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Preface

The teaching of applied probability needs a fresh approach. The field of applied

probability has changed profoundly in the past twenty years and yet the textbooks

in use today do not fully reflect the changes. The development of computational

methods has greatly contributed to a better understanding of the theory. It is my

conviction that theory is better understood when the algorithms that solve the

problems the theory addresses are presented at the same time. This textbook tries

to recognize what the computer can do without letting the theory be dominated

by the computational tools. In some ways, the book is a successor of my earlier

book Stochastic Modeling and Analysis. However, the set-up of the present text is

completely different. The theory has a more central place and provides a framework

in which the applications fit. Without a solid basis in theory, no applications can be

solved. The book is intended as a first introduction to stochastic models for senior

undergraduate students in computer science, engineering, statistics and operations

research, among others. Readers of this book are assumed to be familiar with the

elementary theory of probability.

I am grateful to my academic colleagues Richard Boucherie, Avi Mandelbaum,

Rein Nobel and Rien van Veldhuizen for their helpful comments, and to my stu-

dents Gaya Branderhorst, Ton Dieker, Borus Jungbacker and Sanne Zwart for their

detailed checking of substantial sections of the manuscript. Julian Rampelmann

and Gloria Wirz-Wagenaar were helpful in transcribing my handwritten notes into

a nice Latex manuscript.

Finally, users of the book can find supporting educational software for Markov

chains and queues on my website http://staff.feweb.vu.nl/tijms.





CHAPTER 1

The Poisson Process and
Related Processes

1.0 INTRODUCTION

The Poisson process is a counting process that counts the number of occurrences

of some specific event through time. Examples include the arrivals of customers

at a counter, the occurrences of earthquakes in a certain region, the occurrences

of breakdowns in an electricity generator, etc. The Poisson process is a natural

modelling tool in numerous applied probability problems. It not only models many

real-world phenomena, but the process allows for tractable mathematical analysis

as well.

The Poisson process is discussed in detail in Section 1.1. Basic properties are

derived including the characteristic memoryless property. Illustrative examples are

given to show the usefulness of the model. The compound Poisson process is

dealt with in Section 1.2. In a Poisson arrival process customers arrive singly,

while in a compound Poisson arrival process customers arrive in batches. Another

generalization of the Poisson process is the non-stationary Poisson process that is

discussed in Section 1.3. The Poisson process assumes that the intensity at which

events occur is time-independent. This assumption is dropped in the non-stationary

Poisson process. The final Section 1.4 discusses the Markov modulated arrival

process in which the intensity at which Poisson arrivals occur is subject to a

random environment.

1.1 THE POISSON PROCESS

There are several equivalent definitions of the Poisson process. Our starting point is

a sequence X1, X2, . . . of positive, independent random variables with a common

probability distribution. Think of Xn as the time elapsed between the (n−1)th and

nth occurrence of some specific event in a probabilistic situation. Let

S0 = 0 and Sn =
n

∑

k=1

Xk, n = 1, 2, . . . .

A First Course in Stochastic Models H.C. Tijms
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2 THE POISSON PROCESS AND RELATED PROCESSES

Then Sn is the epoch at which the nth event occurs. For each t ≥ 0, define the

random variable N(t) by

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

The random variable N(t) represents the number of events up to time t .

Definition 1.1.1 The counting process {N(t), t ≥ 0} is called a Poisson process

with rate λ if the interoccurrence times X1, X2, . . . have a common exponential

distribution function

P {Xn ≤ x} = 1 − e−λx, x ≥ 0.

The assumption of exponentially distributed interoccurrence times seems to be

restrictive, but it appears that the Poisson process is an excellent model for many

real-world phenomena. The explanation lies in the following deep result that is

only roughly stated; see Khintchine (1969) for the precise rationale for the Poisson

assumption in a variety of circumstances (the Palm–Khintchine theorem). Suppose

that at microlevel there are a very large number of independent stochastic pro-

cesses, where each separate microprocess generates only rarely an event. Then

at macrolevel the superposition of all these microprocesses behaves approximately

as a Poisson process. This insightful result is analogous to the well-known result

that the number of successes in a very large number of independent Bernoulli

trials with a very small success probability is approximately Poisson distributed.

The superposition result provides an explanation of the occurrence of Poisson

processes in a wide variety of circumstances. For example, the number of calls

received at a large telephone exchange is the superposition of the individual calls

of many subscribers each calling infrequently. Thus the process describing the over-

all number of calls can be expected to be close to a Poisson process. Similarly, a

Poisson demand process for a given product can be expected if the demands are

the superposition of the individual requests of many customers each asking infre-

quently for that product. Below it will be seen that the reason of the mathematical

tractability of the Poisson process is its memoryless property. Information about

the time elapsed since the last event is not relevant in predicting the time until the

next event.

1.1.1 The Memoryless Property

In the remainder of this section we use for the Poisson process the terminology of

‘arrivals’ instead of ‘events’. We first characterize the distribution of the counting

variable N(t). To do so, we use the well-known fact that the sum of k inde-

pendent random variables with a common exponential distribution has an Erlang

distribution. That is,
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P {Sk ≤ t} = 1 −
k−1
∑

j=0

e−λt (λt)j

j !
, t ≥ 0. (1.1.1)

The Erlang (k, λ) distribution has the probability density λktk−1e−λt/(k − 1)!.

Theorem 1.1.1 For any t > 0,

P {N(t) = k} = e−λt (λt)k

k!
, k = 0, 1, . . . . (1.1.2)

That is, N(t) is Poisson distributed with mean λt .

Proof The proof is based on the simple but useful observation that the number

of arrivals up to time t is k or more if and only if the kth arrival occurs before or

at time t . Hence

P {N(t) ≥ k} = P {Sk ≤ t}

= 1 −
k−1
∑

j=0

e−λt (λt)j

j !
.

The result next follows from P {N(t) = k} = P {N(t) ≥ k} − P {N(t) ≥ k + 1}.

The following remark is made. To memorize the expression (1.1.1) for the dis-

tribution function of the Erlang (k, λ) distribution it is easiest to reason in reverse

order: since the number of arrivals in (0, t) is Poisson distributed with mean λt

and the kth arrival time Sk is at or before t only if k or more arrivals occur in

(0, t), it follows that P {Sk ≤ t} =
∑∞

j=k e−λt (λt)j/j !.

The memoryless property of the Poisson process

Next we discuss the memoryless property that is characteristic for the Poisson

process. For any t ≥ 0, define the random variable γt as

γt = the waiting time from epoch t until the next arrival.

The following theorem is of utmost importance.

Theorem 1.1.2 For any t ≥ 0, the random variable γt has the same exponential

distribution with mean 1/λ. That is,

P {γt ≤ x} = 1 − e−λx , x ≥ 0, (1.1.3)

independently of t .
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Proof Fix t ≥ 0. The event {γt > x} occurs only if one of the mutually exclusive

events {X1 > t + x}, {X1 ≤ t , X1 + X2 > t + x}, {X1 + X2 ≤ t , X1 + X2 + X3 >

t + x}, . . . occurs. This gives

P {γt > x} = P {X1 > t + x} +
∞
∑

n=1

P {Sn ≤ t, Sn+1 > t + x}.

By conditioning on Sn, we find

P {Sn ≤ t, Sn+1 > t + x} =
∫ t

0

P {Sn+1 > t + x | Sn = y}λn yn−1

(n − 1)!
e−λy dy

=
∫ t

0

P {Xn+1 > t + x − y}λn yn−1

(n − 1)!
e−λy dy.

This gives

P {γt > x} = e−λ(t+x) +
∞
∑

n=1

∫ t

0
e−λ(t+x−y)λn yn−1

(n − 1)!
e−λy dy

= e−λ(t+x) +
∫ t

0

e−λ(t+x−y)λ dy

= e−λ(t+x) + e−λ(t+x)(eλt − 1) = e−λx,

proving the desired result. The interchange of the sum and the integral in the second

equality is justified by the non-negativity of the terms involved.

The theorem states that at each point in time the waiting time until the next arrival

has the same exponential distribution as the original interarrival time, regardless

of how long ago the last arrival occurred. The Poisson process is the only renewal

process having this memoryless property. How much time is elapsed since the last

arrival gives no information about how long to wait until the next arrival. This

remarkable property does not hold for general arrival processes (e.g. consider the

case of constant interarrival times). The lack of memory of the Poisson process

explains the mathematical tractability of the process. In specific applications the

analysis does not require a state variable keeping track of the time elapsed since the

last arrival. The memoryless property of the Poisson process is of course closely

related to the lack of memory of the exponential distribution.

Theorem 1.1.1 states that the number of arrivals in the time interval (0, s) is

Poisson distributed with mean λs. More generally, the number of arrivals in any

time interval of length s has a Poisson distribution with mean λs. That is,

P {N(u + s) − N(u) = k} = e−λs (λs)k

k!
, k = 0, 1, . . . , (1.1.4)

independently of u. To prove this result, note that by Theorem 1.1.2 the time

elapsed between a given epoch u and the epoch of the first arrival after u has the
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same exponential distribution as the time elapsed between epoch 0 and the epoch

of the first arrival after epoch 0. Next mimic the proof of Theorem 1.1.1.

To illustrate the foregoing, we give the following example.

Example 1.1.1 A taxi problem

Group taxis are waiting for passengers at the central railway station. Passengers for

those taxis arrive according to a Poisson process with an average of 20 passengers

per hour. A taxi departs as soon as four passengers have been collected or ten

minutes have expired since the first passenger got in the taxi.

(a) Suppose you get in the taxi as first passenger. What is the probability that you

have to wait ten minutes until the departure of the taxi?

(b) Suppose you got in the taxi as first passenger and you have already been waiting

for five minutes. In the meantime two other passengers got in the taxi. What

is the probability that you will have to wait another five minutes until the taxi

departs?

To answer these questions, we take the minute as time unit so that the arrival

rate λ = 1/3. By Theorem 1.1.1 the answer to question (a) is given by

P {less than 3 passengers arrive in (0, 10)}

=
2

∑

k=0

e−10/3 (10/3)k

k!
= 0.3528.

The answer to question (b) follows from the memoryless property stated in Theo-

rem 1.1.2 and is given by

P {γ5 > 5} = e−5/3 = 0.1889.

In view of the lack of memory of the Poisson process, it will be intuitively clear

that the Poisson process has the following properties:

(A) Independent increments: the numbers of arrivals occurring in disjoint intervals

of time are independent.

(B) Stationary increments: the number of arrivals occurring in a given time interval

depends only on the length of the interval.

A formal proof of these properties will not be given here; see Exercise 1.8. To

give the infinitesimal-transition rate representation of the Poisson process, we use

1 − e−h = h −
h2

2!
+

h3

3!
− · · · = h + o(h) as h → 0.
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The mathematical symbol o(h) is the generic notation for any function f (h) with

the property that limh→0 f (h)/h = 0, that is, o(h) is some unspecified term that

is negligibly small compared to h itself as h → 0. For example, f (h) = h2 is an

o(h)-function. Using the expansion of e−h, it readily follows from (1.1.4) that

(C) The probability of one arrival occurring in a time interval of length �t is

λ�t + o(�t) for �t → 0.

(D) The probability of two or more arrivals occurring in a time interval of length

�t is o(�t) for �t → 0.

The property (D) states that the probability of two or more arrivals in a very small

time interval of length �t is negligibly small compared to �t itself as �t → 0.

The Poisson process could alternatively be defined by taking (A), (B), (C) and

(D) as postulates. This alternative definition proves to be useful in the analysis of

continuous-time Markov chains in Chapter 4. Also, the alternative definition of the

Poisson process has the advantage that it can be generalized to an arrival process

with time-dependent arrival rate.

1.1.2 Merging and Splitting of Poisson Processes

Many applications involve the merging of independent Poisson processes or the

splitting of events of a Poisson process in different categories. The next theorem

shows that these situations again lead to Poisson processes.

Theorem 1.1.3 (a) Suppose that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are indepen-

dent Poisson processes with respective rates λ1 and λ2, where the process {Ni(t)}
corresponds to type i arrivals. Let N(t) = N1(t) + N2(t), t ≥ 0. Then the merged

process {N(t), t ≥ 0} is a Poisson process with rate λ = λ1 + λ2. Denoting by Zk

the interarrival time between the (k − 1)th and kth arrival in the merged process

and letting Ik = i if the kth arrival in the merged process is a type i arrival, then

for any k = 1, 2, . . . ,

P {Ik = i | Zk = t} =
λi

λ1 + λ2
, i = 1, 2, (1.1.5)

independently of t .

(b) Let {N(t), t ≥ 0} be a Poisson process with rate λ. Suppose that each arrival

of the process is classified as being a type 1 arrival or type 2 arrival with respective

probabilities p1 and p2, independently of all other arrivals. Let Ni(t) be the number

of type i arrivals up to time t . Then {N1(t)} and {N2(t)} are two independent Poisson

processes having respective rates λp1 and λp2.

Proof We give only a sketch of the proof using the properties (A), (B), (C)

and (D).



THE POISSON PROCESS 7

(a) It will be obvious that the process {N(t)} satisfies the properties (A) and (B).

To verify property (C) note that

P {one arrival in (t, t + �t]}

=
2

∑

i=1

P

{

one arrival of type i and no arrival

of the other type in (t, t + �t]

}

= [λ1�t + o(�t)][1 − λ2�t + o(�t)]

+ [λ2�t + o(�t)][1 − λ1�t + o(�t)]

= (λ1 + λ2)�t + o(�t) as �t → 0.

Property (D) follows by noting that

P {no arrival in (t, t + �t]} = [1 − λ1�t + o(�t)][1 − λ2�t + o(�t)]

= 1 − (λ1 + λ2)�t + o(�t) as �t → 0.

This completes the proof that {N(t)} is a Poisson process with rate λ1 + λ2.

To prove the other assertion in part (a), denote by the random variable Yi the

interarrival time in the process {Ni(t)}. Then

P {Zk > t, Ik = 1} = P {Y2 > Y1 > t}

=
∫ ∞

t

P {Y2 > Y1 > t | Y1 = x}λ1e
−λ1x dx

=
∫ ∞

t

e−λ2xλ1e
−λ1x dx =

λ1

λ1 + λ2
e−(λ1+λ2)t .

By taking t = 0, we find P {Ik = 1} = λ1/(λ1 +λ2). Since {N(t)} is a Poisson

process with rate λ1 + λ2, we have P {Zk > t} = exp [−(λ1 + λ2)t]. Hence

P {Ik = 1, Zk > t} = P {Ik = 1}P {Zk > t},

showing that P {Ik = 1 | Zk = t} = λ1/(λ1 + λ2) independently of t .

(b) Obviously, the process {Ni(t)} satisfies the properties (A), (B) and (D). To

verify property (C), note that

P {one arrival of type i in (t, t + �t]} = (λ�t)pi + o(�t)

= (λpi)�t + o(�t).

It remains to prove that the processes {N1(t)} and {N2(t)} are independent. Fix

t > 0. Then, by conditioning,



8 THE POISSON PROCESS AND RELATED PROCESSES

P {N1(t) = k, N2(t) = m}

=
∞
∑

n=0

P {N1(t) = k, N2(t) = m | N(t) = n}P {N(t) = n}

= P {N1(t) = k, N2(t) = m | N(t) = k + m}P {N(t) = k + m}

=
(

k + m

k

)

pk
1p

m
2 e−λt (λt)k+m

(k + m)!

= e−λp1t
(λp1t)

k

k!
e−λp2t

(λp2t)
m

m!
,

showing that P {N1(t) = k, N2(t) = m} = P {N1(t) = k}P {N2(t) = m}.

The remarkable result (1.1.5) states that the next arrival is of type i with proba-

bility λi/(λ1 +λ2) regardless of how long it takes until the next arrival. This result

is characteristic for competing Poisson processes which are independent of each

other. As an illustration, suppose that long-term parkers and short-term parkers

arrive at a parking lot according to independent Poisson processes with respective

rates λ1 and λ2. Then the merged arrival process of parkers is a Poisson process

with rate λ1 + λ2 and the probability that a newly arriving parker is a long-term

parker equals λ1/(λ1 + λ2).

Example 1.1.2 A stock problem with substitutable products

A store has a leftover stock of Q1 units of product 1 and Q2 units of product 2.

Both products are taken out of production. Customers asking for product 1 arrive

according to a Poisson process with rate λ1. Independently of this process, cus-

tomers asking for product 2 arrive according to a Poisson process with rate λ2.

Each customer asks for one unit of the concerning product. The two products serve

as substitute for each other, that is, a customer asking for a product that is sold

out is satisfied with the other product when still in stock. What is the probability

distribution of the time until both products are sold out? What is the probability

that product 1 is sold out before product 2?

To answer the first question, observe that both products are sold out as soon as

Q1 + Q2 demands have occurred. The aggregated demand process is a Poisson

process with rate λ1 + λ2. Hence the time until both products are sold out has an

Erlang (Q1 + Q2, λ1 + λ2) distribution. To answer the second question, observe

that product 1 is sold out before product 2 only if the first Q1 +Q2 −1 aggregated

demands have no more than Q2 − 1 demands for product 2. Hence, by (1.1.5), the

desired probability is given by

Q2−1
∑

k=0

(

Q1 + Q2 − 1

k

)(

λ2

λ1 + λ2

)k (

λ1

λ1 + λ2

)Q1+Q2−1−k

.
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1.1.3 The M/G/∞ Queue∗

Suppose that customers arrive at a service facility according to a Poisson process

with rate λ. The service facility has an ample number of servers. In other words,

it is assumed that each customer gets immediately assigned a new server upon

arrival. The service times of the customers are independent random variables hav-

ing a common probability distribution with finite mean µ. The service times are

independent of the arrival process. This versatile model is very useful in applica-

tions. An interesting question is: what is the limiting distribution of the number of

busy servers? The surprisingly simple answer to this question is that the limiting

distribution is a Poisson distribution with mean λµ:

lim
t→∞

P (k servers are busy at time t) = e−λµ (λµ)k

k!
(1.1.6)

for k = 0, 1, . . . . This limiting distribution does not require the shape of the

service-time distribution, but uses the service-time distribution only through its

mean µ. This famous insensitivity result is extremely useful for applications.

The M/G/∞ model has applications in various fields. A nice application is the

(S − 1, S) inventory system with back ordering. In this model customers asking

for a certain product arrive according to a Poisson process with rate λ. Each cus-

tomer asks for one unit of the product. The initial on-hand inventory is S. Each

time a customer demand occurs, a replenishment order is placed for exactly one

unit of the product. A customer demand that occurs when the on-hand inventory

is zero also triggers a replenishment order and the demand is back ordered until

a unit becomes available to satisfy the demand. The lead times of the replenish-

ment orders are independent random variables each having the same probability

distribution with mean τ . Some reflections show that this (S − 1, S) inventory sys-

tem can be translated into the M/G/∞ queueing model: identify the outstanding

replenishment orders with customers in service and identify the lead times of the

replenishment orders with the service times. Thus the limiting distribution of the

number of outstanding replenishment orders is a Poisson distribution with mean

λτ . In particular,

the long-run average on-hand inventory =
S

∑

k=0

(S − k) e−λτ (λτ)k

k!
.

Returning to the M/G/∞ model, we first give a heuristic argument for (1.1.6)

and next a rigorous proof.

Heuristic derivation

Suppose first that the service times are deterministic and are equal to the constant

D = µ. Fix t with t > D. If each service time is precisely equal to the constant

∗This section can be skipped at first reading.
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D, then the only customers present at time t are those customers who have arrived

in (t − D, t]. Hence the number of customers present at time t is Poisson dis-

tributed with mean λD proving (1.1.6) for the special case of deterministic service

times. Next consider the case that the service time takes on finitely many values

D1, . . . , Ds with respective probabilities p1, . . . , ps . Mark the customers with the

same fixed service time Dk as type k customers. Then, by Theorem 1.1.3, type k

customers arrive according to a Poisson process with rate λpk . Moreover the var-

ious Poisson arrival processes of the marked customers are independent of each

other. Fix now t with t > maxk Dk. By the above argument, the number of type k

customers present at time t is Poisson distributed with mean (λpk)Dk . Thus, by the

independence property of the split Poisson process, the total number of customers

present at time t has a Poisson distribution with mean

s
∑

k=1

λpkDk = λµ.

This proves (1.1.6) for the case that the service time has a discrete distribution

with finite support. Any service-time distribution can be arbitrarily closely approx-

imated by a discrete distribution with finite support. This makes plausible that the

insensitivity result (1.1.6) holds for any service-time distribution.

Rigorous derivation

The differential equation approach can be used to give a rigorous proof of (1.1.6).

Assuming that there are no customers present at epoch 0, define for any t > 0

pj (t) = P {there are j busy servers at time t}, j = 0, 1, . . . .

Consider now pj (t + �t) for �t small. The event that there are j servers busy at

time t + �t can occur in the following mutually exclusive ways:

(a) no arrival occurs in (0,�t) and there are j busy servers at time t + �t due to

arrivals in (�t, t + �t),

(b) one arrival occurs in (0, �t), the service of the first arrival is completed before

time t + �t and there are j busy servers at time t + �t due to arrivals in

(�t, t + �t),

(c) one arrival occurs in (0, �t), the service of the first arrival is not completed

before time t + �t and there are j − 1 other busy servers at time t + �t due

to arrivals in (�t, t + �t),

(d) two or more arrivals occur in (0, �t) and j servers are busy at time t + �t .

Let B(t) denote the probability distribution of the service time of a customer.

Then, since a probability distribution function has at most a countable number of
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discontinuity points, we find for almost all t > 0 that

pj (t + �t) = (1 − λ�t)pj (t) + λ�tB(t + �t)pj (t)

+ λ�t{1 − B(t + �t)}pj−1(t) + o(�t).

Subtracting pj (t) from pj (t + �t), dividing by �t and letting �t → 0, we find

p′
0(t) = −λ(1 − B(t))p0(t)

p′
j (t) = −λ(1 − B(t))pj (t) + λ(1 − B(t))pj−1(t), j = 1, 2, . . . .

Next, by induction on j , it is readily verified that

pj (t) = e−λ
∫ t

0 (1−B(x)) dx

[

λ
∫ t

0 (1 − B(x)) dx
]j

j !
, j = 0, 1, . . . .

By a continuity argument this relation holds for all t ≥ 0. Since
∫ ∞

0 [1−
B(x)] dx = µ, the result (1.1.6) follows. Another proof of (1.1.6) is indicated

in Exercise 1.14.

Example 1.1.3 A stochastic allocation problem

A nationwide courier service has purchased a large number of transport vehicles

for a new service the company is providing. The management has to allocate these

vehicles to a number of regional centres. In total C vehicles have been purchased

and these vehicles must be allocated to F regional centres. The regional centres

operate independently of each other and each regional centre services its own group

of customers. In region i customer orders arrive at the base station according to

a Poisson process with rate λi for i = 1, . . . , F . Each customer order requires

a separate transport vehicle. A customer order that finds all vehicles occupied

upon arrival is delayed until a vehicle becomes available. The processing time of

a customer order in region i has a lognormal distribution with mean E(Si) and

standard deviation σ(Si). The processing time includes the time the vehicle needs

to return to its base station. The management of the company wishes to allocate

the vehicles to the regions in such a way that all regions provide, as nearly as

possible, a uniform level of service to the customers. The service level in a region

is measured as the long-run fraction of time that all vehicles are occupied (it will

be seen in Section 2.4 that the long-run fraction of delayed customer orders is also

given by this service measure).

Let us assume that the parameters are such that each region gets a large number

of vehicles and most of the time is able to directly provide a vehicle for an arriving

customer order. Then the M/G/∞ model can be used as an approximate model

to obtain a satisfactory solution. Let the dimensionless quantity Ri denote

Ri = λiE(Si), i = 1, . . . , F,
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that is, Ri is the average amount of work that is offered per time unit in region i.

Denoting by ci the number of vehicles to be assigned to region i, we take ci of

the form

ci ≈ Ri + k
√

Ri, i = 1, . . . , F,

for an appropriate constant k. By using this square-root rule, each region will

provide nearly the same service level to its customers. To explain this, we use for

each region the M/G/∞ model to approximate the probability that all vehicles in

the region are occupied at an arbitrary point of time. It follows from (1.1.6) that

for region i this probability is approximated by

∞
∑

k=ci

e−Ri
Rk

i

k!

when ci vehicles are assigned to region i. The Poisson distribution with mean R

can be approximated by a normal distribution with mean R and standard deviation√
R when R is large enough. Thus we use the approximation

∞
∑

k=ci

e−Ri
Rk

i

k!
≈ 1 − �

(

ci − Ri√
Ri

)

, i = 1, . . . , F,

where �(x) is the standard normal distribution function. By requiring that

�

(

c1 − R1√
R1

)

≈ · · · ≈ �

(

cF − RF√
RF

)

,

we find the square-root formula for ci . The constant k in this formula must be

chosen such that

F
∑

i=1

ci = C.

Together this requirement and the square-root formula give

k ≈

C −
F

∑

i=1

Ri

F
∑

i=1

√

Ri

.

This value of k is the guideline for determining the allocation (c1, . . . , cF ) so that

each region, as nearly as possible, provides a uniform service level. To illustrate

this, consider the numerical data:

c = 250, F = 5, λ1 = 5, λ2 = 10, λ3 = 10, λ4 = 50, λ5 = 37.5,

E(S1) = 2, E(S2) = 2.5, E(S3) = 3.5, E(S4) = 1, E(S5) = 2,

σ (S1) = 1.5, σ (S2) = 2, σ (S3) = 3, σ (S4) = 1, σ (S5) = 2.7.
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Then the estimate for k is 1.8450. Substituting this value into the square-root

formula for ci , we find c1 ≈ 15.83, c2 ≈ 34.23, c3 ≈ 45.92, c4 ≈ 63.05 and

c5 ≈ 90.98. This suggests the allocation

(c∗
1, c∗

2, c∗
3, c∗

4, c∗
5) = (16, 34, 46, 63, 91).

Note that in determining this allocation we have used the distributions of the

processing times only through their first moments. The actual value of the long-run

fraction of time during which all vehicles are occupied in region i depends (to

a slight degree) on the probability distribution of the processing time Si . Using

simulation, we find the values 0.056, 0.058, 0.050, 0.051 and 0.050 for the service

level in the respective regions 1, 2, 3, 4 and 5.

The M/G/∞ queue also has applications in the analysis of inventory systems.

Example 1.1.4 A two-echelon inventory system with repairable items

Consider a two-echelon inventory system consisting of a central depot and a num-

ber N of regional bases that operate independently of each other. Failed items

arrive at the base level and are either repaired at the base or at the central depot,

depending on the complexity of the repair. More specifically, failed items arrive

at the bases 1, . . . , N according to independent Poisson processes with respective

rates λ1, . . . , λN . A failed item at base j can be repaired at the base with probabil-

ity rj ; otherwise the item must be repaired at the depot. The average repair time of

an item is µj at base j and µ0 at the depot. It takes an average time of τj to ship

an item from base j to the depot and back. The base immediately replaces a failed

item from base stock if available; otherwise the replacement of the failed item is

back ordered until an item becomes available at the base. If a failed item from base

j arrives at the depot for repair, the depot immediately sends a replacement item to

the base j from depot stock if available; otherwise the replacement is back ordered

until a repaired item becomes available at the depot. In the two-echelon system

a total of J spare parts are available. The goal is to spread these parts over the

bases and the depot in order to minimize the total average number of back orders

outstanding at the bases. This repairable-item inventory model has applications in

the military, among others.

An approximate analysis of this inventory system can be given by using the

M/G/∞ queueing model. Let (S0, S1, . . . , SN ) be a given design for which S0

spare parts have been assigned to the depot and Sj spare parts to base j for

j = 1, . . . , N such that S0 + S1 + · · · + SN = J . At the depot, failed items arrive

according to a Poisson process with rate

λ0 =
N

∑

j=1

λj (1 − rj ).

Each failed item arriving at the depot immediately goes to repair. The failed items

arriving at the depot can be thought of as customers arriving at a queueing system
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with infinitely many servers. Hence the limiting distribution of the number of items

in repair at the depot at an arbitrary point of time is a Poisson distribution with

mean λ0µ0. The available stock at the depot is positive only if less than S0 items

are in repair at the depot. Why? Hence a delay occurs for the replacement of a

failed item arriving at the depot only if S0 or more items are in repair upon arrival

of the item. Define now

W0 = the long-run average amount of time a failed item at the depot

waits before a replacement is shipped,

L0 = the long-run average number of failed items at the depot

waiting for the shipment of a replacement.

A simple relation exists between L0 and W0. On average λ0 failed items arrive at

the depot per time unit and on average a failed item at the depot waits W0 time

units before a replacement is shipped. Thus the average number of failed items at

the depot waiting for the shipment of a replacement equals λ0W0. This heuristic

argument shows that

L0 = λ0W0.

This relation is a special case of Little’s formula to be discussed in Section 2.3.

The relation W0 = L0/λ0 leads to an explicit formula for W0, since L0 is given by

L0 =
∞
∑

k=S0

(k − S0)e
−λ0µ0

(λ0µ0)
k

k!
.

Armed with an explicit expression for W0, we are able to give a formula for the

long-run average number of back orders outstanding at the bases. For each base j

the failed items arriving at base j can be thought of as customers entering service

in a queueing system with infinitely many servers. Here the service time should be

defined as the repair time in case of repair at the base and otherwise as the time

until receipt of a replacement from the depot. Thus the average service time of a

customer at base j is given by

βj = rjµj + (1 − rj )(τj + W0), j = 1, . . . , N.

The situation at base j can only be modelled approximately as an M/G/∞ queue.

The reason is that the arrival process of failed items interferes with the replacement

times at the depot so that there is some dependency between the service times at

base j . Assuming that this dependency is not substantial, we nevertheless use the

M/G/∞ queue as an approximating model and approximate the limiting distri-

bution of the number of items in service at base j by a Poisson distribution with
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mean λjβj for j = 1, . . . , N . In particular,

the long-run average number of back orders outstanding at base j

≈
∞
∑

k=Sj

(k − Sj )e
−λj βj

(λjβj )
k

k!
, j = 1, . . . , N.

This expression and the expression for W0 enables us to calculate the total average

number of outstanding back orders at the bases for a given assignment (S0, S1, . . . ,

SN ). Next, by some search procedure, the optimal values of S0, S1, . . . , SN can be

calculated.

1.1.4 The Poisson Process and the Uniform Distribution

In any small time interval of the same length the occurrence of a Poisson arrival is

equally likely. In other words, Poisson arrivals occur completely randomly in time.

To make this statement more precise, we relate the Poisson process to the uniform

distribution.

Lemma 1.1.4 For any t > 0 and n = 1, 2, . . . ,

P {Sk ≤ x | N(t) = n} =
n

∑

j=k

(

n

j

)

(x

t

)j (

1 −
x

t

)n−j

(1.1.7)

for 0 ≤ x ≤ t and 1 ≤ k ≤ n. In particular, for any 1 ≤ k ≤ n,

E(Sk | N(t) = n) =
kt

n + 1
and E(Sk − Sk−1 | N(t) = n) =

t

n + 1
. (1.1.8)

Proof Since the Poisson process has independent and stationary increments,

P {Sk ≤ x | N(t) = n} =
P {Sk ≤ x, N(t) = n}

P {N(t) = n}

=
P {N(x) ≥ k, N(t) = n}

P {N(t) = n}

=
1

P {N(t) = n}

n
∑

j=k

P {N(x) = j, N(t) − N(x) = n − j}

=
1

e−λt (λt)n/n!

n
∑

j=k

e−λx (λx)j

j !
e−λ(t−x) [λ(t − x)]n−j

(n − j)!

=
n

∑

j=k

(

n

j

)

(x

t

)j (

1 −
x

t

)n−j

,
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proving the first assertion. Since E(U) =
∫ ∞

0 P {U > u} du for any non-negative

random variable U , the second assertion follows from (1.1.7) and the identity

(p + q + 1)!

p!q!

∫ 1

0
yp(1 − y)q dy = 1, p, q = 0, 1, . . . .

The right-hand side of (1.1.7) can be given the following interpretation. Let

U1, . . . , Un be n independent random variables that are uniformly distributed on

the interval (0, t). Then the right-hand side of (1.1.7) also represents the probability

that the smallest kth among U1, . . . , Un is less than or equal to x. This is expressed

more generally in Theorem 1.1.5.

Theorem 1.1.5 For any t > 0 and n = 1, 2, . . . ,

P {S1 ≤ x1, . . . , Sn ≤ xn | N(t) = n} = P {U(1) ≤ x1, . . . , U(n) ≤ xn},

where U(k) denotes the smallest kth among n independent random variables

U1, . . . , Un that are uniformly distributed over the interval (0, t).

The proof of this theorem proceeds along the same lines as that of Lemma 1.1.4.

In other words, given the occurrence of n arrivals in (0, t), the n arrival epochs

are statistically indistinguishable from n independent observations taken from the

uniform distribution on (0, t). Thus Poisson arrivals occur completely randomly

in time.

Example 1.1.5 A waiting-time problem

In the harbour of Amsterdam a ferry leaves every T minutes to cross the North

Sea canal, where T is fixed. Passengers arrive according to a Poisson process with

rate λ. The ferry has ample capacity. What is the expected total waiting time of all

passengers joining a given crossing? The answer is

E(total waiting time) =
1

2
λT 2. (1.1.9)

To prove this, consider the first crossing of the ferry. The random variable N(T )

denotes the number of passengers joining this crossing and the random variable Sk

represents the arrival epoch of the kth passenger. By conditioning, we find

E(total waiting time)

=
∞
∑

n=0

E(total waiting time | N(T ) = n)P {N(T ) = n}
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=
∞
∑

n=1

E(T − S1 + T − S2 + · · · + T − Sn | N(T ) = n)e−λT (λT )n

n!

=
∞
∑

n=1

E(T − U(1) + T − U(2) + · · · + T − U(n))e
−λT (λT )n

n!
.

This gives

E(total waiting time up to time T ) =
∞
∑

n=1

E(nT − (U1 + · · · + Un))e
−λT (λT )n

n!

=
∞
∑

n=1

(

nT − n
T

2

)

e−λT (λT )n

n!
=

T

2
λT ,

which proves the desired result.

The result (1.1.9) is simple but very useful. It is sometimes used in a somewhat

different form that can be described as follows. Messages arrive at a communication

channel according to a Poisson process with rate λ. The messages are stored in

a buffer with ample capacity. A holding cost at rate h > 0 per unit of time is

incurred for each message in the buffer. Then, by (1.1.9),

E(holding costs incurred up to time T ) =
h

2
λT 2. (1.1.10)

Clustering of Poisson arrival epochs

Theorem 1.1.5 expresses that Poisson arrival epochs occur completely randomly

in time. This is in agreement with the lack of memory of the exponential density

λe−λx of the interarrival times. This density is largest at x = 0 and decreases as x

increases. Thus short interarrival times are relatively frequent. This suggests that

the Poisson arrival epochs show a tendency to cluster. Indeed this is confirmed by

simulation experiments. Clustering of points in Poisson processes is of interest in

many applications, including risk analysis and telecommunication. It is therefore

important to have a formula for the probability that a given time interval of length

T contains some time window of length w in which n or more Poisson events

occur. An exact expression for this probability is difficult to give, but a simple and

excellent approximation is provided by

1 − P (n − 1, λw) exp [−
(

1 −
λw

n

)

λ(T − w)p(n − 1, λw)],

where p(k, λw) = e−λw(λw)k/k! and P (n, λw) =
∑n

k=0 p(k, λw). The approxi-

mation is called Alm’s approximation; see Glaz and Balakrishnan (1999). To illus-

trate the clustering phenomenon, consider the following example. In the first five

months of the year 2000, trams hit and killed seven people in Amsterdam, each
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case caused by the pedestrian’s carelessness. In the preceding years such accidents

occurred on average 3.7 times per year. Is the clustering of accidents in the year

2000 exceptional? It is exceptional if seven or more fatal accidents occur during

the coming five months, but it is not exceptional when over a period of ten years

(say) seven or more accidents happen in some time window having a length of

five months. The above approximation gives the value 0.104 for the probability

that over a period of ten years there is some time window having a length of

five months in which seven or more fatal accidents occur. The exact value of the

probability is 0.106.

1.2 COMPOUND POISSON PROCESSES

A compound Poisson process generalizes the Poisson process by allowing jumps

that are not necessarily of unit magnitude.

Definition 1.2.1 A stochastic process {X(t), t ≥ 0} is said to be a compound

Poisson process if it can be represented by

X(t) =
N(t)
∑

i=1

Di, t ≥ 0,

where {N(t), t ≥ 0} is a Poisson process with rate λ, and D1, D2, . . . are inde-

pendent and identically distributed non-negative random variables that are also

independent of the process {N(t)}.

Compound Poisson processes arise in a variety of contexts. As an example,

consider an insurance company at which claims arrive according to a Poisson

process and the claim sizes are independent and identically distributed random

variables, which are also independent of the arrival process. Then the cumulative

amount claimed up to time t is a compound Poisson variable. Also, the compound

Poisson process has applications in inventory theory. Suppose customers asking

for a given product arrive according to a Poisson process. The demands of the

customers are independent and identically distributed random variables, which are

also independent of the arrival process. Then the cumulative demand up to time t

is a compound Poisson variable.

The mean and variance of the compound Poisson variable X(t) are given by

E[X(t)] = λtE(D1) and σ 2[X(t)] = λtE(D2
1), t ≥ 0. (1.2.1)

This result follows from (A.9) and (A.10) in Appendix A and the fact that both

the mean and variance of the Poisson variable N(t) are equal to λt .
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Discrete compound Poisson distribution

Consider first the case of discrete random variables D1, D2, . . . :

aj = P {D1 = j}, j = 0, 1, . . . .

Then a simple algorithm can be given to compute the probability distribution of

the compound Poisson variable X(t). For any t ≥ 0, let

rj (t) = P {X(t) = j}, j = 0, 1, . . . .

Define the generating function A(z) by

A(z) =
∞
∑

j=0

aj z
j , |z| ≤ 1.

