-handed curvilinear coordinate system.
To specify a point C which lies off the symmetry-plane, we construct a
line segment from the point to the plane, intersecting the latter per-
pendicularly at B: then B provides the two coordinates, ¢ and x: the
third coordinate y is the length of the line segment CB.

We now define three mutually perpendicular unit vectors (¥, p, 7).
[ is tangent to the central trajectory and directed in the positive -
direction at the point 4 corresponding to the coordinate ¢; % is perpen-
dicular to the principal trajectory at the same point, parallel to the
symmetry plane, and directed in the positive x direction. j is perpen-
dicular to the symmetry plang, anid directed away from that plane on its
positive side."The unit vectors (£, p, f) constitute a right-handed system
and satisfy the relations

Il
AN

AN
I
A 39
X X X
N

A

(2)

ban 39
i
>

The coordinate ¢ is the primary independent variable, and we shall
use the prime to indicate the operation d/dr. The unit vectors depend
only on the coordinate ¢, and from differential vector calculus, we may
write

X' = hi
7 =0
"= —hx (3)
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where /(1) = 1/p, is the curvature of the central trajectory at point A4
defined as positive as shown in Figure 4.

The equation of motion may now be rewritten in terms of the
curvilinear coordinates defined above. To facilitate this, it 1s convenient
to express dT/dT and d*T/dT? in the following forms:

dT _ (dT/dr) T
dT  (dTjdr) T’

¢T_ 14T
dT> T dr (T)
or
T, LT d o,
=T magEa
The equation of motion now takes the form
y ' T d .., e ., ..,
T E(T’)2Z?(T) —PT(T x B) (4)

In this coordinate system, the differential line element is given by:

dT = Xdx + ydv + (I + hx)idr
and
(dT)? = dT-dT = dx? + dv?® + (1 + hx)%dr?

Differentiating these equations with respect to 7, it follows that:

7—-/2 . .\’/2 + J,/Q + ([ —+: /I.Y)Q |

L d (T')? = x'x" + 33" + (I + hx)(hx' + h'x)

2
T = 3x"+ ' + (1 + hx)f
and
T = 3x" + X" + py" + py' + (I + hx)i’ + #hx’ + I'x)

Using the differential vector relations of Eq. (3), the expression for T”
reduces to -~ '

T = X[x" — Al + hx)] + 7" + I[2hx’ + I'x]
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The vector equation of motion may now be separated into its component
parts with the result:

7

.f{[x” — Al + hx)] - (TY)—Q [x'x" + 2" + (1 + hx)(hx' + ll'x)]}

+ ﬁ{l'" - (TVW [xX'x" + vv'" + (I + hx)(hx' + h’x)]}
+ f{(2/1x’ + h'x) — “T;,-——)/;x) xX'x" + v

+ (1 + hx)(hx' + h’X)]}

- %T'(T' % B)

- %T’{)E[y’Bt = (I + hx)B,] + J[(I + hx)B, — x'B}]
+ ix'B, — y'B.[} (5)

Note that in this form, no approximations have been made: the
equation of motion is still valid to all orders in the variables x and y and
their derivatives.

If now we retain only terms through second order in x and y and
their derivatives and note that (7')> = 1+ 2Ax + - - -, the x and v com-
ponents of the equation of motion become

x" = h(l + hx) — x'(hx’ + h'x) = (e/P)T'[y'B, — (1 + hx)B,]
V= y'(hx + h'x) = (e/P)T'[(1 + hx)B, — x'B] (6)

The equation of motion of the central orbit is readily obtained by
setting x and y and their derivatives equal to zero. We thus obtain:

h = (e/PO)By(O’ O’ t) or BPO = P0/€ (7)

This result will be useful for simplifying the final equations of motion.
Py i1s the momentum of a particle on the central trajectory. Note that
this equation establishes the sign convention between h, e, and B,.

3. Expanded Form of a Magnetic Field Having Median Plane Symmetry

We now evolve the field components of a static magnetic field
possessing median or midplane symmetry (Fig. 10). We define median
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N N
Yy Y
0 x 0 =+
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N
Dipole Quadrupole Sextupole

F1G. 10. Illustration of magnetic midplane for dipole, quadrupole, and sextupole
elements. The magnet polarities may, of course, be reversed.

plane symmetry as follows. Relative to the plane containing the central
trajectory, the magnetic scalar potential ¢ is an odd function in y; i.e.,
p(x, v, t) = —q¢(x, —y, 1). Stated in terms of the magnetic field com-
ponents B,, B,, and B,, this is equivalent to saying that:

B'\-(X, ) t) - B_\-(X, -, t)

: By(x’ »t) = BU(X, - 1)
and
Bt(x? y’ f) = —Bt(‘x’ —_V, [)

it follows immediately that on the midplane B, = B, = 0 and only B,
remains nonzero: in other words, on the midplane B is always normal
to the plane. As such, any trajectory initially lying in the midplane will
remain in the midplane throughout the system.

The expanded form of a magnetic field with median plane symmetry
has been worked out by many people; however, a convenient and com-
prehensible reference is not always available. L. C. Teng'® has provided
us with such a reference.

For the magnetic field in vacuum, the field may be expressed 1n
terms of a scalar potential ¢ by B = Ve.* The scalar potential will be
expanded in the curvilinear coordinates about the central trajectory

* For convenience, we omit the minus sign since we are restricting the problem
to static magnetic fields.
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lying in the median plane y = 0. The curvilinear coordinates have been
defined in Figure | where x is the outward normal distance in the
median plane away from the central trajectory. y is the perpendicular
distance from the median plane, ¢ is the distance along the central
trajectory, and 4 = h(¢) is the curvature of the central trajectory. As
stated previously, these coordinates (x, y, and ¢) form a right-handed
orthogonal curvilinear coordinate system.

As has been stated, the existence of the median plane requires that
@ be an odd function of v, ie., ¢(x, y, 1) = —(x, —y, t). The most
general expanded form of ¢ may, therefore, be expressed as follows:

(P(.x. .V, l) = (AIO - Aux + A12(.Y2/2!) -+ A13(X3/3!) + - - ').l"
+ (Ago + Agix + Ag(x321) + - )33+

2m+1
Y

>3 feo) ,Yn
- Z Z Aot o T T 1 (®

where the coefficients A4,,, ., , are functions of r.
In this coordinate system, the differential line element 7 is given by

dT? = dx? + dy? + (1 + hx)¥(dr)? (9)

The Laplace equation has the form

~

| o cp
2 — - —
Vi = 0T [(1 + hx) ex]

- - % l 7 I dpl]
+a—y‘2+(1+hx)a“z[(1+hx)§]‘o (10)

Substitution of Eq. (8) into Eq. (10) gives the following recursion formula
for the coefficients:

—Aomian = Aomirn + ”hAlzlmn,n—x — nh'Agp oy noy + Aomiinee
+ (3n + DhAomsiner + 030 — DA*Agmsr 0 + nln — 1)2}73A2m+1,n~1
+ 3nhAgm gy + 30(n—1Dh%Agn 5 .o

+ n(n — 1)(n — DhPAsmran-s (11)

where prime means d/dt, and where it is understood that all coefficients
A with one or more negative subscripts are zero. This recursion formula
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expresses all the coefficients in terms of the midplane field B,(x, 0, ¢):
where

ot .
Al n = ( Bny) = functions of ¢ (12)
' L 0X x=0
v=0
Since ¢ is an odd function of v, on the median plane we have B, = B, =
0. The normal (in x direction) derivatives of B, on the reference curve
defines B, over the entire median plane, hence the magnetic field B over
the whole space. The components of the field are expressed in terms of
@ explicitly by B = Vg or

2m + 1

_ e _ Xy
Bx _' 6X mZO nzo 42m+1 n+1n (zm + l)‘

_3’<P _ x » x y2m
Bu_—é—l'— Z Z A2m+1n;l_:(2m)!

B 1 a(P y2m+l
b=tavma ~ 0% hx) mzo nZOAz’"“" '(2 T (P

‘where B, is not expressed in a pure power expansion form. This form can
‘be obtained straightforwardly by expanding 1/(1 + hx) in a power series
of Ax and multiplying out the two series; however, there does not seem
to be any advantage gained over the form given in Eq. (13).

The coefficients up to the sixth-degree terms in x and y are given
explicitly below from Eq. (11).

A30 = —AI{O - A12 - h.All
Ay = — A% + 2hAT + WALy — Ays — hA1s + hody,

Agg = — Aly + 4hAT, + 2W A}, — 6h2AT, — 6hh' Ay — Ay
- hAlg + 2h2A12 - 2h3A11

Asy = — Aly + 6hAY, + 3h' Ay, — 18h%AY, — 18hh'AY,
+ 24/73/1/1/0 + 36h2h,A,10 - AlS - hA14 + 3h2A13
— 6h°A ., + 6h* A, (14)

Aso = AV + 2A51, — 2hA7, + WAy, + 4hPAY, + Shh' A,
- ~ + A'14 + 2hA13 ha h2A12 + /73/411

As, = AT — hAT — 6l ALy — dh" ALy — " ALy + 2475
— 6hAL, — 2 Ay + WAy, + 10K2AY, + ThiC Ay, — 4RI A,

— 3024, — 1613AL — 29Rh Ay + Avs + 2hd .

— 3h2A4,, + 3K3A,, — 3htA,, (15)
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In the special case when the field has cylindrical symmetry about 7,
we can choose a circle with radius p, = 1/ = a constant for the
reference curve. The coefficients Aom+1..1n Eq. (8) and the curvature #
of the reference curve are then all independent of 1. Egs. (14) and (15)
are greatly simplified by putting all terms with primed quantities equal
to zero.

4. Field Expansion to Second Order Only

If the field expansion is terminated with the second-order terms, the
results may be considerably simplified. For this case, the scalar potential
- @ and the field B = Vg become:

1 3
(P(xa.y) t) = (AIO + Allx + ?Alzxz + .)y + (ASO + . .)% + .
Aip = Oaﬁf’ = functions of ¢ only
¥=0

and
Azo = —[A1o + Ay, + Ay]

where prime means the total derivative with respect to ¢. Then B = Vg
from which

o
B.(x,y,t) = 6_();: = Ay y + Appxy +- -

~

- - 1 1
B(x,y,t) = gz Ay + Apx + fAlzxz +—§ Azoy® + - -

1 8 1
Bt(xaya t) = q)_

—m_a—t - m[Aloy+A11xy+...] (16)

By inspection it is evident that B,, B,, and B, are all expressed in terms
of Ay, Ay;, and A,, and their derivatives with respect to r. Consider

then B, on the midplane only

By(x, O, t) = AlO + Aux -+ l'1412x2 + -

2!
dipole - quadrupole sextupole etc.
~ 9B, 1 88, ,
—By 0+5; Ox 2—!8x2x X< + - “7\)
[0} 0 v

X X
v y
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The successive derivatives identify the terms as being dipole,
quadrupole, sextupole, octupole, etc., in the expansion of the field. To
eliminate the necessity of continually writing these derivatives, it Is
useful to express the midplane field in terms of dimensionless quantities

n(r), B(¢), etc., or
B,(x,0,t) = B,0,0,0)[1 — nhx + Bh*x*> + yh°x® +---1 (1§)

where as before A(t) = 1/po, and n, B, and y are functions of 7. Direct
comparison of Egs. (17) and (18) yields

[ 1 (eB, [ 1 (&B,
"= ‘[hBy (z‘;)] _, and A= [2!/123y(ax2 )] ,
=0 y=0

We now make use of Eq. (7), the equation of motion of the central
trajectory:

1 H

X
v

B0,0, ) = hPyfe

Combining Egs. (7) and (19), the coefficients of the field expansions
become

AlO = By(os Oa f) = h(_’;_o)

= —nhz(&))
0 €
0
22
..1_ A12 = —1- 0 By = Bha(g(—))
. oX 0

T Agy = ~[h — uh® + 2,8/13](%))

/(7)

Ay, = —[2nhl + n'lzz](%) (20)

/
A1o

il

To second order the expansions for the magnetic field components
may now be expressed in the form:
B.(x, y,t) = (Pofe)[—nh?y + 28/°xy + - -]
B,(x,y,t) = (Pofe)lh — nh*x + Bh*x?
- - = YW — nh® + 2BRP)y? + -]
Bi(x,y,t) = (PoJe)['y — (0'h* + 2nhh" + hii)xy + -] (21)

where P, is the momentum of the central trajectory.
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5. Identification of n and B with Pure Quadrupole and Sextupole Fields

The scalar potential of a pure quadrupole field in cylindrical and in
rectangular coordinates is given by:

@ = (Byr?/2a) sin 2« = Byxy/a (22a)
where B, is the field at the pole, a is the radius of the quadrupole aperture

and r and « are the cylindrical coordinates, such that x = r cos « and
v = rsin a. From B = Vg, it follows that

B. = Byy/a and B, = Byx/a (22b)
Using the second of Egs. (20) and Egs. (22a) and (22b).
aﬁBy ~ 5o _ —11/12(&))
OX {x-0 a . €
y=0

where now we define the quantity &2 as follows:

k3 = —nh® = (Bofa)(e/Po) = (Bo/a)(1/Bp) (23)
Similarly for a pure sextupole field,

@ = (Bor®/3a®) sin 3a = (B,/3a*)[3x%) — 7]

B, = e _ ZBozxy and B, = B;S (x* — %) (24)
cX a i a

Where B, is the field at the pole and a is the radius of the sextupole
aperture.
Using the third-part of Egs. (20) and Egs. (24)

| 2°B, B _ s
i&xzxo_ﬂzﬁ_Bh _(;—)

i

where we now define the quantity &2 as follows:
k3 = BI® = (Bo/a*)(e/Po) = (Bo/a*)(1/Bp) (25)

These identities, Eqgs. (23) and (25), are useful in the derivation of the
equations of motion and the matrix elements for pure quadrupole and
sextupole fields.

6. The Equations of Motion in Their Final Forni to Second Order

Having derived Eq. (21), we are now in a position to substitute into
the general second-order equations of motion. Eq. (6). Combining
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Eq. (6) (the equation of motion) with the expanded field components of
Eq. (21), we find for x

x" — h(l + hx) — x'(hx" + h'x)
= (Po/P)T{(1 + hx)[—h + nh®x — BI*x® + (0" — nh® + 2B1°))?]
+ hyy 4
and for y
'1,/1 — yl(hx/ + h/x)
= (Po/P)T'{—=x'h'y — (1 + hx)[nh*y — 2BR°xy] + -+ -
Note that we have eliminated the charge of the particle e in the equations

of motion. This has resulted from the use of the equation of motion of

the central trajectory.
Inserting - a second-order expansion for T = (x'% +v'* +
(1 + hx)?)*? and letting

we finally express the differential equations for x and » to second order
as follows:
X"+ (1 — mh2x = h§ + 2n — 1 = PIPx® + 'xx' + $hx'
+ (2 — mh2xS + Y(h" — nh® + 281°)y? + Iyy — 't — hé?
+ higher-order terms (27)

Vo4 oahy = 2B = miiPxy + h'xy' — I'x'y + hx')' + nh?yé
+ higher-order terms (28)