Also, for any fixed t > 0, define the generating function R(z, t) as

R(z, t) =
∞
∑

j=0

rj (t)z
j , |z| ≤ 1.

Theorem 1.2.1 For any fixed t > 0 it holds that:

(a) the generating function R(z, t) is given by

R(z, t) = e−λt{1−A(z)}, |z| ≤ 1 (1.2.2)

(b) the probabilities {rj (t), j = 0, 1, . . . } satisfy the recursion

rj (t) =
λt

j

j−1
∑

k=0

(j − k)aj−krk(t), j = 1, 2, . . . , (1.2.3)

starting with r0(t) = e−λt (1−a0).

Proof Fix t ≥ 0. By conditioning on the number of arrivals up to time t ,

rj (t) =
∞
∑

n=0

P {X(t) = j | N(t) = n}P {N(t) = n}

=
∞
∑

n=0

P {D0 + · · · + Dn = j}e−λt (λt)n

n!
, j = 0, 1, . . .

with D0 = 0. This gives, after an interchange of the order of summation,

∞
∑

j=0

rj (t)z
j =

∞
∑

n=0

e−λt (λt)n

n!

∞
∑

j=0

P {D0 + · · · + Dn = j}zj .
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Since the Di are independent of each other, it follows that

∞
∑

j=0

P {D0 + · · · + Dn = j}zj = E(zD0+···+Dn)

= E(zD0) · · ·E(zDn) = [A(z)]n.

Thus

R(z, t) =
∞
∑

n=0

e−λt (λt)n

n!
[A(z)]n = e−λt[1−A(z)]

which proves (1.2.2). To prove part (b) for fixed t , we write R(z) = R(z, t) for ease

of notation. It follows immediately from the definition of the generating function

that the probability rj (t) is given by

rj (t) =
1

j !

djR(z)

dzj

∣

∣

∣

∣

z=0

.

It is not possible to obtain (1.2.3) directly from this relation and (1.2.2). The

following intermediate step is needed. By differentiation of (1.2.2), we find

R′(z) = λtA′(z)R(z), |z| ≤ 1.

This gives

∞
∑

j=1

jrj (t)z
j−1 = λt

[ ∞
∑

k=1

kakz
k−1

] [ ∞
∑

ℓ=0

rℓ(t)z
ℓ

]

=
∞
∑

k=1

∞
∑

ℓ=0

λtkakrℓ(t)z
k+ℓ−1.

Replacing k + l by j and interchanging the order of summation yields

∞
∑

j=1

jrj (t)z
j−1 =

∞
∑

k=1

∞
∑

j=k

λtkakrj−k(t)z
j−1

=
∞
∑

j=1





j
∑

k=1

λtkakrj−k(t)



 zj−1.

Next equating coefficients gives the recurrence relation (1.2.3).

The recursion scheme for the rj (t) is easy to program and is numerically stable.

It is often called Adelson’s recursion scheme after Adelson (1966). In the insurance

literature the recursive scheme is known as Panjer’s algorithm. Note that for the

special case of a1 = 1 the recursion (1.2.3) reduces to the familiar recursion
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scheme for computing Poisson probabilities. An alternative method to compute the

compound Poisson probabilities rj (t), j = 0, 1, . . . is to apply the discrete FFT

method to the explicit expression (1.2.2) for the generating function of the rj (t);

see Appendix D.

Continuous compound Poisson distribution

Suppose now that the non-negative random variables Di are continuously dis-

tributed with probability distribution function A(x) = P {D1 ≤ x} having the prob-

ability density a(x). Then the compound Poisson variable X(t) has the positive

mass e−λt at point zero and a density on the positive real line. Let

a∗(s) =
∫ ∞

0

e−sxa(x) dx

be the Laplace transform of a(x). In the same way that (1.2.2) was derived,

E[e−sX(t)] = e−λt{1−a∗(s)}.

Fix t > 0. How do we compute P {X(t) > x} as function of x? Several compu-

tational methods can be used. The probability distribution function P {X(t) > x}
for x ≥ 0 can be computed by using a numerical method for Laplace inver-

sion; see Appendix F. By relation (E.7) in Appendix E, the Laplace transform of

P {X(t) > x} is given by

∫ ∞

0
e−sxP {X(t) > x} dx =

1 − e−λt{1−a∗(s)}

s
.

If no explicit expression is available for a∗(s) (as is the case when the Di are

lognormally distributed), an alternative is to use the integral equation

P {X(t) > x} =
∫ t

0

[

1 − A(x) +
∫ x

0
P {X(t − u) > x − y}a(y) dy

]

λe−λu du.

This integral equation is easily obtained by conditioning on the epoch of the first

Poisson event and by conditioning on D1. The corresponding integral equation

for the density of X(t) can be numerically solved by applying the discretization

algorithm given in Den Iseger et al. (1997). This discretization method uses spline

functions and is very useful when one is content with an approximation error of

about 10−8. Finally, for the special case of the Di having a gamma distribution,

the probability P {X(t) > x} can simply be computed from

P {X(t) > x} =
∞
∑

n=1

e−λt (λt)n

n!
{1 − Bn∗(x)}, x > 0,

where the n-fold convolution function Bn∗ (x) is the probability distribution func-

tion of D1 + · · · + Dn. If the Di have a gamma distribution with shape parameter
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α and scale parameter β, the sum D1 + · · · + Dn has a gamma distribution with

shape parameter nα and scale parameter β. The computation of the gamma distribu-

tion offers no numerical difficulties; see Appendix B. The assumption of a gamma

distribution is appropriate in many inventory applications with X(t) representing

the cumulative demand up to time t .

1.3 NON-STATIONARY POISSON PROCESSES

The non-stationary Poisson process is another useful stochastic process for counting

events that occur over time. It generalizes the Poisson process by allowing for an

arrival rate that need not be constant in time. Non-stationary Poisson processes

are used to model arrival processes where the arrival rate fluctuates significantly

over time. In the discussion below, the arrival rate function λ(t) is assumed to be

piecewise continuous.

Definition 1.3.1 A counting process {N(t), t ≥ 0} is said to be a non-stationary

Poisson process with intensity function λ(t), t ≥ 0, if it satisfies the following

properties:

(a) N(0) = 0

(b) the process {N(t)} has independent increments

(c) P {N(t + �t) − N(t) = 1} = λ(t)�t + o(�t) as �t → 0

(d) P {N(t + �t) − N(t) ≥ 2} = o(�t) as �t → 0.

The next theorem proves that the total number of arrivals in a given time interval

is Poisson distributed.

Theorem 1.3.1 For any t, s ≥ 0,

P {N(t + s) − N(t) = k} = e−[M(t+s)−M(t)] [M(t + s) − M(t)]k

k!
, (1.3.1)

for k = 0, 1, . . . , where M(x) =
∫ x

0 λ(y) dy, x ≥ 0.

Proof The proof is instructive. Fix t ≥ 0. Put for abbreviation

pk(s) = P {N(t + s) − N(t) = k}, k = 0, 1, . . . .

Consider now pk(s + �s) for �s small. Since the probability of two or more

arrivals in a small time interval of length �s is negligibly small compared with

�s as �s → 0, it follows that the only possibility for the process to be in state k

at time t + s + �s is that the process is either in state k − 1 or in state k at time

t + s. Hence, by conditioning on the state of the process at time t + s and given

that the process has independent increments,

pk(s + �s) = pk−1(s)[λ(t + s)�s + o(�s)] + pk(s)[1 − λ(t + s)�s + o(�s)]



NON-STATIONARY POISSON PROCESSES 23

as �s → 0. Subtracting pk(s) from both sides of this equation and dividing by

�s, we obtain

p′
k(s) = −λ(t + s)[pk(s) − pk−1(s)], k = 1, 2, . . . .

For k = 0, we have p′
0(s) = −λ(t + s)p0(s). The boundary conditions p0(0) = 1

and pk(0) = 0 for k ≥ 1 apply. It is well known from the theory of differential

equations that the solution of the first-order differential equation

y′(s) + a(s)y(s) = b(s), s ≥ 0

is given by

y(s) = e−A(s)

∫ s

0
b(x)eA(x) dx + ce−A(s)

for some constant c, where A(s) =
∫ s

0 a(x) dx. The constant c is determined by a

boundary condition on y(0). This gives after some algebra

p0(s) = e−[M(s+t)−M(t)], s ≥ 0.

By induction the expression for pk(s) next follows from p′
k(s) + λ(t + s)pk(s) =

λ(t + s)pk−1(s). We omit the details.

Note that M(t) represents the expected number of arrivals up to time t .

Example 1.3.1 A canal touring problem

A canal touring boat departs for a tour through the canals of Amsterdam every T

minutes with T fixed. Potential customers pass the point of departure according to

a Poisson process with rate λ. A potential customer who sees that the boat leaves

t minutes from now joins the boat with probability e−µt for 0 ≤ t ≤ T . Which

stochastic process describes the arrival of customers who actually join the boat

(assume that the boat has ample capacity)? The answer is that this process is a

non-stationary Poisson process with arrival rate function λ(t), where

λ(t) = λe−µ(T −t) for 0 ≤ t < T and λ(t) = λ(t − T ) for t ≥ T .

This follows directly from the observation that for �t small

P {a customer joins the boat in (t, t + �t)}

= (λ�t) × e−µ(T −t) + o(�t), 0 ≤ t < T .

Thus, by Theorem 1.3.1, the number of passengers joining a given tour is Poisson

distributed with mean
∫ T

0 λ(t) dt = (λ/µ)(1 − e−µT ).
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Another illustration of the usefulness of the non-stationary Poisson process is

provided by the following example.

Example 1.3.2 Replacement with minimal repair

A machine has a stochastic lifetime with a continuous distribution. The machine is

replaced by a new one at fixed times T , 2T , . . . , whereas a minimal repair is done at

each failure occurring between two planned replacements. A minimal repair returns

the machine into the condition it was in just before the failure. It is assumed that

each minimal repair takes a negligible time. What is the probability distribution of

the total number of minimal repairs between two planned replacements?

Let F(x) and f (x) denote the probability distribution function and the probability

density of the lifetime of the machine. Also, let r(t) = f (t)/[1 − F(t)] denote the

failure rate function of the machine. It is assumed that f (x) is continuous. Then

the answer to the above question is

P {there are k minimal repairs between two planned replacements}

= e−M(T ) [M(T )]k

k!
, k = 0, 1, . . . ,

where M(T ) =
∫ T

0 r(t) dt . This result follows directly from Theorem 1.3.1 by not-

ing that the process counting the number of minimal repairs between two planned

replacements satisfies the properties (a), (b), (c) and (d) of Definition 1.3.1. Use

the fact that the probability of a failure of the machine in a small time interval

(t, t + �t] is equal to r(t)�t + o(�t), as shown in Appendix B.

1.4 MARKOV MODULATED BATCH

POISSON PROCESSES∗

The Markov modulated batch Poisson process generalizes the compound Pois-

son process by allowing for correlated interarrival times. This process is used

extensively in the analysis of teletraffic models (a special case is the compos-

ite model of independent on-off sources multiplexed together). A so-called phase

process underlies the arrival process, where the evolution of the phase process

occurs isolated from the arrivals. The phase process can only assume a finite

number of states i = 1, . . . , m. The sojourn time of the phase process in state

i is exponentially distributed with mean 1/ωi . If the phase process leaves state

i, it goes to state j with probability pij, independently of the duration of the

stay in state i. It is assumed that pii = 0 for all i. The arrival process of cus-

tomers is a compound Poisson process whose parameters depend on the state of

the phase process. If the phase process is in state i, then batches of customers

arrive according to a Poisson process with rate λi where the batch size has the

∗This section contains specialized material that is not used in the sequel.
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discrete probability distribution {a(i)
k , k = 1, 2, . . . }. It is no restriction to assume

that a
(i)
0 = 0; otherwise replace λi by λi(1 − a

(i)
0 ) and a

(i)
k by a

(i)
k /(1 − a

(i)
0 )

for k ≥ 1.

For any t ≥ 0 and i, j = 1, . . . , m, define

Pij(k, t) = P {the total number of customers arriving in (0, t) equals k and

the phase process is in state j at time t | the phase process is in

state i at the present time 0}, k = 0, 1, . . . .

Also, for any t > 0 and i, j = 1, . . . , m, let us define the generating function P ∗
ij

(z, t) by

P ∗
ij (z, t) =

∞
∑

k=0

Pij(k, t)zk, |z| ≤ 1.

To derive an expression for P ∗
ij (z, t), it is convenient to use matrix notation. Let

Q = (qij) be the m × m matrix whose (i, j )th element is given by

qii = −ωi and qij = ωipij for j 
= i.

Define the m × m diagonal matrices � and Ak by

� = diag(λ1, . . . , λm) and Ak = diag(a
(1)
k , . . . , a

(m)
k ), k = 1, 2, . . . .

(1.4.1)
Let the m × m matrix Dk for k = 0, 1, . . . be defined by

D0 = Q − � and Dk = Ak�, k = 1, 2, . . . . (1.4.2)

Using (Dk)ij to denote the (i, j)th element of the matrix Dk , define the generating

function Dij(z) by

Dij(z) =
∞
∑

k=0

(Dk)ijz
k, |z| ≤ 1.

Theorem 1.4.1 Let P ∗(z, t) and D(z) denote the m × m matrices whose (i, j)th

elements are given by the generating functions P ∗
ij (z, t) and Dij(z). Then, for any

t > 0,

P ∗(z, t) = eD(z)t , |z| ≤ 1, (1.4.3)

where eAt is defined by eAt = �∞
n=0A

ntn/n!.

Proof The proof is based on deriving a system of differential equations for the

Pij(k, t). Fix i, j , k and t . Consider Pij(k, t + �t) for �t small. By conditioning
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on what may happen in (t, t + �t), it follows that

Pij(k, t + �t) = Pij(k, t)(1 − λj�t)(1 − ωj�t) +
∑

s 
=j

Pis(k, t)[(ωs�t) × psj ]

+
k−1
∑

ℓ=0

Pij(ℓ, t)
[

(λj�t) × a
(j)
k−ℓ

]

+ o(�t).

Using the definition of the qij, we rewrite this relation as

Pij(k, t + �t) = Pij(k, t)(1 − λj�t) +
m

∑

s=1

Pis(k, t)qsj�t

+
k−1
∑

ℓ=0

Pij(ℓ, t)λja
(j)

k−ℓ�t + o(�t),

which implies that

d

dt
Pij(k, t) = −λjPij(k, t) +

m
∑

s=1

Pis(k, t)qsj + λj

k−1
∑

ℓ=0

Pij(ℓ, t)a
(j)

k−ℓ.

Letting P (k, t) be the m × m matrix whose (i, j)th element is Pij(k, t), we have

in matrix notation that

d

dt
P (k, t) = P (k, t)(Q − �) +

k−1
∑

ℓ=0

P (ℓ, t)Ak−ℓ�.

Using the definition of the matrices Dk , we find next that

d

dt
P (k, t) = P (k, t)D0 +

k−1
∑

ℓ=0

P (ℓ, t)Dk−ℓ

=
k

∑

ℓ=0

P (ℓ, t)Dk−ℓ.

Multiply componentwise both sides of this matrix equation by zk and sum over k.

Since the generating function of the convolution of two sequences is the product

of the generating functions of the two sequences, it follows that

d

dt
P ∗(z, t) = P ∗(z, t)D(z).

For each fixed i this equation gives a system of linear differential equations in

P ∗
ij (z, t) for j = 1, . . . , m. Thus, by a standard result from the theory of linear
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differential equations, we obtain

P ∗
i (z, t) = eD(z)tP ∗

i (z, 0) (1.4.4)

where P ∗
i (z, t) is the ith row of the matrix P ∗(z, t). Since P ∗

i (z, 0) equals the ith

unit vector ei = (0, . . . , 1, . . . , 0), it next follows that P ∗(z, t) = eD(z)t , as was

to be proved.

In general it is a formidable task to obtain the numerical values of the prob-

abilities Pij(k, t) from the expression (1.4.4), particularly when m is large.∗ The

numerical approach of the discrete FFT method is only practically feasible when

the computation of the matrix eD(z)t is not too burdensome. Numerous algorithms

for the computation of the matrix exponential eAt have been proposed, but they do

not always provide high accuracy. The computational work is simplified when the

m×m matrix A has m different eigenvalues µ1, . . . , µm (say), as is often the case

in applications. It is well known from linear algebra that the matrix A can then be

diagonalized as

A = SχS−1,

where the diagonal matrix χ is given by χ = diag(µ1, . . . , µm) and the column

vectors of the matrix S are the linearly independent eigenvectors associated with

the eigenvalues µ1, . . . , µm. Moreover, by An = SχnS−1, it holds that

eAt = S diag(eµ1t , . . . , eµmt )S−1.

Fast codes for the computation of eigenvalues and eigenvectors of a (complex)

matrix are widely available.

To conclude this section, it is remarked that the matrix D(z) in the matrix expo-

nential eD(z)t has a very simple form for the important case of single arrivals (i.e.

a
(1)
i = 1 for i = 1, . . . , m). It then follows from (1.4.1) and (1.4.2) that

D(z) = Q − � + �z, |z| ≤ 1.

The arrival process with single arrivals is called the Markov modulated Poisson

process. A special case of this process is the switched Poisson process which has

only two arrival rates (m = 2). This model is frequently used in applications. In

the special case of the switched Poisson process, the following explicit expressions

can be given for the generating functions P ∗
ij (z, t) :

P ∗
ii (z, t) =

1

r2(z) − r1(z)

[

{r2(z) − (λi(1 − z) + ωi)}e−r1(z)t

− {r1(z) − (λi(1 − z) + ωi)}e−r2(z)t
]

, i = 1, 2,

∗It is also possible to formulate a direct probabilistic algorithm for the computation of the probabilities
Pij(k, t). This algorithm is based on the uniformization method for continuous-time Markov chains; see
Section 4.5.
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P ∗
12(z, t) = ω1

e−r1(z)t − e−r2(z)t

r2(z) − r1(z)
and P ∗

21(z, t) = ω2
e−r1(z)t − e−r2(z)t

r2(z) − r1(z)
,

where

r1,2(z) =
1

2
(λ1(1 − z) + ω1 + λ2(1 − z) + ω2)

±
1

2

[

{λ1(1 − z) + ω1 + λ2(1 − z) + ω2}2

− 4{(λ1(1 − z) + ω1)(λ2(1 − z) + ω2) − ω1ω2}
]1/2

.

It is a matter of straightforward but tedious algebra to derive these expressions. The

probabilities Pij(k, t) can be readily computed from these expressions by applying

the discrete FFT method.

EXERCISES

1.1 A businessman parks his car illegally in the streets of Amsterdam twice a day for a
period of exactly one hour. Parking surveillances occur according to a Poisson process with
an average of λ passes per hour. What is the probability of the businessman getting a fine
on a given day?

1.2 At a shuttle station, passengers arrive according to a Poisson process with rate λ. A
shuttle departs as soon as seven passengers have arrived. There is an ample number of
shuttles at the station.

(a) What is the conditional distribution of the time a customer has to wait until departure
when upon arrival the customer finds j other customers waiting for j = 0, 1, . . . , 6?

(b) What is the probability that the nth customer will not have to wait? (Hint : distinguish
between the case that n is a multiple of 7 and the case that n is not a multiple of 7.)

(c) What is the long-run fraction of customers who, upon arrival, find j other customers
waiting for j = 0, 1, . . . 6?

(d) What is the long-run fraction of customers who wait more than x time units until
departure?

1.3 Answer (a), (b) and (c) in Exercise 1.2 assuming that the interarrival times of the
customers have an Erlang (2, λ) distribution.

1.4 You leave work at random times between 5 pm and 6 pm to take the bus home. Bus
numbers 1 and 3 bring you home. You take the first bus that arrives. Bus number 1 arrives
exactly every 10 minutes, whereas bus number 3 arrives according to a Poisson process
with the same average frequency as bus number 1. What is the probability that you take bus
number 1 home on a given day? Can you explain why this probability is larger than 1/2?

1.5 You wish to cross a one-way traffic road on which cars drive at a constant speed and
pass according to a Poisson process with rate λ. You can only cross the road when no car
has come round the corner for c time units. What is the probability of the number of passing
cars before you can cross the road when you arrive at a random moment? What property of
the Poisson process do you use?

1.6 Consider a Poisson arrival process with rate λ. For each fixed t > 0, define the random
variable δt as the time elapsed since the last arrival before or at time t (assume that an
arrival occurs at epoch 0).

(a) Show that the random variable δt has a truncated exponential distribution: P {δt =
t} = e−λt and P {δt > x} = e−λx for 0 ≤ x < t .
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(b) Prove that the random variables γt (= waiting time from time t until the next arrival)
and δt are independent of each other by verifying P {γt > u, δt > v} = P {γt > u}P {δt > v}
for all u ≥ 0 and 0 ≤ v < t .

1.7 Suppose that fast and slow cars enter a one-way highway according to independent
Poisson processes with respective rates λ1 and λ2. The length of the highway is L. A
fast car travels at a constant speed of s1 and a slow car at a constant speed of s2 with
s2 < s1. When a fast car encounters a slower one, it cannot pass it and the car has to
reduce its speed to s2. Show that the long-run average travel time per fast car equals
L/s2 − (1/λ2)[1 − exp (−λ2(L/s2 − L/s1))]. (Hint : tag a fast car and express its travel
time in terms of the time elapsed since the last slow car entered the highway.)

1.8 Let {N(t)} be a Poisson process with interarrival times X1, X2, . . . . Prove for any
t, s > 0 that for all n, k = 0, 1, . . .

P {N(t + s) − N(t) ≤ k, N(t) = n} = P {N(s) ≤ k}P {N(t) = n}.
In other words, the process has stationary and independent increments. (Hint: evaluate the
probability P {X1 + · · · + Xn ≤ t < X1 + · · · + Xn+1, X1 + · · · + Xn+k+1 > t + s}.)
1.9 An information centre provides services in a bilingual environment. Requests for service
arrive by telephone. Major language service requests and minor language service requests
arrive according to independent Poisson processes with respective rates of λ1 and λ2 requests
per hour. The service time of each request is exponentially distributed with a mean of 1/µ1
minutes for a major language request and a mean of 1/µ2 minutes for a minor language
request.

(a) What is the probability that in the next hour a total of n service requests will arrive?
(b) What is the probability density of the service time of an arbitrarily chosen service

request?

1.10 Short-term parkers and long-term parkers arrive at a parking lot according to indepen-
dent Poisson processes with respective rates λ1 and λ2. The parking times of the customers
are independent of each other. The parking time of a short-term parker has a uniform dis-
tribution on [a1, b1] and that of a long-term parker has a uniform distribution on [a2, b2].
The parking lot has ample capacity.

(a) What is the mean parking time of an arriving car?
(b) What is the probability distribution of the number of occupied parking spots at any

time t > b2?

1.11 Oil tankers with world’s largest harbour Rotterdam as destination leave from harbours
in the Middle East according to a Poisson process with an average of two tankers per day.
The sailing time to Rotterdam has a gamma distribution with an expected value of 10 days
and a standard deviation of 4 days. What is the probability distribution of the number of oil
tankers that are under way from the Middle East to Rotterdam at an arbitrary point in time?

1.12 Customers with items to repair arrive at a repair facility according to a Poisson process
with rate λ. The repair time of an item has a uniform distribution on [a, b]. There are ample
repair facilities so that each defective item immediately enters repair. The exact repair time
can be determined upon arrival of the item. If the repair time of an item takes longer than
τ time units with τ a given number between a and b, then the customer gets a loaner for
the defective item until the item returns from repair. A sufficiently large supply of loaners
is available. What is the average number of loaners which are out?

1.13 On a summer day, buses with tourists arrive in the picturesque village of Edam accord-
ing to a Poisson process with an average of five buses per hour. The village of Edam is
world famous for its cheese. Each bus stays either one hour or two hours in Edam with
equal probabilities.

(a) What is the probability distribution of the number of tourist buses in Edam at 4 o’clock
in the afternoon?
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(b) Each bus brings 50, 75 or 100 tourists with respective probabilities 1
4 , 1

2 and 1
4 .

Calculate a normal approximation to the probability that more than 1000 bus tourists are in
Edam at 4 o’clock in the afternoon. (Hint: the number of bus tourists is distributed as the
convolution of two compound Poisson distributions.)

1.14 Batches of containers arrive at a stockyard according to a Poisson process with rate
λ. The batch sizes are independent random variables having a common discrete probability
distribution {βj , j = 1, 2, . . . } with finite second moment. The stockyard has ample space to
store any number of containers. The containers are temporarily stored at the stockyard. The
holding times of the containers at the stockyard are independent random variables having a
general probability distribution function B(x) with finite mean µ. Also, the holding times
of containers from the same batch are independent of each other. This model is called

the batch-arrival MX/G/∞ queue with individual service. Let β (z) =
∑∞

j=1 βj zj be the

generating function of the batch size and let {pj } denote the limiting distribution of the
number of the containers present at the stockyard.

(a) Use Theorem 1.1.5 to prove that P (z) =
∑∞

j=0 pj zj is given by

P (z) = exp

(

−λ

∫ ∞

0
[1 − β ((1 − z)B(x) + z)] dx

)

.

(b) Verify that the mean m and the variance ν of the limiting distribution of the number
of containers at the stockyard are given by

m = λE(X)µ and ν = λE(X)µ + λE [X(X − 1)]

∫ ∞

0
{1 − B (x)}2 dx,

where the random variable X has the batch-size distribution {βj }.
(c) Investigate how good the approximation to {pj } performs when a negative binomial

distribution is fitted to the mean m and the variance ν. Verify that this approximation is
exact when the service times are exponentially distributed and the batch size is geometrically
distributed with mean β > 1.

1.15 Consider Exercise 1.14 assuming this time that containers from the same batch are
kept at the stockyard over the same holding time and are thus simultaneously removed. The
holding times for the various batches have a general distribution function B (x). This model

is called the batch-arrival MX/G/∞ queue with group service.
(a) Argue that the limiting distribution {pj } of the number of containers present at the

stockyard is insensitive to the form of the holding-time distribution and requires only its
mean µ.

(b) Argue that the limiting distribution {pj } is a compound Poisson distribution with
generating function exp (−λD{1 − β(z)}) with D = µ.

1.16 In a certain region, traffic accidents occur according to a Poisson process. Calculate
the probability that exactly one accident has occurred on each day of some week when it is
given that seven accidents have occurred in that week. Can you explain why this probability
is so small?

1.17 Suppose calls arrive at a computer-controlled exchange according to a Poisson process
at a rate of 25 calls per second. Compute an approximate value for the probability that
during the busy hour there is some period of 3 seconds in which 125 or more calls arrive.

1.18 In any given year claims arrive at an insurance company according to a Poisson process
with an unknown parameter λ, where λ is the outcome of a gamma distribution with shape
parameter α and scale parameter β. Prove that the total number of claims during a given
year has a negative binomial distribution with parameters α and β/(β + 1).

1.19 Claims arrive at an insurance company according to a Poisson process with rate λ. The
claim sizes are independent random variables and have the common discrete distribution

ak = −αk[k ln(1 − α)]−1 for k = 1, 2, . . . , where α is a constant between 0 and 1. Verify
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that the total amount claimed during a given year has a negative binomial distribution with
parameters −λ/ ln(1 − α) and 1 − α.

1.20 An insurance company has two policies with fixed remittances. Claims from the policies
1 and 2 arrive according to independent Poisson processes with respective rates λ1 and λ2.
Each claim from policy i is for a fixed amount of ci , where c1 and c2 are positive integers.
Explain how to compute the probability distribution of the total amount claimed during a
given time period.

1.21 It is only possible to place orders for a certain product during a random time T which
has an exponential distribution with mean 1/µ. Customers who wish to place an order
for the product arrive according to a Poisson process with rate λ. The amounts ordered
by the customers are independent random variables D1, D2, . . . having a common discrete
distribution {aj , j = 1, 2, . . . }.

(a) Verify that the mean m and the variance σ 2 of the total amount ordered during the
random time T are given by

m =
λ

µ
E(D1) and σ 2 =

λ

µ
E(D2

1) +
λ2

µ2
E2(D1).

(b) Let {pk} be the probability distribution of the total amount ordered during the random
time T . Argue that the pk can be recursively computed from

pk =
λ

λ + µ

k
∑

j=1

pk−j aj , k = 1, 2, . . . ,

starting with p0 = µ/(λ + µ).

1.22 Consider a non-stationary Poisson arrival process with arrival rate function λ(t). It is
assumed that λ(t) is continuous and bounded in t . Let λ > 0 be any upper bound on the
function λ(t). Prove that the arrival epochs of the non-stationary Poisson arrival process can
be generated by the following procedure:

(a) Generate arrival epochs of a Poisson process with rate λ.
(b) Thin out the arrival epochs by accepting an arrival occurring at epoch s with probability

λ(s)/λ and rejecting it otherwise.

1.23 Customers arrive at an automatic teller machine in accordance with a non-stationary
Poisson process. From 8 am until 10 am customers arrive at a rate of 5 an hour. Between
10 am and 2 pm the arrival rate steadily increases from 5 per hour at 10 am to 25 per hour
at 2 pm. From 2 pm to 8 pm the arrival rate steadily decreases from 25 per hour at 2 pm
to 4 per hour at 8 pm. Between 8 pm and midnight the arrival rate is 3 an hour and from
midnight to 8 am the arrival rate is 1 per hour. The amounts of money withdrawn by the
customers are independent and identically distributed random variables with a mean of $100
and a standard deviation of $125.

(a) What is the probability distribution of the number of customers withdrawing money
during a 24-hour period?

(b) Calculate an approximation to the probability that the total withdrawal during 24 hours
is more than $25 000.

1.24 Parking-fee dodgers enter the parking lot of the University of Amsterdam according to
a Poisson process with rate λ. The parking lot has ample capacity. Each fee dodger parks
his/her car during an Erlang (2, µ) distributed time. It is university policy to inspect the
parking lot every T time units, with T fixed. Each newly arrived fee dodger is fined. What
is the probability distribution of the number of fee dodgers who are fined at an inspection?

1.25 Suppose customers arrive according to a non-stationary Poisson process with arrival rate
function λ(t). Any newly arriving customer is marked as a type k customer with probability
pk for k = 1, . . . , L, independently of the other customers. Prove that the customers of
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the types 1, . . . , L arrive according to independent non-stationary Poisson processes with
respective arrival rate functions p1λ(t), . . . , pLλ(t).

1.26 Consider the infinite-server queueing model from Section 1.1.3, but assume now that
customers arrive according to a non-stationary Poisson process with arrival rate function
λ(t). Let B(x) be the probability distribution function of the service time of a customer.
Assuming that the system is empty at epoch 0, prove that the number of busy servers at

time t has a Poisson distribution with mean
∫ t

0 λ(x){1 − B(t − x)}dx.

1.27 Consider the M/G/∞ queue from Section 1.1.3 again. Let the random variable L be
the length of a busy period. A busy period begins when an arrival finds the system empty
and finishes when there are no longer any customers in the system. Argue that P {L > t}
can be obtained from the integral equation

P {L > t} = 1 − B(t) +
∫ t

0
{B(t) − B(x)}P {L > t − x}λe−λxdx, t ≥ 0,

where B(t) is the probability distribution function of the service time of a customer. Remark:
it was shown in Shanbhag (1966) that the Laplace transform of P {L > t} is given by

1

s

(

1 −
λ + s

λ
+

1

λ

{
∫ ∞

0
exp

(

−sx − λ

∫ x

0
(1 − B(y))dy

)

dx

}−1
)

.

BIBLIOGRAPHIC NOTES

A treatment of the Poisson process can be found in numerous texts. A good treat-

ment is given in the books of Ross (1996) and Wolff (1989). The Poisson process

is fundamental to all areas of applied probability. The infinite-server queue with

Poisson input has many applications. The applications in Examples 1.1.3 and 1.1.4

are taken from papers of Parikh (1977) and Sherbrooke (1968).
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CHAPTER 2

Renewal-Reward Processes

2.0 INTRODUCTION

The renewal-reward model is an extremely useful tool in the analysis of applied

probability models for inventory, queueing and reliability applications, among oth-

ers. Many stochastic processes are regenerative; that is, they regenerate themselves

from time to time so that the behaviour of the process after the regeneration epoch

is a probabilistic replica of the behaviour of the process starting at time zero. The

time interval between two regeneration epochs is called a cycle. The sequence of

regeneration cycles constitutes a so-called renewal process. The long-run behaviour

of a regenerative stochastic process on which a reward structure is imposed can

be studied in terms of the behaviour of the process during a single regeneration

cycle. The simple and intuitively appealing renewal-reward model has numerous

applications.

In Section 2.1 we first discuss some elementary results from renewal theory. A

more detailed treatment of renewal theory will be given in Chapter 8. Section 2.2

deals with the renewal-reward model. It shows how to calculate long-run aver-

ages such as the long-run average reward per time unit and the long-run fraction

of time the system spends in a given set of states. Illustrative examples will be

given. Section 2.3 discusses the formula of Little. This formula is a kind of law

of nature and relates among others the average queue size to the average wait-

ing time in queueing systems. Another fundamental result that is frequently used

in queueing and inventory applications is the property that Poisson arrivals see

time averages (PASTA). This result is discussed in some detail in Section 2.4. The

PASTA property is used in Section 2.5 to obtain the famous Pollaczek–Khintchine

formula from queueing theory. The renewal-reward model is used in Section 2.6 to

obtain a generalization of the Pollaczek–Khintchine formula in the framework of

a controlled queue. Section 2.7 shows how renewal theory and an up- and down-

crossing argument can be combined to derive a relation between time-average and

customer-average probabilities in queues.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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2.1 RENEWAL THEORY

As a generalization of the Poisson process, renewal theory concerns the study of

stochastic processes counting the number of events that take place as a function

of time. Here the interoccurrence times between successive events are indepen-

dent and identically distributed random variables. For instance, the events could

be the arrival of customers to a waiting line or the successive replacements of

light bulbs. Although renewal theory originated from the analysis of replacement

problems for components such as light bulbs, the theory has many applications to

quite a wide range of practical probability problems. In inventory, queueing and

reliability problems, the analysis is often based on an appropriate identification of

embedded renewal processes for the specific problem considered. For example, in

a queueing process the embedded events could be the arrival of customers who

find the system empty, or in an inventory process the embedded events could be

the replenishment of stock when the inventory position drops to the reorder point

or below it.

Formally, let X1, X2, . . . be a sequence of non-negative, independent random

variables having a common probability distribution function

F(x) = P {Xk ≤ x}, x ≥ 0

for k = 1, 2, . . . . Letting µ1 = E(Xk), it is assumed that

0 < µ1 < ∞.

The random variable Xn denotes the interoccurrence time between the (n − 1)th

and nth event in some specific probability problem. Define

S0 = 0 and Sn =
n
∑

i=1

Xi, n = 1, 2, . . . .

Then Sn is the epoch at which the nth event occurs. For each t ≥ 0, let

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

Then the random variable N(t) represents the number of events up to time t .

Definition 2.1.1 The counting process {N(t), t ≥ 0} is called the renewal process

generated by the interoccurrence times X1, X2, . . . .

It is said that a renewal occurs at time t if Sn = t for some n. For each t ≥ 0, the

number of renewals up to time t is finite with probability 1. This is an immediate

consequence of the strong law of large numbers stating that Sn/n → E(X1) with

probability 1 as n → ∞ and thus Sn ≤ t only for finitely many n. The Poisson

process is a special case of a renewal process. Here we give some other examples

of a renewal process.
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Example 2.1.1 A replacement problem

Suppose we have an infinite supply of electric bulbs, where the burning times of

the bulbs are independent and identically distributed random variables. If the bulb

in use fails, it is immediately replaced by a new bulb. Let Xi be the burning time of

the ith bulb, i = 1, 2, . . . . Then N(t) is the total number of bulbs to be replaced

up to time t .

Example 2.1.2 An inventory problem

Consider a periodic-review inventory system for which the demands for a single

product in the successive weeks t = 1, 2, . . . are independent random variables

having a common continuous distribution. Let Xi be the demand in the ith week,

i = 1, 2, . . . . Then 1+N(u) is the number of weeks until depletion of the current

stock u.

2.1.1 The Renewal Function

An important role in renewal theory is played by the renewal function M(t) which

is defined by

M(t) = E[N(t)], t ≥ 0. (2.1.1)

For n = 1, 2, . . . , define the probability distribution function

Fn(t) = P {Sn ≤ t}, t ≥ 0.

Note that F1(t) = F(t). A basic relation is

N(t) ≥ n if and only if Sn ≤ t. (2.1.2)

This relation implies that

P {N(t) ≥ n} = Fn(t), n = 1, 2, . . . . (2.1.3)

Lemma 2.1.1 For any t ≥ 0,

M(t) =
∞
∑

n=1

Fn(t). (2.1.4)

Proof Since for any non-negative integer-valued random variable N ,

E(N) =
∞
∑

k=0

P {N > k} =
∞
∑

n=1

P {N ≥ n},

the relation (2.1.4) is an immediate consequence of (2.1.3).
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In Exercise 2.4 the reader is asked to prove that M(t) < ∞ for all t ≥ 0. In

Chapter 8 we will discuss how to compute the renewal function M(t) in general.

The infinite series (2.1.4) is in general not useful for computational purposes. An

exception is the case in which the interoccurrence times X1, X2, . . . have a gamma

distribution with shape parameter α > 0 and scale parameter λ > 0. Then the sum

X1+· · ·+Xn has a gamma distribution with shape parameter nα and scale parameter

λ. In this case Fn(t) is the so-called incomplete gamma integral for which efficient

numerical procedures are available; see Appendix B. Let us explain this in more

detail for the case that α is a positive integer r so that the interoccurrence times

X1, X2, . . . have an Erlang (r, λ) distribution with scale parameter λ. Then Fn(t)

becomes the Erlang (nr, λ) distribution function

Fn(t) = 1 −
nr−1
∑

k=0

e−λt (λt)k

k!
, t ≥ 0

and thus

M(t) =
∞
∑

n=1

[

1 −
nr−1
∑

k=0

e−λt (λt)k

k!

]

, t ≥ 0. (2.1.5)

In this particular case M(t) can be efficiently computed from a rapidly converg-

ing series. For the special case that the interoccurrence times are exponentially

distributed (r = 1), the expression (2.1.5) reduces to the explicit formula

M(t) = λt, t ≥ 0.

This finding is in agreement with earlier results for the Poisson process.

Remark 2.1.1 The phase method

A very useful interpretation of the renewal process {N(t)} can be given when the

interoccurrence times X1, X2, . . . have an Erlang distribution. Imagine that tokens

arrive according to a Poisson process with rate λ and that the arrival of each rth

token triggers the occurrence of an event. Then the events occur according to a

renewal process in which the interoccurrence times have an Erlang (r, λ) distri-

bution with scale parameter λ. The explanation is that the sum of r independent,

exponentially distributed random variables with the same scale parameter λ has an

Erlang (r, λ) distribution. The phase method enables us to give a tractable expres-

sion of the probability distribution of N(t) when the interoccurrence times have an

Erlang (r, λ) distribution. In this case P {N(t) ≥ n} is equal to the probability that

nr or more arrivals occur in a Poisson arrival process with rate λ. You are asked

to work out the equivalence in Exercise 2.5.

Asymptotic expansion

A very useful asymptotic expansion for the renewal function M(t) can be given

under a weak regularity condition on the interoccurrence times. This condition
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will be formulated in Section 8.2. For the moment it is sufficient to assume that

the interoccurrence times have a positive density on some interval. Further it is

assumed that µ2 = E(X2
1) is finite. Then it will be shown in Theorem 8.2.3 that

lim
t→∞

[

M(t) −
t

µ1

]

=
µ2

2µ2
1

− 1. (2.1.6)

The approximation

M(t) ≈
t

µ1
+

µ2

2µ2
1

− 1 for t large

is practically useful for already moderate values of t provided that the squared

coefficient of variation of the interoccurrence times is not too large and not too

close to zero.

2.1.2 The Excess Variable

In many practical probability problems an important quantity is the random variable

γt defined as the time elapsed from epoch t until the next renewal after epoch t .

More precisely, γt is defined as

γt = SN(t)+1 − t ;

see also Figure 2.1.1 in which a renewal epoch is denoted by ×. Note that SN(t)+1

is the epoch of the first renewal that occurs after time t . The random variable

γt is called the excess or residual life at time t . For the replacement problem of

Example 2.1.1 the random variable γt denotes the residual lifetime of the light bulb

in use at time t .

Lemma 2.1.2 For any t ≥ 0,

E(γt ) = µ1[1 + M(t)] − t. (2.1.7)

Proof Fix t ≥ 0. To prove (2.1.7), we apply Wald’s equation from Appendix A.

To do so, note that N(t) ≤ n − 1 if and only if X1 + · · · + Xn > t . Hence the

event {N(t) + 1 = n} depends only on X1, . . . , Xn and is thus independent of

Xn+1, Xn+2, . . . . Hence

E





N(t)+1
∑

k=1

Xk



 = E(X1)E[N(t) + 1],

which gives (2.1.7).

0 S1 S2 tSN(t ) SN(t ) + 1 Time

g
t

Figure 2.1.1 The excess life
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In Corollary 8.2.4 it will be shown that

lim
t→∞

E(γt ) =
µ2

2µ1
and lim

t→∞
E(γ 2

t ) =
µ3

3µ1
(2.1.8)

with µk = E(Xk
1) for k = 1, 2, 3, provided that the interoccurrence times have a

positive density on some interval. An illustration of the usefulness of the concept

of excess variable is provided by the next example.

Example 2.1.3 The average order size in an (s, S) inventory system

Suppose a periodic-review inventory system for which the demands X1, X2, . . .

for a single product in the successive weeks 1, 2, . . . are independent random

variables having a common probability density f (x) with finite mean α and finite

standard deviation σ . Any demand exceeding the current inventory is backlogged

until inventory becomes available by the arrival of a replenishment order. The

inventory position is reviewed at the beginning of each week and is controlled by

an (s, S) rule with 0 ≤ s < S. Under this control rule, a replenishment order of

size S −x is placed when the review reveals that the inventory level x is below the

reorder point s; otherwise, no ordering is done. We assume instantaneous delivery

of every replenishment order.

We are interested in the average order size. Since the inventory process starts

from scratch each time the inventory position is ordered up to level S, the operating

characteristics can be calculated by using a renewal model in which the weekly

demand sizes X1, X2, . . . represent the interoccurrence times of renewals. The

number of weeks between two consecutive orderings equals the number of weeks

needed for a cumulative demand larger than S − s. The order size is the sum of

S − s and the undershoot of the reorder point s at the epoch of ordering (see

Figure 2.1.2 in which a renewal occurrence is denoted by an ×). Denote by {N(t)}
the renewal process associated with the weekly demands X1, X2, . . . . Then the

number of weeks needed for a cumulative demand exceeding S − s is given by

1 + N(S − s). The undershoot of the reorder point s is just the excess life γS−s of

the renewal process. Hence

E[order size] = S − s + E(γS−s).

From (2.1.8) it follows that the average order size can be approximated by

E[order size] ≈ S − s +
σ 2 + α2

2α

0 S − s Cumulative demand

g
S − sX1 X2

Figure 2.1.2 The inventory process modelled as a renewal process
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provided that S − s is sufficiently large compared with E(weekly demand). In

practice this is a useful approximation for S−s > α when the weekly demand is not

highly variable and has a squared coefficient of variation between 0.2 and 1 (say).

Another illustration of the importance of the excess variable is given by the

famous waiting-time paradox.

Example 2.1.4 The waiting-time paradox

We have all experienced long waits at a bus stop when buses depart irregularly and

we arrive at the bus stop at random. A theoretical explanation of this phenomenon is

provided by the expression for limt→∞ E(γt ). Therefore it is convenient to rewrite

(2.1.8) as

lim
t→∞

E(γt ) =
1

2
(1 + c2

X)µ1, (2.1.9)

where

c2
X =

σ 2(X1)

E2(X1)

is the squared coefficient of variation of the interdeparture times X1, X2, . . . . The

equivalent expression (2.1.9) follows from (2.1.8) by noting that

1 + c2
X = 1 +

µ2 − µ2
1

µ2
1

=
µ2

µ2
1

. (2.1.10)

The representation (2.1.9) makes clear that

lim
t→∞

E(γt ) =

{

< µ1 if c2
X < 1,

> µ1 if c2
X > 1.

Thus the mean waiting time for the next bus depends on the regularity of the bus

service and increases with the coefficient of variation of the interdeparture times. If

we arrive at the bus stop at random, then for highly irregular service (c2
X > 1) the

mean waiting time for the next bus is even larger than the mean interdeparture time.

This surprising result is sometimes called the waiting-time paradox. A heuristic

explanation is that it is more likely to hit a long interdeparture time than a short

one when arriving at the bus stop at random. To illustrate this, consider the extreme

situation in which the interdeparture time is 0 minutes with probability 9/10 and is

10 minutes with probability 1/10. Then the mean interdeparture time is 1 minute,

but your mean waiting time for the next bus is 5 minutes when you arrive at the

bus stop at random.

2.2 RENEWAL-REWARD PROCESSES

A powerful tool in the analysis of numerous applied probability models is the

renewal-reward model. This model is also very useful for theoretical purposes. In
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Chapters 3 and 4, ergodic theorems for Markov chains will be proved by using

the renewal-reward theorem. The renewal-reward model is a simple and intuitively

appealing model that deals with a so-called regenerative process on which a cost

or reward structure is imposed. Many stochastic processes have the property of

regenerating themselves at certain points in time so that the behaviour of the process

after the regeneration epoch is a probabilistic replica of the behaviour starting at

time zero and is independent of the behaviour before the regeneration epoch.

A formal definition of a regenerative process is as follows.

Definition 2.2.1 A stochastic process {X(t), t ∈ T } with time-index set T is said

to be regenerative if there exists a (random) epoch S1 such that:

(a) {X(t + S1), t ∈ T } is independent of {X(t), 0 ≤ t < S1},

(b) {X(t + S1), t ∈ T } has the same distribution as {X(t), t ∈ T }.

It is assumed that the index set T is either the interval T = [0, ∞) or the count-

able set T = {0, 1, . . . }. In the former case we have a continuous-time regenerative

process and in the other case a discrete-time regenerative process. The state space

of the process {X(t)} is assumed to be a subset of some Euclidean space.

The existence of the regeneration epoch S1 implies the existence of further

regeneration epochs S2, S3, . . . having the same property as S1. Intuitively speak-

ing, a regenerative process can be split into independent and identically distributed

renewal cycles. A cycle is defined as the time interval between two consecutive

regeneration epochs. Examples of regenerative processes are:

(i) The continuous-time process {X(t), t ≥ 0} with X(t) denoting the number of

customers present at time t in a single-server queue in which the customers

arrive according to a renewal process and the service times are independent

and identically distributed random variables. It is assumed that at epoch 0 a

customer arrives at an empty system. The regeneration epochs S1, S2, . . . are

the epochs at which an arriving customer finds the system empty.

(ii) The discrete-time process {In, n = 0, 1, . . . } with In denoting the inventory

level at the beginning of the nth week in the (s, S) inventory model dealt with

in Example 2.1.3. Assume that the inventory level equals S at epoch 0. The

regeneration epochs are the beginnings of the weeks in which the inventory

level is ordered up to the level S.

Let us define the random variables Cn = Sn −Sn−1, n = 1, 2, . . . , where S0 = 0

by convention. The random variables C1, C2, . . . are independent and identically

distributed. In fact the sequence {C1, C2, . . . } underlies a renewal process in which

the events are the occurrences of the regeneration epochs. Hence we can interpret

Cn as

Cn = the length of the nth renewal cycle, n = 1, 2, . . . .
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Note that the cycle length Cn assumes values from the index set T . In the following

it is assumed that

0 < E(C1) < ∞.

In many practical situations a reward structure is imposed on the regenerative

process {X(t), t ∈ T }. The reward structure usually consists of reward rates that

are earned continuously over time and lump rewards that are only earned at certain

state transitions. Let

Rn = the total reward earned in the nth renewal cycle, n = 1, 2, . . . .

It is assumed that R1, R2, . . . are independent and identically distributed random

variables. In applications Rn typically depends on Cn. In case Rn can take on both

positive and negative values, it is assumed that E(|R1|) < ∞. Let

R(t) = the cumulative reward earned up to time t.

The process {R(t), t ≥ 0} is called a renewal-reward process. We are now ready

to prove a theorem of utmost importance.

Theorem 2.2.1 (renewal-reward theorem)

lim
t→∞

R(t)

t
=

E(R1)

E(C1)
with probability 1.

In other words, for almost any realization of the process, the long-run average

reward per time unit is equal to the expected reward earned during one cycle divided

by the expected length of one cycle.

To prove this theorem we first establish the following lemma.

Lemma 2.2.2 For any t ≥ 0, let N(t) be the number of cycles completed up to

time t . Then

lim
t→∞

N(t)

t
=

1

E(C1)
with probability 1.

Proof By the definition of N(t), we have

C1 + · · · + CN(t) ≤ t < C1 + · · · + CN(t)+1.

Since P {C1 + · · · + Cn < ∞} = 1 for all n ≥ 1, it is not difficult to verify that

lim
t→∞

N(t) = ∞ with probability 1.

The above inequality gives

C1 + · · · + CN(t)

N(t)
≤

t

N(t)
<

C1 + · · · + CN(t)+1

N(t) + 1

N(t) + 1

N(t)
.
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By the strong law of large numbers for a sequence of independent and identically

distributed random variables, we have

lim
n→∞

C1 + · · · + Cn

n
= E(C1) with probability 1.

Hence, by letting t → ∞ in the above inequality, the desired result follows.

Lemma 2.2.2 is also valid when E(C1) = ∞ provided that P {C1 < ∞} = 1. The

reason is that the strong law of large numbers for a sequence {Cn} of non-negative

random variables does not require that E(C1) < ∞. Next we prove Theorem 2.2.1.

Proof of Theorem 2.2.1 For ease, let us first assume that the rewards are non-

negative. Then, for any t > 0,

N(t)
∑

i=1

Ri ≤ R(t) ≤
N(t)+1
∑

i=1

Ri .

This gives

N(t)
∑

i=1

Ri

N(t)
×

N(t)

t
≤

R(t)

t
≤

N(t)+1
∑

i=1

Ri

N(t) + 1
×

N(t) + 1

t
.

By the strong law of large numbers for the sequence {Rn}, we have

lim
n→∞

1

n

n
∑

i=1

Ri = E(R1) with probability 1.

As pointed out in the proof of Lemma 2.2.2, N(t) → ∞ with probability 1 as

t → ∞. Letting t → ∞ in the above inequality and using Lemma 2.2.2, the desired

result next follows for the case that the rewards are non-negative. If the rewards can

assume both positive and negative values, then the theorem is proved by treating

the positive and negative parts of the rewards separately. We omit the details.

In a natural way Theorem 2.2.1 relates the behaviour of the renewal-reward

process over time to the behaviour of the process over a single renewal cycle. It is

noteworthy that the outcome of the long-run average actual reward per time unit

can be predicted with probability 1. If we are going to run the process over an

infinitely long period of time, then we can say beforehand that in the long run the

average actual reward per time unit will be equal to the constant E(R1)/E(C1) with

probability 1. This is a much stronger and more useful statement than the statement

that the long-run expected average reward per time unit equals E(R1)/E(C1) (it

indeed holds that limt→∞ E[R(t)]/t = E(R1)/E(C1); this expected-value version

of the renewal-reward theorem is a direct consequence of Theorem 2.2.1 when

R(t)/t is bounded in t but otherwise requires a hard proof). Also it is noted that for

the case of non-negative rewards Rn the renewal-reward theorem is also valid when

E(R1) = ∞ (the assumption E(C1) < ∞ cannot be dropped for Theorem 2.2.1).
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Example 2.2.1 Alternating up- and downtimes

Suppose a machine is alternately up and down. Denote by U1, U2, . . . the lengths

of the successive up-periods and by D1, D2, . . . the lengths of the successive

down-periods. It is assumed that both {Un} and {Dn} are sequences of independent

and identically distributed random variables with finite positive expectations. The

sequences {Un} and {Dn} are not required to be independent of each other. Assume

that an up-period starts at epoch 0. What is the long-run fraction of time the machine

is down? The answer is

the long-run fraction of time the machine is down

=
E(D1)

E(U1) + E(D1)
with probability 1. (2.2.1)

To verify this, define the continuous-time stochastic process {X(t), t ≥ 0} by

X(t) =

{

1 if the machine is up at time t,

0 otherwise.

The process {X(t)} is a regenerative process. The epochs at which an up-period

starts can be taken as regeneration epochs. The long-run fraction of time the

machine is down can be interpreted as a long-run average cost per time unit

by assuming that a cost at rate 1 is incurred while the machine is down and

a cost at rate 0 otherwise. A regeneration cycle consists of an up-period and a

down-period. Hence

E(length of one cycle) = E(U1 + D1)

and

E(cost incurred during one cycle) = E(D1).

By applying the renewal-reward theorem, it follows that the long-run average cost

per time unit equals E(D1)/[E(U1) + E(D1)], proving the result (2.2.1).

The intermediate step of interpreting the long-run fraction of time that the process

is in a certain state as a long-run average cost (reward) per time unit is very helpful

in many situations.

Limit theorems for regenerative processes

An important application of the renewal-reward theorem is the characterization

of the long-run fraction of time a regenerative process {X(t), t ∈ T } spends in

some given set B of states. For the set B of states, define for any t ∈ T the

indicator variable

IB(t) =

{

1 if X(t) ∈ B,

0 if X(t) /∈ B.
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Also, define the random variable

TB = the amount of time the process spends in the set B of states during

one cycle.

Note that TB =
∫ S1

0 IB(u) du for a continuous-time process {X(t)}; otherwise, TB

equals the number of indices 0 ≤ k < S1 with X(k) ∈ B. The following theorem

is an immediate consequence of the renewal-reward theorem.

Theorem 2.2.3 For the regenerative process {X(t)} it holds that the long-run

fraction of time the process spends in the set B of states is E(TB)/E(C1) with

probability 1.

That is,

lim
t→∞

1

t

∫ t

0
IB(u) du =

E(TB)

E(C1)
with probability 1

for a continuous-time process {X(t)} and

lim
n→∞

1

n

n
∑

k=0

IB(k) =
E(TB)

E(C1)
with probability 1

for a discrete-time process {X(n)}.

Proof The long-run fraction of time the process {X(t)} spends in the set B of

states can be interpreted as a long-run average reward per time unit by assuming

that a reward at rate 1 is earned while the process is in the set B and a reward at

rate 0 is earned otherwise. Then

E(reward earned during one cycle) = E(TB).

The desired result next follows by applying the renewal-reward theorem.

Since E(IB(t)) = P {X(t) ∈ B}, we have as consequence of Theorem 2.2.3 and

the bounded convergence theorem that, for a continuous-time process,

lim
t→∞

1

t

∫ t

0

P {X(u) ∈ B} du =
E(TB)

E(C1)
.

Note that (1/t)
∫ t

0 P {X(u) ∈ B} du can be interpreted as the probability that an

outside observer arriving at a randomly chosen point in (0, t) finds the process in

the set B.

In many situations the ratio E(TB)/E(C1) could be interpreted both as the long-

run fraction of time the process {X(t)} spends in the set B of states and as the

probability of finding the process in the set B when the process has reached sta-

tistical equilibrium. This raises the question whether limt→∞ P {X(t) ∈ B} always

exists. This ordinary limit need not always exist. A counterexample is provided by
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periodic discrete-time Markov chains; see Chapter 3. For completeness we state

the following theorem.

Theorem 2.2.4 For the regenerative process {X(t), t ∈ T },

lim
t→∞

P {X(t) ∈ B} =
E(TB)

E(C1)

provided that the probability distribution of the cycle length has a continuous part

in the continuous-time case and is aperiodic in the discrete-time case.

A distribution function is said to have a continuous part if it has a positive

density on some interval. A discrete distribution {aj , j = 0, 1, . . . } is said to

be aperiodic if the greatest common divisor of the indices j ≥ 1 for which

aj > 0 is equal to 1. The proof of Theorem 2.2.4 requires deep mathematics

and is beyond the scope of this book. The interested reader is referred to Miller

(1972). It is remarkable that the proof of Theorem 2.2.3 for the time-average limit

limt→∞ (1/t)
∫ t

0 IB(u) du is much simpler than the proof of Theorem 2.2.4 for

the ordinary limit limt→∞ P {X(t) ∈ B}. This is all the more striking when we

take into account that the time-average limit is in general much more useful

for practical purposes than the ordinary limit. Another advantage of the time-

average limit is that it is easier to understand than the ordinary limit. In interpret-

ing the ordinary limit one should be quite careful. The ordinary limit represents

the probability that an outside person will find the process in some state of the

set B when inspecting the process at an arbitrary point in time after the process

has been in operation for a very long time. It is essential for this interpretation

that the outside person has no information about the past of the process when

inspecting the process. How much more concrete is the interpretation of the time-

average limit as the long-run fraction of time the process will spend in the set B

of states!

To illustrate Theorem 2.2.4, consider again Example 2.2.1. In this example we

analysed the long-run average behaviour of the regenerative process {X(t)}, where

X(t) = 1 if the machine is up at time t and X(t) = 0 otherwise. It was shown that

the long-run fraction of time the machine is down equals E(D)/[E(U) + E(D)],

where the random variables U and D denote the lengths of an up-period and a

down-period. This result does not require any assumption about the shapes of the

probability distributions of U and D. However, some assumption is needed in order

to conclude that

lim
t→∞

P {the system is down at time t} =
E(D)

E(U) + E(D)
. (2.2.2)

It is sufficient to assume that the distribution function of the length of an up-period

has a positive density on some interval.

We state without proof a central limit theorem for the renewal-reward process.
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Theorem 2.2.5 Assume that R(t) ≥ 0 with E(C2
1) < ∞ and E(R2

1) < ∞. Then

lim
t→∞

P

{

R(t) − gt

ν
√

t/µ1
≤ x

}

=
1

√
2π

∫ x

−∞
e− 1

2 y2
dy, x ≥ 0,

where µ1 = E(C1), µ2 = E(C2
1), g = E(R1)/E(C1) and ν2 = E(R1 − gC1)

2.

A proof of this theorem can be found in Wolff (1989). In applying this theo-

rem, the difficulty is usually to find the constant ν. In specific applications one

might use simulation to find ν. As a special case, Theorem 2.2.5 includes a central

limit theorem for the renewal process {N(t)} studied in Section 2.1. Taking the

rewards Rn equal to 1 it follows that the renewal process {N(t)} is asymptotically

N(t/µ1, σ 2t/µ3
1) distributed with σ 2 = µ2 − µ2

1.

Next we give two illustrative examples of the renewal-reward model.

Example 2.2.2 A stochastic clearing system

In a communication system messages requiring transmission arrive according to

a Poisson process with rate λ. The messages are temporarily stored in a buffer

having ample capacity. Every T time units, the buffer is cleared from all messages

present. The buffer is empty at time t = 0. A fixed cost of K > 0 is incurred for

each clearing of the buffer. Also, for each message there is a holding cost of h > 0

for each time unit the message has to wait in the buffer. What is the value of T

for which the long-run average cost per time unit is minimal?

We first derive an expression for the average cost per time unit for a given

value of the control parameter T . To do so, observe that the stochastic process

describing the number of messages in the system regenerates itself each time the

buffer is cleared from all messages present. This fact uses the lack of memory of

the Poisson arrival process so that at any clearing epoch it is not relevant how

long ago the last message arrived. Taking a cycle as the time interval between two

successive clearings of the buffer, we have

the expected length of one cycle = T .

To specify the expected cost incurred during one cycle, we need an expression for

the total waiting time of all messages arriving during one cycle. It was shown in

Example 1.1.4 that

E[total waiting time in (0, T )] =
1

2
λT 2.

This gives

E[cost incurred during one cycle] = K +
1

2
hλT 2.
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Hence, by the renewal-reward theorem,

the long-run average cost per time unit =
1

T

(

K +
1

2
hλT 2

)

with probability 1. When K = 0 and h = 1, the system incurs a cost at rate j

whenever there are j messages in the buffer, in which case the average cost per

time unit gives the average number of messages in the buffer. Hence

the long-run average number of messages in the buffer =
1

2
λT .

Putting the derivative of the cost function equal to 0, it follows that the long-run

average cost is minimal for

T ∗ =
√

2K

hλ
.

Example 2.2.3 A reliability system with redundancies

An electronic system consists of a number of independent and identical compo-

nents hooked up in parallel. The lifetime of each component has an exponential

distribution with mean 1/µ. The system is operative only if m or more components

are operating. The non-failed units remain in operation when the system as a whole

is in a non-operative state. The system availability is increased by periodic main-

tenance and by putting r redundant components into operation in addition to the

minimum number m of components required. Under the periodic maintenance the

system is inspected every T time units, where at inspection the failed components

are repaired. The repair time is negligible and each repaired component is again

as good as new. The periodic inspections provide the only repair opportunities.

The following costs are involved. For each component there is a depreciation cost

of I > 0 per time unit. A fixed cost of K > 0 is made for each inspection and

there is a repair cost of R > 0 for each failed component. How can we choose

the number r of redundant components and the time T between two consecutive

inspections such that the long-run average cost per time unit is minimal subject to

the requirement that the probability of system failure between two inspections is

no more than a prespecified value α?

We first derive the performance measures for given values of the parameters r

and T . The stochastic process describing the number of operating components is

regenerative. Using the lack of memory of the exponential lifetimes of the compo-

nents, it follows that the process regenerates itself after each inspection. Taking a

cycle as the time interval between two inspections, we have

E(length of one cycle) = T .
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Further, using the fact that a given component fails within a time T with probability

1 − e−µT , it follows that

P {the system as a whole fails between two inspections}

=
m+r
∑

k=r+1

(

m + r

k

)

(1 − e−µT )ke−µT (m+r−k)

and

E(number of components that fail between two inspections)

= (m + r)(1 − e−µT ).

Hence

E(total costs in one cycle) = (m + r)I × T + K + (m + r)(1 − e−µT )R.

This gives

the long-run average cost per time unit

=
1

T
[(m + r)I × T + K + (m + r)(1 − e−µT )R]

with probability 1. The optimal values of the parameters r and T are found from

the following minimization problem:

Minimize
1

T
[(m + r)I × T + K + (m + r)(1 − e−µT )R]

subject to

m+r
∑

k=r+1

(

m + r

k

)

(1 − e−µT )ke−µT (m+r−k) ≤ α.

Using the Lagrange method this problem can be numerically solved.

Rare events∗

In many applied probability problems one has to study rare events. For example,

a rare event could be a system failure in reliability applications or buffer overflow

in finite-buffer telecommunication problems. Under general conditions it holds that

the time until the first occurrence of a rare event is approximately exponentially

distributed. Loosely formulated, the following result holds. Let {X(t)} be a regen-

erative process having a set B of (bad) states such that the probability q that

the process visits the set B during a given cycle is very small. Denote by the

random variable U the time until the process visits the set B for the first time.

Assuming that the cycle length has a finite and positive mean E(T ), it holds that

P {U > t} ≈ e−tq/E(T ) for t ≥ 0; see Keilson (1979) or Solovyez (1971) for

∗This section may be skipped at first reading.
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a proof. The result that the time until the first occurrence of a rare event in a

regenerative process is approximately exponentially distributed is very useful. It

gives not only quantitative insight, but it also implies that the computation of the

mean of the first-passage time suffices to get the whole distribution.

In the next example we obtain the above result by elementary arguments.

Example 2.2.4 A reliability problem with periodic inspections

High reliability of an electronic system is often achieved by employing redundant

components and having periodic inspections. Let us consider a reliability system

with two identical units, where one unit is in full operation and the other unit is in

warm standby. The operating unit has a constant failure rate of λ0 and the unit in

standby has a constant failure rate of λ1, where 0 ≤ λ1 < λ0. Upon failure of the

operating unit, the standby unit is put into full operation provided the standby is not

in the failure state. Failed units are replaced only at the scheduled times T , 2T , . . .

when the system is inspected. The time to replace any failed unit is negligible.

A system failure occurs if both units are down. It is assumed that (λ0 + λ1)T is

sufficiently small so that a system failure is a rare event. In designing highly reliable

systems a key measure of system performance is the probability distribution of the

time until the first system failure.

To find the distribution of the time until the first system failure, we first compute

the probability q defined by

q = P {system failure occurs between two inspections}.

To do so, observe that a constant failure rate λ for the lifetime of a unit implies that

the lifetime has an exponential distribution with mean 1/λ. Using the fact that the

minimum of two independent exponentials with respective means 1/λ0 and 1/λ1

is exponentially distributed with mean 1/(λ0 +λ1), we find by conditioning on the

epoch of the first failure of a unit that

q =
∫ T

0

{

1 − e−λ0(T −x)
}

(λ0 + λ1) e−(λ0+λ1)x dx

= 1 −
(λ0 + λ1)

λ1
e−λ0T +

λ0

λ1
e−(λ0+λ1)T .

Assuming that both units are in good condition at epoch 0, let

U = the time until the first system failure.

Since the process describing the state of the two units regenerates itself at each

inspection, it follows that

P {U > nT } = (1 − q)n, n = 0, 1, . . . .
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Assuming that the failure probability q is close to 0, the approximations (1−q)n ≈
1 − nq and e−nq ≈ 1 − nq apply. Thus we find that

P {U > t} ≈ e−tq/T , t ≥ 0.

In other words, the time until the first system failure is approximately exponentially

distributed.

2.3 THE FORMULA OF LITTLE

To introduce the formula of Little, we consider first two illustrative examples. In

the first example a hospital admits on average 25 new patients per day. A patient

stays on average 3 days in the hospital. What is the average number of occupied

beds? Let λ = 25 denote the average number of new patients who are admitted

per day, W = 3 the average number of days a patient stays in the hospital and L

the average number of occupied beds. Then L = λW = 25 × 3 = 75 beds. In the

second example a specialist shop sells on average 100 bottles of a famous Mexican

premium beer per week. The shop has on average 250 bottles in inventory. What is

the average number of weeks that a bottle is kept in inventory? Let λ = 100 denote

the average demand per week, L = 250 the average number of bottles kept in stock

and W the average number of weeks that a bottle is kept in stock. Then the answer

is W = L/λ = 250/100 = 2.5 weeks. These examples illustrate Little’s formula

L = λW . The formula of Little is a ‘law of nature’ that applies to almost any

type of queueing system. It relates long-run averages such as the long-run average

number of customers in a queue (system) and the long-run average amount of time

spent per customer in the queue (system). A queueing system is described by the

arrival process of customers, the service facility and the service discipline, to name

the most important elements. In formulating the law of Little, there is no need to

specify those basic elements. For didactical reasons, however, it is convenient to

distinguish between queueing systems with infinite queue capacity and queueing

systems with finite queue capacity.

Infinite-capacity queues

Consider a queueing system with infinite queue capacity, that is, every arriving

customer is allowed to wait until service can be provided. Define the following

random variables:

Lq(t) = the number of customers in the queue at time t

(excluding those in service),

L(t) = the number of customers in the system at time t

(including those in service),
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Dn = the amount of time spent by the nth customer in the queue

(excluding service time),

Un = the amount of time spent by the nth customer in the system

(including service time).

Let us assume that each of the stochastic processes {Lq(t)}, {L(t)}, {Dn} and {Un}
is regenerative and has a cycle length with a finite expectation. Then there are

constants Lq , L, Wq and W such that the following limits exist and are equal to

the respective constants with probability 1:

lim
t→∞

1

t

∫ t

0
Lq(u) du = Lq (the long-run average number in queue),

lim
t→∞

1

t

∫ t

0
L(u) du = L (the long-run average number in system),

lim
n→∞

1

n

n
∑

k=1

Dk = Wq (the long-run average delay in queue per customer),

lim
n→∞

1

n

n
∑

k=1

Uk = W (the long-run average sojourn time per customer).

Now define the random variable

A(t) = the number of customers arrived by time t,

It is also assumed that, for some constant λ,

lim
t→∞

A(t)

t
= λ with probability 1.

The constant λ gives the long-run average arrival rate of customers. The limit

λ exists when customers arrive according to a renewal process (or batches of

customers arrive according to a renewal process with independent and identically

distributed batch sizes).

The existence of the above limits is sufficient to prove the basic relations

Lq = λWq (2.3.1)

and
L = λW (2.3.2)

These basic relations are the most familiar form of the formula of Little. The reader

is referred to Stidham (1974) and Wolff (1989) for a rigorous proof of the formula

of Little. Here we will be content to demonstrate the plausibility of this result. The
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formula of Little is easiest understood (and reconstructed) when imagining that each

customer pays money to the system manager according to some non-discrimination

rule. Then it is intuitively obvious that

the long-run average reward per time unit earned by the system

= (the long-run average arrival rate of paying customers) (2.3.3)

× (the long-run average amount received per paying customer).

In regenerative queueing processes this relation can often be directly proved by

using the renewal-reward theorem; see Exercise 2.26. Taking the ‘money principle’

(2.3.3) as starting point, it is easy to reproduce various representations of Little’s

law. To obtain (2.3.1), imagine that each customer pays $1 per time unit while

waiting in queue. Then the long-run average amount received per customer equals

the long-run average time in queue per customer (= Wq ). On the other hand, the

system manager receives $j for each time unit that there are j customers waiting

in queue. Hence the long-run average reward earned per time unit by the system

manager equals the long-run average number of customers waiting in queue (= Lq).

The average arrival rate of paying customers is obviously given by λ. Applying the

relation (2.3.3) gives next the formula (2.3.1). The formula (2.3.2) can be seen by

a very similar reasoning: imagine that each customer pays $1 per time unit while

in the system. Another interesting relation arises by imagining that each customer

pays $1 per time unit while in service. Denoting by E(S) the long-run average

service time per customer, it follows that

the long-run average number of customers in service = λE(S). (2.3.4)

If each customer requires only one server and each server can handle only one

customer at a time, this relation leads to

the long-run average number of busy servers = λE(S). (2.3.5)

Finite-capacity queues

Assume now there is a maximum on the number of customers allowed in the

system. In other words, there are only a finite number of waiting places and each

arriving customer finding all waiting places occupied is turned away. It is assumed

that a rejected customer has no further influence on the system. Let the rejection

probability Prej be defined by

Prej = the long-run fraction of customers who are turned away,

assuming that this long-run fraction is well defined. The random variables L(t),

Lq(t), Dn and Un are defined as before, except that Dn and Un now refer to the

queueing time and sojourn time of the nth accepted customer. The constants Wq

and W now represent the long-run average queueing time per accepted customer
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and the long-run average sojourn time per accepted customer. The formulas (2.3.1),

(2.3.2) and (2.3.4) need only slight modification:

Lq = λ(1 − Prej )Wq and L = λ(1 − Prej )W, (2.3.6)

the long-run average number of customers in service

= λ(1 − Prej )E(S). (2.3.7)

Heuristically, these formulas follow by applying the money principle (2.3.3) and

taking only the accepted customers as paying customers.

2.4 POISSON ARRIVALS SEE TIME AVERAGES

In the analysis of queueing (and other) problems, one sometimes needs the long-

run fraction of time the system is in a given state and sometimes needs the long-

run fraction of arrivals who find the system in a given state. These averages can

often be related to each other, but in general they are not equal to each other. To

illustrate that the two averages are in general not equal to each other, suppose that

customers arrive at a service facility according to a deterministic process in which

the interarrival times are 1 minute. If the service of each customer is uniformly

distributed between 1
4 minute and 3

4 minute, then the long-run fraction of time the

system is empty equals 1
2 , whereas the long-run fraction of arrivals finding the

system empty equals 1. However the two averages would have been the same if

the arrival process of customers had been a Poisson process. As a prelude to the

generally valid property that Poisson arrivals see time averages, we first analyse

two specific problems by the renewal-reward theorem.

Example 2.4.1 A manufacturing problem

Suppose that jobs arrive at a workstation according to a Poisson process with rate

λ. The workstation has no buffer to store temporarily arriving jobs. An arriving job

is accepted only when the workstation is idle, and is lost otherwise. The processing

times of the jobs are independent random variables having a common probability

distribution with finite mean β. What is the long-run fraction of time the workstation

is busy and what is the long-run fraction of jobs that are lost?

These two questions are easily answered by using the renewal-reward theorem.

Let us define the following random variables. For any t ≥ 0, let

I (t) =

{

1 if the workstation is busy at time t,

0 otherwise.

Also, for any n = 1, 2, . . . , let

In =

{

1 if the workstation is busy just prior to the nth arrival,

0 otherwise.
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The continuous-time process {I (t)} and the discrete-time process {In} are both

regenerative. The arrival epochs occurring when the workstation is idle are regen-

eration epochs for the two processes. Why? Let us say that a cycle starts each

time an arriving job finds the workstation idle. The long-run fraction of time the

workstation is busy is equal to the expected amount of time the workstation is

busy during one cycle divided by the expected length of one cycle. The expected

length of the busy period in one cycle equals β. Since the Poisson arrival process

is memoryless, the expected length of the idle period during one cycle equals the

mean interarrival time 1/λ. Hence, with probability 1,

the long-run fraction of time the workstation is busy

=
β

β + 1/λ
. (2.4.1)

The long-run fraction of jobs that are lost equals the expected number of jobs lost

during one cycle divided by the expected number of jobs arriving during one cycle.

Since the arrival process is a Poisson process, the expected number of (lost) arrivals

during the busy period in one cycle equals λ × E(processing time of a job) = λβ.

Hence, with probability 1,

the long-run fraction of jobs that are lost

=
λβ

1 + λβ
. (2.4.2)

Thus, we obtain from (2.4.1) and (2.4.2) the remarkable result

the long-run fraction of arrivals finding the workstation busy

= the long-run fraction of time the workstation is busy. (2.4.3)

Incidentally, it is interesting to note that in this loss system the long-run fraction

of lost jobs is insensitive to the form of the distribution function of the processing

time but needs only the first moment of this distribution. This simple loss system

is a special case of Erlang’s loss model to be discussed in Chapter 5.

Example 2.4.2 An inventory model

Consider a single-product inventory system in which customers asking for the

product arrive according to a Poisson process with rate λ. Each customer asks

for one unit of the product. Each demand which cannot be satisfied directly from

stock on hand is lost. Opportunities to replenish the inventory occur according to

a Poisson process with rate µ. This process is assumed to be independent of the

demand process. For technical reasons a replenishment can only be made when

the inventory is zero. The inventory on hand is raised to the level Q each time a

replenishment is done. What is the long-run fraction of time the system is out of

stock? What is the long-run fraction of demand that is lost?
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In the same way as in Example 2.4.1, we define the random variables

I (t) =

{

1 if the system is out of stock at time t,

0 otherwise.

and

In =

{

1 if the system is out of stock when the nth demand occurs,

0 otherwise.

The continuous-time process {I (t)} and the discrete-time process {In} are both

regenerative. The regeneration epochs are the demand epochs at which the stock

on hand drops to zero. Why? Let us say that a cycle starts each time the stock on

hand drops to zero. The system is out of stock during the time elapsed from the

beginning of a cycle until the next inventory replenishment. This amount of time

is exponentially distributed with mean 1/µ. The expected amount of time it takes

to go from stock level Q to 0 equals Q/λ. Hence, with probability 1,

the long-run fraction of time the system is out of stock

=
1/µ

1/µ + Q/λ
. (2.4.4)

To find the fraction of demand that is lost, note that the expected amount of demand

lost in one cycle equals λ × E(amount of time the system is out of stock during

one cycle) = λ/µ. Hence, with probability 1,

the long-run fraction of demand that is lost

=
λ/µ

λ/µ + Q
. (2.4.5)

Together (2.4.4) and (2.4.5) lead to this remarkable result:

the long-run fraction of customers finding the system out of stock

= the long-run fraction of time the system is out of stock. (2.4.6)

The relations (2.4.3) and (2.4.6) are particular instances of the property ‘Poisson

arrivals see time averages’. Roughly stated, this property expresses that in statistical

equilibrium the distribution of the state of the system just prior to an arrival epoch

is the same as the distribution of the state of the system at an arbitrary epoch

when arrivals occur according to a Poisson process. An intuitive explanation of

the property ‘Poisson arrivals see time averages’ is that Poisson arrivals occur

completely randomly in time; cf. Theorem 1.1.5.