From Egs. (27) and (28) the familiar equations of motion for the
first-order terms may be extracted:

x" + (1 —mh*’x =hé and " + nh*y =0 (29)

Substituting k2 = —nh? from Eq. (23) into Egs. (27) and (28). the
second-order equations of motion for a pure quadrupole field result by
taking the limit # — 0, /" — 0 and /" — 0. We find that

o X+ K2x = k3xS
Vo k2 = — k2

where
k2 = (Bolale/Po) = (Bo/a)1/Bpo) (30)

[aR e et -ttt

S A R N e
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Similarly, to find the second-order equations of motion for a pure
sextupole field, we make use of Eq. (25) Bh® = k? and, again, take the
limit # — 0, ' = 0. and /" — 0. The results are:

X"+ kA(x2 -y =0
v = 2kixy =0

where

k2 = Bh® = (Bo/a*)(e/Po) = (Bo/a*)1/Bps) (31

7. The Description of the Trajectories and the Coefficients of the Taylor’s
Expansion

The deviation of an arbitrary trajectory from the central trajectory
is described by expressing x and y as functions of . The expressions will
also contain xq, Vo, Xb, ' and 8, where the subscript 0 indicates that the
quantity is evaluated at ¢ = 0 these five boundary values will have the
value zero for the central trajectory itself. The procedure for expressing
x and y as a fivefold Taylor expansion will be considered in a general
way using these boundary values, and detailed formulas will be developed
for the calculations of the coefficients through the quadratic terms. The
expansions are written:

X = > (x| xydxg yo8)x5yoxd yo 8
v = 2 (0 | xEybxeyxsyoxg yo 8 (32)

Here, the parentheses are symbols for the Taylor coefficients; the first
part of the symbol identifies the coordinate represented by the expan-
sion, and the second indicates the term in question. These coefficients are
functions of ¢ to be determined. The 3 indicates summation over zero
and all positive integer values of the exponents «, A, p, v, x: however,
the detailed calculations will involve only the terms up to the second
power. The constant term is zero, and the terms that would indicate a
coupling between the coordinates x and y are also zero; this results from
the midplane symmetry. Thus we have

x|DHh=lD) =0
(xl}’o)=(}’|xo)=0
(x| yo) =(y|x5) =0 (33)
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Here, the first line is a consequence of choosing x, = 3, = 0, while the
second and third lines follow directly from considerations of symmetry.
or, more formally, from the formulas at the end of this section.

As mentioned in the introduction, it is convenient to introduce the
following abbreviations for the first-order Tavlor coefficients:

(x ‘ Xo) = C.\'(’) (X | x’O) = S_,:(f) (x 1 8) = d(f)
1y =cf)  (¥]yo) = s,(1) (34

Retaining terms to second order and using Egs. (33) and (34), the
Taylor’s expansions of Eq. (32) reduce to the following terms:

Cy Sy d.\'
—~ — —~
x = (x]|xo)xe + (x| x5)x0 + (x| 9)d

+(x | xB)x5 + (x| xox0)x0X0 + (¥ | X8)xp0
+(x | xP)xd + (x| x6d)xe0  + (x| 6%)07
F(x [ 335+ (x| yoro)voro + (¥ [ 2d)e
and
cy S.‘/
— —
yv=(y]roro + (3] yo) 3o
+(¥ | x0ro)Xodo + (1 Xorg)Xoro + (3] Xo¥o)xo o
+(r ] xore)xore + (] vod)rgd 4+ (1] vod)iod (35

~Substituting these expansions into Egs. (27) and (28), we derive a dif-
ferential equation for each of the first- and second-order coefficients
contained in the Taylor’s expansions for x and v. When this is done, a
systematic pattern evolves, namely.

civ + k¢, =0 ¢y + kic, =0
sv+ kis, =0 or s, + k%5, =0
ge + kigq. = /. gy + Kiqy = J, (36)

where A2 = (1 — n)h? and k2 = nh* for the x and y motions, respec-
tively. The first two of these equations represent the equations of motion
for the first-order monoenergetic terms s, c,, §,, and ¢,. That there are
two solutions, one for ¢ and one for s, 1s a manifestation of the fact
that the differential equation is second order; hence, the two solutions
differ only by the initial'conditions of the characteristic s and ¢ functions.
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The third differential equation for g is a type form which represents the
solution for the first-order dispersion d, and for any one of the coeffi-
cients of the second-order aberrations in the system where the driving
term f has a characteristic form for each of these coefficients. The
driving function f for each aberration is obtained from the substitution
of the Taylor’s expansions of Eq. (35) into the general differential Eqs.
(27) and (28).
The coefficients satisfy the boundary conditions:

c0) =1 (0 =0
s(0) =0 s'(0) = 1
d0) =0 d0)=0
g0 =0 40 =0 (37

The driving term f is a polynomial, peculiar to the particular q.
whose terms are the coefficients of order less than that of ¢, and their
derivatives. The coefficients in these polynomials are themselves poly-
nomials in &, /', ..., with coefficients that are linear functions of .
B,.... For example, for g = (x | x2), we have

f=0Qn—1—PBhPc + Weper + Yhe'? (38)

In Table I are listed the f functions for the remaining linear coefficient,
the momentum dispersion d(r) and all of the nonzero quadratic
coefficients, shown in Eq. (35), which represent the second-order aberra-
tions of a system.

The coefficients ¢ and s (with identical subscripts) satisfy the same
_ differential equation which has the form of the homogeneous equation
of a harmonic oscillator. Here, the stiffness k2 is a function of  and may
be of either sign. In view of their boundary conditions, it is natural to
consider ¢ and s as the analogs of the two fundamental solutions of a
simple harmonic oscillator, namely cos wf and (sin wt)/w. The function
¢ is the response of the hypothetical oscillator when, starting at equilib-
rium and at rest, it is subjected to a driving force f.

The stifiness parameters kZ and kZ represent the converging powers
of the field for the two respective coordinates. It is possible for either to
be negative, in which case it actually represents a diverging effect.
Addition of k2 and kZ yields

k2 + k2=~h 39
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For a specific magnitude of 4, k2 and k2 may be varied by adjusting n, but
the total converging power is unchanged; any increase in one converging
power is at the expense of the other. The total converging power is
positive; this fact admits the possibility of double focusing.

A special case of interest is provided by the uniform field; here
h = const. and n = 0; then k2 = h? and k2 = 0. Thus, there is a
converging effect for x resulting in the familiar semicircular focusing,
which is accompanied by no convergence or divergence of y.

Another important special case is given by n = ; here, k2 = k?
= h?/2. Thus, both coordinates experience an identical positive con-
vergence, and ¢, = ¢, and s, = s,; that is, in the linear approximation,
the two coordinates behave identically, and if the trajectory continues
through a sufficiently extended field, a double focus is produced.

The method of solution of the equations for ¢ and s will not be
discussed here, since they are standard differential equations. The most
suitable approach to the problem must be determined in each case. In
many cases it will be a satisfactory approximation to consider 4 and n,
and therefore k2 also, as uniform piecewise. Then, ¢ and s are represented
in each interval of uniformity by a sinusoidal function, a hyperbolic
function, or a linear function of 1, or simply a constant. Using Eq. (36),
it follows for either the x or y motions that:

d ’ ’ —
E(cs —-cs)=0

Upon integrating and using the initial conditions on ¢ and s in Eq. (37),
we find
¢s’ —c's =1 (40)

This expression is just the determinant of the first-order transport
matrix representing either the x or y equations of motion. It can be
demonstrated that the fact that the determinant is equal to one is
equivalent to Liouville’s theorem, which states that phase areas are
conserved throughout the system in either the x or y plane motions.

The coefficients g are evaluated using a Green’s function integral

7= G, 7) dr @1)
where

G(t, 7) = s(t)e(r) — s(r)e(r) (42)

and

g=s0) | fn)e(n) dr — (1) f f()s(r) dr @3)
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To verify this result, it should be noted that this equation, in conjunction
with Eq. (40), reduces the last of Eq. (36) to an identity, and that the
last pair of Eq. (37) follows readily from this proposed solution. In
particular, if f = 0, then ¢ = 0. Then it will be seen from Table I that
several coefficients are absent, including the linear terms that would
represent a coupling between x and y. Frequently, the absence of a
particular coefficient is obvious from considerations of symmetry.
Differentiation of Eq. (43) yields

g = s’(r)fof(r)c(f) dr — ¢'(t) fo f(7)s(7) dr (44)
and

q" =f+ s(t) J:f('r)c('r) dr — c"(t) J:f('r)s('r) dr

The driving terms tabulated in Table I, combined with Egs. (43)
" and (44), complete the solution of the general second-order theory. It
now remains to find explicit solutions for specific systems or elements of
systems.

8. Transformation from Curvilinear Coordinates to a Rectangular
Coordinate System and TRANSPORT Notation

All results so far have been expressed in terms of the general
curvilinear coordinate system (x, y, t). It is useful to transform these
results to the rectangular coordinate system (x, y, z), shown in Figure 4,
to facilitate matching boundary conditions between the various com-
ponents comprising a beam transport system. This is accomplished by
introducing the angular coordinates 8 and @ defined as follows (again,
using the paraxial ray approximation tan 8 = 6 and tan ¢ = ¢):

9_@—"_’ X’
T dz Z 1+ hx
dy _y Y

(45)

dz 2 1+ hx

where, as before, prime means the derivative with respect to r.

Using these definitions and those of Eqgs. (34) and (35), it is now
possible to express the Taylor’s expansions for x, 8, y, and ¢ in terms
of the rectangularcoordinate system. For the sake of completeness and
to clearly define the notation used, the complete Taylor’s expansions for
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X, 8, y, and @ at the end of a system as a function of the initial variables
are given below:

Cx S d.
—~M ~ —
x = (x| Xxo)xo + (x| 858, + (x| 8)d

+ (x| x3)x8 + (x| x000)x00, + (x| x00)x00
+ (x| 63)6% + (x| 0:8)8,6 + (x] 8%)6?
+ (x | y%)y% + (x l Yo®o) Voo + (x| ®5)es

Ch S d,
— — — =
6 = (0] xo)x0 + (0] 60)0s + (6] 0)8
+ (0] x)x§ + (8] x000)x00, + (8] x48)x,6
+ (6] 603)685 + (6 |7908)908 + (8] 6%)6°

+ (0| ¥8)ys + (8] yowo) Yopo + (6| 93)pd

Cy S!I
— —
y=1y)yo + (¥ | ®o)eo

+ (¥ | Xoyo)xo¥o + (¥ | Xopo)Xopo + (V| o¥0)00 Y0
+ (] 6opo)bopo + (¥ | ¥60)yed  + (¥ | ®o8)pod

Cy Sy
— M
e =(p|y)yo = + (2] ®)Po .

+ (@ | Xo¥o)Xo¥o + (@ | Xo®o)Xopo + (@ | Boyo)boyo
+ (@ ] 0o®o)lopo + (9 | )’03))’08 + (¢ | ®00)Po0 (46)

Using the definitions of Eq (45), the coefficients appearing in Eq. (46)
may be easily related to those appearing in Eq. (35). At the same time,
we will introduce the abbreviated notation used in the Stanford
TRANSPORT Program® where the subscript 1 means x; 2 means 0,
3 means y; 4 means @, and 6 means 8. The subscript 5 is the path length
difference / between an arbitrary ray and the central trajectory. R, will
be used to signify a first-order matrix element and T}, will signify a
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second-order matrix element. Thus, we may write Eq. (46) in the general

form
6 6

X = Z R,x,(0) + 2, Z T51%,(0)x,(0) (47)

i=1k=7
where

Xy =X, Xo =8, X3 =V, X4 =9, x5 = l,and xg =

denotes the subscript notation.
Using Eq. (45) defining 6 and ¢, the following identities among the
various matrix element definitions result:
For the Taylor’s expansions for x we have:
R, =(x]|x0) = cx
Riz = (x| 8o) = (x| x0) = s
R =(x]0)=d,
T = (x| x3)
Tii2 = (x| Xo0) = (x| xox0) + A(0)s
Tis = (x| X09)
Tigo = (x]63) = (x| x5
Tige = (1] 6,0) = (x | x00)
Tigs = 't 18%)
Tiaa = (X »8)
Tizs = (X | Yopo) = (x| Yoyo)
Tias = (x| 9d) = (x| yo) (48)

For the 8 terms we have.
~ L d p
Ro1 = (Hlxo) = (X | Xy) ZE(X]XO) = Cx

Ryy = (0] 80) = (x"| x0) = Ss

Rys = (01]8) = (x'|0) =ds

Toy = (0] x3) = (x| x3) — h(t)cxcx

Tarz = (0| Xofo) = (x" | xox0) + h(0)sx — h(t)exsi + ci3x)
Tore = (0] x08) = (X' | x08) — #(r)[cx dx + Ci dx)

Tazz = (0] 03) = (X" | X&) — e joess

Toge = (0] 058) = (x| x08) — hu)[s.de + Sz di)

R RN TR R S 0 T P S S TS
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Toes = (0] 0% = (x' | 8°) — h(t) d. d.

Toss = (0] 55) = (x" | ¥9)

Tazs = (0] yopo) = (X" | yo¥o)

Toss = (0] 98) = (X' | yo° (49)

For the y terms in the Taylor’s expansion:

Rys = (y | y0) = ¢y

Rys = (¥ @) = (¥l y) =s,

Ta15 = (¥ | X0¥0)

Ta1s = (¥ | Xowo) = (¥ | Xo¥30) + A(0)s,

Tazz = (¥ | 8oy0) = (¥ ] Xo010)

Taza = (¥ | fopo) = (¥ | x010)

Ts36 = (V] ¥09) 7

Tas6 = (¥ | 900) = (¥ | ¥69) (50)

and finally for the ¢ terms we have:

Ry =(‘P|J’o):(y'|yo) =-g;(ylyo) = Cx

Ry = (@9 =0 |y0) =5

Ti13 = (9| Xo¥0) = (V' | Xoyo) — A(t)cycy

Ts1a = (¢ | X0p0) = (V' | x0¥0) + h(0)s;, — h(t)c.s,

Tiaz = (@ | 00yo) = (V' | Xoyo) — h(t)s.cy

Tizs = (¢ | 8opo) = (V' | x010) — A(t)s.s,

Tis6 = (@ | ¥60) = (V' | yo8) — h(t)c, d,

Tiss = (@ | 900 = (¥ | yod) — h(t)s, d (51)

All of the above terms are understood to be evaluated at the terminal

point of the system except for the quantity 4(0) which is to be evaluated

at the beginning of the system. In practice, #(0) will usually be equal to

h(t); but to retain the formalism, we show them as being different here.
All nonlisted matrix elements are equal to zero.
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9. First- and Second-Order Matrix Formalism of Beam Transport Optics

The solution of first-order beam transport problems using matrix
algebra has been extensively documented.*-® However, it does not
seem to be generally known that matrix methods may be used to solve
second- and higher-order beam transport problems. A general proof of
the validity of extending matrix algebra to include second-order terms
has been given by Brown, Belbeoch, and Bounin‘™® the results of which
are summarized below in the notation of this report and in TRANS-
PORT notation.