Next we discuss the property of ‘Poisson arrivals see time averages’ in a broader

context. For ease of presentation we use the terminology of Poisson arrivals. How-

ever, the results below also apply to Poisson processes in other contexts. For some
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specific problem let the continuous-time stochastic process {X(t), t ≥ 0} describe

the evolution of the state of a system and let {N(t), t ≥ 0} be a renewal process

describing arrivals to that system. As examples:

(a) X(t) is the number of customers present at time t in a queueing system.

(b) X(t) describes jointly the inventory level and the prevailing production rate at

time t in a production/inventory problem with a variable production rate.

It is assumed that the arrival process {N(t), t ≥ 0} can be seen as an exogenous

factor to the system and is not affected by the system itself. More precisely, the

following assumption is made.

Lack of anticipation assumption For each u ≥ 0 the future arrivals occurring

after time u are independent of the history of the process {X(t)} up to time u.

It is not necessary to specify how the arrival process {N(t)} precisely interacts

with the state process {X(t)}. Denoting by τn the nth arrival epoch, let the random

variable Xn be defined by X(τ−
n ). In other words,

Xn = the state of the system just prior to the nth arrival epoch.

Let B be any set of states for the {X(t)} process. For each t ≥ 0, define the

indicator variable

IB(t) =

{

1 if X(t) ∈ B,

0 otherwise.

Also, for each n = 1, 2, . . . , define the indicator variable In(B) by

In(B) =

{

1 if Xn ∈ B,

0 otherwise.

The technical assumption is made that the sample paths of the continuous-time

process {IB(t), t ≥ 0} are right-continuous and have left-hand limits. In practical

situations this assumption is always satisfied.

Theorem 2.4.1 (Poisson arrivals see time averages) Suppose that the arrival

process {N(t)} is a Poisson process with rate λ. Then:

(a) For any t > 0,

E[number of arrivals in (0, t) finding the system in the set B]

= λE

[∫ t

0
IB(u) du

]

.
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(b) With probability 1, the long-run fraction of arrivals who find the system in the

set B of states equals the long-run fraction of time the system is in the set B of

states. That is, with probability 1,

lim
n→∞

1

n

n
∑

k=1

Ik(B) = lim
t→∞

1

t

∫ t

0

IB(u) du.

Proof See Wolff (1982).

It is remarkable in Theorem 2.4.1 that E[number of arrivals in (0, t) finding the

system in the set B] is equal to λ × E[amount of time in (0, t) that the system is

in the set B], although there is dependency between the arrivals in (0, t) and the

evolution of the state of the system during (0, t). This result is characteristic for

the Poisson process.

The property ‘Poisson arrivals see time averages’ is usually abbreviated as

PASTA. Theorem 2.4.1 has a useful corollary when it is assumed that the continu-

ous-time process {X(t)} is a regenerative process whose cycle length has a finite

positive mean. Define the random variables TB and NB by

TB = amount of time the process {X(t)} is in the set B of states

during one cycle,

NB = number of arrivals during one cycle who find the process {X(t)}
in the set of B states.

The following corollary will be very useful in the algorithmic analysis of queueing

systems in Chapter 9.

Corollary 2.4.2 If the arrival process {N(t)} is a Poisson process with rate λ, then

E(NB) = λE(TB).

Proof Denote by the random variables T and N the length of one cycle and the

number of arrivals during one cycle. Then, by Theorem 2.2.3,

lim
t→∞

1

t

∫ t

0
IB(u) du =

E(TB)

E(T )
with probability 1

and

lim
n→∞

1

n

n
∑

k=1

Ik(B) =
E(NB)

E(N)
with probability 1.

It now follows from part (b) of Theorem 2.4.1 that E(NB)/E(N) = E(TB)/E(T ).

Thus the corollary follows if we can verify that E(N)/E(T ) = λ. To do so, note

that the regeneration epochs for the process {X(t)} are also regeneration epochs

for the Poisson arrival process. Thus, by the renewal-reward theorem, the long-

run average number of arrivals per time unit equals E(N)/E(T ), showing that

E(N)/E(T ) = λ.
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To conclude this section, we use the PASTA property to derive in a heuristic

way one of the most famous formulas from queueing theory.

2.5 THE POLLACZEK–KHINTCHINE FORMULA

Suppose customers arrive at a service facility according to a Poisson process with

rate λ. The service times of the customers are independent random variables having

a common probability distribution with finite first two moments E(S) and E(S2).

There is a single server and ample waiting room for arriving customers finding the

server busy. Each customer waits until service is provided. The server can handle

only one customer at a time. This particular queueing model is abbreviated as the

M/G/1 queue; see Kendall’s notation in Section 9.1. The offered load ρ is defined

by

ρ = λE(S)

and it is assumed that ρ < 1. By Little’s formula (2.3.5) the load factor ρ can be

interpreted as the long-run fraction of time the server is busy. Important perfor-

mance measures are

Lq = the long-run average number of customers waiting in queue,

Wq = the long-run average time spent per customer in queue.

The Pollaczek–Khintchine formula states that

Wq =
λE(S2)

2(1 − ρ)
. (2.5.1)

This formula also implies an explicit expression for Lq by Little’s formula

Lq = λWq ; (2.5.2)

see Section 2.3. The Pollaczek–Khintchine formula gives not only an explicit

expression for Wq , but more importantly it gives useful qualitative insights as

well. It shows that the average delay per customer in the M/G/1 queue uses

the service-time distribution only through its first two moments. Denoting by

c2
S = σ 2(S)/E2(S) the squared coefficient of variation of the service time and

using the relation (2.1.10), we can write the Pollaczek–Khintchine formula in the

more insightful form

Wq =
1

2
(1 + c2

S)
ρE(S)

1 − ρ
. (2.5.3)

Hence the Pollaczek–Khintchine formula shows that the average delay per cus-

tomer decreases according to the factor 1
2 (1 + c2

S) when the variability in the

service is reduced while the average arrival rate and the mean service time are kept
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fixed. Noting that c2
S = 1 for exponentially distributed service times, the expression

(2.5.3) can also be written as

Wq =
1

2
(1 + c2

S)Wq(exp), (2.5.4)

where Wq(exp) = ρE(S)/(1 − ρ) denotes the average delay per customer for the

case of exponential services. In particular, writing Wq = Wq(det) for deterministic

services (c2
S = 0), we have

Wq(det) =
1

2
Wq(exp). (2.5.5)

It will be seen in Chapter 9 that the structural form (2.5.4) is very useful to design

approximations in more complex queueing models.

Another important feature shown by the Pollaczek–Khintchine formula is that

the average delay and average queue size increase in a non-linear way when the

offered load ρ increases. A twice as large value for the offered load does not imply

a twice as large value for the average delay! On the contrary, the average delay

and the average queue size explode when the average arrival rate becomes very

close to the average service rate. Differentiation of Wq as a function of ρ shows

that the slope of increase of Wq as a function of ρ is proportional to (1 − ρ)−2.

As an illustration a small increase in the average arrival rate when the load ρ =
0.9 causes an increase in the average delay 25 times greater than it would cause

when the load ρ = 0.5. This non-intuitive finding demonstrates the danger of

designing a stochastic system with too high a utilization level, since then a small

increase in the offered load will in general cause a dramatic degradation in system

performance.

We have not yet proved the Pollaczek–Khintchine formula. First we give a

heuristic derivation and next we give a rigorous proof.

Heuristic derivation

Tag a customer who arrives when the system has reached statistical equilibrium.

Denote its waiting time in queue by the random variable Dtag . Heuristically,

E(Dtag ) = Wq . By the PASTA property, the expected number of customers in

queue seen upon arrival by the tagged customer equals Lq . Noting that ρ is the

long-run fraction of time the server is busy, it also follows that the tagged customer

finds the server busy upon arrival with probability ρ. Using the result (2.1.8) for

the excess variable, it is plausible that the expected remaining service time of the

customer seen in service by a Poisson arrival equals 1
2E(S2)/E(S). Putting the

pieces together, we find the relation

E(Dtag ) = LqE(S) + ρ
E(S2)

2E(S)
.
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Substituting E(Dtag ) = Wq and Lq = λWq , the relation becomes

Wq = λE(S)Wq +
ρE(S2)

2E(S)

yielding the Pollaczek–Khintchine formula for Wq .

Rigorous derivation

A rigorous derivation of the Pollaczek–Khintchine formula can be given by using

the powerful generating-function approach. Define first the random variables

L(t) = the number of customers present at time t,

Qn = the number of customers present just after the nth service

completion epoch,

Ln = the number of customers present just before the nth arrival epoch.

The processes {L(t)}, {Qn} and {Ln} are regenerative stochastic processes with

finite expected cycle lengths. Denote the corresponding limiting distributions by

pj = lim
t→∞

P {L(t) = j}, qj = lim
n→∞

P {Qn = j} and πj = lim
n→∞

P {Ln = j}

for j = 0, 1, . . . . The existence of the limiting distributions can be deduced from

Theorem 2.2.4 (the amount of time elapsed between two arrivals that find the sys-

tem empty has a probability density and the number of customers served during

this time has an aperiodic distribution). We omit the details. The limiting probabil-

ities can also be interpreted as long-run averages. For example, qj is the long-run

fraction of customers leaving j other customers behind upon service completion

and πj is the long-run fraction of customers finding j other customers present upon

arrival. The following important identity holds:

πj = pj = qj, j = 0, 1, . . . . (2.5.6)

Since the arrival process is a Poisson process, the equality πj = pj is readily veri-

fied from Theorem 2.4.1. To verify the equality πj = qj , define the random variable

L
(j)
n as the number of customers over the first n arrivals who see j other customers

present upon arrival and define the random variable Q
(j)
n as the number of service

completion epochs over the first n service completions at which j customers are

left behind. Customers arrive singly and are served singly. Thus between any two

arrivals that find j other customers present there must be a service completion

at which j customers are left behind and, conversely, between any two service

completions at which j customers are left behind there must be an arrival that sees

j other customers present. By this up- and downcrossing argument, we have for
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each j that

∣

∣

∣
L

(j)
n − Q

(j)
n

∣

∣

∣
≤ 1, n = 1, 2, . . . .

Consequently, πj = limn→∞ L
(j)
n /n = limn→∞ Q

(j)
n /n = qj for all j . We are now

ready to prove that

lim
n→∞

E(zQn) =
(1 − z)q0A(z)

A(z) − z
, (2.5.7)

where

A(z) =
∫ ∞

0
e−λt (1−z)b(t) dt

with b(t) denoting the probability density of the service time of a customer. Before

proving this result, we note that the unknown q0 is determined by the fact that

the left-hand side of (2.5.7) equals 1 for z = 1. By applying L’Hospital’s rule, we

find q0 = 1 − ρ, in agreement with Little’s formula 1 − p0 = ρ. By the bounded

convergence theorem in Appendix A,

lim
n→∞

E(zQn) = lim
n→∞

∞
∑

j=0

P {Qn = j}zj =
∞
∑

j=0

qj z
j , |z| ≤ 1.

Hence, by (2.5.6) and (2.5.7),

∞
∑

j=0

pj z
j =

(1 − ρ)(1 − z)A(z)

A(z) − z
. (2.5.8)

Since the long-run average queue size Lq is given by

Lq =
∞
∑

j=1

(j − 1)pj =
∞
∑

j=0

jpj − (1 − p0)

(see Exercise 2.28), the Pollaczek–Khintchine formula for Lq follows by differen-

tiating the right-hand side of (2.5.8) and taking z = 1 in the derivative. It remains

to prove (2.5.7). To do so, note that

Qn = Qn−1 − δ(Qn−1) + An, n = 1, 2, . . . ,

where δ(x) = 1 for x > 0, δ(x) = 0 for x = 0 and An is the number of customers

arriving during the nth service time. By the law of total probability,

P {An = k} =
∫ ∞

0
e−λt (λt)k

k!
b(t) dt, k = 0, 1, . . .
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and so
∞
∑

k=0

P {An = k}zk =
∫ ∞

0
e−λt (1−z)b(t) dt.

Since the random variables Qn−1 −δ(Qn−1) and An are independent of each other,

E(zQn) = E(zQn−1−δ(Qn−1))E(zAn). (2.5.9)

We have

E(zQn−1−δ(Qn−1)) = P {Qn−1 = 0} +
∞
∑

j=1

zj−1P {Qn−1 = j}

= P {Qn−1 = 0} +
1

z
[E(zQn−1) − P {Qn−1 = 0}].

Substituting this in (2.5.9), we find

zE(zQn) =
[

E(zQn−1) − (1 − z)P {Qn−1 = 0}
]

A(z).

Letting n → ∞, we next obtain the desired result (2.5.7). This completes the proof.

Before concluding this section, we give an amusing application of the Pol-

laczek–Khintchine formula.

Example 2.5.1 Ladies in waiting∗

Everybody knows women spend on average more time in the loo than men. As

worldwide studies show, women typically take 89 seconds to use the loo—about

twice as long as the 39 seconds required by the average man. However, this does

not mean that the queue for the women’s loo is twice as long as the queue for

the men’s. The sequence for the women’s loo is usually far longer. To explain

this using the Pollaczek–Khintchine formula, let us make the following reasonable

assumptions:

1. Men and women arrive at the loo according to independent Poisson processes

with the same rates.

2. The expected amount of time people spend in the loo is twice as large for

women as for men.

3. The coefficient of variation of the time people spend in the loo is larger for

women than for men.

4. There is one loo for women only and one loo for men only.

∗This application is based on the article ‘Ladies Waiting’ by Robert Matthews in New Scientist, Vol. 167,
Issue 2249, 29 July 2000.
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Let λw and λm denote the average arrival rates of women and men. Let µw and

cw denote the mean and the coefficient of variation of the amount of time a woman

spends in the loo. Similarly, µm and cm are defined for men. It is assumed that

λwµw < 1. Using the assumptions λw = λm, µw = 2µm and cw ≥ cm, it follows

from (2.5.2) and the Pollaczek–Khintchine formula (2.5.3) that

the average queue size for the women’s loo

=
1

2
(1 + c2

w)
(λwµw)2

1 − λwµw

≥
1

2
(1 + c2

m)
(2λmµm)2

1 − 2λmµm

≥ 4 ×
1

2
(1 + c2

m)
(λmµm)2

1 − λmµm

.

Hence

the average queue size for the women’s loo

≥ 4 × (the average queue size for the men’s loo).

The above derivation uses the estimate 1 − 2λmµm ≤ 1 −λmµm and thus shows

that the relative difference actually increases much faster than a factor 4 when the

utilization factor λwµw becomes closer to 1.

Laplace transform of the waiting-time probabilities∗

The generating-function method enabled us to prove the Pollaczek–Khintchine

formula for the average queue size. Using Little’s formula we next found the

Pollaczek–Khintchine formula for the average delay in queue of a customer. The

latter formula can also be directly obtained from the Laplace transform of the

waiting-time distribution. This Laplace transform is also of great importance in

itself. The waiting-time probabilities can be calculated by numerical inversion of

the Laplace transform; see Appendix F. A simple derivation can be given for the

Laplace transform of the waiting-time distribution in the M/G/1 queue when

service is in order of arrival. The derivation parallels the derivation of the generating

function of the number of customers in the system.

Denote by Dn the delay in queue of the nth arriving customer and let the random

variables Sn and τn denote the service time of the nth customer and the time elapsed

between the arrivals of the nth customer and the (n+1)th customer. Since Dn+1 = 0

if Dn + Sn < τn and Dn+1 = Dn + Sn − τn otherwise, we have

Dn+1 = (Dn + Sn − τn)
+, n = 1, 2, . . . , (2.5.10)

where x+ is the usual notation for x = max(x, 0). From the recurrence formula

(2.5.10), we can derive that for all s with Re(s) ≥ 0 and n = 1, 2, . . .

(λ − s)E
(

e−sDn+1

)

= λE
(

e−sDn

)

b∗(s) − sP {Dn+1 = 0}, (2.5.11)

∗This section can be skipped at first reading.
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where b∗(s) =
∫∞

0 e−sxb(x) dx denotes the Laplace transform of the probabil-

ity density b(x) of the service time. To prove this, note that Dn, Sn and τn are

independent of each other. This implies that, for any x > 0,

E
[

e−s(Dn+Sn−τn)+ | Dn + Sn = x
]

=
∫ x

0
e−s(x−y)λe−λy dy +

∫ ∞

x

e−s×0λe−λy dy

=
λ

λ − s
(e−sx − e−λx) + e−λx =

1

λ − s
(λe−sx − se−λx)

for s 
= λ (using L’Hospital’s rule it can be seen that this relation also holds for

s = λ). Hence, using (2.5.10),

(λ − s)E
(

e−sDn+1

)

= λE
[

e−s(Dn+Sn)
]

− sE
[

e−λ(Dn+Sn)
]

.

Since P {(Dn + Sn − τn)
+ = 0 | Dn + Sn = x} = e−λx , we also have

P {Dn+1 = 0} = E
[

e−λ(Dn+Sn)
]

.

The latter two relations and E
[

e−s(Dn+Sn)
]

= E
(

e−sDn
)

E
(

e−sSn
)

lead to (2.5.11).

The steady-state waiting-time distribution function Wq(x) is defined by

Wq(x) = lim
n→∞

P {Dn ≤ x}, x ≥ 0.

The existence of this limit can be proved from Theorem 2.2.4. Let the random vari-

able D∞ have Wq(x) as probability distribution function. Then, by the bounded con-

vergence theorem in Appendix A, E(e−sD∞) = limn→∞E(e−sDn). Using (2.5.6), it

follows from limn→∞P {Dn+1 = 0} = π0 and q0 = 1 − ρ that limn→∞P {Dn+1 =
0} = 1 − ρ. Letting n → ∞ in (2.5.11), we find that

E
(

e−sD∞
)

=
(1 − ρ)s

s − λ + λb∗(s)
. (2.5.12)

Noting that P {D∞ ≤ x} = Wq(x) and using relation (E.7) in Appendix E, we get

from (2.5.12) the desired result:

∫ ∞

0
e−sx

{

1 − Wq(x)
}

dx =
ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
. (2.5.13)

Taking the derivative of the right-hand side of (2.5.13) and putting s = 0, we obtain

∫ ∞

0

{

1 − Wq(x)
}

dx =
λE(S2)

2(1 − ρ)
,

in agreement with the Pollaczek–Khintchine formula (2.5.1).
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Remark 2.5.1 Relation between queue size and waiting time

Let the random variable L
(∞)
q be distributed according to the limiting distribution of

the number of customers in queue at an arbitrary point in time. That is, P {L(∞)
q =

j} = pj+1 for j ≥ 1 and P {L(∞)
q = 0} = p0 + p1. Then the generating function

of L
(∞)
q and the Laplace transform of the delay distribution are related to each

other by

E(zL
(∞)
q ) = E[e−λ(1−z)D∞ ], |z| ≤ 1. (2.5.14)

A direct probabilistic proof of this important relation can be given. Denote by

Ln the number of customers left behind in queue when the nth customer enters

service. Since service is in order of arrival, Ln is given by the number of customers

arriving during the delay Dn of the nth customer. Since the generating function of

a Poisson distributed variable with mean δ is exp (−δ (1 − z)), it follows that for

any x ≥ 0 and n ≥ 1,

E(zLn |Dn = x) = e−λx(1−z).

Hence
E(zLn) = E[e−λ(1−z)Dn ], n ≥ 1. (2.5.15)

The limiting distribution of Ln as n → ∞ is the same as the probability distribu-

tion of L
(∞)
q . This follows from an up- and downcrossing argument: the long-run

fraction of customers leaving j other customers behind in queue when entering ser-

vice equals the long-run fraction of customers finding j other customers in queue

upon arrival. Noting that there is a single server and using the PASTA property, it

follows that the latter fraction equals pj+1 for j ≥ 1 and p0 + p1 for j = 0. This

proves that the limiting distribution of Ln equals the distribution of L
(∞)
q . Note

that, by Theorem 2.2.4, Ln has a limiting distribution as n → ∞. Letting n → ∞
in (2.5.15), the result (2.5.14) follows.

Letting wq (x) denote the derivative of the waiting-time distribution function

Wq (x) for x > 0, note that for the M/G/1 queue the relation (2.5.14) can be

restated as

pj+1 =
∫ ∞

0
e−λx (λx)j

j !
wq (x) dx, j = 1, 2, . . . .

The relation (2.5.14) applies to many other queueing systems with Poisson arrivals.

The importance of (2.5.14) is that this relation enables us to directly obtain the

Laplace transform of the waiting-time distribution function from the generating

function of the queue size. To illustrate this, note that E(zL
(∞)
q ) = p0+ 1

z
[P (z)−p0]

for the M/G/1 queue, where P (z) =
∑∞

j=0 pjz
j is given by (2.5.8). Using this

relation together with (2.5.8) and noting that A (z) = b∗ (λ (1 − z)), it follows from

the basic relation (2.5.14) that E(e−sD∞) is indeed given by (2.5.12).
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2.6 A CONTROLLED QUEUE WITH REMOVABLE SERVER∗

Consider a production facility at which production orders arrive according to a

Poisson process with rate λ. The production times τ1, τ2, . . . of the orders are

independent random variables having a common probability distribution function

F with finite first two moments. Also, the production process is independent of the

arrival process. The facility can only work on one order at a time. It is assumed

that E(τ1) < 1/λ; that is, the average production time per order is less than

the mean interarrival time between two consecutive orders. The facility operates

only intermittently and is shut down when no orders are present any more. A

fixed set-up cost of K > 0 is incurred each time the facility is reopened. Also a

holding cost h > 0 per time unit is incurred for each order waiting in queue. The

facility is only turned on when enough orders have accumulated. The so-called

N -policy reactivates the facility as soon as N orders are present. For ease we

assume that it takes a zero set-up time to restart production. How do we choose

the value of the control parameter N such that the long-run average cost per time

unit is minimal?

To analyse this problem, we first observe that for a given N -policy the stochastic

process describing jointly the number of orders present and the status of the facility

(on or off) regenerates itself each time the facility is turned on. Define a cycle as

the time elapsed between two consecutive reactivations of the facility. Clearly,

each cycle consists of a busy period B with production and an idle period I with

no production. We deal separately with the idle and the busy periods. Using the

memoryless property of the Poisson process, the length of the idle period is the

sum of N exponential random variables each having mean 1/λ. Hence

E(length of the idle period I ) =
N

λ
.

Similarly,

E(holding cost incurred during I ) = h

(

N − 1

λ
+ · · · +

1

λ

)

.

To deal with the busy period, we define for n = 1, 2, . . . the quantities

tn = the expected time until the facility becomes empty given that

at epoch 0 a production starts with n orders present,

and

hn = the expected holding costs incurred until the facility becomes empty

given that at epoch 0 a production starts with n orders present.

These quantities are independent of the control rule considered. In particular, the

expected length of a busy period equals tN and the expected holding costs incurred

∗This section contains specialized material and can be skipped at first reading.
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during a busy period equals hN . By the renewal-reward theorem,

the long-run average cost per time unit =
(h/2λ)N(N − 1) + K + hN

N/λ + tN

with probability 1. To find the functions tn and hn, we need

aj = the probability that j orders arrive during the production time of

a single order.

Assume for ease that the production time has a probability density f (x). By con-

ditioning on the production time and noting that the number of orders arriving in

a fixed time y is Poisson distributed with mean λy, it follows that

aj =
∫ ∞

0
e−λy (λy)j

j !
f (y) dy, j = 0, 1, . . . .

It is readily verified that

∞
∑

j=1

jaj = λE(τ1) and

∞
∑

j=1

j2aj = λ2E(τ 2
1 ) + λE(τ1). (2.6.1)

We now derive recursion relations for the quantities tn and hn. Suppose that at

epoch 0 a production starts with n orders present. If the number of new orders

arriving during the production time of the first order is j , then the time to empty

the system equals the first production time plus the time to empty the system

starting with n − 1 + j orders present. Thus

tn = E(τ1) +
∞
∑

j=0

tn−1+jaj , n = 1, 2, . . . ,

where t0 = 0. Similarly, we derive a recursion relation for the hn. To do so, note

that relation (1.1.10) implies that the expected holding cost for new orders arriving

during the first production time τ1 equals 1
2hλE(τ 2

1 ). Hence

hn = (n − 1)hE(τ1) +
1

2
hλE(τ 2

1 ) +
∞
∑

j=0

hn−1+jaj , n = 1, 2, . . . ,

where h0 = 0. In a moment it will be shown that tn is linear in n and hn is

quadratic in n. Substituting these functional forms in the above recursion relations

and using (2.6.1), we find after some algebra that for n = 1, 2, . . . ,

tn =
nE(τ1)

1 − λE(τ1)
, (2.6.2)
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hn =
h

1 − λE(τ1)

[

1

2
n(n − 1)E(τ1) +

λnE(τ 2
1 )

2{1 − λE(τ1)}

]

. (2.6.3)

To verify that tn is linear in n and hn is quadratic in n, a brilliant idea due to

Takács (1962) is used. First observe that tn and hn do not depend on the specific

order in which the production orders are coped with during the production process.

Imagine now the following production discipline. The n initial orders O1, . . . , On

are separated. Order O1 is produced first, after which all orders (if any) are produced

that have arrived during the production time of O1, and this way of production is

continued until the facility is free of all orders but O2, . . . , On. Next this procedure

is repeated with order O2, etc. Thus we find that tn = nt1, proving that tn is linear

in n. The memoryless property of the Poisson process is crucial in this argument.

Why? The same separation argument is used to prove that hn is quadratic in n.

Since h1 + (n − k) × ht1 gives the expected holding cost incurred during the time

to free the system of order Ok and its direct descendants until only the orders

Ok+1, . . . , On are left, it follows that

hn =
n
∑

k=1

{h1 + (n − k)ht1} = nh1 +
1

2
hn(n − 1)t1.

Combining the above results we find for the N -policy that

the long-run average cost per time unit (2.6.4)

=
λ(1 − ρ)K

N
+ h

{

λ2E(τ 2
1 )

2(1 − ρ)
+

N − 1

2

}

,

where ρ = λE(τ1). It is worth noting here that this expression needs only the first

two moments from the production time. Also note that, by putting K = 0 and

h = 1 in (2.6.4),

the long-run average number of orders waiting in queue

=
λ2E(τ 2

1 )

2(1 − ρ)
+

N − 1

2
.

For the special case of N = 1 this formula reduces to the famous Pol-

laczek–Khintchine formula for the average queue length in the standard M/G/1

queue; see Section 2.5.

The optimal value of N can be obtained by differentiating the right-hand side

of (2.6.4), in which we take N as a continuous variable. Since the average cost is

convex in N , it follows that the average cost is minimal for one of the two integers

nearest to

N∗ =
√

2λ(1 − ρ)K

h
.
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2.7 AN UP- AND DOWNCROSSING TECHNIQUE

In this section we discuss a generally applicable up- and downcrossing technique

that, in conjunction with the PASTA property, can be used to establish relations

between customer-average and time-average probabilities in queueing systems. To

illustrate this, we consider the so-called GI/M/1 queue. In this single-server sys-

tem, customers arrive according to a renewal process and the service times of the

customers have a common exponential distribution. The single server can handle

only one customer at a time and there is ample waiting room for customers who

find the server busy upon arrival. The service times of the customers are indepen-

dent of each other and are also independent of the arrival process. Denoting by λ

the average arrival rate (1/λ = the mean interarrival time) and by β the service

rate (1/β = the mean service time), it is assumed that λ < β.

The continuous-time stochastic process {X(t), t ≥ 0} and the discrete-time

stochastic process {Xn, n = 1, 2, . . . } are defined by

X(t) = the number of customers present at time t,

and

Xn = the number of customers present just prior to the nth arrival epoch.

The stochastic processes {X(t)} and {Xn} are both regenerative. The regeneration

epochs are the epochs at which an arriving customer finds the system empty. It

is stated without proof that the assumption of λ/β < 1 implies that the processes

have a finite mean cycle length. Thus we can define the time-average and the

customer-average probabilities pj and πj by

pj = the long-run fraction of time that j customers are present

and

πj = the long-run fraction of customers who find j other customers

present upon arrival

for j = 0, 1, . . . . Time averages are averages over time, and customer averages

are averages over customers. To be precise, pj = limt→∞(1/t)
∫ t

0 Ij (u) du and

πj = limn→∞(1/n)
∑n

k=1 Ik(j), where Ij (t) = 1 if j customers are present at

time t and Ij (t) = 0 otherwise, and In(j) = 1 if j other customers are present just

before the nth arrival epoch and In(j) = 0 otherwise. The probabilities pj and πj

are related to each other by

λπj−1 = βpj , j = 1, 2, . . . . (2.7.1)

The proof of this result is instructive and is based on three observations. Before

giving the three steps, let us say that the continuous-time process {X(t)} makes

an upcrossing from state j − 1 to state j if a customer arrives and finds j − 1
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other customers present. The process {X(t)} makes a downcrossing from state j

to state j − 1 if the service of a customer is completed and j − 1 other customers

are left behind.

Observation 1 Since customers arrive singly and are served singly, the long-run

average number of upcrossings from j − 1 to j per time unit equals the long-run

average number of downcrossings from j to j − 1 per time unit. This follows by

noting that in any finite time interval the number of upcrossings from j − 1 to j

and the number of downcrossings from j to j − 1 can differ at most by 1.

Observation 2 The long-run fraction of customers seeing j − 1 other customers

upon arrival is equal to

the long-run average number of upcrossings from j − 1 to j per time unit

the long-run average number of arrivals per time unit

for j = 1, 2, . . . . In other words, the long-run average number of upcrossings

from j − 1 to j per time unit equals λπj−1.

The latter relation for fixed j is in fact a special case of the Little relation (2.4.1)

by assuming that each customer finding j − 1 other customers present upon arrival

pays $1 (using this reward structure observation 2 can also be obtained directly

from the renewal-reward theorem). Observations 1 and 2 do not use the assumption

of exponential services and apply in fact to any regenerative queueing process in

which customers arrive singly and are served singly.

Observation 3 For exponential services, the long-run average number of down-

crossings from j to j−1 per time unit equals βpj with probability 1 for each j ≥ 1.

The proof of this result relies heavily on the PASTA property. To make this

clear, fix j and note that service completions occur according to a Poisson process

with rate β as long as the server is busy. Equivalently, we can assume that an

exogenous Poisson process generates events at a rate of β, where a Poisson event

results in a service completion only when there are j customers present. Thus, by

part (a) of Theorem 2.4.1,

βE[Ij (t)] = E[Dj (t)] for t > 0 (2.7.2)

for any j ≥ 1, where Ij (t) is defined as the amount of time that j customers are

present during (0, t] and Dj (t) is defined as the number of downcrossings from

j to j − 1 in (0, t]. Letting the constant dj denote the long-run average number

of downcrossings from j to j − 1 per time unit, we have by the renewal-reward

theorem that limt→∞ Dj (t)/t = dj with probability 1. Similarly, limt→∞Ij (t)/t =
pj with probability 1. The renewal-reward theorem also holds in the expected-value

version. Thus, for any j ≥ 1,

lim
t→∞

E[Dj (t)]

t
= dj and lim

t→∞

E[Ij (t)]

t
= pj .

Hence relation (2.7.2) gives that dj = βpj for all j ≥ 1. By observations 1 and 2

we have dj = λπj−1. This gives λπj−1 = βpj for all j ≥ 1, as was to be proved.
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In Chapter 3 the method of embedded Markov chains will be used to derive an

explicit expression for the customer-average probabilities πj .

EXERCISES

2.1 A street lamp is replaced by a new one upon failure and upon scheduled times T , 2T , . . . .
There is always a replacement at the scheduled times regardless of the age of the street
lamp in use. The lifetimes of the street lamps are independent random variables and have a
common Erlang (2, µ) distribution. What is the expected number of street lamps used in a
scheduling interval?

2.2 The municipality of Gotham City has opened a depot for temporarily storing chemical
waste. The amount of waste brought in each week has a gamma distribution with given
shape parameter α and scale parameter λ. The amounts brought in during the successive
weeks are independent of each other.

(a) What is the expected number of weeks until the total amount of waste in the depot
exceeds the critical level L?

(b) Give an asymptotic estimate for the expected value from question (a).

2.3 Limousines depart from the railway station to the airport from the early morning till
late at night. The limousines leave from the railway station with independent interdeparture
times that are uniformly distributed between 10 and 20 minutes. Suppose you plan to arrive
at the railway station at 3 o’clock in the afternoon. What are the estimates for the mean and
the standard deviation of your waiting time at the railway station until a limousine leaves
for the airport?

2.4 Consider the expression (2.1.4) for the renewal function M(t).
(a) Prove that for any k = 0, 1, . . .

∞
∑

n=k+1

Fn(t) ≤
Fk(t)F (t)

1 − F(t)

for any t with F(t) < 1. (Hint : use P {X1+· · ·+Xn ≤ t} ≤ P {X1+· · ·+Xk ≤ t}P {Xk+1 ≤
t} · · · P {Xn ≤ t}.)

(b) Conclude that M(t) < ∞ for all t ≥ 0.

2.5 Consider a renewal process with Erlang (r, λ) distributed interoccurrence times. Use the
phase method to prove:

(a) For any t > 0,

P {N(t) > k} =
∞
∑

j=(k+1)r

e−λt (λt)j

j !
, k = 0, 1, . . . .

(b) The excess variable γt is Erlang (j, λ) distributed with probability

pj (t) =
∞
∑

k=1

e−λt (λt)kr−j

(kr − j)!
, j = 1, . . . , r.

2.6 Consider a continuous-time stochastic process {X(t), t ≥ 0} that can assume only the
two states 1 and 2. If the process is currently in state i, it moves to the next state after an
exponentially distributed time with mean 1/λi for i = 1, 2. The next state is state 1 with
probability p1 and state 2 with probability p2 = 1−p1 irrespective of the past of the process.
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(a) Use the renewal-reward model to find the long-run fraction of time the process {X(t)}
is in state i for i = 1, 2. Does limt→∞P {X(t) = i} exist for i = 1, 2? If so, what is
the limit?

(b) Consider a renewal process in which the interoccurrence times have an H2 distribution

with density p1λ1e−λ1t + p2λ2e−λ2t . Argue that

lim
t→∞

P {γt > x} =
p1λ2

p1λ2 + p2λ1
e−λ1x +

p2λ1

p1λ2 + p2λ1
e−λ2x , x ≥ 0.

2.7 Consider a renewal process with Erlang (r, λ) distributed interoccurrence times. Let the
probability pj (t) be defined as in part (b) of Exercise 2.5. Use the renewal-reward model
to argue that limt→∞ pj (t) = 1/r for j = 1, . . . , r and conclude that

lim
t→∞

P {γt > x} =
1

r

r
∑

j=1

j−1
∑

k=0

e−λx (λx)k

k!
, x ≥ 0.

Generalize these results when the interoccurrence time is distributed as an Erlang (j, λ)
random variable with probability βj for j = 1, . . . , r .

2.8 Consider the Er/D/∞ queueing system with infinitely many servers. Customers arrive
according to a renewal process in which the interoccurence times have an Erlang (r ,λ)
distribution and the service time of each customer is a constant D. Each newly arriving
customer gets immediately assigned a free server. Let pn(t) denote the probability that n
servers will be busy at time t . Use an appropriate conditioning argument to verify that

lim
t→∞

p0(t) =
1

r

r
∑

j=1

j−1
∑

k=0

e−µD (µD)k

k!

lim
t→∞

pn(t) =
1

r

r
∑

j=1

r−1
∑

k=0

e−µD (µD)r−j+1+(n−1)r+k

(r − j + 1 + (n − 1)r + k)!
, n ≥ 1.

(Hint : the only customers present at time t are those customers who have arrived in
(t − D, t].)

2.9 The lifetime of a street lamp has a given probability distribution function F(x) with
probability density f (x). The street lamp is replaced by a new one upon failure or upon
reaching the critical age T , whichever occurs first. A cost of cf > 0 is incurred for each
failure replacement and a cost of cp > 0 for each preventive replacement, where cp < cf .
The lifetimes of the street lamps are independent of each other.

(a) Define a regenerative process and specify its regeneration epochs.
(b) Show that the long-run average cost per time unit under the age-replacement rule

equals g(T ) = [cp + (cf − cp)F (T )]/
∫ T

0 {1 − F(x)} dx.
(c) Verify that the optimal value of T satisfies g(T ) = (cf − cp)r(T ), where r(x) is the

failure rate function of the lifetime.

2.10 Consider the M/G/∞ queue from Section 1.1.3 again. Let the random variable L be
the length of a busy period. A busy period begins when an arrival finds the system empty
and ends when there are no longer any customers in the system. Use the result (2.2.1) to

argue that E(L) = (eλµ − 1)/λ.

2.11 Consider an electronic system having n identical components that operate independently
of each other. If a component breaks down, it goes immediately into repair. There are ample
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repair facilities. Both the running times and the repair times are sequences of independent
and identically distributed random variables. It is also assumed that these two sequences are
independent of each other. The running time has a positive density on some interval. Denote
by α the mean running time and by β the mean repair time.

(a) Prove that

lim
t→∞

P {k components are in repair at time t} =
(

n
k

)

pk(1 − p)n−k

for k = 0, 1, . . . , n, where p = β/(α + β).
(b) Argue that the limiting distribution in (a) becomes a Poisson distribution with mean

λβ when n → ∞ and 1/α → 0 such that n/α remains equal to the constant λ. Can you
explain the similarity of this result with the insensitivity result (1.1.6) for the M/G/∞
queue in Section 1.1.3?

2.12 A production process in a factory yields waste that is temporarily stored on the factory
site. The amounts of waste that are produced in the successive weeks are independent and
identically distributed random variables with finite first two moments µ1 and µ2. Opportuni-
ties to remove the waste from the factory site occur at the end of each week. The following
control rule is used. If at the end of a week the total amount of waste present is larger than
D, then all the waste present is removed; otherwise, nothing is removed. There is a fixed
cost of K > 0 for removing the waste and a variable cost of v > 0 for each unit of waste
in excess of the amount D.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.
(c) Assuming that D is sufficiently large compared to µ1, give an approximate expression

for the average cost.