Consider again Eq. (47). From ref. 3, the matrix formalism may be
logically extended to include second-order terms by extending the
definition of the column matrices x, and X; in the first-order matrix
- algebra to include the second-order terms as shown in Tables II-V. In
addition, it is necessary to calculate and include the coefficients shown
in the lower right-hand portion of the square matrix such that the set of
simultaneous equations represented by Tables II-V are valid. Note that
the second-order equations, represented by the lower right-hand portion
of the matrix, are derived in a straightforward manner from the first-
order equations, represented by the upper left-hand portion of the
matrix. For example, consider the matrix in Table I1; we see from row 1
that

X = CXg + S0, + d.8 + second-order terms

Hence, row 4 is derived directly by squaring the above equation as
follows:

X% = (CxXg + 5.0, + d.8)?
= Cix§ + 2¢,5.:%000 + 2¢, doxoS + 5262 + 25, d.0,5 + d282

The remaining rows are derived in a similar manner.

If now x; = M, x, represents the complete first- and second-order
transformation from O to | in a beam transport system and x, = M,x,
is the transformation from 1 to 2, then the first- and second-order
transformation from O to 2 is simply x, = Myx; = MyMix,; where M,
and M, are matrices fabricated as shown in Tables II and III in our
notation or as shown in Tables IV and V in TRANSPORT notation.
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III. Reduction of the General First- and Second-Order
Theory to the Case of the Ideal Magnet

Section II of this report was devoted to the derivation of the general
second-order differential equations of motion of charged particles in a
static magnetic field. In Section Il no restrictions were placed on the
variation of the field along the central orbit, i.e., A, n, and 8 were assumed
to be functions of . As such, the final results were left in either a differen-
tial equation form or expressed in terms of an integral containing
the driving function f(#), and a Green’s function G(t, ) derived from the
first-order solutions of the homogeneous equations. We now limit the
generality of the problem by assuming A, n, and B to be constants over
the interval of integration. With this restriction, the solutions to the
homogeneous differential equation [Eq. (36) of Sec. 11] are the following
simple trigonometric functions:

¢ (1) = cos k,t s (t) = (1/k,) sin k.t
c,(t) = cos k,t s,(t) = (1/k,) sin k1 (52)

"where now

k= (1 —-nmh? Kk%2=nh®> and h=1/p,

become constants of the motion. p, is the radius of curvature of the
central trajectory. =~ .

The solution of the inhomogencous differential equations [the third
of Egs. (36)] for the remaining matrix clements is solved as indicated in
Section II, using the Green’s functions integral Eq. (41) and the driving
functions listed in Table 1. With the restrictions that &, and k, are
constants, the Green’s functions reduce to the following simple trigono-
metric forms:

G (t,7) = (I]/k,)sin k(t — 1)
and
G(t, 7) = (l/k,)sin k(t — 1) (53)

The resulting matrix elements are tabulated below in terms of the key
integrals listed in Table VI, the five characteristic first-order matrix
elements s,, ¢,, d,, c,, and s, and the constants A, n, and f.
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The constants # and j are defined by the midplane field expansion
[Eq. (18) of Sec. I1]:

B,(x,0,1) = (8,0, 0, N[l — nhx + Bh*x? + yhPx® +---] (18)

or, from Eq. (19) of Section II:

B 1 (¢B, ‘ IR (2B,
= [/sz ('c"x )] 0 and 8 = L’.!/zsz ( ox? )L=o (19)
¢} y=0

X
Yy

o

1. Marrix Elements for a Pure Quadrupole Field

For a pure quadrupole, the matrix elements are derived from those
of the general case by letting 3 = 0, k2 = k and kj = —ki, where

ki = —nh® = (Bo/a)(1/Bp)
and then taking the limit 4 — O. The results are:

Ry, = cos kgt

R,, = (l/k,) sin kyt

Ty = Lkt sin kgt

Ti06 = (1/2ky) sin k,t — (¢/2) cos kgt
R,y = —k,sin kgt

Ryp = cos kgt

To16 = (kof2)[kyt cos kit + sin kyt]
Toos = Skt sin kgt

R,; = cosh k,t

R = (l/k,) sinh k

Ts36 = —3k,tsinh k,t

Ty = %[kL sinh k,t — t cosh kqt]
q

.‘Q‘is = kq Slnh kq[
Ry = cosh k,t

Tiae-= = (k,/2)[k,t cosh k,t + sinh kyt]
Ty = —3kgt sinh kyt (55)

all nonlisted matrix elements are identically zero.

3
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2. Matrix Elements for a Pure Sextupole Field

For a pure sextupole, the matrix elements are derived from those
of the general case by letting

Bh® = kI = (Bo/a*)(1/Bp)

and then taking the limit /1 — 0. The results are:

R, =1
R, =1
Ty = —3k8r®
Ty = —3k3r°
Ty = _ll:'/‘sgté
Ti3s = JkIt°
Ti3: = Thie®
Ti4s = ‘1%'1(;“’[4
R,y =0
Ry, =1
To11 — kit
Ty = —kit?
Toop = ”%kszta
Togs = kit
Tase = K317
Toss = 3K30°
Ry; =1

T Ry .=t

Ry =0
R, =1
Ti3 = 2kZt
Ty = k?tz
Tyo3 = k?tz
T Ty = %k?[S (56)

All nonlisted matrix elements are identically zero.
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3. First- and Second-Order Martrix Elements for a Curved. Inclined
Magnetic Field Boundary

Matrix elements for the fringing fields of bending magnets have
been derived using an impulse approximation.”™® These computations,
combined with a correction term'® to the R,, elements (to correct
for the finite extent of actual fringing fields), have produced results
which are in substantial agreement with precise ray-tracing calculations
and with experimental measurements made on actual magnets.

We introduce four new variables (illustrated in Fig. 11); the angle
of inclination 3, of the entrance face of a bending magnet, the radius of
curvature R, of the entrance face, the angle of inclination 3, of the exit
face, and the radius of curvature R, of the exit face. The sign convention
of 3, and 3, is considered positive for positive focusing in the transverse
(1) direction. The sign convention for R, and R, is positive if the field
boundary is convex outward: (a positive R represents a negative sextu-
pole component of strength AL = —(s'2R) sec® 3). The sign conven-
tions adopted here are in agreement with Penner,'® and Brown,
Belbeoch, and Bounin.'”

8
o

FiG. 11. Field boundaries for bending magnets. Definition of the quantities
B:, B2, Ry, and R, used in the matrix elements for field boundaries of bending
magnets. The quantities have a positive sign convention as illustrated in the figure.
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The results of these calculations yield the following matrix elements
for the fringing fields of the entrance face of a bending magnet:

R, =1

R, =0

Ty = —(h/2) tan? B,
Ty35 = (1/2) sec® B,

Ry = —(1/f.) = htan B,
Ry =1

Ty = (M/2R)) sec® B, — nh? tan B,
T2 = htan? B,

T,16 = —htan B,
Toss = k%1 + % + tan®B,) tan B — (4/2R)) sec? B,

T234 = —/1 tan2 Bl
Ry =1
Ryy =0

T313 = /1 tan2 /81

Ry = —(1)f)) = —htan (B, — ¢y)
R, =1
B Ti1a = —(1/R)) sec® B; + 2hn tan B,
Ts1s = —htan? B,
Tioz = —hsec?f,
Ty = htan B, —hisec?(B,—¥,) (57)

All nonlisted matrix elements are equal to zero. The quantity ¢, is the
correction to the transverse focal length when the finite extent of the
fringing field is included.®

Jy = Khg sec B,(1 + sin? B,) + higher order terms in (hg)

where g = the distance between the poles of the magnet at the central
orbit (i.e., the magnet gap) and

K — f“‘ B,()By — B, .

883
B,(z) is the magnitude of the fringing field on the magnetic mid-
plane at a position z. = is the perpendicular distance measured from the

entrance face of the magnet to the point in question. By, is the asymptotic
value of B,(z) well inside the magnet entrance. Typical values of A for
actual magnets may range from 0.3 to 1.0 depending upon the detailed
shape of the magnet profile and the location of the energizing coils.
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The matrix elements for the fringing fields of the exit face of a
bending magnet are:

R,y =1

Ry, =0

Ti11 = (h/2) tan? Ba
T35 = —(h/2) sec? B3,

Ry = —1/f. = htan B

Ry, =1

T211 = (h/2R;) sec® B, — h*(n + }tan? B,) tan B,
Ty, = —htan® B,

T216 = —'h tan Bz
Toss = h*(n — 1 tan? B,) tan B2 — (h/2R; sec® Ba
T234 = h tan2 182

Ry, =1

Ry, =0

Ts13 = —htan?p,

Ry = —1/f, = —htan (B, — o)

Ry =1

Ta13 = —(h/R2) sec® By + h*(2n + sec® fB2) tan B,

T414 - h tan2 62
Tya3 = hsec® B,
Ty36 = htan B, —h,sec?(B,— ¥,) (58)

All nonlisted matrix elements are zero.
o = Khg sec By(1 + sin? B,) + higher order terms in (hg)

and K is evaluated for the exit fringing field.

4. Matrix Elements for a Drift Distance

For a drift distance of length L, the matrix elements are simply as
follows:

Riy = Roz = Ryg = Ryy = Rys = Res = 1
Rio = Ryy =L

All remaining first- and second-order matrix elements are zero.
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IV. Some Useful First-Order Optical Results Derived
from the General Theory of Section IT 1°-11)

We have shown in Section II, Eq. (47), that beam transport optics
may be reduced to a process of matrix multiplication. To first order,
this 1s represented by the matrix equation

x(t) = i R;;x(0) (39)
where -
X1 =X, Xp=0,x3=),%; =¢,x;=/and x; = 5
We have also proved that the determinant [R| = I results from the

basic equation of motion and is a manifestation of Liouville’s theorem

of conservation of phase space volume.
The six simultaneous linear equations represented by Eq. (59) may
be expanded in matrix form as follows:

_x(l)- ’—Rll R, O 0 0 Ry] Fxo-

o(r) Ry Ry O 0 0 R 0,

»(1) _ 0 0 Ry Ry 0 O Yo (60)
#(t) 0 0 Ry Ry 0 O Po

I(z) Rs; Rss O 0 1 R /o

(s Lo o o o o 1]Ls,l

where the transformation is from an initial position = = 0 to a final
position T = ¢, i

The zero elements Ry;; = Ry; = Ry = Ryy = Ry, = Ry, = Ry
= Rys = R3s = R, = 0 in the R matrix are a direct consequence of
midplane symmetry. If midplane symmetry is destroyed, these elements
will in general become nonzero. The zero elements in column five occur
because the variables x, 6, r, ¢, and § are independent of the path
length difference /. The zeros in row six result from the fact that we have
restricted the problem to static magnetic fields, i.e., the scalar momentum
1s a constant of the motion.

We have already attached a physical significance to the nonzero
matrix elements in the first four rows in terms of their identification with
characteristic first-order trajectories. We now wish to relate the elements
appearing in column six with those in row five and calculate both sets
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in terms of simple integrals of the characteristic first-order elements
¢(t) = Ry, and s.(r) = Ry, In order to do this, we make use of the
Green’s integral, Eq. (43) of Section II, and of the expression for the
differential path length in curvilinear coordinates

dT = [(dx)* + (dv)* + (1 + hx)2(dr)2]>2 (61)

used in the derivation of the equation of motion.

1. First-Order Dispersion

The spacial dispersion d(¢) of a system at position ¢ is derived
using the Green’s function integral, Eq. (43), and the driving term
S = k(=) for the dispersion (see Table I). The result is

d(t) = Rys = s.(t) Jat . (T)h(r) dr — ¢, (1) ft sATh(r)ydr (62)

where = is the variable of integration. Note that h(t) dr = do is the
differential angle of bend of the central trajectory at any point in the
system. Thus first-order dispersion is generated only in regions where
the central trajectory is deflected (i.e., in dipole elements.) The angular
dispersion is obtained by direct differentiation of d.(t) with respect to ¢;

dit) = Ry = 54(1) f () dr = i) [ sy de - (63)

where

- C;([) : R21 and S;(t) = R22‘

2. First-Order Path Length

The first-order path length difference is obtained by expanding
Eq. (61) and retaining only the first-order term, i.e.,

t
[ =1, =(T — 1) -—-f x(7)h(r) dr + higher order terms
0
from which
t t t
I = x, f cTA(T) dr + 6, f sUDR(T) dr + 1y + 6 f d(Yh(7) dr
0 0 0

= RSIXO + R5200 + [0 + R568 (64)
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Inspection of Egs. (62)-(64) yields the following useful theorems:

A. Achromaticity

A system is defined as being achromatic if d.(t) = d,(t) = 0.
Therefore it follows from Egs. (62) and (63) that the necessary and
sufficient conditions for achromaticity are that

t

f: s.(Wh() dr = f e (Dh(r) dr = 0 (65)

0

By comparing Eq. (64) with Eq. (65), we note that if a system is achro-
matic, all particles of the same momentum will have equal (first-order)
path lengths through the system.

B. Isochronicity

It is somewhat unfortunate that this word has been used in the
literature, since it is applicable -only to highly relativistic particles.
Nevertheless, from Eq. (64) the necessary and sufficient conditions that
the first-order path length of all particles (independent of their initial
momentum) will be the same through a system: are that

Jt C(Th(7) dr = ft s{h(7r) dr = f: d(t)h(r)dr =0  (66)

0 0

3. First-Order Imaging

First-order point-to-point imaging in the x plane occurs when x(¢)
is independent of the initial angle 8,. This can only be so when

5D =Ri=0 (67)
Similarly, first-order point-to-point imaging occurs in the y plane when
5,(t) = Ry =0 (68)

First-order parallel-to-point imaging occurs in the x plane when x(¢)
is independent of the initial particle position x,. This will occur only 1f

Cx([) = Rll = 0 (69)

and correspondingly in the y plane, parallel-to-point imaging occurs

when o :
¢y(t) = Rag = 0 (70)
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4. Magnification

For point-to-point imaging in the x plane, the magnification 1is
given by

M, = = IRlli = le(Z)’

ﬁz_)
Xo

and in the 1 plane by
M, = |Rgs| = lc,(0)] (71)

. 5. First-Order Momentum Resolution

For point-to-point imaging the first-order momentum resolving
power R, (not to be confused with the matrix R) is the ratio of the
momentum dispersion to the image size: Thus

R16 dx(t)

Ry = Ri1Xq - c(t)xo

For point-to-point imaging [s.(¢) = 0] using Eq. (62), the dispersion at
an image 1s

t
a(1) = ~e0) | st dr (72)
0
from which the first-order momentum resolving power R, becomes
* O] _ | [ (s
-Rixy = ol Jo s (T)h(r) dr (73)

where x, is the source size.

6. Zero Dispersion

For point-to-point imaging, using Eq. (72), the necessary and
sufficient condition for zero dispersion at an image is

ﬂ&mmﬂm=o (74)

For parallel-to-point imaging {i.e., c.(t) = 0], the condition for zero
dispersion at the image is

J: c(Th(r)dr =0 (75)

i
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7. Focal Length

It can be readily demonstrated from simple lens theory® that the
physical interpretations of R,; and R, are:

cx(t) = Ryy = —1/f, and c¢y(t) = Ry = —1/f, (76)

where f, and f, are the system focal lengths in the x and y planes,
respectively, between r = O and = = .