2.13 At a production facility orders arrive according to a renewal process with a mean
interarrival time 1/λ. A production is started only when N orders have accumulated. The
production time is negligible. A fixed cost of K > 0 is incurred for each production set-up
and holding costs are incurred at the rate of hj when j orders are waiting to be processed.

(a) Define a regenerative stochastic process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.
(c) What value of N minimizes the long-run average cost per time unit?

2.14 Consider again Exercise 2.13. Assume now that it takes a fixed set-up time T to start a
production. Any new order that arrives during the set-up time is included in the production
run. Answer parts (a) and (b) from Exercise 2.13 for the particular case that the orders arrive
according to a Poisson process with rate λ.

2.15 How do you modify the expression for the long-run average cost per time unit in
Exercise 2.14 when it is assumed that the set-up time is a random variable with finite first
two moments?

2.16 Consider Example 1.3.1 again. Assume that a fixed cost of K > 0 is incurred for each
round trip and that a fixed amount R > 0 is earned for each passenger.

(a) Define a regenerative stochastic process and identify its regeneration epochs.
(b) Determine the long-run average net reward per time unit.
(c) Verify that the average reward is maximal for the unique value of T satisfying the

equation e−µT (RλT + Rλ/µ) = Rλ/µ − K when Rλ/µ > K .

2.17 Passengers arrive at a bus stop according to a Poisson process with rate λ. Buses
depart from the stop according to a renewal process with interdeparture time A. Using
renewal-reward processes, prove that the long-run average waiting time per passenger equals

E(A2)/2E(A). Specify the regenerative process you need to prove this result. Can you give
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a heuristic explanation of why the answer for the average waiting time is the same as the
average residual life in a renewal process?

2.18 Consider a renewal process in which the interoccurrence times have a positive density
on some interval. For any time t let the age variable δt denote the time elapsed since the
last occurrence of an event. Use the renewal-reward model to prove that limt→∞ E(δt ) =
µ2/2µ1, where µk is the kth moment of the interoccurrence times. (Hint : assume a cost at
rate x when a time x has elapsed since the last occurrence of an event.)

2.19 A common car service between cities in Israel is a sheroot. A sheroot is a seven-seat cab
that leaves from its stand as soon as it has collected seven passengers. Suppose that potential
passengers arrive at the stand according to a Poisson process with rate λ. An arriving person
who sees no cab at the stand goes elsewhere and is lost for the particular car service. Empty
cabs pass the stand according to a Poisson process with rate µ. An empty cab stops only at
the stand when there is no other cab.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run fraction of time there is no cab at the stand and determine

the long-run fraction of customers who are lost. Explain why these two fractions are equal
to each other.

2.20 Big Jim, a man of few words, runs a one-man business. This business is called upon by
loan sharks to collect overdue loans. Big Jim takes his profession seriously and accepts only
one assignment at a time. The assignments are classified by Jim into n different categories
j = 1, . . . , n. An assignment of type j takes him a random number of τj days and gives
a random profit of ξj dollars for j = 1, . . . , n. Assignments of the types 1, . . . , n arrive
according to independent Poisson processes with respective rates λ1, . . . , λn. Big Jim, once
studying at a prestigious business school, is a muscleman with brains. He has decided to
accept those type j assignments for which E(ξj )/E(τj ) is at least g∗ dollars per day for a
carefully chosen value of g∗ (in Exercise 7.4 you are asked to use Markov decision theory
to determine g∗). Suppose that Big Jim only accepts type j assignments for j = 1, . . . , n0.
An assignment can only be accepted when Big Jim is not at work on another assignment.
Assignments that are refused are handled by a colleague of Big Jim.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average pay-off per time unit for Big Jim.
(c) Determine the long-run fraction of time Big Jim is at work and the long-run fraction

of the assignments of the types 1, . . . , n0 that are not accepted. Explain why these two
fractions are equal to each other.

2.21 Consider the (S − 1, S) inventory model with back ordering from Section 1.1.3. What
is the long-run fraction of customer demand that is back ordered? What is the long-run
average amount of time a unit is kept in stock?

2.22 Consider a machine whose state deteriorates through time. The state of the machine is
inspected at fixed times t = 0, 1, . . . . In each period between two successive inspections
the machine incurs a random amount of damage. The amounts of damage accumulate. The
amounts of damage incurred in the successive periods are independent random variables
having a common exponential distribution with mean 1/α. A compulsory repair of the
machine is required when an inspection reveals a cumulative amount of damage larger than
a critical level L. A compulsory repair involves a fixed cost of Rc > 0. A preventive repair
at a lower cost of Rp > 0 is possible when an inspection reveals a cumulative amount of
damage below or at the level L. The following control limit rule is used. A repair is done
at each inspection that reveals a cumulative amount of damage larger than some repair limit
z with 0 ≤ z < L. It is assumed that each repair takes a negligible time and that after each
repair the machine is as good as new.

(a) Define a regenerative process and identify its regeneration epochs.
(b) What is the expected number of periods between two successive repairs? What is the
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probability that a repair involves the high repair cost Rc? Give the long-run average cost
per time unit.

(c) Verify that the average cost is minimal for the unique solution z to the equation
αz exp[−α(L − z)] = Rp/(Rc − Rp) when αL > Rp/(Rc − Rp).

2.23 A group of N identical machines is maintained by a single repairman. The machines
operate independently of each other and each machine has a constant failure rate µ. Repair
is done only if the number of failed machines has reached a given critical level R with
1 ≤ R ≤ N . Then all failed machines are repaired simultaneously. Any repair takes a
negligible time and a repaired machine is again as good as new. The cost of the simultaneous
repair of R machines is K + cR, where K, c > 0. Also there is an idle-time cost of α > 0
per time unit for each failed machine.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.

2.24 The following control rule is used for a slow-moving expensive product. No more than
one unit of the product is kept in stock. Each time the stock drops to zero a replenishment
order for one unit is placed. The replenishment lead time is a positive constant L. Customers
asking for the product arrive according to a renewal process in which the interarrival times
are Erlang (r, λ) distributed. Each customer asks for one unit of the product. Each demand
occurring while the system is out of stock is lost.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run fraction of demand that is lost.
(c) Determine the long-run fraction of time the system is out of stock. (Hint: use part (b)

of Exercise 2.5.)

2.25 Jobs arrive at a station according to a renewal process. The station can handle only one
job at a time, but has no buffer to store other jobs. An arriving job that finds the station busy
is lost. The handling time of a job has a given probability density h(x). Use renewal-reward
theory to verify for this loss system that the long-run fraction of jobs that are rejected is
given by

∫∞
0 M(x)h(x) dx divided by 1 +

∫∞
0 M(x)h(x) dx, where M(x) is the renewal

function in the renewal process describing the arrival of jobs. What is the long-run fraction
of time that the station is busy? Simplify the formulas for the cases of deterministic and
Poisson arrivals.

2.26 Use the renewal-reward theorem to prove relation (2.3.3) when customers arrive accord-
ing to a renewal process and the stochastic processes {L(t)} and {Un} regenerate themselves
each time an arriving customer finds the system empty, where the cycle lengths have finite
expectations. For ease assume the case of an infinite-capacity queue. Use the following
relations:

(i) the long-run average reward earned per time unit = (the expected reward earned in
one cycle)/(expected length of one cycle),

(ii) the long-run average amount paid per customer = (the expected amount earned in
one cycle)/(expected number of arrivals in one cycle),

(iii) the long-run average arrival rate = (expected number of arrivals in one cycle)/(expec-
ted length of one cycle).

2.27 Let {X(t), t ≥ 0} be a continuous-time regenerative stochastic process whose state
space is a subset of the non-negative reals. The cycle length is assumed to have a finite
expectation. Denote by P(y) the long-run fraction of time that the process {X(t)} takes on
a value larger than y. Use the renewal-reward theorem to prove that

lim
t→∞

1

t

∫ t

0
X(u) du =

∫ ∞

0
P (y) dy with probability 1.

2.28 Consider a queueing system in which the continuous-time process {L(t)} describing
the number of customers in the system is regenerative, where the cycle length has a finite
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expectation. Let pj denote the long-run fraction of time that j customers are in the system
and let L denote the long-run average number of customers in the system. Apply the result
of Exercise 2.27 to conclude that L =

∑∞
j=1 jpj .

2.29 Verify that the Pollaczek–Khintchine formula for the average waiting time in the
M/G/1 queue can also be written as

Wq = (1 − c2
S)Wq (det) + c2

SWq (exp).

This interpolation formula is very useful and goes back to Cox (1955).

2.30 A professional cleaner in the harbour of Rotterdam is faced with the decision to acquire
a new clean installation for oil tankers. Oil tankers requiring a clean arrive according to a
Poisson process with rate λ. The amount of time needed to clean a tanker has a given
probability distribution with mean α and standard deviation β when the standard Fadar
installation is used. Cleaning costs at a rate of c > 0 are incurred for each time unit this
installation is in use. However, it is also possible to buy another installation. An installation
that works z times as fast as the standard Fadar installation involves cleaning costs at a rate

of cz2 per time unit. In addition to the cleaning costs, a holding cost at rate of h > 0 is
incurred for each tanker in the harbour. What is the long-run average cost per time unit as
function of z? Assume that the cleaning installation can handle only one tanker at a time
and assume that the cleaner has ample berths for tankers.

2.31 Liquid is put into an infinite-capacity buffer at epochs generated by a Poisson process
with rate λ. The successive amounts of liquid that are put in the buffer are independent and
identically distributed random variables with finite first two moments µ1 and µ2. The buffer
is emptied at a constant rate of σ > 0 whenever it is not empty. Use the PASTA property
to give an expression for the long-run average buffer content.

2.32 Consider the M/G/1 queue with two types of customers. Customers of the types 1 and
2 arrive according to independent Poisson processes with respective rates λ1 and λ2. The
service times of the customers are independent of each other, where the service times of
type i customers are distributed as the random variable Si having finite first two moments.
Customers of type 1 have priority over customers of type 2 when the server is ready to
start a new service. It is not allowed to interrupt the service of a type 2 customer when a
higher-priority customer arrives. This queueing model is called the non-pre-emptive priority
M/G/1 queue. Letting ρi = λiE(Si), it is assumed that ρ1 + ρ2 < 1.

(a) Use Little’s formula to argue that the long-run fraction of time the server is servicing
type i customers equals ρi for i = 1, 2. What is the long-run fraction of customers finding
the server servicing a type i customer upon arrival?

(b) Extend the heuristic derivation of the Pollaczek–Khintchine formula to show

Wq1 =
λ1E(S2

1 ) + λ2E(S2
2 )

2(1 − ρ1)
and Wq2 =

λ1E(S2
1 ) + λ2E(S2

2 )

2(1 − ρ1)(1 − ρ1 − ρ2)
,

where Wqi is defined as the long-run average waiting time in queue per type i customer for
i = 1, 2.

(c) Use Little’s formula to give a direct argument for the result that the overall average
waiting time Wq1λ1/(λ1 +λ2)+Wq2λ2/(λ1 +λ2) per customer is the same as the average
waiting time per customer in the M/G/1 queue in which customers are served in order of
arrival (view the non-pre-emptive priority rule as a rule that merely changes the order in
which the customers are served).

2.33 Customers arrive at a single-server station according to a Poisson process with rate
λ. A customer finding the server idle upon arrival gets served immediately, otherwise the
customer enters a so-called orbit. A customer in orbit tries whether the server is idle after an
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exponentially distributed time with mean 1/ν. If the server is idle, the customer gets served,
otherwise the customer returns to orbit and tries again after an exponentially distributed time
until the server is found free. The customers in orbit act independently of each other. The
service times of the customers are independent random variables having the same general
probability distribution. Letting the random variable S denote the service time of a customer,
it is assumed that ρ = λE(S) is less than 1. For this model, known as the M/G/1 queue
with retrials, define L(t) as the number of customers in the system (service station plus
orbit) at time t and define Qn as the number of customers in orbit just after the nth service
completion. Let pj = limt→∞ P {L(t) = j} and qj = limn→∞ P {Qn = j} for j ≥ 0.

(a) Use an up- and downcrossing argument to argue that pj = qj for all j ≥ 0.

(b) Letting Q(z) =
∑∞

j=0 qj zj , prove that

Q(z) = A(z){λR(z) + νR′(z)},

where A(z) is the generating function of the number of new customers arriving during

the service time S and R(z) is defined by R(z) =
∑∞

j=0 zjqj /(λ + jν). (Hint : under the

condition that Qn−1 = i it holds that Qn = Qn−1 + Cn with probability λ/(λ + iν) and
Qn = Qn−1 − 1 + Cn with probability iν/(λ + iν), where Cn denotes the number of new
customers arriving at the nth service time.)

(c) Prove that

Q(z) =
(1 − ρ)(1 − z)A(z)

A(z) − z
exp

[

λ

ν

∫ z

1

1 − A(u)

A(u) − u
du

]

.

(Hint : use that Q(z) = λR(z)+νzR′(z), which follows directly from the definition of R(z).)
(d) Show that the long-run average number of customers in the system is given by

L = ρ +
λ2E(S2)

2(1 − ρ)
+

λ2E(S)

ν(1 − ρ)
.

Retrial queues are in general much more difficult to analyse than queues without retrials.
The Laplace transform for the waiting-time distribution in the M/G/1 queue with retrials
is very complex; see also Artalejo et al. (2002).

2.34 Consider again the production system from Section 2.6 except that the system is now
controlled in a different way when it becomes idle. Each time the production facility becomes
empty of orders, the facility is used during a period of fixed length T for some other work
in order to utilize the idle time. After this vacation period the facility is reactivated for
servicing the orders only when at least one order is present; otherwise the facility is used
again for some other work during a vacation period of length T . This utilization of idle
time is continued until at least one order is present after the end of a vacation period. This
control policy is called the T -policy. The cost structure is the same as in Section 2.6. Use

renewal-reward theory to show that K(1−λµ1)(1−e−λT )/T + 1
2hλT + 1

2hλ2µ2/(1−λµ1)

gives the long-run average cost per time unit under a T -policy.

2.35 Suppose that, at a communication channel, messages of types 1 and 2 arrive according
to independent Poisson processes with respective rates λ1 and λ2. Messages of type 1 finding
the channel occupied upon arrival are lost, whereas messages of type 2 are temporarily stored
in a buffer and wait until the channel becomes available. The channel can transmit only one
message at a time. The transmission time of a message of type i has a general probability
distribution with mean µi and the transmission times are independent of each other. It is
assumed that λ2µ2 < 1. Use the renewal-reward theorem to prove that the long-run fraction
of time the channel is busy equals (ρ1 + ρ2)/(1 + ρ1), where ρi = λiµi for i = 1, 2.
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(Hint : use results from Section 2.6 to obtain the expected amount of time elapsed between
two arrivals finding the channel free.)

BIBLIOGRAPHIC NOTES

The very readable monograph of Cox (1962) contributed much to the populariza-

tion of renewal theory. A good account of renewal theory can also be found in the

texts Ross (1996) and Wolff (1989). A basic paper on renewal theory and regen-

erative processes is that of Smith (1958), a paper which recognized the usefulness

of renewal-reward processes in the analysis of applied probability problems. The

book of Ross (1970) was influential in promoting the application of renewal-reward

processes. The renewal-reward model has many applications in inventory, queue-

ing and reliability. The illustrative queueing example from Section 2.6 is taken

from the paper of Yadin and Naor (1963), which initiated the study of control

rules for queueing systems. Example 2.2.3 is adapted from the paper of Vered and

Yechiali (1979).

The first rigorous proof of L = λW was given by Little (1961) under rather

strong conditions; see also Jewell (1967). Under very weak conditions a sample-

path proof of L = λW was given by Stidham (1974). The important result that

Poisson arrivals see time averages was taken for granted by earlier practitioners.

A rigorous proof was given in the paper of Wolff (1982). The derivation of the

Laplace transform of the waiting-time distribution in the M/G/1 queue is adapted

from Cohen (1982) and the relation between this transform and the generating

function of the queue size comes from Haji and Newell (1971).
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CHAPTER 3

Discrete-Time Markov
Chains

3.0 INTRODUCTION

The notion of what is nowadays called a Markov chain was devised by the Russian

mathematician A.A. Markov when, at the beginning of the twentieth century, he

investigated the alternation of vowels and consonants in Pushkin’s poem Onegin.

He developed a probability model in which the outcomes of successive trials are

allowed to be dependent on each other such that each trial depends only on its

immediate predecessor. This model, being the simplest generalization of the prob-

ability model of independent trials, appeared to give an excellent description of

the alternation of vowels and consonants and enabled Markov to calculate a very

accurate estimate of the frequency at which consonants occur in Pushkin’s poem.

The Markov model is no exception to the rule that simple models are often

the most useful models for analysing practical problems. The theory of Markov

processes has applications to a wide variety of fields, including biology, computer

science, engineering and operations research. A Markov process allows us to model

the uncertainty in many real-world systems that evolve dynamically in time. The

basic concepts of a Markov process are those of a state and of a state transition.

In specific applications the modelling ‘art’ is to find an adequate state descrip-

tion such that the associated stochastic process indeed has the Markovian property

that the knowledge of the present state is sufficient to predict the future stochastic

behaviour of the process. In this chapter we consider discrete-time Markov pro-

cesses in which state transitions only occur at fixed times. Continuous-time Markov

processes in which the state can change at any time are the subject of Chapter 4.

The discrete-time Markov chain model is introduced in Section 3.1. In this section

considerable attention is paid to the modelling aspects. Most students find the

modelling more difficult than the mathematics. Section 3.2 deals with the n-step

transition probabilities and absorption probabilities. The main interest, however, is

in the long-run behaviour of the Markov chain. In Section 3.3 we discuss both the

existence of an equilibrium distribution and the computation of this distribution.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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Several applications will be discussed as well. For didactical reasons not all of

the results that are stated in Section 3.3 are proved in this section. Some of the

proofs are deferred to a later section. In Section 3.4 we discuss computational

methods for solving the equilibrium equations of the Markov chain. In particular,

we give a simple but powerful method for computing the equilibrium distribution

of an infinite-state Markov chain whose state probabilities exhibit a geometric tail

behaviour. Section 3.5 deals with theoretical issues such as the state classification

for Markov chains and proofs of the ergodic theorems used in earlier sections.

3.1 THE MODEL

A discrete-time Markov chain is a stochastic process which is the simplest gen-

eralization of a sequence of independent random variables. A Markov chain is a

random sequence in which the dependency of the successive events goes back only

one unit in time. In other words, the future probabilistic behaviour of the process

depends only on the present state of the process and is not influenced by its past

history. This is called the Markovian property. Despite its very simple structure the

Markov chain model is extremely useful in a wide variety of practical probability

problems. Let us first give an illustrative example.

Example 3.1.1 The drunkard’s random walk

A drunkard starts a random walk in the middle of a square; see Figure 3.1.1. He

performs a sequence of independent unit steps. Each step has equal probability 1
4

of going north, south, east or west as long as the drunkard has not reached the edge

of the square. The drunkard never leaves the square. Should he reach the boundary

of the square, his next step is equally likely to be in one of the three remaining

directions if he is not at a corner point, and is equally likely to be in two remaining

directions otherwise. What stochastic process describes the drunkard’s walk? What

is the expected number of steps he needs to return to his starting point?

For n = 0, 1, . . . , we define the random variable

Xn = the position of the drunkard just after the nth step

with the convention X0 = (0, 0). Let us say that the process {Xn} is in state

(x, y) when the current position of the drunkard is described by point (x, y). Then

{Xn, n = 0, 1, . . . } is a discrete-time stochastic process with state space

I = {(x, y) | x, y integer, − N ≤ x, y ≤ N}.

The successive states of the drunkard’s process are not independent of each other,

but are dependent. However, the dependence goes only one step back. The next

position of the drunkard depends only on the current position and is not influenced

by the earlier positions in the path of the drunkard. In other words, the drunkard’s
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(−N, N )

(−N, −N )

(N, N )

(N, −N )

(0, 0)

Figure 3.1.1 The drunkard’s random walk

process {Xn} has the Markovian property. We are now ready to give the general

definition of a Markov chain.

Let {Xn, n = 0, 1, . . . } be a sequence of random variables with state space I . We

interpret the random variable Xn as the state of some dynamic system at time n.

The set of possible values of the process is denoted by I and is assumed to be

finite or countably infinite.

Definition 3.1.1 The stochastic process {Xn, n = 0, 1, . . . } with state space I is

called a discrete-time Markov chain if, for each n = 0, 1, . . . ,

P {Xn+1 = in+1 | X0 = i0, . . . , Xn = in} = P {Xn+1 = in+1 | Xn = in} (3.1.1)

for all possible values of i0, . . . , in+1 ∈ I .

In the following, we consider only Markov chains with time-homogeneous tran-

sition probabilities; that is, we assume that

P {Xn+1 = j | Xn = i} = pij , i, j ∈ I,

independently of the time parameter n. The probabilities pij are called the one-step

transition probabilities and satisfy

pij ≥ 0, i, j ∈ I, and
∑

j∈I

pij = 1, i ∈ I.
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The Markov chain {Xn, n = 0, 1, . . . } is completely determined by the probability

distribution of the initial state X0 and the one-step transition probabilities pij . In

applications of Markov chains the art is:

(a) to choose the state variable(s) such that the Markovian property (3.1.1) holds,

(b) to determine the one-step transition probabilities pij .

Once this (difficult) modelling step is done, the rest is simply a matter of applying

the theory that will be developed in the next sections. The student cannot be urged

strongly enough to try the problems at the end of this chapter to acquire skills to

model new situations. Let us return to the drunkard’s walk.

Example 3.1.1 (continued) The drunkard’s random walk

In this example we have already defined the state variable as the position of the

drunkard. The process {Xn} with Xn denoting the state just after the nth step of the

drunkard is indeed a discrete-time Markov chain. The one-step transition probabil-

ities are as follows. For any interior state (x, y) with −N < x, y < N , we have

p(x,y)(v,w) =

{
1
4 for (v, w) = (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1),

0 otherwise.

For any boundary state (x, N) with −N < x < N , we have

p(x,y)(v,w) =

{
1
3 for (v, w) = (x + 1, N), (x − 1, N), (x, N − 1),

0 otherwise.

For the boundary state (x, −N) with −N < x < N , (N, y) and (N, −y) with

−N < y < N , the one-step transition probabilities follow similarly. For the corner

point (x, y) = (N, N), we have

p(x,y)(v,w) =

{
1
2 for (v, w) = (N − 1, N), (N, N − 1),

0 otherwise.

Similarly, for the corner points (x, y) = (−N, N), (−N, −N) and (N, −N).

A variant of the drunkard’s random walk problem is the problem in which the

drunkard never chooses the same direction as was chosen in the previous step.

Then we have to augment the state with an extra state variable in order to satisfy

the Markovian property. The state of the drunkard after each step is now defined as

(x, y, z), where (x, y) denotes the position of the drunkard and z ∈ {N, S, W, L}

denotes the direction of the last step. Letting Xn be the state of the drunkard’s

process just after the nth step (with the convention X0 = (0, 0)), the stochastic

process {Xn} is a discrete-time Markov chain. It is left to the reader to write down

the one-step transition probabilities of this process.
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Example 3.1.2 A stock-control problem

The Johnson hardware shop carries adjustable-joint pliers as a regular stock item.

The demand for this tool is stable over time. The total demand during a week

has a Poisson distribution with mean λ. The demands in the successive weeks are

independent of each other. Each demand that occurs when the shop is out of stock

is lost. The owner of the shop uses a so-called periodic review (s, S) control rule

for stock replenishment of the item. The inventory position is only reviewed at

the beginning of each week. If the stock on hand is less than the reorder point s,

the inventory is replenished to the order-up point S; otherwise, no ordering is

done. Here s and S are given integers with 0 ≤ s ≤ S. The replenishment time is

negligible. What is the average ordering frequency and what is the average amount

of demand that is lost per week?

These questions can be answered by the theory of Markov chains. In this example

we take as state variable the stock on hand just prior to review. Let

Xn = the stock on hand at the beginning of the nth week just prior to review,

then the stochastic process {Xn} is a discrete-time Markov chain with the finite

state space I = {0, 1, . . . , S}. It will be immediately clear that the Markovian

property (3.1.1) is satisfied: the stock on hand at the beginning of the current week

and the demand in the coming week determine the stock on hand at the beginning

of the next week. It is not relevant how the stock level fluctuated in the past. To

find the one-step transition probabilities pij = P {Xn+1 = j | Xn = i} we have

to distinguish the cases i ≥ s and i < s. In the first case the stock on hand just

after review equals i, while in the second case the stock on hand just after review

equals S. For state i ≥ s, we have

pij = P {the demand in the coming week is i − j}

= e−λ λi−j

(i − j)!
, j = 1, . . . , i.

Note that this formula does not hold for j = 0. Then we have for i ≥ s,

pi0 = P {the demand in the coming week is i or more}

=

∞∑

k=i

e−λ λk

k!
= 1 −

i−1∑

k=0

e−λ λk

k!
.

The other pij are zero for i ≥ s. Similarly, we find for i < s

pij = P {the demand in the coming week is S − j}

= e−λ λS−j

(S − j)!
, j = 1, . . . , S,
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pi0 = P {the demand in the coming week is S or more}

=

∞∑

k=S

e−λ λk

k!
= 1 −

S−1∑

k=0

e−λ λk

k!
.

The following example illustrates the powerful technique of embedded Markov

chains. Many stochastic processes can be analysed by using properly chosen embed-

ded stochastic processes that are discrete-time Markov chains. A classic example

is the single-server M/G/1 queue with Poisson arrivals and general service times.

The embedded process describing the number of customers left behind at the ser-

vice completion epochs is a discrete-time Markov chain; see also Section 2.5.

Another example is provided by the ‘dual’ queue with general interarrival times

and exponential service times.

Example 3.1.3 The GI /M/1 queue

Customers arrive at a single-server station according to a renewal process, that is,

the interarrival times of the customers are independent and identically distributed

random variables. It is assumed that the interarrival time has a probability den-

sity a(t). A customer who finds upon arrival that the server is idle enters service

immediately; otherwise the customer waits in line. The service times of the suc-

cessive customers are independent random variables having a common exponential

distribution with mean 1/µ. The service times are also independent of the arrival

process. A customer leaves the system upon service completion. This queueing

system is usually abbreviated as the GI/M/1 queue. For any t ≥ 0, define the

random variable X(t) by

X(t) = the number of customers present at time t.

The continuous-time stochastic process {X(t), t ≥ 0} does not possess the Marko-

vian property that the future behaviour of the process depends only on its present

state. Clearly, to predict the future behaviour of the process, the knowledge of the

number of customers present does not suffice in general but the knowledge of the

time elapsed since the last arrival is required too. Note that, by the memoryless

property of the exponential distribution, the elapsed service time of the service

in progress (if any) is not relevant. However, we can find an embedded Markov

chain for the continuous-time process {X(t)}. Consider the process embedded at

the epochs when customers arrive. At these epochs the time elapsed since the last

arrival is known and equals zero. Define for n = 0, 1, . . . ,

Xn = the number of customers present just prior to the nth arrival epoch

with X0 = 0 by convention. The embedded stochastic process {Xn, n = 0, 1, . . . }

is a discrete-time Markov chain, since the exponential services are memoryless.

This Markov chain has the countably infinite state space I = {0, 1, . . . }. To find

the one-step transition probabilities pij of the Markov chain, denote by An the
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time between the arrival epochs of the nth and (n + 1)th customer and let Cn

denote the number of customers served during the interarrival time An. Note that

Xn+1 = Xn + 1 − Cn. The probability distribution of Cn obviously depends on

Xn (= the number of customers seen by the nth arrival). The easiest way to find

the probability distribution of Cn is to use the observation that service completions

occur according to a Poisson process with rate µ as long as the server is busy.

This observation is a consequence of the assumption of exponentially distributed

service times and the relation between the Poisson process and the exponential

distribution. By conditioning on the interarrival time An and using the law of total

probability, we find for each state i that

pij = P {Xn+1 = j | Xn = i}

=

∫ ∞

0
P {i + 1 − j service completions during An | An = t}a(t) dt

=

∫ ∞

0
e−µt (µt)i+1−j

(i + 1 − j)!
a(t) dt, 1 ≤ j ≤ i + 1. (3.1.2)

This formula does not hold for j = 0. Why not? The probability pi0 is easiest to

compute from

pi0 = 1 −

i+1∑

j=1

pij , i = 0, 1, . . . .

Obviously, pij = 0 for j > i + 1 for each state i.

3.2 TRANSIENT ANALYSIS

This section deals with the transient analysis of the Markov chain {Xn, n =

0, 1, . . . } with state space I and one-step transition probabilities pij for i, j ∈ I .

We first show how the one-step transition probabilities determine the probability of

going from state i to state j in the next n steps. The n-step transition probabilities

are defined by

p
(n)
ij = P {Xn = j | X0 = i}, i, j ∈ I

for any n = 1, 2, . . . Note that p
(1)
ij = pij . It is convenient to define

p
(0)
ij =

{
1 if j = i,

0 if j �= i.

Theorem 3.2.1 (Chapman–Kolmogoroff equations) For all n, m = 0, 1, . . . ,

p
(n+m)
ij =

∑

k∈I

p
(n)
ik

p
(m)
kj

, i, j ∈ I. (3.2.1)
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Proof A formal proof is as follows. By conditioning on the state of the Markov

chain at time t = n, we find

P {Xn+m = j | X0 = i} =
∑

k∈I

P {Xn+m = j | X0 = i, Xn = k}P {Xn = k | X0 = i}

=
∑

k∈I

P {Xn+m = j | Xn = k}P {Xn = k | X0 = i}

=
∑

k∈I

P {Xm = j | X0 = k}P {Xn = k | X0 = i},

which verifies (3.2.1). Note that the second equality uses the Markovian property

and the last equality uses the assumption of time homogeneity.

The theorem states that the probability of going from i to j in n + m steps is

obtained by summing the probabilities of the mutually exclusive events of going

first from state i to some state k in n steps and then going from state k to state j in

m steps. This explanation is helpful to memorize the equation (3.2.1). In particular,

we have for any n = 1, 2, . . . ,

p
(n+1)
ij =

∑

k∈I

p
(n)
ik

pkj , i, j ∈ I. (3.2.2)

Hence the n-step transition probabilities p
(n)
ij can be recursively computed from

the one-step transition probabilities pij . In fact the p
(n)
ij are the elements of the

n-fold matrix product Pn, where P denotes the matrix whose (i, j)th element is

the one-step transition probability pij . If the state space I is finite, the probabilities

p
(n)
ij can also be found by computing the eigenvalues and the eigenvectors of the

matrix P.

Example 3.2.1 The weather as Markov chain

On the Island of Hope the weather each day is classified as sunny, cloudy or rainy.

The next day’s weather depends only on the weather of the present day and not

on the weather of the previous days. If the present day is sunny, the next day will

be sunny, cloudy or rainy with respective probabilities 0.70, 0.10 and 0.20. The

transition probabilities are 0.50, 0.25 and 0.25 when the present day is cloudy and

they are 0.40, 0.30 and 0.30 when the present day is rainy. An interesting question

is how often the weather is sunny, cloudy and rainy over a long period of time.

Let us first answer a simpler question, namely what the probability is of sunny

weather three days later when the present day is rainy. To answer this question, we

define a Markov chain {Xn} with three states 1, 2 and 3. The process is in state 1

when the weather is sunny, in state 2 when the weather is cloudy and in state 3

when the weather is rainy. The matrix P of one-step transition probabilities pij is
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given by

P =




0.70 0.10 0.20

0.50 0.25 0.25

0.40 0.30 0.30


 .

To obtain the probability of having sunny weather three days from now, we need

the matrix product P3:

P3 =




0.6015000 0.1682500 0.2302500

0.5912500 0.1756250 0.2331250

0.5855000 0.1797500 0.2347500


 .

This matrix shows that it will be sunny three days from now with probability 0.5855

when the present day is rainy. You could also ask: what is the probability distri-

bution of the weather after many days? Intuitively you expect that this probability

distribution does not depend on the present weather. This is indeed confirmed by

the calculations:

P5 =




0.5963113 0.1719806 0.2317081

0.5957781 0.1723641 0.2318578

0.5954788 0.1725794 0.2319418




P12 =




0.5960265 0.1721854 0.2317881

0.5960265 0.1721854 0.2317881

0.5960265 0.1721854 0.2317881


 = P13 = P14 = . . . .

In this example the n-step transition probability p
(n)
ij converges for n → ∞ to a

limit which is independent of the initial state i. You see that the weather after many

days will be sunny, cloudy or rainy with respective probabilities 0.5960, 0.1722 and

0.2318. Intuitively it will be clear that these probabilities also give the proportions

of time the weather is sunny, cloudy and rainy over a long period. The limiting

behaviour of the n-step transition probabilities is the subject of Section 3.3.

3.2.1 Absorbing States

A useful Markov chain model is the model with one or more absorbing states. A

state is absorbing if the process cannot leave this state once it entered this state.

Definition 3.2.1 A state i is said to be an absorbing state if pii = 1.

The next example shows the usefulness of the Markov model with absorbing states.

Example 3.2.2 Success runs in roulette

A memorable event occurred in the casino of Monte Carlo on the evening of 18

August 1913. The roulette ball hit a red number 26 times in a row. In European
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roulette the wheel has 37 compartments numbered 0, 1, . . . , 36, where the odd

numbers are black and the even numbers except for the zero are red. An interesting

question that naturally arises is: what is the probability that during the next m spins

of the wheel there will be some sequence of r consecutive spins that all result either

in r black numbers or in r red numbers for a given value of r?

This question can be answered by Markov chain theory. The idea is to define a

Markov chain with r + 1 states including an absorbing state. The process is said to

be in state 0 when the last spin of the wheel resulted in a zero, while the process is

said to be in state i with 1 ≤ i < r when the same colour (red or black) appeared

in the last i spins but this colour did not appear in the spin preceding the last i

spins. The process is said to be in state r when the last r spins of the wheel have

resulted in the same colour. The state r is taken as an absorbing state; imagine that

the wheel sticks to the colour of the success run once a success run of length r

has occurred. A success run of length r is said to occur when state r is reached.

Denote by Xn the state of the process after the nth spin of the wheel, with X0 = 0

by convention. The stochastic process {Xn} is a discrete-time Markov chain. Its

one-step transition probabilities are given by

p00 =
1

37
, p01 =

36

37
,

pi,i+1 = pi1 =
18

37
, pi0 =

1

37
for i = 1, . . . , r − 1

prr = 1.

The other pij are zero. Since state r is absorbing, it is not possible that the process

has visited state r before time t when the process is in some state i �= r at time t .

Hence

P {more than m spins are needed to get a success run of length r}

= P {Xk �= r for k = 1, . . . , m | X0 = 0}

= P {Xm �= r | X0 = 0} = 1 − P {Xm = r | X0 = 0}

= 1 − p
(m)
0r .

The desired probability that a success run of length r will occur during the first m

spins of the wheel is thus p
(m)
0r . How can we calculate this probability for r = 26

when N is of order 8 million (a rough estimate for the number of spins of the

roulette wheel in Monte Carlo between the date of the founding of the casino and

the date of 18 August 1913)? It is not advised to multiply the 27 × 27 matrix

P = (pij ) 8 million times by itself. A more clever computation is based on

P2 = P × P, P4 = P2 × P2, P8 = P4 × P4, etc.

Taking k = 23, we have 2k is about 8 million. Hence it suffices to do 23 matrix

multiplications to get p
(m)
0,26 for m = 223. This gives the probability 0.061. Another
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approach to analysing success runs is given in Appendix C and uses generating

functions.

Example 3.2.3 A coin-tossing surprise

A fair coin is repeatedly flipped until the last three tosses either show the combi-

nation TTH or the combination THH. Here H means that the outcome of a toss

is a head and T that it is a tail. What is the probability that the combination TTH

occurs before the combination THH ?

To answer this question, we define a Markov chain with eight states, including

two absorbing states. Let state 0 mean the beginning of a game, state 1 = the first

toss is H , state 2 = the first toss is T , state 3 = the last two tosses show HH,

state 4 = the last two tosses show HT, state 5 = the last two tosses show TT, state

6 = the last two tosses show TH, state 7 = the last three tosses show TTH and

state 8 = the last three tosses show THH. The states 7 and 8 are taken absorbing.

It is implicit in the definition of the states 3, 4, 5, 6 that the combinations TTH

and THH have not appeared before. The Markov chain that describes the evolution

of the state of the system has the one-step transition probabilities

p01 = p02 = 1
2 , p13 = p14 = 1

2 , p25 = p26 = 1
2 ,

p33 = p34 = 1
2 , p45 = p46 = 1

2 , p55 = p57 = 1
2 ,

p63 = p68 = 1
2 , p77 = 1, p88 = 1, the other pij = 0.

The Markov chain will ultimately be absorbed in one of the states 7 and 8 (this

fact can formally be proved by proceeding as in the proof of Theorem 3.2.2 below

and replacing the states 7 and 8 by a single absorbing state). Denote by fi the

probability that the Markov chain is ultimately absorbed in state 7 starting from

state i. The probability f0 gives the desired probability that the combination TTH

occurs before the combination THH. The probabilities f0, . . . , f6 satisfy a system

of linear equations. The equation for fi follows by conditioning on the next state

after the current state i. This gives

f0 = 1
2f1 + 1

2f2, f1 = 1
2f3 + 1

2f4, f2 = 1
2f5 + 1

2f6,

f3 = 1
2f3 + 1

2f4, f4 = 1
2f5 + 1

2f6,

f5 = 1
2f5 + 1

2 × 1, f6 = 1
2f3 + 1

2 × 0.