8. Evaluation of the First-Order Matrix for Ideal Magnets

From the results of Section III, we conclude that for an ideal
magnet the matrix elements of R are simple trigonometric or hyperbolic
functions. The general result for an element of length L is

[ cos kL L in k.L 0 0 0 i 1 -
os k. . sin k.. iz
cos k.L]
Ckysinko L cos koL 0 0 0 (lj—’) sin k. L
TR = 0 0 cos k,L ki sink,L 0 0
v
0 0 —k,sink,L cosk,L 0 0
h . h h?
. sin kL E [1 — 0 0 1 E [k..L
- cos kL] —sin kL]
0 0 0 0 0 1 i
77

where for a dipole (bending) magnet, we have defined

ki = (1 —nh?> and L2 = nh®

For a pure quadrupole, the R matrix is evaluated by letting

k2 = k2 and k2 = —k?

and taking the limiting case /1 — 0, where

ki = —nh* = (Bo/a)(1/Bp)
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Taking these limits, the R matrix for a quadrupole is:

-
cosk,L  Lsink,L 0 o o o0
k,
—k,sink,L  cosk,L 0 0 0 0
R = 0 0 cosh k,L %smth 0 0 ;
g |
0 k,sinh k,L  coshk,L O 0
0 0 0 I 0 k
_ 0 0 0 0 1]
(78)

Note that the trigonometric and hyperbolic functions will interchange
if the sign of B, is reversed.

9. The R Matrix Transformed to the Principal Planes

The positions Z of the principal planes of a magnetic element
(measured from its ends) may be derived from the following matrix

equation:

1 0 0 0 0 X]

R, 1 0 0 0 X

0 0 I 0 0 0

Rpp =

ST 10 0 Ry 1 0 O

X X X X X X

0 0 0 0 0 1]
1 -z, 0 0 o0 0] [1 =2z, 0 0O 0 0]
O 1 0 0 00 0O 1 0 0 00
O O l —'Z2y O O 0 0 l —Zly O O

= R (79)

0O 0 0 1 00 0 0 0 1 00
0 0 0 0 10 0 0 0 0 10
0 0o o o o1 Lo o o o0 o0 1]

Solving this equation, we have
L= (R22—1)/R21 Loy = (Ru—l)/Rm
Zly = (R44“1)/R43 Z2y = (Ry3— 1)/Ras (80)
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For the ideal magnet, the general result for the transformation
matrix R,, between the principal planes is

- 1 0 0 0 0 0 1
—kesink,L 1 0 0 0 (h:k)sink,L
0 0 1 0 0 0
Rpp = 0 0 —kysink,L 1 0 0 (81)
(hlky)sink.L O 0 0 1 (WRADkL
— sin A L]
L 0 0 0 0 0 1 i

and because of symmetry

Z. =2,y = Z,. = (l/k,) tan (kL/2)
and

Z, =2y, = Zy = (1/k,) tan (k,L]2) (82)

Correspondingly, for the ideal quadrupole, R,, is derived by
letting
k2 = k% and k2= —ki

and taking the limit # — O for each of the matrix elements. The result
1s:

-

] 1 0 0 0 0 0
—k,sink,L 1 0 0 0 0
R, - o - 0 1 0 0 0 83
? 0 0 k,sinhk,L 1 0 0
0 0 0 0 1 0
| 0 0 0 0 0 1]
where now
Z. = (1/k,) tan (k,L/2)
Z, = (1/k,) tanh (k,L/2) ( 84)

V. Some General Second-Order Theorems Derived from
the General Theory of Section I1

We have established in Section II that any second-order aberra-
tion coefficient ¢ may be evaluated via the Green’s function integral,
Eq. (43), i.e,

q = s0) [ J@etr) dr = et [ sty o
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A second-order aberration may therefore be determined as soon as a
first-order solution for the system has been established, since the poly-
nomial expressions for the driving terms 7(r) have all been expressed as
functions of the characteristic first-order matrix elements (Table I).
Usually one is interested in knowing the value of the aberration at an
image point of which there are two cases of interest, point-to-point
imaging s(t) = 0 and parallel-to-point imaging ¢(1) = 0.
Thus for point-to-point imaging,

q=—mUpUMﬂﬂﬂ

where 7 = ¢is the location of an image and |¢(¢)] = M is the first-order
spatial magnification at the image, and for parallel-to-point imaging,

q=%0ﬂﬂﬂdﬂﬂﬂ

where 7 = 1is the position of the image and s() is the angular dispersion
at the image.

If a system possesses first-order optical symmetries, then it can be
immediately determined if a given second-order aberration is identically
‘zero as a consequence of the first-order symmetry. We observe that for
point-to-point imaging a second-order aberration coefficient ¢ will be
identically zero if the product of the corresponding driving term f(r)
and the first-order matrix element s(+) form an odd function about the
midpoint of the system.

As an example of this, consider the transformation between
principal planes for the two symmetric achromatic systems illustrated
in Figures 12 and 13. We assume in both cases that the elements of the
system have been chosen such as to transform an initial parallel beam
of particlesinto a final parallel beam, i.e., R;; = —1/f, = Oformidplane
trajectories. We further assume parallel-to-point imaging at the mid-
point of the system. With these assumptions, the first-order matrix
transformation for midplane trajectories between principal planes is:

X071 [=1 0  01[x0)
x'(t)| = 0 -1 01| x'(0)
8(t) o o 1]ls0

F e bt
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FiG. 12. Three bending magnet achromatic system. 4 and B are locations of
principal planes.

Thus ¢ (1) = —1, s{t) =0, ¢lr) =0, si(1) = —1, and of course
d(t) = d(t) = 0. About the midpoint of the system, the following
symmetries exist for the characteristic first-order matrix elements and
for the curvature /i(r) = 1/pg of the central trajectory; we classify them
as being either odd or even functions about the midpoint of the system.

~The results are:
c.(7) = odd s(r) = even d.(t) = even h(7) = even

c.(r) = even sw(7) = odd d.(v) = odd h'(r) = odd

PO

Central

trajectory 0

a

Fic. 13. Achromatic system with quadrupole at center to achieve achromatic
imaging. The principal planes are located at centers of the bending magnets.
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As a consequence of these symmetries, the following second-order
coefficients are uniquely zero for the transformation between principal
planes.

XoXo) = (x| x00) = (x" | x§) = (x" | x&
X58) = (x| 8%) = 0

This result is valid, independent of the details of the fringing fields of
the magnets, provided symmetry exists about the midpoint.

(x

= (x’

1. Optical Symmetries in n = + Magnetic Systems

In magnetic optical systems composed of # = } magnets having
normal entry and exit of the central trajectory (i.e., nonrotated entrance

and exit faces), several general mathematical relationships result from

the n = + symmetry. Since k% = (1 — n)A® and k2 = nh®, for n = %

it follows that c.(r) = ¢,(r) and s.(r) = s5,(7) at any position r along
the system; thus as is well known, an n = } system possesses first-order
double focusing properties.

In addition to the above first-order results, at any point ¢ in an
n = } system, the sums of the following second-order aberration
coefficients are constants independent of the distribution or magnitude
(BA®) of the sextupole components throughout the system:

(x| x&) + (x| y&) = a constant independent of 843
2(x | x5) + (¥ | xo»0) = a constant independent of BA°
(x | xox0) + (¥ | xo¥6) = a constant independent of 8h°
(x| xo8) + (¥ | ¥o8) = a constant independent of BA®
2(x | x&) + (¥ | xoy0) = a constant independent of 8h°
(x| x08) + (¥ | o8) = a constant independent of 843
(x| x§) + (x| y3) = a constant independent of 8k°

(x | xoxo0) + (x| yoyo) = a constant independent of B4% (85)

Similarly,

(x| x) +{x' | y&¥) = a constant independent of A°
2(x" | x3) + (¥ | xo¥0) = a constant independent of 843

(x" | xox5) + (¥ | xoy0) = a constant independent of A3

S GERER G
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(x" | xo0) + (¥" | yo8) = a constant independent of 8h3
2(x" | x&) + (¥ | x4¥5) = a constant independent of Bh®
(x" | xo8) + (" | ¥68) = a constant independent of BA°

(x" | x3) + (x" | y3) = a constant independent of 8h®

(x" | xox0) + (x" | yoyo) = a constant independent of 84#° (86)

Of the above relations, the first is perhaps the most interesting in that
it shows the impossibility of simultaneously eliminating both the
(x | x¢&) and (x | y¢) aberrationsin ann = 1 system; i.e., either (x | x¢)
or (x| yo°) may be eliminated by the appropriate choice of sextupole
elements, but not both. ‘

VI. An Approximate Evaluation of the Second-Order
Aberrations for High-Energy Physics

Quite often it is desirable to estimate the magnitude of various
second-order aberrations in a proposed system to obtain insight into
what constitutes an optimum solution to a given problem. A consider-
able simplification occurs in the formalism in the high-energy limit
where p, is very much greater than the transverse amplitudes of the
first-order trajectories and where the dipole, quadrupole, and sextupole
functions are physically separated into individual elements. It is also
assumed that fringing-field effects are small compared to the contribu-
tions of the various multipole elements.

Under these circumstances, the second-order chromatic aberrations
are generated predominately in the quadrupole elements; the geometric
aberrations are generated in the dipole elements (bending magnets); and,
depending upon their location in the system, the sextupole elements
couple with either the chromatic or geometric aberrations or both.

We have tabulated in Tables VII-IX the approximate formulas for
the high-energy limit for three cases of interest: point-to-point imaging
in the x (bend) plane, Table VII; point-to-point imaging in the y
(nonbend) plane, Table VIII; and parallel-to-point imaging in the y
plane, Table IX.

'
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TABLE VII

Applying the Greens’ Function Solution, Eq. (22), in the High-Energy Limit
as Defined Above for Point-to-Point Imaging in the x (bend) Plane, the
Second-Order Matrix Elements Reduce to the Values Shown

i
(x| x3) = —%exi) f CEseda + cx(i) D Sicls.
o] J

{
(x| xox0) = —cx(i) f CrSeS doe + 2¢4(0) Z SiCs2

(X l XOS) —Cx(l) f Cx d Sx da + ?CY(I) Z Scrsx - Cx(l) Z C YY
(e x2) = —eui) f Sspde + cui) S S5l
4] j

{ 2
(¢ ] 68) = ~cxli) f Se disedo + 2e,(D) S S dy — (i) S
0 b q q

(x| 82) = —0—2(‘—) f l(d;)2sx do + ¢2(i) D, Sys.d

q

(x| ¥8) = ex(i) f ' Csxdo — cx(i) D Syc2s,
]

{
(x| yoyo) = cx(i) L CySySy da — 2c,(I) ; SiCySySx

R

(e | y8) = eali) f $25nda — cx(i) S Systse
0 7

TaBLE VIII

For Point-to-Point Imaging in the y (nonbend) Plane, Eq. (23), the
High-Energy Limit Yields the Values Given

(¥ | xoy0) = —cy(i) f(:c;c;sy do — 2cy(i); SCxCySy
5 | xoy) = —cy(i) f cisis da = 26,0) T e}
O xov) 2 =e0) [ sicis, do - 26,0) 3 Sy
O Lxosh) 2 = e0) [ siss, o = 26,00 3 Sy

CySy

] yed) = —ed) f e dis,ds = 26,0 3 Sy des, + )T

(7] ¥6d) = —cyi) f st dis, de = 26,) 3 5, des} + cyo)z—
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TABLE IX

For Parallel-(Line)-to-Point Imaging in the y (Nonbend) Plane, Eq. (24),
the High-Energy Limit Yields the Values Shown

{
(¥ | xoyo) = sy(i) fo CrCyCy doe + 25,(i) Z S
7

1
(¥ | xoy0) = sy(i) J; Cesyey do + 251«(02 Sicxsycy

{
(v | xXoyo) = 5,(1) f Sicyey e+ 25,() S Sysac?
- 0 1

{
(¥ | xo¥0) = s,(i) Ls;s;cy da + 25,(i) Z SiSxSyCy
1

019 = 50 [tie,du + 26,0 S S — 5,05 &
s q Jq

0155 = +0) [sidie,da + 25,0) 5 S, d — 5,0) 3 2
b q

For the purpose of clearly illustrating the physical principles in-
volved, we assume that the amplitudes of the characteristic first-order
matrix elements c,, s,, d,, ¢,, and s, are constant within any given
quadrupole or sextupole element, and we define the strengths of the
quadrupole and sextupole elements as follows:

L |
f K2dr = k2L, ~ L
0 q
where L, is the effective length of the quadrupole, and where 1/fe = k,

sin k,L is the reciprocal of the focal length of the gth quadrupole; and
for the jth sextupole of length L,, we define its strength as

L
f k2dr = k2L, = S,
0

The results are given in the tables in terms of integrals over the bending
magnets and summatiens over the quadrupole and sextupole elements.
Note that under these circumstances the quadrupole and sextupole
contributions to the aberration coefficients are proportional to the
amplitudes of the characteristic first-order trajectories within these
elements, whereas the dipole contributions are proportional to the
derivatives of the first-order trajectories within the dipole elements.
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As an example of the above concepts, we shall calculate the angle ¢
between the momentum focal plane and the central trajectory for some

representative cases.
For point-to-point imaging, it may be readily verified that

S dot

1
dx(l) 1 J:) lxo

tan = (cx(i)) x50~ s~ Eminy D
where the subscript o refers to the object plane and the subscript / to the
image plane.

Let us now consider some representative quadrupole configurations
and assume that the bending magnets are placed in a region having a
large amplitude of the unit sineljke function s, (so as to optimize the
first-order momentum resolving power R)).

1. Case I

Consider the simple quadrupole configuration shown in Figure 14
with the bending magnets located in the region between the quadrupoles
and s; >~ 0 in this region. For these conditions, f; = /,, S, = [, at the
quadrupoles, and f, = /,. From Table VII, we have:

(x| x,8) = —cx(z')z;;’% = —cx(i)ll(l + [’—3) = I(l + M)

where we make use of the fact that (L)) = M, = —c,(i). M, is the
first-order magnification of the system.
Hence, =~ . :
i
f S, do
tan o = 22 z (88)

Ce [258) = (T + M)

. T
Y =

FIGURE 14

fl Sy
A
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h Focal
Sx plane

v

I L r Iz 1
FIGURE 15
2. Case 1l
For a single quadrupole, Figure 15, the result is similar
tan y = Ka/(1 + M,) (89)

except for the factor K < 1 resulting from the fact that s, cannot have
the same amplitude in the bending magnets as it does in the quadrupole.
Therefore

J. S da = K[loz

[o]

3. Case II]

Now let us consider a symmetric four-quadrupole array, Figure 16,
such that we have an intermediate image. Then

(i | x58) = —=2¢.()[1 + (1,/15)] = twice that for Case I
because of symmetry, ¢ (i) = M, = 1. Thus, we conclude
tany = —(«/2)[1 + (1;/1,)] (90)

In other words, the intermediate image has introduced a factor of two
in the denominator and has changed the sign of .

h Sy f2 f2 f1

—1 T~ f

[y = I3 J lp 1‘ 4

FiGURE 16
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