The solution of these equations is (f0, . . . , f6) = ( 2
3 , 2

3 , 2
3 , 2

3 , 2
3 , 1, 1

3 ). The desired

probability is thus 2
3 . A surprising result for many people. Can you give a simple

explanation why the sought probability is not equal to 1
2 ?
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3.2.2 Mean First-Passage Times

Example 3.1.1 asked how to find the expected number of steps the drunkard needs

to return to his starting point. More generally, consider a Markov chain {Xn} for

which

(a) the state space I is finite,

(b) there is some state r such that for each state i ∈ I there is an integer n(= ni)

such that p
(n)
ir > 0.

What is the mean return time from state r to itself? Let

τ = min{n ≥ 1 | Xn = r},

To calculate µrr = E(τ |X0 = r), we need the mean visit times

µir = E(τ | X0 = i)

for each state i �= r . By conditioning on the next state after state r ,

µrr = 1 +
∑

j∈I,j �=r

prj µjr . (3.2.3)

The µir with i �= r are found by solving a system of linear equations. For notational

convenience, number the states as 1, . . . , N and let state r be numbered as N .

Theorem 3.2.2 The mean visit times µiN for i �= N are the unique solution to the

linear equations

µiN = 1 +

N−1∑

j=1

pij µjN , i = 1, . . . , N − 1. (3.2.4)

Proof The equation for µiN follows by conditioning on the next state visited after

state i. To prove that the linear equations have a unique solution we use the trick

of making state N absorbing for a modified Markov chain. Let P̂ = (p̂ij ), i, j ∈ I

be the Markov matrix obtained by replacing the N th row in the matrix P = (pij ),

i, j ∈ I by (0, 0, . . . , 1). The mean first passage times µjN for j = 1, . . . , N−1 are

not changed by making state N absorbing. Denote by Q = (qij ) the (N−1)×(N−1)

submatrix that results by omitting the N th row and the N th column in the matrix

P. Let the vectors µ = (µ1N , . . . , µN−1,N ) and e = (1, . . . , 1). Then we can write

(3.2.4) in matrix notation as

µ = e + Qµ. (3.2.5)

Since state N is absorbing for the Markov matrix P̂, we have for each n ≥ 1 that

q
(n)
ij = p̂

(n)
ij , i, j = 1, . . . , N − 1, (3.2.6)
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where the q
(n)
ij and the p̂

(n)
ij are the elements of the n-fold matrix products Qn

and P̂n. State N can be reached from each starting state i �= N under the Markov

matrix P̂, since by assumption (b) p̂
(n)
iN ≥ p

(n)
iN > 0 for some n ≥ 1. Further, state

N is absorbing under P̂. This implies that

lim
n→∞

p̂
(n)
ij = 0 for all i, j = 1, . . . , N − 1,

as a special case of Lemma 3.2.3 below. Hence, by (3.2.6), limn→∞ Qn = 0. By

a standard result from linear algebra, it now follows that (3.2.5) has the unique

solution
µ = (I − Q)−1e. (3.2.7)

This completes the proof that the linear equations (3.2.4) have a unique solution.

Example 3.1.1 (continued) The drunkard’s random walk

The drunkard moves over a square with the corner points (N, N), (−N, N),

(−N, −N) and (−N, N). It is interesting to see how the mean return time to

the starting point depends on N . Let µ00(N) denote the expected number of steps

the drunkard needs to return to the starting point (0, 0). For fixed N the mean

return time µ00(N) can be computed by solving a system of linear equations of

the form (3.2.4) and next using (3.2.3). Table 3.2.1 gives the values of µ00(N) for

several values of N . The computations indicate that µ00(N) → ∞ as N → ∞.

This result is indeed true and can be theoretically proved by the theory of Markov

chains; see for example Feller (1950).

3.2.3 Transient and Recurrent States

Many applications of Markov chains involve chains in which some of the states

are absorbing and the other states are transient. An absorbing state is a special

case of a recurrent state. To define the concepts of transient states and recurrent

states, we need first to introduce the first-passage time probabilities. Let {Xn} be

a discrete-time Markov chain with state space I (finite or countably infinite) and

one-step transition probabilities pij , i, j ∈ I . For any n = 1, 2, . . . , let the first-

passage time probability f
(n)
ij be defined by

f
(n)
ij = P {Xn = j, Xk �= j for 1 ≤ k ≤ n − 1 | X0 = i}, i, j ∈ I. (3.2.8)

Table 3.2.1 The mean return time to the origin

N 1 2 5 10 25 50

µ00(N) 6 20 110 420 2550 10 100
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In other words, f
(n)
ij is the probability that the first transition of the process into

state j is at time t = n when the process starts in state i. Next define the proba-

bilities fij by

fij =

∞∑

n=1

f
(n)
ij . (3.2.9)

Then fij = P {Xn = j for some n ≥ 1 | X0 = i} denotes the probability that the

process ever makes a transition into state j when the process starts in state i.

Definition 3.2.2 A state i is said to be transient if fii < 1 and is said to be

recurrent if fii = 1.

Denoting for each state i ∈ I the probability Qii by

Qii = P {Xn = i for infinitely many values of n | X0 = i},

it is not difficult to verify that Qii = 0 if i is transient and Qii = 1 if i is recurrent.

A useful characterization of a transient state is given by the result that a state i is

transient if and only if

∞∑

n=1

p
(n)
ii < ∞. (3.2.10)

To see this, fix i ∈ I and define the indicator variable In as In = 1 if Xn = i and

In = 0 otherwise. Then
∑∞

n=1 In represents the number of visits of the Markov

chain to state i over the epochs t = 1, 2, . . . . Since E(In | X0 = i) = P {Xn =

i | X0 = i} = p
(n)
ii , it follows that

E

(
∞∑

n=1

In | X0 = i

)
=

∞∑

n=1

E(In | X0 = i) =

∞∑

n=1

p
(n)
ii , (3.2.11)

where the interchange of expectation and summation is justified by the non-

negativity of the In. On the other hand, letting N =
∑∞

n=1 In, the distribution

of the number of visits to state i satisfies P {N ≥ k | X0 = i} = (fii )
k for k ≥ 0

and so, by the well-known relation E(N) =
∑∞

j=0 P {N > j}, we find

E

(
∞∑

n=1

In | X0 = i

)
=

∞∑

k=1

(fii )
k.

Hence E
(∑∞

n=1 In | X0 = i
)

= ∞ when fii = 1 and equals fii /(1−fii ) < ∞ oth-

erwise. This result and (3.2.11) prove that state i is transient only if (3.2.10) holds.
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Lemma 3.2.3 Suppose that state j is transient. Then, for any state i ∈ I ,

lim
n→∞

p
(n)
ij = 0.

Proof By (3.2.10),
∑∞

n=1 p
(n)
jj < ∞ and thus limn→∞ p

(n)
jj = 0. Take now a

starting state i with i �= j . By conditioning on the first epoch at which the process

makes a transition into state j , we obtain the useful relation

p
(n)
ij =

n∑

k=1

p
(n−k)
jj f

(k)
ij , n = 1, 2, . . . . (3.2.12)

Since limn→∞ p
(n)
jj exists and

∑∞
k=1 f

(k)
ij = fij < ∞, it follows from the bounded

convergence theorem in Appendix A that

lim
n→∞

p
(n)
ij = fij lim

n→∞
p

(n)
jj . (3.2.13)

Since limn→∞ p
(n)
jj = 0, the lemma now follows.

The limiting behaviour of p
(n)
ij as n → ∞ for a recurrent state j will be dis-

cussed in Section 3.3. It will be seen that this limit does not always exist. For a

recurrent state j an important concept is the mean recurrence time µjj which is

defined by

µjj =

∞∑

n=1

nf
(n)
jj . (3.2.14)

In other words, µjj is the expected number of transitions needed to return from

state j to itself. A recurrent state j is said to be positive recurrent if µjj < ∞

and is said to be null-recurrent if µjj = ∞. In Section 3.5 it will be seen that

null-recurrency can only occur in Markov chains with an infinite state space. To

illustrate this, consider the Markov chain {Xn} describing the drunkard’s walk on

an infinite square in Example 3.1.1 (N = ∞). It can be shown for this infinite-

state random walk that each state (x, y) is recurrent, but the mean recurrence time

of each state is ∞ so that all states are null-recurrent. The same holds for the

infinite-state Markov chain describing the symmetric random walk on the integers

(pi,i+1 = pi,i−1 = 1
2 for any integer i). However, for the symmetric random

walk on an infinite lattice in three or more dimensions, the corresponding Markov

chain has the property that all states are transient (in three dimensions, the prob-

ability of ever returning to the origin when starting there equals 0.3405). These

remarkable results will not be proved here, but are mentioned to show that Markov

chains with an infinite state space are intrinsically more complex than finite-state

Markov chains.



96 DISCRETE-TIME MARKOV CHAINS

3.3 THE EQUILIBRIUM PROBABILITIES

This section deals with the long-run behaviour of the Markov chain {Xn}. In partic-

ular, we discuss the characterization of the equilibrium distribution of the process

and a formula for the long-run average cost per time unit when a cost structure is

imposed on the Markov chain. In this section the emphasis is on giving insights

into the long-run behaviour of the Markov chain. Most of the proofs are deferred

to Section 3.5.

3.3.1 Preliminaries

A natural question for a Markov chain {Xn} is whether the n-step probabilities

p
(n)
ij always have a limit as n → ∞. The answer to this question is negative

as shown by the following counterexample. Consider a Markov chain with state

space I = {1, 2} and one-step transition probabilities pij with p12 = p21 = 1 and

p11 = p22 = 0. In this example the n-step transition probabilities p
(n)
ij alternate

between 0 and 1 for n = 1, 2, . . . and hence have no limit as n → ∞. The reason

is the periodicity in this Markov chain example. In our treatment of Markov chains

we will not give a detailed discussion on the relation between the limiting behaviour

of the p
(n)
ij and the issue of periodicity. The reason is that our treatment of Markov

chains emphasizes the study of long-run averages. As explained in Section 2.2,

the long-run average behaviour of a stochastic process is in general much easier to

handle than its limiting behaviour. More importantly, long-run averages are usually

required in the analysis of practical applications. In the next theorem we prove that

for each Markov chain {Xn} the Cesaro limit of the n-step transition probabilities

always exists.

Theorem 3.3.1 For all i, j ∈ I , limn→∞(1/n)
∑n

k=1 p
(k)
ij always exists. For any

j ∈ I ,

lim
n→∞

1

n

n∑

k=1

p
(k)
jj =

{
1

µjj
if state j is recurrent,

0 if state j is transient,
(3.3.1)

where µjj denotes the mean recurrence time from state j to itself. Also,

lim
n→∞

1

n

n∑

k=1

p
(k)
ij = fij lim

n→∞

1

n

n∑

k=1

p
(k)
jj (3.3.2)

for any i, j ∈ I , where fij is the probability that the process ever makes a transition

into state j when the process starts in state i.

Proof For a transient state j we have by Lemma 3.2.3 that limn→∞ p
(n)
ij = 0

for all i ∈ I . Using the well-known result that the Cesaro limit is equal to the

ordinary limit whenever the latter limit exists, the results (3.3.1) and (3.3.2) follow
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for transient states j . Fix now a recurrent state j . By the definition of recurrence,

we have fjj = 1. The times between successive visits to state j are independent

and identically distributed random variables with mean µjj . In other words, visits

of the Markov chain to state j can be seen as renewals. Denote by N(t) the number

of visits of the Markov chain to state j during the first t transition epochs. Then,

by Lemma 2.2.2,

lim
t→∞

N(t)

t
=

1

µjj

with probability 1. (3.3.3)

This limiting result holds for both µjj < ∞ and µjj = ∞. In other words, the

long-run average number of transitions to state j per time unit equals 1/µjj with

probability 1 when the process starts in state j . Define the indicator variable

Ik =

{
1 if the process visits state j at time k,

0 otherwise.

Since N(n) = I1 + · · · + In, we can rewrite (3.3.3) as

lim
n→∞

1

n

n∑

k=1

Ik =
1

µjj

with probability 1. (3.3.4)

Obviously,

E(Ik | X0 = j) = P {Xk = j | X0 = j} = p
(k)
jj .

Noting that (1/n)
∑n

k=1 Ik is bounded by 1 and using the bounded convergence

theorem from Appendix A, it follows from (3.3.4) that

1

µjj

= E

(
lim

n→∞

1

n

n∑

k=1

Ik | X0 = j

)
= lim

n→∞
E

(
1

n

n∑

k=1

Ik | X0 = j

)

= lim
n→∞

1

n

n∑

k=1

E (Ik | X0 = j) = lim
n→∞

1

n

n∑

k=1

p
(k)
jj .

It remains to prove that (3.3.2) holds for any state i �= j . To do so, we use the

relation (3.2.12) which was derived in the proof of Lemma 3.2.3. Averaging this

relation over n = 1, . . . , m, interchanging the order of summation and letting

m → ∞, the relation (3.3.2) follows in the same way as (3.2.13).

Another natural question is under which condition the effect of the initial state

of the process fades away as time increases so that limn→∞(1/n)
∑n

k=1 p
(k)
ij does

not depend on the initial state X0 = i for each j ∈ I . We need some condition as

the following example shows. Take a Markov chain with state space I = {1, 2} and

the one-step transition probabilities pij with p11 = p22 = 1 and p12 = p21 = 0. In

this example p
(n)
11 = 1 and p

(n)
21 = 0 for all n ≥ 1 so that limn→∞(1/n)

∑n
k=1 p

(k)
i1
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depends on the initial state i. The reason is that in this Markov chain example there

are two disjoint closed sets of states.

Definition 3.3.1 A non-empty set C of states is said to be closed if

pij = 0 for i ∈ C and j /∈ C,

that is, the process cannot leave the set C once the process is in the set C.

For a finite-state Markov chain having no two disjoint closed sets it is proved

in Theorem 3.5.7 that fij = 1 for all i ∈ I when j is a recurrent state. For such

a Markov chain it then follows from (3.3.2) that limn→∞(1/n)
∑n

k=1 p
(k)
ij does

not depend on the initial state i when j is recurrent. This statement is also true

for a transient state j , since then the limit is always equal to 0 for all i ∈ I by

Lemma 3.2.3. For the case of an infinite-state Markov chain, however, the situation

is more complex. That is why we make the following assumption.

Assumption 3.3.1 The Markov chain {Xn} has some state r such that fir = 1 for

all i ∈ I and µrr < ∞.

In other words, the Markov chain has a regeneration state r that is ultimately

reached from each initial state with probability 1 and the number of steps needed to

return from state r to itself has a finite expectation. The assumption is satisfied in

most practical applications. For a finite-state Markov chain the Assumption 3.3.1

is automatically satisfied when the Markov chain has no two disjoint closed sets;

see Theorem 3.5.7. The state r from Assumption 3.3.1 is a positive recurrent state.

Assumption 3.3.1 implies that the set of recurrent states is not empty and that there

is a single closed set of recurrent states. Moreover, by Lemma 3.5.8 we have for

any recurrent state j that fij = 1 for all i ∈ I and µjj < ∞. Summarizing, under

Assumption 3.3.1 we have both for a finite-state and an infinite-state Markov chain

that limn→∞(1/n)
∑n

k=1 p
(k)
ij does not depend on the initial state i for all j ∈ I .

In the next subsection it will be seen that the Cesaro limits give the equilibrium

distribution of the Markov chain.

3.3.2 The Equilibrium Equations

We first give an important definition for a Markov chain {Xn} with state space I

and one-step transition probabilities pij , i, j ∈ I .

Definition 3.3.2 A probability distribution {πj , j ∈ I } is said to be an equilibrium

distribution for the Markov chain {Xn} if

πj =
∑

k∈I

πkpkj , j ∈ I. (3.3.5)
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An explanation of the term equilibrium distribution is as follows. Suppose that the

initial state of the process {Xn} is chosen according to

P {X0 = j} = πj , j ∈ I.

Then, for each n = 1, 2, . . . ,

P {Xn = j} = πj , j ∈ I.

In other words, starting the process according to the equilibrium distribution leads

to a process that operates in an equilibrium mode. The proof is simple and is based

on induction. Suppose that P {Xm = j} = πj , j ∈ I for some m ≥ 0. Then

P {Xm+1 = j} =
∑

k∈I

P {Xm+1 = j | Xm = k}P {Xm = k}

=
∑

k∈I

pkj πk = πj , j ∈ I.

An important question is: does the Markov chain have an equilibrium distribution,

and if it has, is this equilibrium distribution unique? The answer to this question

is positive when Assumption 3.3.1 is satisfied.

Theorem 3.3.2 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.

Then the Markov chain {Xn} has a unique equilibrium distribution {πj , j ∈ I }. For

each state j ,

lim
n→∞

1

n

n∑

k=1

p
(k)
ij = πj (3.3.6)

independently of the initial state i. Moreover, let {xj , j ∈ I } with
∑

j∈I

∣∣xj

∣∣ < ∞

be any solution to the equilibrium equations

xj =
∑

k∈I

xkpkj , j ∈ I. (3.3.7)

Then, for some constant c, xj = cπj for all j ∈ I .

The proof of this important ergodic theorem is given in Section 3.5. It follows

from Theorem 3.3.2 that the equilibrium probabilities πj are the unique solution

to the equilibrium equations (3.3.5) in conjunction with the normalizing equation

∑

j∈I

πj = 1. (3.3.8)
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Interpretation of the πj

Using elementary results from renewal theory, we have already seen from the proof

of Theorem 3.3.1 that for any state j ,

the long-run average number of visits to state j

per time unit = πj with probability 1 (3.3.9)

when the process starts in state j . Under Assumption 3.3.1, the interpretation (3.3.9)

can easily be shown to hold for each starting state i ∈ I (this is obvious for a

transient state j and, by Lemma 3.5.8, a recurrent state j will be reached from

each initial state X0 = i after finitely many transitions with probability 1). The

proof of Theorem 3.3.1 also showed that

πj =
1

µjj

for each recurrent state j, (3.3.10)

where µjj is the mean recurrence time from state j to itself. The interpretation

(3.3.9) is most useful for our purposes. Using this interpretation, we can also

give a physical interpretation of the equilibrium equation (3.3.5). Each visit to

state j means a transition to state j (including self-transitions) and subsequently a

transition from state j . Thus

the long-run average number of transitions from state j

per time unit = πj

and

the long-run average number of transitions from state k to state j

per time unit = πkpkj .

This latter relation gives

the long-run average number of transitions to state j

per time unit =
∑

k∈I

πkpkj .

By physical considerations, the long-run average number of transitions to state j

per time unit must be equal to the long-run average number of transitions from

state j per time unit. Why? Hence the equilibrium equations express that the

long-run average number of transitions from state j per time unit equals the long-

run average number of transitions to state j per time unit for all j ∈ I . The

simplest way to memorize the equilibrium equations is provided by the following

heuristic. Suppose that limn→∞ p
(n)
ij exists so that πj = limn→∞ p

(n)
ij . Next apply
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the heuristic reasoning

πj = P {X∞ = j} =
∑

k∈I

P {X∞ = j | X∞−1 = k}P {X∞−1 = k}

=
∑

k∈I

pkj πk, j ∈ I. (3.3.11)

Example 3.2.1 (continued) The weather as Markov chain

In this example the three-state Markov chain {Xn} has no two disjoint closed sets

and thus has a unique equilibrium distribution. The equilibrium probabilities π1,

π2 and π3 can be interpreted as the fractions of time the weather is sunny, cloudy

or rainy over a very long period of time. The probabilities π1, π2 and π3 are the

unique solution to the equilibrium equations

π1 = 0.70π1 + 0.50π2 + 0.40π3

π2 = 0.10π1 + 0.25π2 + 0.30π3

π3 = 0.20π1 + 0.25π3 + 0.30π3

together with the normalizing equation π1 + π2 + π3 = 1. To get a square system

of linear equations, it is permitted to delete one of the equilibrium equations. The

solution is

π1 = 0.5960, π2 = 0.1722, π3 = 0.2318

in accordance with earlier calculations in Section 3.2.

Example 3.1.2 (continued) A stock-control problem

In this example the Markov chain {Xn} describing the stock on hand just prior to

review has a finite state space and has no two disjoint closed sets (e.g. state 0 can be

reached from each other state). Hence the Markov chain has a unique equilibrium

distribution. The equilibrium probability πj denotes the long-run fraction of weeks

for which the stock on hand at the end of the week equals j for j = 0, 1, . . . , S.

Thus

the long-run average frequency of ordering =

s−1∑

j=0

πj

the long-run average stock on hand at the end of the week =

S∑

j=0

jπj
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with probability 1. Using the expressions for the pij given in Section 3.1, we obtain

for the πj the equilibrium equations

π0 =

(
1 −

S−1∑

ℓ=0

e−λ λℓ

ℓ!

)
(π0 + · · · + πs−1) +

S∑

k=s

(
1 −

k−1∑

ℓ=0

e−λ λℓ

ℓ!

)
πk,

πj =

s−1∑

k=0

e−λ λS−j

(S − j)!
πk +

S∑

k=s

e−λ λk−j

(k − j)!
πk, 1 ≤ j ≤ s − 1,

πj =

s−1∑

k=0

e−λ λS−j

(S − j)!
πk +

S∑

k=j

e−λ λk−j

(k − j)!
πk, s ≤ j ≤ S.

These equations together with the normalizing equation
∑S

k=0 πk = 1 determine

uniquely the equilibrium probabilities πj , j = 0, 1, . . . , S. If one of the equilibrium

equations is omitted to obtain a square system of linear equations, the solution of

the resulting system is still uniquely determined.

Example 3.1.3 (continued) The GI/M/1 queue

In this example the Markov chain {Xn} describing the number of customers present

just prior to arrival epochs has the infinite state space I = {0, 1, . . . }. In order to

ensure that Assumption 3.3.1 is satisfied, we have to assume that the arrival rate

of customers is less than the service rate. Thus, denoting by λ the reciprocal of the

mean interarrival time, it is assumed that

λ < µ. (3.3.12)

We omit the proof that under this condition Assumption 3.3.1 is satisfied (with

state 0 as regeneration state r). In the GI/M/1 queueing example the equilibrium

probability πj can be interpreted as the long-run fraction of customers who see j

other customers present upon arrival for j = 0, 1, . . . . In particular, 1 − π0 is the

long-run fraction of customers who have to wait in queue. Using the specification

of the pij given in Section 3.1, we obtain the equilibrium equations

πj =

∞∑

k=j−1

πk

∫ ∞

0
e−µt (µt)k+1−j

(k + 1 − j)!
a(t) dt, j ≥ 1. (3.3.13)

The equilibrium equation for π0 is omitted since it is not needed. An explicit

solution for the πj can be given. This solution is

πj = (1 − η)ηj , j = 0, 1, . . . (3.3.14)

where η is the unique solution of the equation

η −

∫ ∞

0
e−µ(1−η)ta(t) dt = 0 (3.3.15)
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on the interval (0, 1). Using the condition (3.3.12), it is readily verified that the

equation (3.3.15) has a unique solution on (0, 1). The result (3.3.14) can be proved

in several ways. A direct way is to try a solution of the form πj = γ ηj , j ≥ 0

for constants γ > 0 and 0 < η < 1 and substituting this form into (3.3.13).

By doing so, one then finds that η satisfies the equation (3.3.15). The constant γ

follows from
∑∞

j=0 πj = 1. More sophisticated proofs of result (3.3.14) are given

in Sections 3.4.2 and 3.5.2.

3.3.3 The Long-run Average Reward per Time Unit

A very useful applied probability model is the Markov chain model on which a

reward or cost structure is imposed. Suppose that a reward f (j) is earned each

time the Markov chain visits state j for j ∈ I . The ergodic theorem shows how

to compute the long-run average reward per time unit in terms of the equilibrium

probabilities πj . In addition to Assumption 3.3.1 involving the regeneration state

r , we need the following assumption.

Assumption 3.3.2 (a) The total reward earned between two visits of the Markov

chain to state r has a finite expectation and
∑

j∈I |f (j)| πj < ∞.

(b) For each initial state X0 = i with i �= r , the total reward earned until the

first visit of the Markov chain to state r is finite with probability 1.

This assumption is automatically satisfied when the Markov chain has a finite

state space and satisfies Assumption 3.3.1.

Theorem 3.3.3 Suppose the Markov chain {Xn} satisfies Assumptions 3.3.1 and

3.3.2. Then the long-run average reward per time unit is

lim
n→∞

1

n

n∑

k=1

f (Xk) =
∑

j∈I

f (j)πj with probability 1

for each initial state X0 = i.

Intuitively this theorem is obvious by noting that the long-run average number

of visits to state j per time unit equals πj with probability 1 for each state j ∈ I .

A formal proof of Theorem 3.3.3 is given in Section 3.5.2.

Remark 3.3.1 A useful modification of Theorem 3.3.3

In Theorem 3.3.3 the renewal function refers to an immediate reward f (j) that is

earned each time the Markov chain visits state j . However, in practical applications

it happens often that rewards are gradually earned during the time between the state

transitions of the Markov chain. Define for those situations the reward function

f (j) by

f (j) = the expected reward earned until the next state transition

when a state transition has just occurred to state j .
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Then it remains true that the long-run average reward per time unit is
∑

j∈I f (j)πj

with probability 1. This can be directly seen from the proof of Theorem 3.3.3 that

is given in Section 3.5.2. This proof uses the idea that the long-run average reward

per time unit equals

E(reward earned in one cycle)

E(length of one cycle)

with probability 1, where a cycle is defined as the time elapsed between two

successive visits to a given recurrent state. The expression for E(reward earned

during one cycle) is not affected whether f (j) represents an immediate reward or

an expected reward.

Example 3.2.1 (continued) A stock-control problem

Suppose that the following costs are made in the stock-control problem. A fixed

ordering cost of K > 0 is incurred each time the stock is ordered up to level S. In

each week a holding cost of h > 0 is charged against each unit that is still in stock

at the end of the week. A penalty cost of b > 0 is incurred for each demand that

is lost. Denoting by c(j) the expected costs incurred in the coming week when the

current stock on hand is j just prior to review, it follows that

c(j) = K + h

S−1∑

k=0

(S − k) e−λ λk

k!
+ b

∞∑

k=S+1

(k − S) e−λ λk

k!
, 0 ≤ j < s,

c(j) = h

j−1∑

k=0

(j − k) e−λ λk

k!
+ b

∞∑

k=j+1

(k − j) e−λ λk

k!
, s ≤ j ≤ S.

The long-run average cost per week equals
∑S

j=0 c(j)πj with probability 1. In

evaluating this expression, it is convenient to replace
∑∞

k=j+1(j − k) e−λλk/k! by

j − λ −
∑j

k=0(j − k) e−λλk/k! in the expression for c(j). Note that by taking

b = 1 and K = h = 0, the long-run average cost per week reduces to the long-

run average demand lost per week. Dividing this average by the average weekly

demand λ we get the long-run fraction of demand that is lost.

Example 3.3.1 An insurance problem

A transport firm has effected an insurance contract for a fleet of vehicles. The

premium payment is due at the beginning of each year. There are four possible

premium classes with a premium payment of Pi in class i, where Pi+1 < Pi for

i = 1, 2, 3. The size of the premium depends on the previous premium and the

claim history during the past year. If no damage is claimed in the past year and

the previous premium is Pi , the next premium payment is Pi+1 (with P5 = P4,

by convention), otherwise the highest premium P1 is due. Since the insurance
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contract is for a whole fleet of vehicles, the transport firm has obtained the option

to decide only at the end of the year whether the accumulated damage during

that year should be claimed or not. If a claim is made, the insurance company

compensates the accumulated damage minus an own risk which amounts to ri
for premium class i. The total damages in the successive years are independent

random variables having a common probability distribution function G(s) with

density g(s). What is a reasonable claim strategy and what is the long-run average

cost per year?

An obvious claim strategy is the rule characterized by four parameters α1, . . . , α4.

If the current premium class is class i, then the transport firm claims at the end of the

year only damages larger than αi , otherwise nothing is claimed. Consider now a given

claim rule (α1, . . . , α4) with αi > ri for i = 1, . . . , 4. For this rule the average

cost per year can be obtained by considering the stochastic process which describes

the evolution of the premium class for the transport firm. Let

Xn = the premium class for the firm at the beginning of the nth year.

Then the stochastic process {Xn} is a Markov chain with four possible states

i = 1, . . . , 4. The one-step transition probabilities pij are easily found. A one-

step transition from state i to state 1 occurs only if at the end of the present year

a damage is claimed, otherwise a transition from state i to state i + 1 occurs (with

state 5 ≡ state 4). Since for premium class i only cumulative damages larger than

αi are claimed, it follows that

pi1 = 1 − G(αi), i = 1, . . . , 4,

pi,i+1 = G(αi), i = 1, 2, 3 and p44 = G(α4).

The other one-step transition probabilities pij are equal to zero. The Markov chain

has no two disjoint closed sets. Hence the equilibrium probabilities πj , 1 ≤ j ≤ 4,

are the unique solution to the equilibrium equations

π4 = G(α3)π3 + G(α4)π4,

π3 = G(α2)π2,

π2 = G(α1)π1,

π1 = {1 − G(a1)}π1 + {1 − G(α2)}π2 + {1 − G(α3)}π3 + {1 − G(α4)}π4

together with the normalizing equation π1+π2+π3+π4 = 1. These linear equations

can be solved recursively. Starting with π4 := 1, we recursively compute π3, π2

and π1 from the first three equations. Next we obtain the true values of the πj

from πj := πj/
∑4

k=1 πk . Denote by c(j) the expected costs incurred during a year

in which premium Pj is paid. Then by Theorem 3.3.3 we have that the long-run
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Table 3.3.1 The optimal claim limits and the minimal costs

Gamma Lognormal

c2
D

= 1 c2
D

= 4 c2
D

= 25 c2
D

= 1 c2
D

= 4 c2
D

= 25

α∗
1 5908 6008 6280 6015 6065 6174

α∗
2 7800 7908 8236 7931 7983 8112

α∗
3 8595 8702 9007 8717 8769 8890

α∗
4 8345 8452 8757 8467 8519 8640

g∗ 9058 7698 6030 9174 8318 7357

average cost per year is

g(α1, . . . , α4) =

4∑

j=1

c(j)πj

with probability 1. The one-year cost c(j) consists of the premium Pj and any

damages not compensated that year by the insurance company. By conditioning on

the cumulative damage in the coming year, it follows that

c(j) = Pj +

∫ αj

0
sg(s) ds + rj [1 − G(αj )].

The optimal claim limits follow by minimizing the function g(α1, . . . , α4) with

respect to the parameters α1, . . . , α4. Efficient numerical procedures are widely

available to minimize a function of several variables. Table 3.3.1 gives for a number

of examples the optimal claim limits α∗
1 , . . . , α∗

4 together with the minimal average

cost g∗. In all examples we take

P1 = 10 000, P2 = 7500, P3 = 6000, P4 = 5000,

r1 = 1500, r2 = 1000, r3 = 750, r4 = 500.

The average damage size is 5000 in each example; the squared coefficient of

variation of the damage size D takes three values: c2
D = 1, 4 and 25. To see the

effect of the shape of the probability density of the damage size on the claim limits,

we take the gamma distribution and the lognormal distribution both having the same

first two moments. In particular, the minimal average cost becomes increasingly

sensitive to the distributional form of the damage size D when c2
D gets larger. Can

you explain why the minimal average cost per year decreases when the variability

of the claims increases?

3.4 COMPUTATION OF THE EQUILIBRIUM PROBABILITIES

In this section it is assumed that the Markov chain {Xn} satisfies Assumption 3.3.1.

The Markov chain then has a unique equilibrium distribution {πj , j ∈ I }. The πj
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are determined up to a multiplicative constant by the equilibrium equations

πj =
∑

k∈I

πkpkj , j ∈ I. (3.4.1)

The multiplicative constant is determined by the normalizing equation

∑

j∈I

πj = 1. (3.4.2)

In Section 3.4.1 we consider the case of a finite space I and discuss several methods

to compute the equilibrium probabilities πj . The infinite-state model is dealt with

in Section 3.4.2. It is shown that brute-force truncation is not necessary to get a

finite system of linear equations when the state space I = {0, 1, . . . } and the state

probabilities πj exhibit a geometric tail behaviour as j → ∞. For this situation,

which naturally arises in many applications, an elegant computational method for

the state probabilities can be given. Markov chains with a multidimensional state

space are prevalent in stochastic networks and in such applications it often happens

that the equilibrium probabilities are known up to a multiplicative constant. If

the number of states is too large for a direct computation of the multiplicative

constant, the Metropolis–Hastings algorithm and the Gibbs sampler may be used

to obtain the equilibrium probabilities. These powerful methods are discussed in

Section 3.4.3.

3.4.1 Methods for a Finite-State Markov Chain

In general there are two methods to solve the Markov chain equations:

(a) direct methods,

(b) iterative methods.

To discuss these methods, let us assume that the states of the Markov chain are

numbered or renumbered as 1, . . . , N .

Direct methods

A convenient direct method is a Gaussian elimination method such as the

Gauss–Jordan method. This reliable method is recommended as long as the dimen-

sion N of the system of linear equations does not exceed the order of thousands.

The computational effort of Gaussian elimination is proportional to N3. Reliable

and ready-to-use codes for Gaussian elimination methods are widely available. A

Gaussian elimination method requires that the whole coefficient matrix is stored,

since this matrix must be updated at each step of the algorithm. This explains why

a Gaussian elimination method suffers from computer memory problems when N
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gets large. In some applications the transition probabilities pij have the property

that for each state i the probability pij = 0 for j ≤ i −2 (or pij = 0 for j ≥ i +2).

Then the linear equations are of the Hessenberg type. Linear equations of the

Hessenberg type can be efficiently solved by a special code using the very stable

QR method. In solving the Markov chain equations (3.4.1) and (3.4.2) by a direct

method, one of the equilibrium equations is omitted to obtain a square system of

linear equations.

Iterative method of successive overrelaxation

Iterative methods have to be used when the size of the system of linear equations

gets large. In specific applications an iterative method can usually avoid computer

memory problems by exploiting the (sparse) structure of the application. An iter-

ative method does not update the matrix of coefficients each time. In applications

these coefficients are usually composed from a few constants. Then only these

constants have to be stored in memory when using an iterative method. In addition

to the advantage that the coefficient matrix need not be stored, an iterative method

is easy to program for specific applications.

The iterative method of successive overrelaxation is a suitable method for solving

the linear equations of large Markov chains. The well-known Gauss–Seidel method

is a special case of the method of successive overrelaxation. The iterative methods

generate a sequence of vectors x(0) → x(1) → x(2) → . . . converging towards

a solution of the equilibrium equations (3.4.1). The normalization is done at the

end of the calculations. To apply successive overrelaxation, we first rewrite the

equilibrium equations (3.4.1) in the form

xi =

N∑

j=1
j �=i

aij xj , i = 1, . . . , N,

where

aij =
pji

1 − pii

, i, j = 1, . . . , N, j �= i.

The standard successive overrelaxation method uses a fixed relaxation factor ω

for speeding up the convergence. The method starts with an initial approximation

vector x(0) �= 0. In the kth iteration of the algorithm an approximation vector x(k) is

found by a recursive computation of the components x
(k)
i such that the calculation

of the new estimate x
(k)
i uses both the new estimates x

(k)
j for j < i and the old

estimates x
(k−1)
j for j > i. The steps of the algorithm are as follows:

Step 0. Choose a non-zero vector x(0). Let k := 1.

Step 1. Calculate successively for i = 1, . . . , N the component x
(k)
i from
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x
(k)
i = (1 − ω)x

(k−1)
i + ω




i−1∑

j=1

aij x
(k)
j +

N∑

j=i+1

aij x
(k−1)
j


 .

Step 2. If the stopping criterion

N∑

i=1

∣∣∣x(k)
i − x

(k−1)
i

∣∣∣ ≤ ε

N∑

i=1

∣∣∣x(k)
i

∣∣∣

is satisfied with ε > 0, a prespecified accuracy number, then go to step 3. Otherwise

k := k + 1 and go to step 1.

Step 3. Calculate the solution to (3.4.1) and (3.4.2) from

x∗
i =

x
(k)
i

N∑

j=1

x
(k)
j

, 1 ≤ i ≤ N.

The specification of the tolerance number ε typically depends on the particular

problem considered and the accuracy required in the final answers. In addition to

the stopping criterion, it may be helpful to use an extra accuracy check for the

equilibrium probabilities of the underlying Markov chain. An extra accuracy check

may prevent a decision upon a premature termination of the algorithm when the

tolerance number ε is not chosen sufficiently small. Notice that the normalizing

equation (3.4.2) is used only at the very end of the algorithm. In applying succes-

sive overrelaxation it is highly recommended that all of the equilibrium equations

(3.4.1) are used rather than omitting one redundant equation and substituting the

normalizing equation (3.4.2) for it.

The convergence speed of the successive overrelaxation method may dramati-

cally depend on the choice of the relaxation factor ω, and even worse the method

may diverge for some choices of ω. A suitable value of ω has to be determined

experimentally. Usually 1 ≤ ω ≤ 2. The choice ω = 1.2 is often recommended.

The optimal value of the relaxation factor ω depends on the structure of the partic-

ular problem considered. It is pointed out that the iteration method with ω = 1 is

the well-known Gauss–Seidel method. This method is convergent in all practical

cases. The ordering of the states may also have a considerable effect on the con-

vergence speed of the successive overrelaxation algorithm. In general one should

order the states such that the upper diagonal part of the matrix of coefficients is as

sparse as possible. In specific applications the transition structure of the Markov

chain often suggests an appropriate ordering of the states.

Krylov iteration method

The Gauss–Seidel iteration method can further be refined to obtain orthogonal basis

vectors for a so-called Krylov space. The construction of an appropriate Krylov
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basis is strongly dependent of the structure of the system of linear equations to

be solved and is typically a matter of experimentation. However, it is worthwhile

to try such an experimentation when an extremely large but structured system of

linear equations has to be solved many times. Enormous reductions in computing

times can be achieved by Krylov iteration methods; see Stewart (1994).

Recursive method

The linear equations (3.4.1) and (3.4.2) become a Hessenberg system when the pij

have the property that for each state i = 1, . . . , N ,

pij = 0 for all j ≤ i − 2. (3.4.3)

In this special case the equilibrium probabilities πj can also be computed by a

simple recursion scheme. To obtain this recursion scheme, we extend the ‘rate

out = rate in’ principle discussed in Section 3.3. For each set A of states with

A �= I , we have that the long-run average number of transitions per time unit

from a state inside A to a state outside A equals the long-run average number of

transitions per time unit from a state outside A to a state inside A.

Under the property (3.4.3) the set A = {i, i + 1, . . . , N} with i �= 1 can be

left only through state i. Applying the ‘rate out = rate in’ principle to this set A,

we find

pi,i−1πi =

i−1∑

k=1

πk




N∑

j=i

pkj


 , i = 2, . . . , N. (3.4.4)

This recursion starts with the value of π1. Since the equilibrium equations determine

the probabilities πj up to a multiplicative constant, it is no problem that the value

of π1 is not known beforehand. We initialize the recursion with an arbitrary non-

zero value for π1 and normalize at the end of the recursion. In applying (3.4.4) it

is no restriction to assume that pi,i−1 > 0 for all i ≥ 2.

Algorithm

Step 0. Initialize π1 := 1.

Step 1. Compute successively π2, . . . , πN from (3.4.4).

Step 2. Normalize the πi according to

πi = π i/

N∑

k=1

πk, i = 1, 2, . . . , N.

The recursion scheme (3.4.4) involves no subtractions and is thus numerically

stable. However, very large numbers π i may build up when N is large. In those

situations it is recommended to do a renormalization at intermediate steps of the

recursion. The recursion method can also be used for a Markov chain with an
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infinite state space I = {1, 2, . . . } and one-step transition probabilities pij satisfying

(3.4.3). Then a truncation integer N must be used.

3.4.2 Geometric Tail Approach for an Infinite State Space

Many applications of Markov chains involve an infinite state space. What one

usually does to solve numerically the infinite set of equilibrium equations is to

approximate the infinite-state Markov model by a truncated model with finitely

many states so that the probability mass of the deleted states is very small. Indeed,

for a finite-state truncation with a sufficiently large number of states, the differ-

ence between the two models will be negligible from a computational point of

view. However, such a truncation often leads to a finite but very large system of

linear equations whose numerical solution will be quite time-consuming, although

an arsenal of good methods is available to solve the equilibrium equations of

a finite Markov chain. Moreover, it is somewhat disconcerting that we need a

brute-force approximation to solve the infinite-state model numerically. Usually

we introduce infinite-state models to obtain mathematical simplification, and now

in its numerical analysis using a brute-force truncation we are proceeding in the

reverse direction. Fortunately, many applications allow for a much simpler and

more satisfactory approach to solving the infinite set of state equations. Under

rather general conditions the state probabilities exhibit a geometric tail behaviour

that can be exploited to reduce the infinite system of state equations to a finite set

of linear equations. The geometric tail approach results in a finite system of linear

equations whose size is usually much smaller than the size of the finite system

obtained from a brute-force truncation. It is a robust approach that is easy to use

by practitioners.

Consider a discrete-time Markov chain whose state space is one-dimensional and

is given by

I = {0, 1, . . . }.

Let us assume that the equilibrium probabilities πj , j ∈ I , exhibit the geometric

tail behaviour

πj ∼ γ ηj as j → ∞ (3.4.5)

for some constants γ > 0 and 0 < η < 1. Here f (x) ∼ g(x) as x → ∞ means

that limx→∞ f (x)/g(x) = 1. Below we will discuss conditions under which (3.4.5)

holds. First we demonstrate how the geometric tail behaviour can be exploited to

reduce the infinite system of state equations to a finite system of linear equations.

It will be seen below that the decay factor η in (3.4.5) can usually be computed

beforehand by solving a non-linear equation in a single variable. Solving a non-

linear equation in a single variable is standard fare in numerical analysis. In most

applications it is not possible to compute the constant γ beforehand. Fortunately,

we do not need the constant γ in our approach. The asymptotic expansion is only

used by
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lim
j→∞

πj

πj−1
= η.

In other words, for a sufficiently large integer M ,

πj ≈ πMηj−M , j ≥ M.

Replacing πj by πMηj−M for j ≥ M in equations (3.4.1) and (3.4.2) leads to the

following finite set of linear equations:

πj =

M∑

k=0

ajk πk, j = 0, 1, . . . , M − 1,

M−1∑

j=0

πj +
πM

1 − η
= 1,

where for any j = 0, 1, . . . , M − 1 the coefficients ajk are given by

ajk =

{
pkj , k = 0, 1, . . . , M − 1,∑∞

i=M ηi−Mpij , k = M .

How large an M should be chosen has to be determined experimentally and

depends, of course, on the required accuracy in the calculated values of the equilib-

rium probabilities. However, empirical investigations show that in specific appli-

cations remarkably small values of M are already good enough for practical pur-

poses. We found in all practical examples that the system of linear equations is

non-singular, irrespective of the value chosen for M . An appropriate value of M is

often in the range 1–200 when a reasonable accuracy (perhaps seven-digit accu-

racy) is required for the equilibrium probabilities. A Gaussian elimination method

is a convenient method for solving linear equations of this size. Fast and reliable

codes for Gaussian elimination are widely available. The geometric tail approach

combines effectivity with simplicity.

Conditions for the geometric tail behaviour

A useful but technical condition for (3.4.5) to hold can be given in terms of

the generating function
∑∞

j=0 πjz
j of the equilibrium probabilities πj . In many

applications the following condition is satisfied.

Condition A (a) The generating function
∑∞

j=0 πjz
j for |z| ≤ 1 has the form

∞∑

j=0

πjz
j =

N(z)

D(z)
, (3.4.6)
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where N(z) and D(z) are functions that have no common zeros. The functions N(z)

and D(z) are analytic functions that can be analytically continued outside the unit

circle |z| ≤ 1.

(b) Letting R > 1 be the largest number such that both functions N(z) and D(z)

are analytic in the region |z| < R in the complex plane, the equation

D(x) = 0 (3.4.7)

has a smallest root x0 on the interval (1, R).

In specific applications the denominator D(z) in (3.4.6) is usually a nice function

that is explicitly given (this is usually not true for the numerator N(z)). It is only

the denominator D(z) that is needed for our purposes. Theorem C.1 in Appendix C

shows that under Condition A plus some secondary technical conditions the state

probabilities πj allow for the asymptotic expansion (3.4.5) with

η =
1

x0
. (3.4.8)

Condition A is a condition that seems not to have a probabilistic interpretation.

Next we give a probabilistic condition for (3.4.5) to hold. This condition is in

terms of the one-step transition probabilities pij of the Markov chain.

Condition B (a) There is an integer r ≥ 0 such that pij depends on i and j only

through j − i when i ≥ r and j ≥ 1.

(b) There is an integer s ≥ 1 such that

pij = 0 for j > i + s and i ≥ 0.

(c) Letting αj−i denote pij for i ≥ r and 1 ≤ j ≤ i + s, the constants αk satisfy

αs > 0 and

s∑

k=−∞

kαk < 0.

Under Condition B the equilibrium equation for πj has the form

πj =

∞∑

k=j−s

αj−kπk for j ≥ r + s.

This is a homogeneous linear difference equation with constant coefficients. A stan-

dard method to solve such a linear difference equation is the method of particular

solutions. Substituting a solution of the form πj = wj in the equilibrium equations

for the πj with j ≥ r + s, we find the so-called characteristic equation

ws −

∞∑

ℓ=0

αs−ℓw
ℓ = 0. (3.4.9)
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This equation can be shown to have s roots in the interior of the unit circle |w| ≤

1. Assume now that the roots w1, . . . , ws are distinct (as is typically the case

in applications). Then, by a standard result from the theory of linear difference

equations, there are constants c1, . . . , cs such that

πj =

s∑

k=1

ckw
j

k j ≥ r. (3.4.10)

The root wk having the largest modulus must be real and positive. Why? Denoting

this root by η, the asymptotic expansion (3.4.5) then follows.

Example 3.1.3 (continued) The GI /M/1 queue

The Markov chain {Xn} describing the number of customers present just prior to

arrival epochs satisfies Condition B with

r = 0 and s = 1,

as directly follows from the one-step transition probabilities pij given in (3.1.2).

The constants αk are given by

αk =

∫ ∞

0
e−µt (µt)1−k

(1 − k)!
a(t) dt, k ≤ 1.

It is directly verified that α1 > 0 and
∑1

k=−∞ kαk = 1 − µ/λ < 0. Thus we can

directly conclude from (3.4.10) that the equilibrium probabilities πj are of the form

γ ηj for all j ≥ 0 for constants γ > 0 and 0 < η < 1. The characteristic equation

(3.4.9) coincides with the equation (3.3.15).

Next we give an application in which Condition A is used to establish the

asymptotic expansion (3.4.5).

Example 3.4.1 A discrete-time queueing model

Messages arrive at a communication system according to a Poisson process with

rate λ. The messages are temporarily stored in a buffer which is assumed to have

infinite capacity. There are c transmission channels. At fixed clock times t =

0, 1, . . . messages are taken out of the buffer and are synchronously transmitted.

Each channel can only transmit one message at a time. The transmission time of

a message is one time slot. Transmission of messages can only start at the clock

times t = 0, 1, . . . . It is assumed that

λ < c,

that is, the arrival rate of messages is less than the transmission capacity.
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To analyse this queueing model, define the random variable Xn by

Xn = the number of messages in the buffer (excluding any message

in transmission) just prior to clock time t = n.

Then {Xn, n = 0, 1, . . . } is a discrete-time Markov chain with the infinite state

space I = {0, 1, . . . }. The one-step transition probabilities are given by

pij = e−λ λj

j !
, 0 ≤ i < c and j = 0, 1, . . .

pij = e−λ λj−i+c

(j − i + c)!
, i ≥ c and j = i − c, i − c + 1, . . . .

By the assumption λ < c the Markov chain can be shown to satisfy Assump-

tion 3.3.1. Hence the equilibrium probabilities πj , j = 0, 1, . . . exist and are the

unique solution to the equilibrium equations

πj = e−λ λj

j !

c−1∑

k=0

πk +

c+j∑

k=c

e−λ λj−k+c

(j − k + c)!
πk, j = 0, 1, . . .

in conjunction with the normalizing equation
∑∞

j=0 πj = 1. Multiplying both sides

of the equilibrium equation for πj by zj and summing over j , we find

∞∑

j=0

πjz
j =

∞∑

j=0

e−λ λj

j !
zj

c−1∑

k=0

πk +

∞∑

j=0

zj

c+j∑

k=c

e−λ λj−k+c

(j − k + c)!
πk

= e−λ(1−z)
c−1∑

k=0

πk +

∞∑

k=c

πkz
k−c

∞∑

j=k−c

e−λ λj−k+c

(j − k + c)!
zj−k+c

= e−λ(1−z)

[
c−1∑

k=0

πk + z−c

(
∞∑

k=0

πkz
k −

c−1∑

k=0

πkz
k

)]
.

This gives

∞∑

j=0

πjz
j =

e−λ(1−z)
[∑c−1

k=0

(
zc − zk

)
πk

]

zc − e−λ(1−z)
, |z| ≤ 1.

The generating function
∑∞

j=0 πjz
j is the ratio of two functions N(z) and D(z).

Both functions can be analytically continued to the whole complex plane. The

denominator D(z) is indeed a nice function in an explicit form (the function N(z)

involves the unknowns π0, . . . , πc−1). Denote by x0 the unique solution of the
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equation

xc − e−λ(1−x) = 0

on the interval (1, ∞) and let η = 1/x0. Then it can be verified from Theorem C.1

in Appendix C that

πj ∼ γ ηj as j → ∞

for some constant γ > 0. Thus the geometric approach enables us to compute the

πj by solving a finite and relatively small system of linear equations.

3.4.3 Metropolis—Hastings Algorithm

In the context of stochastic networks, we will encounter in Chapter 5 Markov

chains with a multidimensional state space and having the feature that the equilib-

rium probabilities are known up to a multiplicative constant. However, the number

of possible states is enormous so that a direct calculation of the normalization con-

stant is not practically feasible. This raises the following question. Suppose that

π1, . . . , πN are given positive numbers with a finite sum S =
∑N

i=1 π i . How do

we construct a Markov chain whose equilibrium probabilities are given by πj/S

for j = 1, . . . , N? For ease of presentation, we restrict ourselves to N < ∞. To

answer the question, we need the concept of a reversible Markov chain. Let {Xn}

be a Markov chain with a finite state space I and one-step transition probabilities

pij . It is assumed that {Xn} has no two disjoint closed sets. Then the Markov chain

has a unique equilibrium distribution {πj }. Assume now that a non-null vector (gj ),

j ∈ I exists such that

gjpjk = gkpkj , j, k ∈ I. (3.4.11)

Then, for some constant c �= 0,

gj = cπj . (3.4.12)

The proof is simple. Fix j ∈ I and sum both sides of (3.4.11) over k. This gives

gj =
∑

k∈I

gkpkj , j ∈ I.

These equations are exactly the equilibrium equations of the Markov chain {Xn}.

Hence, by Theorem 3.3.2, we have that (3.4.12) holds. By (3.4.11) and (3.4.12),

πjpjk = πkpkj , j, k ∈ I. (3.4.13)

A Markov chain {Xn} having this property is called a reversible Markov chain. The

property (3.4.13) states that the long-run average number of transitions from state

j to state k per time unit is equal to the long-run average number of transitions

from state k to state j per time unit for all j, k ∈ I .
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Let us return to the problem of constructing a Markov chain with equilibrium

probabilities {πj = πj/S, j = 1, . . . , N} when π1, . . . , πN are given positive

numbers with a finite sum S. To do so, choose any Markov matrix M =
(
mij

)
,

i, j = 1, . . . , N with positive elements mij . Next construct a Markov chain {Xn}

with state space I = {1, . . . , N} and one-step transition probabilities

pij =





mij αij , j �= i,

mii αii +
N∑

k=1

mik (1 − αik ), j = i,

where the αij are appropriately chosen numbers between 0 and 1 with αii = 1 for

i = 1, . . . , N . The state transitions of the Markov chain {Xn} are governed by the

following rule: if the current state of the Markov chain {Xn} is i, then a candidate

state k is generated according to the probability distribution {mij , j = 1, . . . , N}.

The next state of the Markov chain {Xn} is chosen equal to the candidate state

k with probability αik and is chosen equal to the current state i with probability

1 − αik . By an appropriate choice of the αij , we have

πjpjk = πkpkj , j, k = 1, . . . , N, (3.4.14)

implying that the Markov chain {Xn} has the equilibrium distribution

πj = πj/

N∑

k=1

πk, j = 1, . . . , N. (3.4.15)

It is left to the reader to verify that (3.4.14) holds for the choice

αij = min

(
πjmji

π imij

, 1

)
, i, j = 1, . . . , N (3.4.16)

(use that αji = 1 if αij = πjmji /π imij ). Note that the sum S =
∑N

k=1 πk is not

needed to define the Markov chain {Xn}.

Summarizing, the following algorithm generates a sequence of successive states

of a Markov chain {Xn} whose equilibrium distribution is given by (3.4.15).

Metropolis—Hastings algorithm

Step 0. Choose a Markov matrix M = (mij ), i, j = 1, . . . , N with positive ele-

ments. Let X0 := i for some 1 ≤ i ≤ N and let n := 0.

Step 1. Generate a candidate state Y from the probability distribution P {Y = j} =

mXn,j for j = 1, . . . , N . If Y = k, then set Xn+1 equal to k with probability αXn,k

and equal to Xn with probability 1 − αXn,k, where the αij are given by (3.4.16).

Step 2. n := n + 1 and repeat step 1.
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For the generated sequence of successive states X0, X1, . . . , it holds that

lim
n→∞

1

n

n∑

k=0

f (Xk) =

N∑

j=1

f (j)πj with probability 1

for any given function f . Thus the Metropolis—Hastings algorithm can be used to

find performance measures of the Markov chain {Xn} such as the long-run average

cost per time unit when a cost structure is imposed on the Markov chain.

The most widely used version of the Metropolis—Hastings algorithm is the

Gibbs sampler. Suppose that (N1, . . . , Nd) is a d-dimensional stochastic vector

whose probability distribution

p(x1, . . . , xd) = P {N1 = x1, . . . , Nd = xd}

is known up to a multiplicative constant. This situation will be encountered in

Section 5.6 in the context of a closed queueing network. In this particular applica-

tion the univariate conditional distribution

P {Nk = xk|Nj = xj for j = 1, . . . , d with j �= k} (3.4.17)

is explicitly known for each k = 1, . . . , d. In order to apply the Gibbs sampler,

it is required that the univariate conditional distributions in (3.4.17) are known.

The Gibbs sampler generates a sequence of successive states (x1, . . . , xd) from a

Markov chain whose equilibrium distribution is given by p(x1, . . . , xd).

Gibbs sampler

Step 0. Choose an initial state x = (x1, . . . , xd).

Step 1. For the current state x choose a coordinate which is equally likely to be

any of the coordinates 1, . . . , d. If coordinate k is chosen, then generate a random

variable Y whose probability distribution is given by

P {Y = y} = P {Xk = y|Xj = xj for j = 1, . . . , d with j �= k}.

If Y = y, let the candidate state y = (x1, . . . , xk−1, y, xk+1, . . . , xd).

Step 2. The next state x = (x1, . . . , xd) is set equal to y. Repeat step 1 with this

new state x.

The Gibbs sampler uses the Metropolis—Hastings algorithm with the choice

mx,y =
1

d
P {Xk = y|Xj = xj for j = 1, . . . , d with j �= k}

for the Markov matrix M . It is not difficult to verify that for this choice the

acceptance probability αx,y is given by

αx,y = min

(
p(y)p(x)

p(x)p(y)
, 1

)
= 1.

Hence the candidate state is always accepted as the next state of the Markov chain.



THEORETICAL CONSIDERATIONS 119

3.5 THEORETICAL CONSIDERATIONS

In this section we give some background material. First the state classification of

Markov chains is discussed. Next we prove the results that were used earlier in the

analysis of the long-run behaviour of Markov chains.

3.5.1 State Classification

The concepts of a transient state and a recurrent state were introduced in Section 3.2

and the following lemma was proved for the Markov chain {Xn}.

Lemma 3.5.1 A state i is transient only if
∑∞

n=1 p
(n)
ii < ∞ and a state i is recur-

rent only if
∑∞

n=1 p
(n)
ii = ∞.

To analyse the transient states and recurrent states in more detail, we need the

concept of accessibility.

Definition 3.5.1 State j is said to be accessible from state i if p
(n)
ij > 0 for some

n ≥ 0. Two states i and j are said to communicate if j is accessible from i and i is

accessible from j .

Since p
(0)
ii = 1 by definition, we always have that any state i is accessible

from itself. It is convenient to write i → j if state j is accessible from state i.

The concept of communication enables us to split up the state space in a natural

way into disjoint closed sets of recurrent states and a set of transient states (for

the finite-state Markov chain an algorithm is given at the end of this subsection).

Recall that a non-empty set C of states is called a closed set if pij = 0 for i ∈ C

and j /∈ C. That is, the Markov chain cannot leave the set C once it is in the set

C. By definition the state space I is always a closed set. A closed set C is called

irreducible when the set C contains no smaller closed set.

Lemma 3.5.2 Let C be a closed set of states. The set C is irreducible if and only

if all states in C communicate with each other.

Proof For each i ∈ C, define the set S(i) by

S(i) = {j | i → j}.

The set S(i) is not empty since i → i. Since the set C is closed, we have S(i) ⊆ C.

First suppose that C is irreducible. The ‘only if’ part of the lemma then follows by

showing that S(i) = C for all i. To do so, it suffices to show that S(i) is closed.

Assume now to the contrary that S(i) is not closed. Then there is a state r ∈ S(i)

and a state s /∈ S(i) with prs > 0. Since r ∈ S(i) we have p
(n)
ir > 0 for some

n ≥ 0 and so p
(n+1)
is ≥ p

(n)
ir prs > 0; use relation (3.2.2). The inequality p

(n+1)
is > 0

contradicts the fact that s /∈ S(i). This completes the proof of the ‘only if’ part of
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the lemma. To prove the other part, assume to the contrary that C is not irreducible.

Then there is a closed set S ⊆ C with S �= C. Choose i ∈ S and let the set S(i) be

as above. Since S is closed, we have S(i) ⊆ S. Hence S(i) �= C, which contradicts

the assumption that all states in C communicate.

We are now able to prove the following interesting theorem.

Theorem 3.5.3 (a) Let C be an irreducible set of states. Then either all states in

C are recurrent or all states in C are transient.

(b) Let C be an irreducible set consisting of recurrent states. Then fij = 1 for all

i, j ∈ C. Moreover, either µjj < ∞ for all j ∈ C or µjj = ∞ for all j ∈ C.

Proof (a) By Lemma 3.5.1, state i is transient if and only if
∑∞

n=1 p
(n)
ii < ∞.

Choose now i, j ∈ C with j �= i. By Lemma 3.5.2 we have that the states i and j

communicate. Hence there are integers v ≥ 1 and w ≥ 1 such that p
(v)
ij > 0 and

p
(w)
ji > 0. Next observe that for any n ≥ 0,

p
(n+v+w)
ii ≥ p

(v)
ij p

(n)
jj p

(w)
ji and p

(n+v+w)
jj ≥ p

(w)
ji p

(n)
ii p

(v)
ij . (3.5.1)

These inequalities imply that
∑∞

n=1 p
(n)
jj < ∞ if and only if

∑∞
n=1 p

(n)
ii < ∞. This

proves part (a). In fact the proof shows that i → j and j → i implies that both

states i and j are recurrent or that both states i and j are transient.

(b) Since the states of C are recurrent, we have by definition that fii = 1 for all

i ∈ C. Choose now i, j ∈ C with j �= i. By Lemma 3.5.2 j → i. Hence there is

an integer m ≥ 1 with p
(m)
ji > 0. Let r be the smallest integer m ≥ 1 for which

p
(m)
ji > 0. Then

1 − fjj = P {Xn �= j for all n ≥ 1 | X0 = j} ≥ p
(r)
ji (1 − fij ).

Since fjj = 1, we get from this inequality that fij = 1. The inequalities in (3.5.1)

imply that the sequence {p
(k)
ii , k ≥ 1} has a positive Cesaro limit if and only if the

sequence {p
(k)
jj , k ≥ 1} has a positive Cesaro limit. It now follows from (3.3.1) in

Theorem 3.3.1 that µjj < ∞ if and only if µii < ∞.

Theorem 3.5.4 Let R be the set of recurrent states of the Markov chain. Suppose

that the set R is not empty. Then

(a) the set R is a closed set,

(b) the set R can be uniquely split into disjoint irreducible subsets R1, R2, . . .

(called recurrent subclasses).

Proof (a) Choose any state r ∈ R. Let s be any state such that prs > 0. The set

R is closed if we can show that s ∈ R. Since state r is recurrent and state s is

accessible from state r , state r must also be accessible from state s. If not, there
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would be a positive probability of never returning to state r , contradicting the fact

that state r is recurrent. Hence there is a positive integer v such that p
(v)
sr > 0. For

any integer k,

p(v+k+1)
ss ≥ p(v)

sr p(k)
rr prs ,

implying that
∑∞

n=1 p
(n)
ss ≥ p

(v)
sr prs

∑∞
k=1 p

(k)
rr . Since state r is recurrent, it now

follows from Lemma 3.5.1 that state s is recurrent. Hence s ∈ R.

(b) We first observe that the following two properties hold:

(P1) If state i communicates with state j and state i communicates with state k,

then the states j and k communicate.

(P2) If state j is recurrent and state k is accessible from state j , then state j is

accessible from state k.

The first property is obvious. The second property was in fact proved in part (a).

Define now for each i ∈ R the set C(i) as the set of all states j that communicate

with state i. The set C(i) is not empty since i communicates with itself by definition.

Further, by part (a), C(i) ⊆ R. To prove that the set C(i) is closed, let j ∈ C(i)

and let k be any state with pjk > 0. Then we must verify that i → k and k → i.

From i → j and j → k it follows that i → k. Since j → i, the relation k → i

follows when we can verify that k → j . The relation k → j follows directly

from property P2, since j is recurrent by the proof of part (a) of Theorem 3.5.3.

Moreover, the foregoing arguments show that any two states in C(i) communicate.

It now follows from Lemma 3.5.2 that C(i) is an irreducible set. Also, using the

properties P1 and P2, it is readily verified that C(i) = C(j) if i and j communicate

and that C(i) ∩ C(j) is empty otherwise. This completes the proof of part (b).

Definition 3.5.2 Let i be a recurrent state. The period of state i is said to be d if

d is the greatest common divisor of the indices n ≥ 1 for which p
(n)
ii > 0. A state i

with period d = 1 is said to be aperiodic.

Lemma 3.5.5 (a) Let C be an irreducible set consisting of recurrent states. Then

all states in C have the same period.

(b) If state i is aperiodic, then there is an integer n0 such that p
(n)
ii > 0 for all

n ≥ n0.

Proof (a) Denote by d(k) the period of state k ∈ C. Choose i, j ∈ C with j �= i.

By Lemma 3.5.2 we have i → j and j → i. Hence there are integers v, w ≥ 1

such that p
(v)
ij > 0 and p

(w)
ji > 0. Let n be any positive integer with p

(n)
jj > 0. Then

the first inequality in (3.5.1) implies that p
(n+v+w)
ii > 0 and so n+v+w is divisible

by d(i). Thus we find that n is divisible by d(i) whenever p
(n)
jj > 0. This implies

that d(i) ≤ d(j). For reasons of symmetry, d(j) ≤ d(i). Hence d(i) = d(j) which

verifies part (a).

(b) Let A = {n ≥ 1 | p
(n)
ii > 0}. The index set A is closed in the sense that

n + m ∈ A when n ∈ A and m ∈ A. This follows from p
(n+m)
ii ≥ p

(n)
ii p

(m)
ii . Since
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state i is aperiodic, there are integers a ∈ A and b ∈ A whose greatest common

divisor is equal to 1. An elementary result in number theory states that there exist

integers r and s such that gcd (a, b) = ar + bs. The integers r and s are not

necessarily non-negative. Let p and q be any positive integers such that both p and

q are larger than a×max(|r|, |s|). Take m = pa+qb. Since m+a = (p+1)a+qb,

part (b) of the lemma follows by proving that m + k ∈ A for k = 0, . . . , a − 1.

We then have p
(n)
ii > 0 for all n ≥ m. Noting that ar + bs = 1, it follows that

m + k = pa + qb + k(ar + bs) = (p + kr)a + (q + ks)b. The integers p + kr

and q + ks are positive. Hence, by the closedness of A, the integers (p + kr)a and

(q + ks)b belong to A and so the integer m + k ∈ A for any k = 0, . . . , a − 1.

Finite state space

There are a number of basic results that hold for finite-state Markov chains but not

for Markov chains with infinitely many states. In an infinite-state Markov chain

it may happen that there is no recurrent state, as is demonstrated by the Markov

chain example with state space I = {1, 2, . . . } and one-step transition probabilities

with pi,i+1 = 1 for all i ≥ 1. In this example all states are transient. The next

lemma shows that a finite-state Markov chain always has recurrent states.

Lemma 3.5.6 Each finite closed set of states has at least one recurrent state.

Proof Let C be a closed set of states. Then, for any i ∈ C,

∑

j∈C

p
(n)
ij = 1, n = 1, 2, . . . . (3.5.2)

Assume now that all states j ∈ C are transient. In Lemma 3.2.3 it was shown that

limn→∞ p
(n)
ij = 0 for all i ∈ I if state j is transient. Let n → ∞ in (3.5.2). By the

finiteness of C, it is permissible to interchange the order of limit and summation.

Hence we obtain the contradiction 0 = 1 when all states in C are transient. This

ends the proof.

In most applications the Markov chain has no two disjoint closed sets (usually

there is a state that is accessible from any other state). The next theorem summarizes

a number of useful results for finite-state Markov chains having no two disjoint

closed sets.

Theorem 3.5.7 Let {Xn} be a finite-state Markov chain. Suppose that the Markov

chain has no two disjoint closed sets. Denote by R the set of recurrent states. Then

(a) fij = 1 for all i ∈ I and j ∈ R.

(b) µij < ∞ for all i ∈ I and j ∈ R, where the mean first-passage times µij are

defined by µij =
∑∞

n=1 nf
(n)
ij .
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(c) If the recurrent states are aperiodic, then there is an integer ν ≥ 1 such that

p
(ν)
ij > 0 for all i ∈ I and j ∈ R.

Proof Since the Markov chain has no two disjoint closed sets, the closed set R of

recurrent states is irreducible by Theorem 3.5.4. Hence, by Lemma 3.5.2, any two

states in R communicate with each other. This implies that for any i, j ∈ R there

is an integer n ≥ 1 such that p
(n)
ij > 0. Next we prove that for any i ∈ I and j ∈ R

there is an integer n ≥ 1 such that p
(n)
ij > 0. To verify this, assume to the contrary

that there is a transient state i ∈ I such that no state j ∈ R is accessible from i.

Then there is a closed set that contains i and is disjoint from R. This contradicts

the assumption that the Markov chain has no two disjoint closed sets. Hence for

any transient state i ∈ R there is a state j ∈ R that is accessible from i. Thus any

state j ∈ R is accessible from any i ∈ I , since any two states in R communicate

with each other.

To verify parts (b) and (c), define under the condition X0 = i the random variable

Nij by

Nij = min{n ≥ 1 | Xn = j}.

Fix now j ∈ R. For each i ∈ I , let ri be the smallest positive integer n for which

p
(n)
ij > 0. Define

r = max
i∈I

ri and ρ = min
i∈I

p
(ri )
ij .

Since I is finite, we have r < ∞ and ρ > 0. Next observe that

P {Nij > r} ≤ P {Nij > ri} = 1 − p
(ri )
ij ≤ 1 − ρ, i ∈ I.

Thus, for any i ∈ I ,

P {Nij > kr} ≤ (1 − ρ)k, k = 0, 1, . . . .

Since the probability P {Nij > n} is decreasing in n and converges to 0 as n → ∞,

it follows from 1 − fij = limn→∞ P {Nij > n} that fij = 1. Since P {Nij > n} is

decreasing in n, we also obtain

µij =

∞∑

n=0

P {Nij > n} = 1 +

∞∑

k=1

rk∑

ℓ=r(k−1)+1

P {Nij > ℓ}

≤ 1 +

∞∑

k=1

r(1 − ρ)k,

showing that µij < ∞. This completes the proof of part (b).

It remains to prove (c). Fix i ∈ I and j ∈ R. As shown above, there is an integer

v ≥ 1 such that p
(v)
ij > 0. By part (b) of Lemma 3.5.5 there is an integer n0 ≥ 1

such that p
(n)
jj > 0 for all n ≥ n0. Hence, by p

(v+n)
ij ≥ p

(v)
ij p

(n)
jj , it follows that
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p
(n)
ij > 0 for all n ≥ v + n0. Using the finiteness of I , part (c) of the theorem now

follows.

Appendix: The Fox—Landi algorithm for state classification

In a finite-state Markov chain the state space can be uniquely split up into a finite

number of disjoint recurrent subclasses and a (possibly empty) set of transient

states. A recurrent subclass is a closed set in which all states communicate. To

illustrate this, consider a Markov chain with five states and the following matrix

P = (pij ) of one-step transition probabilities:

P =




0.2 0.8 0 0 0

0.7 0.3 0 0 0

0.1 0 0.2 0.3 0.4

0 0.4 0.3 0 0.3

0 0 0 0 1




.

For such small examples, a state diagram is useful for doing the state classification.

The state diagram uses a Boolean representation of the pij . An arrow is drawn from

state i to state j only if pij > 0. The state diagram is given in Figure 3.5.1. By

inspection it is seen that the set of transient states is T = {3, 4} and the set of

recurrent states is R = {1, 2, 5}. The set R of recurrent states can be split into two

disjoint recurrent subclasses R1 = {1, 2} and R2 = {5}. State 5 is absorbing.

This example was analysed by visual inspection. In general it is possible to give a

systematic procedure for identifying the transient states and the recurrent subclasses

in a finite-state Markov chain. The Fox—Landi algorithm (Fox and Landi 1968)

first transforms the one-step transition matrix P = (pij ) into a Boolean matrix

B = (bij ) by

bij =

{
1 if pij > 0,

0 otherwise.

1 3

4

5

2

Figure 3.5.1 The state diagram for a Markov chain
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The states are numbered or renumbered as i = 1, . . . , N . The algorithm uses the

following four rules:

(a) State i is absorbing if and only if bii = 1 and bij = 0 for j �= i.

(b) If state j is absorbing and bij = 1, then state i is transient.

(c) If state j is transient and bij = 1, then state i is transient.

(d) If state i communicates with state j and state j communicates with state k,

then state i communicates with state k.

The goal of the algorithm is to find all recurrent subclasses and the set of transient

states. The algorithm rules (a), (b), (c) and (d). In particular, make repeated use of

rule (d) is used to reduce the size of the Boolean matrix B whenever possible. The

algorithm works using the following steps:

Step 1. Initialize the set T (i) := {i} for any state i. Find all absorbing states by

using rule (a) and classify T (i) = {i} as a recurrent subclass for each absorbing

state i. Classify any state i such that bij = 1 for some absorbing state j as a

transient state.

Step 2. If all states are classified, then stop; otherwise, go to step 3.

Step 3. Take an unclassified state i0. Since state i0 is not absorbing, there is another

state i1 (say) that can be reached from state i0 in one step (i.e. bi0i1 = 1). Continuing

in this way, construct a chain of states i0, i1, . . . until one of the following two

exclusive possibilities occurs:

• A transient state is is found. Then all states in T (i0) ∪ T (i1) ∪ . . . ∪ T (is−1) are

classified as transient according to rule (c).

• A state is is found that was already encountered during the development of the

chain, i.e. is = ir for some r < s. Go to step 4.

Step 4. The circuit of communicating states ir , . . . , is is replaced by a single aggre-

gated state ir and the Boolean matrix B is adjusted accordingly. This is done as

follows:

• Replace column ir by the union of the columns ir , . . . , is−1 and replace row ir
by the union of the rows ir , . . . , is−1 (the union of two Boolean vectors x and y

to a Boolean vector z is defined by zi = 0 if xi = yi = 0 and zi = 1 otherwise).

• Delete the row ik and the column ik for k = r + 1, . . . , s − 1.

• Let T (ir ) := T (ir ) ∪ T (ir+1) ∪ . . . ∪ T (is−1).

Having done this, there are two possibilities:

• State ir is absorbing for the new Boolean matrix B. Then T (ir ) is classified as

a recurrent subclass of states. Classify any state that can reach the set T (ir ) in

one step as a transient state (rule (b)). Go to step 2.
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• State ir is not absorbing. Then there exists a state j with birj = 1. Go to step 3

and continue the chain i0, . . . , ir for the new Boolean matrix.

3.5.2 Ergodic Theorems

The theoretical analysis of Markov chains is much more subtle for the case of

infinitely many states than for the case of finitely many states. A finite-state Markov

chain is always a regenerative process with a finite mean cycle length. This is not

true for infinite-state Markov chains. Recall the example with I = {1, 2, . . . }

and pi,i+1 = 1 for all i ∈ I and recall the example of the symmetric random

walk with I = {0, ±1, ±2, . . . } and pi,i+1 = pi,i−1 = 1
2 for all i. In the first

example the Markov chain is not regenerative, while in the other example the

Markov chain is regenerative but has an infinite mean cycle length. In practical

applications these pathological situations occur very rarely. Typically there is a

positive recurrent state that will ultimately be reached from any other state with

probability one. We therefore restrict our theoretical analysis to Markov chains

which satisfy Assumption 3.3.1. Let R denote the set of recurrent states of the

Markov chain {Xn}. We first prove the following lemma.

Lemma 3.5.8 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.

Then the set R is not empty and is an irreducible set consisting of positive recurrent

states. For any j ∈ R, it holds that fij = 1 for all i ∈ I and µjj < ∞.

Proof The regeneration state r from Assumption 3.3.1 is recurrent and so R is

not empty. Since fir = 1 for all i ∈ I , the Markov chain {Xn} has no two disjoint

closed sets. Hence, by Theorem 3.5.4, the set R is an irreducible set of recurrent

states. Since µrr < ∞, it follows from part (b) of Theorem 3.5.3 that µjj < ∞ for

all j ∈ R. In other words, each state j ∈ R is positive recurrent. Also, by part (b)

of Theorem 3.5.3, frj = 1 for all j ∈ R. Together with the assumption fir = 1 for

all i this implies fij = 1 for all i when j ∈ R. This ends the proof.

Define now the probabilities πj by

πj = lim
n→∞

1

n

n∑

k=1

p
(k)
jj , j ∈ I . (3.5.3)

In Theorem 3.3.1 it was shown that these limits exist. Under Assumption 3.3.1,

we have

lim
n→∞

1

n

n∑

k=1

p
(k)
ij = πj , i, j ∈ I (3.5.4)

and

πj =
1

µjj

> 0, j ∈ R (3.5.5)
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(all states in R are positive recurrent). These results follow directly from Theo-

rem 3.3.1 by noting that πj = 0 when j is transient and fij = 1 for all i ∈ I when

j is recurrent. We are now able to prove a main result.

Theorem 3.5.9 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.

Then the probabilities πj , j ∈ I defined by (3.5.3) constitute the unique equilibrium

distribution of the Markov chain. Moreover, letting {xj , j ∈ I } with
∑

j |xj | < ∞

be any solution to the equilibrium equations

xj =
∑

k∈I

xkpkj , j ∈ I, (3.5.6)

it holds that, for some constant c, xj = cπj for all j ∈ I .

Proof We first show that the πj satisfy (3.5.6) and

∑

j∈I

πj = 1. (3.5.7)

To do so, we use the relation (3.2.1) for the n-step transition probabilities. Averaging

this relation over n, we obtain for any m ≥ 1

1

m

m∑

n=1

p
(n+1)
ij =

1

m

m∑

n=1

∑

k∈I

p
(n)
ik

pkj

=
∑

k∈I

(
1

m

m∑

n=1

p
(n)
ik

)
pkj , j ∈ I, (3.5.8)

where the interchange of the order of summation is justified by the non-negativity

of the terms. Next let m → ∞ in (3.5.8). On the right-hand side of (3.5.8) it is not

allowed to interchange limit and summation (except when I is finite). However,

we can apply Fatou’s lemma from Appendix A. Using (3.5.4), we find

πj ≥
∑

k∈I

πkpkj , j ∈ I.

Next we conclude that the equality sign must hold in this relation for each j ∈ I ,

otherwise we would obtain the contradiction

∑

j∈I

πj >
∑

j∈I

(∑

k∈I

πkpkj

)
=

∑

k∈I

πk

∑

j∈I

pkj =
∑

k∈I

πk.

We have now verified that the πj satisfy the equilibrium equations (3.5.6). The

equation (3.5.7) cannot be directly concluded from
∑

j∈I p
(n)
ij = 1 for all n ≥ 1.
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However, by letting m → ∞ in

1 =
1

m

m∑

n=1


∑

j∈I

p
(n)
ij


 =

∑

j∈I

(
1

m

m∑

n=1

p
(n)
ij

)

and using Fatou’s lemma from Appendix A, we can conclude that
∑

j∈I

πj ≤ 1. (3.5.9)

Since the set R of recurrent states is not empty, we have by (3.5.5) that
∑

j∈I

πj > 0. (3.5.10)

Next we prove that the solution to the equilibrium equations (3.5.6) is uniquely

determined up to a multiplicative constant. As a by-product of this proof we will

find that
∑

j∈I πj must be equal to 1. Let {xj } with
∑

|xj | < ∞ be any solution

to the equation (3.5.6). Substituting this equation into itself, we find

xj =
∑

k∈I

(∑

ℓ∈I

xℓpℓk

)
pkj =

∑

ℓ∈I

xℓ

∑

k∈I

pℓkpkj

=
∑

ℓ∈I

xℓp
(2)
ℓj , j ∈ I,

where the interchange of the order of summation in the second equality is jus-

tified by Theorem A.1 in Appendix A. By repeated substitution we find xj =∑
ℓ∈I xℓp

(n)
ℓj , j ∈ I for all n ≥ 1. Averaging this equation over n, we find

after an interchange of the order of summation (again justified by Theorem A.1 in

Appendix A) that

xj =
∑

ℓ∈I

xℓ

(
1

m

m∑

n=1

p
(n)
ℓj

)
, j ∈ I and m ≥ 1.

Letting m → ∞ and using (3.5.4) together with the bounded convergence theorem

from Appendix A, it follows that

xj = πj

∑

ℓ∈I

xℓ, j ∈ I.

This proves that any solution to (3.5.6) is uniquely determined up to a multiplicative

constant. Summing both sides of the latter equation over j , we find

∑

j∈I

xj =


∑

j∈I

πj




(∑

ℓ∈I

xℓ

)
.
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Taking xj = πj for all j and using (3.5.10), it follows that
∑

j∈I πj = 1. This ends

the proof.

Though we are mainly concerned with the Cesaro limit of the n-step transition

probabilities, we also state a result about the ordinary limit. If the regeneration

state r from Assumption 3.3.1 is aperiodic, then by Theorem 2.2.4, limn→∞ p
(n)
rj

exists for all j . From this result it is not difficult to obtain that

lim
n→∞

p
(n)
ij = πj , i, j ∈ I (3.5.11)

when the positive recurrent state r from Assumption 3.3.1 is aperiodic.

Before giving the remaining proof of Theorem 3.3.2, we give an interesting

interpretation of the ratio πi/πj for two recurrent states i and j .

Lemma 3.5.10 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.

Then for any two recurrent states s and ℓ

E(number of visits to state ℓ between two successive visits to state s) =
πℓ

πs

.

Proof Fix states ℓ, s ∈ R. The Markov chain can be considered as a regenerative

process with the epochs at which the process visits state s as regeneration epochs.

Defining a cycle as the time elapsed between two successive visits to state s, it

follows from the definition of the mean recurrence time µss that

E(length of one cycle) = µss .

By Lemma 3.5.8 the mean cycle length µss is finite. Imagine that the Markov chain

earns a reward of 1 each time the process visits state ℓ. Assuming that the process

starts in state s, we have by the renewal-reward theorem from Chapter 2 that

the long-run average reward per time unit

=
E(reward earned during one cycle)

E(length of one cycle)

=
1

µss

E(number of visits to state ℓ in one cycle) (3.5.12)

with probability 1. On the other hand,

the long-run average reward per time unit

= the long-run average number of visits to state ℓ per time unit.

In the proof of Theorem 3.3.1 we have seen that

the long-run average number of visits to state ℓ per time unit

= πℓ with probability 1 (3.5.13)
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when X0 = ℓ. However, this result also holds when the Markov chain starts in state

s. To see this, define the indicator variable Ik equal to 1 if Xk = ℓ and Ik equal to

0 otherwise. Let ω = (s, i1, i2, . . . ) be any realization of the Markov chain with

ik denoting the realized state at the kth state transition. Since fsℓ = 1, we have

for almost all ω that there is a finite integer t = t (ω) such that it = ℓ. Hence, for

n > t(ω),

1

n

n∑

k=1

Ik(ω) =
1

n

t (ω)∑

k=1

Ik(ω) +
1

n

n∑

k=t (ω)+1

Ik(ω).

Letting n → ∞, the first term on the right-hand side of this equation converges

to zero and the second term converges to πℓ. This proves that (3.5.13) also holds

when X0 = s. Together (3.5.12), (3.5.13) and the relation 1/µss = πs yield

πℓ = πsE(number of visits to state ℓ in one cycle),

which proves the desired result.

In Example 3.1.3, dealing with the GI/M/1 queue, we tried a solution of the

form πj = γ τ j , j ≥ 0 for the equilibrium distribution of the Markov chain

{Xn} describing the number of customers present just prior to the arrival epochs.

This geometric form can be proved by using Lemma 3.5.10. Since the arrival rate

is less than the service rate, Assumption 3.3.1 is satisfied with the regeneration

state 0. Since any two states of the Markov chain {Xn} communicate, it follows

from Lemma 3.5.2 and Theorem 3.5.3 that the state space I is an irreducible set

consisting of (positive) recurrent states. Hence, by Lemma 3.5.10, we have for the

GI/M/1 queue that

E(number of visits to state j + 1 between two successive returns to state j)

=
πj+1

πj

for j = 0, 1, . . . . (3.5.14)

Some reflections show that the left-hand side of this equation is independent of j

by the memoryless property of the exponential distribution for the service times.

Hence, for some constant η, πj+1/πj = η for all j ≥ 0 showing that πj = π0η
j

for j ≥ 0.

Next we prove Theorem 3.3.3. The proof is very similar to that of Lemma 3.5.10.

Assume that the Markov chain earns a reward f (j) each time it visits state j .

Theorem 3.5.11 Suppose that the Markov chain {Xn} satisfies the Assumptions

3.3.1 and 3.3.2. Then

lim
n→∞

1

n

n∑

k=1

f (Xk) =
∑

j∈I

f (j)πj with probability 1

for each initial state X0 = i.
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Proof Assume first that the initial state of the process is the regeneration state r

from Assumptions 3.3.1 and 3.3.2. The Markov chain can be seen as a regenerative

process with the epochs at which the process visits state r as regeneration epochs.

Define a cycle as the time elapsed between two successive visits to state r . The

expected cycle length equals the mean recurrence time µrr and is finite. By the

renewal-reward theorem from Chapter 2,

lim
n→∞

1

n

n∑

k=1

f (Xk) =
E(reward earned during one cycle)

E(length of one cycle)

with probability 1. Lemma 3.5.10 states that E (number of visits to state j in one

cycle) = πj/πr for any recurrent state j . This relation is also valid for a transient

state j , since a transient state is not accessible from a recurrent state and πj = 0

for j transient. Hence

E(reward earned during one cycle) =
∑

j∈I

f (j)
πj

πr

.

Since E(length of one cycle) = µrr = 1/πr by (3.5.5), the assertion of the theorem

is now proved when X0 = r . Take next any initial state X0 = i. As in the proof

of Lemma 3.5.10, let ω = (i0, i1, i2, . . . ) be any realization of the Markov chain

with i0 = i and let ik denote the realized state at the kth state transition. Since

fir = 1, we have for almost all ω that there is a finite integer t = t (ω) such that

it = r . Hence

1

n

n∑

k=1

f (Xk(ω)) =
1

n

t (ω)∑

k=1

f (Xk(ω)) +
1

n

n∑

k=t (ω)+1

f (Xk(ω)).

Letting n → ∞, it follows from part (b) of Assumption 3.3.2 that the first term

on the right-hand side of the equation tends to zero, while by the above proof the

second term converges to
∑

j∈I f (j)πj . This completes the proof.

Markov’s proof and exponential convergence

It is interesting to examine the original proof of Markov (1906) for the existence

of a limiting distribution in a finite-state Markov chain. The proof is not just of

historical interest and the ideas it uses are still very much alive. The proof also

establishes the rate of convergence to the limiting distribution. An aperiodic finite-

state Markov chain with no two disjoint closed sets is assumed. The Markov chain

is said to be aperiodic when the period of the recurrent states is equal to 1; see

Lemma 3.5.5.

Theorem 3.5.12 Let {Xn} be a finite-state Markov chain with no two disjoint

closed sets. Suppose that the Markov chain is aperiodic. Then there exists a proba-

bility distribution {πj , j ∈ I } and numbers α > 0 and 0 < β < 1 such that for all
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i, j ∈ I ,

|p
(n)
ij − πj | ≤ αβn, n = 1, 2, . . . .

In particular,

lim
n→∞

p
(n)
ij = πj , i, j ∈ I.

Proof Let s be any recurrent state of the Markov chain. Since the Markov chain

is aperiodic, we have by part (c) of Theorem 3.5.7 that there exists an integer

ν ≥ 1 and a number ρ > 0 such that

p
(ν)
is ≥ ρ i ∈ I.

For any j ∈ I , define the sequences {M
(n)
j , n ≥ 0} and {m

(n)
j , n ≥ 0} by

M
(n)
j = max

i∈I
p

(n)
ij and m

(n)
j = min

i∈I
p

(n)
ij .

Note that M
(0)
j = 1 and m

(0)
j = 0. Applying relation (3.2.2), we find

M
(n+1)
j = max

i∈I

∑

k∈I

pik p
(n)

kj
≤ max

i∈I

∑

k∈I

pik M
(n)
j = M

(n)
j max

i∈I

∑

k∈I

pik ,

and so, for any j ∈ I ,

M
(n+1)
j ≤ M

(n)
j , n = 0, 1, . . . .

Similarly, we find for any j ∈ I that

m
(n+1)
j ≥ m

(n)
j , n = 0, 1, . . . .

Since the sequences {M
(n)
j } and {m

(n)
j } are bounded and monotone, they have finite

limits. Next we establish the inequality

0 ≤ M
(n)
j − m

(n)
j ≤ (1 − ρ)[M

(n−ν)
j − m

(n−ν)
j ], n ≥ ν (3.5.15)

for any j ∈ I . Suppose for the moment that we have proved this inequality. A

repeated application of the inequality shows that

0 ≤ M
(n)
j − m

(n)
j ≤ (1 − ρ)[n/ν](M

(0)
j − m

(0)
j ), n = 0, 1, . . . , (3.5.16)

where [x] denotes the largest integer contained in x. Here we used the fact that

M
(n)
j −m

(n)
j is decreasing in n. By (3.5.16), we have that the limits of the monotone

sequences {M
(n)
j } and {m

(n)
j } coincide. Denote the common limit by πj . Hence

lim
n→∞

M
(n)
j = lim

n→∞
m

(n)
j = πj .
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Using the inequalities m
(n)
j ≤ p

(n)
ij ≤ M

(n)
j and m

(n)
j ≤ πj ≤ M

(n)
j , we find

|p
(n)
ij − πj | ≤ M

(n)
j − m

(n)
j , n = 0, 1, . . . (3.5.17)

for any i, j ∈ I . Together the inequalities (3.5.16) and (3.5.17) yield the assertion

of the theorem except that we have still to verify that {πj } represents a probability

distribution. Obviously, the πj are non-negative. Since
∑

j∈I p
(n)
ij = 1 for all n and

p
(n)
ij → πj as n → ∞, we obtain from the finiteness of I that the πj sum to 1.

It remains to verify (3.5.15). To do so, fix j ∈ I and n ≥ ν. Let x and y be the

states for which M
(n)
j = p

(n)
xj and m

(n)
j = p

(n)
yj . Then

0 ≤ M
(n)
j − m

(n)
j = p

(n)
xj − p

(n)
yj =

∑

k∈I

p
(ν)
xk

p
(n−ν)
kj

−
∑

k∈I

p
(ν)
yk

p
(n−ν)
kj

=
∑

k∈I

{p
(ν)
xk

− p
(ν)
yk

}p
(n−ν)
kj

=
∑

k∈I

{p
(ν)
xk

− p
(ν)
yk

}+ p
(n−ν)

kj
−

∑

k∈I

{p
(ν)

xk
− p

(ν)

yk
}− p

(n−ν)

kj
,

where a+ = max(a, 0) and a− = − min(a, 0). Hence, by a+, a− ≥ 0,

0 ≤ M
(n)
j − m

(n)
j ≤

∑

k∈I

{p
(ν)
xk

− p
(ν)
yk

}+M
(n−ν)
j −

∑

k∈I

{p
(ν)
xk

− p
(ν)
yk

}−m
(n−ν)
j

=
∑

k∈I

{p
(ν)
xk

− p
(ν)
yk

}+[M
(n−ν)
j − m

(n−ν)
j ],

where the last equality uses the fact that
∑

k a+
k =

∑
k a−

k if
∑

k ak = 0. Using

the relation (a − b)+ = a − min(a, b), we next find

0 ≤ M
(n)
j − m

(n)
j ≤

[
1 −

∑

k∈I

min(p
(ν)
xk

, p
(ν)
yk

)

] [
M

(n−ν)
j − m

(n−ν)
j

]
.

Since p
(ν)
is ≥ ρ for all i, we find

1 −
∑

k∈I

min(p
(ν)
xk

, p
(ν)
yk

) ≤ 1 − min(p(ν)
xs , p(ν)

ys ) ≤ 1 − ρ,

which implies the inequality (3.5.15). This completes the proof.

Exponential convergence of the n-step transition probabilities does not hold in

general for an infinite-state Markov chain. Strong recurrence conditions should be

imposed to establish exponential convergence in infinite-state Markov chains.



134 DISCRETE-TIME MARKOV CHAINS

EXERCISES

3.1 A production machine has two crucial parts which are subject to failures. The two parts
are identical. The machine works as long as one of the two parts is functioning. A repair is
done when both parts have failed. A repair takes one day and after each repair the system is
as good as new. An inspection at the beginning of each day reveals the exact condition of
each part. If at the beginning of a day both parts are in good condition, then at the end of the
day both parts are still in good condition with probability 0.50, one of them is broken down
with probability 0.25 and both are broken down with probability 0.25. If at the beginning
of the day only one part is in good condition, this part is still in good condition at the end
of the day with probability 0.50. Define a Markov chain to describe the functioning of the
machine and specify the one-step transition probabilities.

3.2 To improve the reliability of a production system, two identical production machines are
connected in parallel. For the production process only one of the machines is used; the other
machine is standby. At the end of the day the used machine is inspected. Regardless how
long the machine has already been in uninterrupted use, the probability that an inspection

reveals the necessity for revision is 1
10 . A revision takes exactly two days. During the revision

the other machine takes over the production if that machine is available. The production
process must be stopped when both machines are in revision. Assuming that there are two
repairmen, define an appropriate Markov chain to describe the functioning of the production
system and specify the one-step transition probabilities of the Markov chain.

3.3 Containers are temporarily stored at a stockyard with ample capacity. At the beginning
of each day precisely one container arrives at the stockyard. Each container stays a certain
amount of time at the stockyard before it is removed. The residency times of the contain-
ers are independent of each other. Specify for each of the following two cases the state
variable(s) and the one-step transition probabilities of a Markov chain that can be used to
analyse the number of containers present at the stockyard at the end of each day.

(a) The residency time of a container is exponentially distributed with a mean of 1/µ
days.

(b) The residency time of a container has an exponential distribution whose mean is 1/µ1
days with probability p and is 1/µ2 days with probability 1 − p.

3.4 Two teams, A and B, meet each other in a series of games until either of the teams has
won three games in a row. Each game results in a win for either of the teams (no draw is
possible). The outcomes of the games are independent of each other. Define an appropriate
Markov chain to determine the probability distribution of the length of the match when the
two teams are equally strong.

3.5 Consider Exercise 3.4 again, but assume now that team A wins a given game with a

probability larger than 1
2 .

(a) Use Markov chain analysis to determine the probability distribution of the length of
the match. Explain how to calculate the probability that team A wins the match.

(b) Explain how to modify the Markov chain analysis when a draw between the teams is
possible with positive probability?

3.6 You play the following game. A fair coin is flipped until heads appears three times in a
row. You get $12 each time this happens, but you have to pay $1 for each flip of the coin.
Use Markov chain analysis to find out whether this game is fair.

3.7 Consider the following variant of the coupon-collecting problem. A fair die is thrown
until each of the six possible outcomes 1, 2, . . . , 6 has appeared. Use a Markov chain with
seven states to calculate the probability distribution of the number of throws needed.

3.8 The gambler Joe Dalton has $100 and his goal is to double this amount. Therefore he
plays a gambling game in which he loses his stake with probability 0.60, but wins two or
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three times his stake with respective probabilities 0.25 and 0.15. His strategy is to bet $5 each
time his payroll is more than $50 dollars and $10 otherwise. Define an appropriate Markov
chain to compute the probability that Joe reaches his goal. Also calculate the expected
number of bets placed by Joe until he has gone broke or reached his goal.

3.9 A training program consists of three parts, each having a length of one month. Fifty
percent of the starting students immediately pass the first part after one month, 30% drop
out before the end of the first month and 20% take the first part again. Seventy percent
of the last group pass the first part after a second trial and the other 30% still drop out.
Eighty percent of the students taking the second part pass this second part after the first
trial, 10% drop out after the first trial and the other 10% move on after a second trial of the
first part. Any student streaming into the third part of the training program will complete it
successfully. Calculate the probability that a starting student will be successful.

3.10 Consider a finite-state Markov chain {Xn} with no two disjoint closed sets. The matrix
of one-step transition probabilities is called doubly stochastic when for each column the sum
of the column elements equals 1. Verify that the equilibrium distribution of such a Markov
chain is a uniform distribution.

3.11 A gambling device is tuned such that a player who wins (loses) on a given play will
win on the next play with probability 0.25 (0.50). The player pays $1 for each play and
receives $2.50 for each play that is won. Use Markov chain analysis to find out whether the
game is fair or not.

3.12 A factory has a storage tank with a capacity of 4 m3 for temporarily storing waste

produced by the factory. Each week the factory produces 0, 1, 2 or 3 m3 waste with

respective probabilities p0 = 1
8 , p1 = 1

2 , p2 = 1
4 , and p3 = 1

8 . If the amount of waste
produced in one week exceeds the remaining capacity of the tank, the excess is specially
removed at a cost of $30 per cubic metre. At the end of each week there is a regular
opportunity to remove waste from the storage tank at a fixed cost of $25 and a variable cost
of $5 per cubic metre. The following policy is used. If at the end of the week the storage

tank contains more than 2 m3 of waste, the tank is emptied; otherwise no waste is removed.
Use Markov chain analysis to find the long-run average cost per week.

3.13 In a series of repeated plays, you can choose each time between games A and B.
During each play you win $1 or you lose $1. You are also allowed to play when your
capital is not positive (a negative capital corresponds to a debt). In game A there is a single

coin. This coin lands heads with probability 1
2 − ε (ε = 0.005) and tails with probability

1
2 + ε. In game B there are two coins. One coin lands heads with probability 1

10 − ε and

the other coin lands heads with probability 3
4 − ε. If you play game B, then you must take

the first coin when your current capital is a multiple of 3 and you must take the other coin
otherwise. In each play of either game you win $1 if the coin lands heads and you lose $1
otherwise.

(a) Use Markov chain analysis to verify that the long-run fraction of plays you win is
0.4957 when you always play game B (Hint : a three-state Markov chain suffices.)

(b) Suppose you alternately play the games A, A,B,B,A, A,B,B, . . . . Use an appro-
priate Markov chain to verify that the long-run fraction of plays you win is 0.5064.

This problem shows that in special cases with dependencies, a combination of two
unfavourable games may result in a favourable game. This paradox is called Parrondo’s
paradox after the Spanish physicist Juan Parrondo.

3.14 At the beginning of each day, a crucial piece of electronic equipment is inspected and
then classified as being in one of the working conditions i = 1, . . . , N . Here the working
condition i is better than the working condition i + 1. If the working condition is i = N
the piece must be replaced by a new one and such an enforced replacement takes two days.
If the working condition is i with i < N there is a choice between preventively replacing
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the piece by a new one and letting the piece operate for the present day. A preventive
replacement takes one day. A new piece has working condition i = 1. A piece whose
present working condition is i has the next day working condition j with known probability
qij where qij = 0 for j < i. The following replacement rule is used. The current piece is
only replaced by a new one when its working condition is greater than the critical value m,
where m is a given integer with 1 ≤ m < N .

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) Explain how to calculate the long-run fraction of days the equipment is inoperative

and the fraction of replacements occurring in the failure state N .

3.15 Consider a stochastically failing piece of equipment with two identical components
that operate independently of each other. The lifetime in days of each component has a
discrete probability distribution {pj , j = 1, . . . ,M}. A component in the failure state at the
beginning of a day is replaced instantaneously. It may be economical to preventively replace
the other working component at the same time the failed component has to be replaced. The
cost of replacing only one component is K1, while the cost of replacing simultaneously
both components equals K2 with 0 < K2 < 2K1. The control rule is as follows. Replace
a component upon failure or upon reaching the age of R days, whichever occurs first. If
a component is replaced and the other component is still working, the other component is
preventively replaced when it has been in use for r or more days. The parameters r and R
are given integers with 1 ≤ r < R.

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) How can you calculate the long-run average cost per day?

3.16 A transmission channel transmits messages one at a time, and transmission of a message
can only start at the beginning of a time slot. The time slots have unit length and the
transmission time of a message is one time slot. However, each transmission can fail with
some probability f . A failed transmission is tried again at the beginning of the next time
slot. The numbers of new messages arriving during the time slots are independent random
variables with a common discrete distribution {ak , k = 0, 1, . . . }. Newly arriving messages
are temporarily stored in a buffer of ample capacity. It is assumed that the average arrival
rate of new messages is smaller than the average number of attempts needed to transmit
a message successfully, that is,

∑
k kak < 1/f . The goal is to find the long-run average

throughput per time unit.
(a) Define an appropriate Markov chain with a one-dimensional state space and specify

its one-step transition probabilities.
(b) Can you give a recursive algorithm for the computation of the state probabilities?

Express the average throughput in terms of the state probabilities.

3.17 Messages arrive at a transmission channel according to a Poisson process with rate λ.
The channel can transmit only one message at a time and a new transmission can only start
at the beginnings of the time slots t = 1, 2, . . . . The transmission time of a message is one
time slot. The following access-control rule is used. The gate is closed for newly arriving
messages when the number of messages awaiting transmission has reached the level R and
is opened again when the number of messages awaiting transmission has dropped to the
level r , where the parameters r and R are given integers with 0 ≤ r < R. The goal is to
study the long-run fraction of lost messages as function of r and R.

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) Show how to calculate the long-run fraction of lost messages.

3.18 In Example 3.5.1 we have determined for the GI/M/1 queue the customer-average
probability πj denoting the long-run fraction of customers who find j other customers
present upon arrival. Denote by the time-average probability pj the long-run fraction of
time that j customers are present for j = 0, 1, . . . . Use Theorem 3.3.3 and Lemma 1.1.4
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to verify that

pj =

∞∑

k=j−1

πk

∫ ∞

0




∞∑

ℓ=k+1−j

t

ℓ + 1
e−µt (µt)ℓ

ℓ!


 a(t) dt, j ≥ 1.

(Hint : fix j and assume that the process incurs a cost at rate 1 whenever j customers are
present and a cost at rate 0 otherwise. Imagine that the server continues servicing fictitious
customers when the system is empty so that actual or fictitious service completions occur
according to a Poisson process with rate µ.)

3.19 In each time unit a job arrives at a conveyor with a single workstation. The workstation
can process only one job at a time and has a buffer with ample capacity to store the arriving
jobs that find the workstation busy. The processing times of the jobs are independent random
variables having a common Erlang (r, µ) distribution. It is assumed that r/µ < 1.

(a) Define an appropriate Markov chain to analyse the number of jobs in the buffer just
prior to the arrival epochs of new jobs and specify the one-step transition probabilities.

(b) Explain how to calculate the long-run average delay in the buffer per job.
(c) Prove that the equilibrium distribution of this Markov chain has a geometric tail.

3.20 Consider Exercise 3.19 again but now assume that the buffer has finite capacity. Any
arriving job that finds the buffer full is lost. Show how to calculate the long-run fraction
of lost jobs and the long-run fraction of time the workstation is busy (Hint : use Little’s
formula for the latter performance measure).

3.21 At the telephone exchange, calls arrive according to a Poisson process with rate λ.
The calls are first put in an infinite-capacity buffer before they can be processed further.
The buffer is periodically scanned every T time units, and only at those scanning epochs
are calls in the buffer allocated to free transmission lines. There are c transmission lines
and each transmission line can handle only one call at a time. The transmission times of
the calls are independent random variables having a common exponential distribution with
mean 1/µ.

(a) Use Markov chain analysis to find the equilibrium distribution {πj } of the number of
calls in the buffer just prior to the scanning epochs.

(b) Argue that the long-run average number of calls in the buffer is given by

Lq =

∞∑

j=c+1

(j − c)πj +
1

2
λT .

(Hint : imagine that each call is marked upon arrival and is unmarked at the next scanning

epoch. Argue that the average number of marked calls in the buffer is 1
2λT .)

(c) What is the long-run average delay in the buffer per call?

3.22 Consider Example 3.4.1 with Poisson arrivals of messages.

(a) Prove the validity of the relation λ =
∑c−1

j=1 jπj + c
∑∞

j=c πj and note that this

relation can be used as an accuracy check on the calculated values of the state probabilities
πj , j = 0, 1, . . . .

(b) Use the hint in Exercise 3.21 to prove that the long-run average number of messages

in the buffer equals
∑∞

j=c+1(j − c)πj + 1
2λT .

(c) What is the long-run average delay in the buffer per message?

3.23 Consider Example 3.4.1 again but assume now that the buffer for temporarily storing
arriving messages has a finite capacity K . Each arriving message that finds the buffer full
is lost.
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(a) Modify the one-step transition probabilities of the Markov chain {Xn} describing the
number of messages in the buffer at the end of the time slots.

(b) Denoting by {π
(K)
j

, j = 0, 1, . . . , K} the equilibrium distribution of the Markov

chain, argue that the long-run fraction of messages lost is

πloss (K) =
1

λ


λ −

c−1∑

j=1

jπ
(K)
j

− c

K∑

j=c

π
(K)
j


 .

(Hint : the sum of the average number of messages lost per time unit and the average number
of messages transmitted per time unit equals λ.)

(c) Let K(α) be the smallest value of K for which πloss (K) ≤ α for a given value of α.
Letting ρ = λ/c, compute for ρ = 0.90, 0.95 and c = 1, 5, 10 the values of K(α) as given
in the table below. Note that K(α) increases logarithmically in α as α increases. What does
this mean for the asymptotic behaviour of πloss (K) as K gets large?

ρ = 0.80 ρ = 0.95

α c = 1 c = 5 c = 10 c = 1 c = 5 c = 10

10−6 29 32 36 107 110 114

10−8 40 42 46 152 155 159

10−10 50 53 57 197 200 204

3.24 Suppose that a conveyer belt is running at a uniform speed and transporting items on
individual carriers equally spaced along the conveyer. There are two workstations i = 1, 2
placed in order along the conveyer, where station 1 is the first one. In each time unit
an item for processing arrives and is handled by the first workstation that is idle. Any
station can process only one item at a time and has no storage capacity. An item that finds
both workstations busy is lost. The processing time of an item at station i has an Erlang-ri
distribution with mean mi , i = 1, 2. Give a Markov chain analysis aimed at the computation
of the loss probability. Solve these two cases:

(a) The processing times at the stations 1 and 2 are exponentially distributed with respec-
tive means m1 = 0.75 and m2 = 1.25 (answer 0.0467).

(b) The processing times at the stations 1 and 2 are Erlang-3 distributed with respective
means m1 = 0.75 and m2 = 1.25 (answer 0.0133).

3.25 Leaky bucket control is a control procedure used in telecommunication networks. It
controls the average packet input into the network and the maximum number of packets
transmitted in succession. To achieve this, a token buffer is used. An arriving packet is
admitted to the network only if the token buffer is not empty, otherwise the packet is
rejected. If the token buffer is not empty when a packet arrives, the packet immediately
removes one token from the token buffer and enters the network. The token buffer is of
size M . Tokens are generated periodically every D time units and are stored in the token
buffer. Tokens generated when the token buffer is full are lost. Packets arrive at the network
according to a Poisson process with rate λ.

(a) Analyse the embedded Markov chain describing the number of tokens in the pool just
before a token is generated.

(b) What is the average number of packets admitted in one token generation interval? For
several values of M investigate how the average input curve behaves as a function of λD.
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BIBLIOGRAPHIC NOTES

Many good textbooks on stochastic processes are available and most of them treat

the topic of Markov chains. My favourite books include Cox and Miller (1965),

Karlin and Taylor (1975) and Ross (1996), each offering an excellent introduction

to Markov chain theory. A very fundamental treatment of denumerable Markov

chains can be found in the book of Chung (1967). An excellent book on Markov

chains with a general state space is Meyn and Tweedie (1993). The concept of the

embedded Markov chain and its application in Example 3.1.3 are due to Kendall

(1953). The idea of using the geometric tail behaviour of state probabilities goes

back to Feller (1950) and was successfully used in the papers of Everett (1954)

and Takahashi and Takami (1976).
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CHAPTER 4

Continuous-Time Markov
Chains

4.0 INTRODUCTION

In the continuous-time analogue of discrete-time Markov chains the times between

successive state transitions are not deterministic, but exponentially distributed.

However, the state transitions themselves are again governed by a (discrete-time)

Markov chain. Equivalently, a continuous-time Markov chain can be represented

by so-called infinitesimal transition rates. This is in analogy with the ‘�t-represen-

tation’ of the Poisson process. The representation by infinitesimal transition rates

leads naturally to the flow rate equation approach. This approach is easy to visualize

and is widely used in practice. The continuous-time Markov chain model is intro-

duced in Section 4.1. In Section 4.2 we discuss the flow rate equation approach.

The discussion in Section 4.2 concentrates on giving insights into this powerful

approach but no proofs are given. The proofs are given in Section 4.3. Results for

discrete-time Markov chains are the basis for the proofs of the ergodic theorems

for continuous-time Markov chains.

In Section 4.4 we discuss specialized methods to solve the equilibrium equations

for continuous-time Markov chains on a semi-infinite strip in two-dimensional

space. Many applications of continuous-time Markov chains have this structure.

Section 4.5 deals with transient analysis for continuous-time Markov chains. The

basic tools for the computation of the transient state probabilities and first pas-

sage time probabilities are Kolmogoroff’s method of linear differential equations

and the probabilistic method of uniformization. Both methods will be discussed.

In Section 4.6 we give algorithms for the computation of the transient proba-

bility distribution of the cumulative reward in a continuous-time Markov chain

model with a reward structure. A special case of this model is the computation

of the transient distribution of the sojourn time of the process in a given set

of states.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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4.1 THE MODEL

In Chapter 3 we considered Markov processes in which the changes of the state only

occurred at fixed times t = 0, 1, . . . . However, in numerous practical situations,

changes of state may occur at each point of time. One of the most appropriate

models for analysing such situations is the continuous-time Markov chain model.

In this model the times between successive transitions are exponentially distributed,

while the succession of states is described by a discrete-time Markov chain. A

wide variety of applied probability problems can be modelled as a continuous-time

Markov chain by an appropriate state description.

In analogy with the definition of a discrete-time Markov chain, a continuous-time

Markov chain is defined as follows.

Definition 4.1.1 A continuous-time stochastic process {X(t), t ≥ 0} with discrete

state space I is said to be a continuous-time Markov chain if

P {X(tn) = in | X(t0) = i0, . . . , X(tn−1) = in−1}

= P {X(tn) = in | X(tn−1) = in−1}

for all 0 ≤ t0 < · · · < tn−1 < tn and i0, . . . , in−1, in ∈ I .

Just as in the discrete-time case, the Markov property expresses that the condi-

tional distribution of a future state given the present state and past states depends

only on the present state and is independent of the past. In the following we

consider time-homogeneous Markov chains for which the transition probability

P {X(t + u) = j | X(u) = i} is independent of u. We write

pij (t) = P {X(t + u) = j | X(u) = i}.

The theory of continuous-time Markov chains is much more intricate than the the-

ory of discrete-time Markov chains. There are very difficult technical problems

and some of them are not even solved at present time. Fortunately, the stagger-

ing technical problems do not occur in practical applications. In our treatment of

continuous-time Markov chains we proceed pragmatically. We impose a regular-

ity condition that is not too strong from a practical point of view but avoids all

technical problems.

As an introduction to the modelling by a continuous-time Markov chain, let us

construct the following Markov jump process. A stochastic system with a discrete

state space I jumps from state to state according to the following rules:

Rule (a) If the system jumps to state i, it then stays in state i for an exponentially

distributed time with mean 1/νi independently of how the system reached state i

and how long it took to get there.

Rule (b) If the system leaves state i, it jumps to state j (j �= i) with probability

pij independently of the duration of the stay in state i, where
∑

j �=i pij = 1 for all

i ∈ I .
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The convention pii = 0 for all states i is convenient and natural. This conven-

tion ensures that the sojourn time in a state is unambiguously defined. If there

are no absorbing states, it is no restriction to make this convention (the sum of a

geometrically distributed number of independent lifetimes with a common expo-

nential distribution is again exponentially distributed). Throughout this chapter the

following assumption is made.

Assumption 4.1.1 In any finite time interval the number of jumps is finite with

probability 1.

Define now the continuous-time stochastic process {X(t), t ≥ 0} by

X(t) = the state of the system at time t.

The process is taken to be right-continuous; that is, at the transition epochs the

state of the system is taken as the state just after the transition. The process {X(t)}
can be shown to be a continuous-time Markov chain. It will be intuitively clear

that the process has the Markov property by the assumption of exponentially dis-

tributed sojourn times in the states. Assumption 4.1.1 is needed to exclude patho-

logical cases. For example, suppose the unbounded state space I = {1, 2, . . . }, take

pi,i+1 = 1 and νi = i2 for all i. Then transitions occur faster and faster so that the

process will ultimately face an explosion of jumps. With a finite state space the

Assumption 4.1.1 is always satisfied.

Example 4.1.1 Inventory control for an inflammable product

An inflammable product is stored in a special tank at a filling station. Customers

asking for the product arrive according to a Poisson process with rate λ. Each

customer asks for one unit of the product. Any demand that occurs when the tank is

out of stock is lost. Opportunities to replenish the stock in the tank occur according

to a Poisson process with rate µ. The two Poisson processes are assumed to be

independent of each other. For reasons of security it is only allowed to replenish the

stock when the tank is out of stock. At those opportunities the stock is replenished

with Q units for a given value of Q.

To work out the long-run average stock in the tank and the long-run fraction of

demand that is lost, we need to study the inventory process. For any t ≥ 0, define

X(t) = the amount of stock in the tank at time t.

The stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain with

state space I = {0, 1, . . . , Q}. The sojourn time in each state is exponentially

distributed, since both the times between the demand epochs and the times between

the replenishment opportunities are exponentially distributed. Thus the sojourn time

in state i has an exponential distribution with parameter

νi =
{

λ, i = 1, . . . , Q,

µ, i = 0.
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The state transitions are governed by a discrete-time Markov chain whose one-step

transition probabilities have the simple form

pi,i−1 = 1 for i = 1, . . . , Q,

p0Q = 1 and the other pij = 0.

Infinitesimal transition rates

Consider the general Markov jump process {X(t)} that was constructed above. The

sojourn time in any state i has an exponential distribution with mean 1/νi and

the state transitions are governed by a Markov chain having one-step transition

probabilities pij for i, j ∈ I with pii = 0 for all i. The Markov process allows for

an equivalent representation involving the so-called infinitesimal transition rates.

To introduce these rates, let us analyse the behaviour of the process in a very small

time interval of length �t . Recall that the exponential (sojourn-time) distribution

has a constant failure rate; see Appendix B. Suppose that the Markov process

{X(t)} is in state i at the current time t . The probability that the process will leave

state i in the next �t time units with �t very small equals νi�t + o(�t) by the

constant failure rate representation of the exponential distribution. If the process

leaves state i, it jumps to state j (�= i) with probability pij . Hence, for any t > 0,

P {X(t + �t) = j | X(t) = i} =
[

νi�t × pij + o(�t), j �= i,

1 − νi�t + o(�t), j = i,

as �t → 0. One might argue that in the next �t time units state j could be reached

from state i by first jumping from state i to some state k and next jumping in the

same time interval from state k to state j . However, the probability of two or more

state transitions in a very small time interval of length �t is of the order (�t)2

and is thus o(�t); that is, this probability is negligibly small compared with �t as

�t → 0. Define now

qij = νipij , i, j ∈ I with j �= i.

The non-negative numbers qij are called the infinitesimal transition rates of the

continuous-time Markov chain {X(t)}. Note that the qij uniquely determine the

sojourn-time rates νi and the one-step transition probabilities pij by νi =
∑

j �=i qij

and pij = qij /νi . The qij themselves are not probabilities but transition rates.

However, for �t very small, qij �t can be interpreted as the probability of moving

from state i to state j within the next �t time units when the current state is state i.

In applications one usually proceeds in the reverse direction. The infinitesimal

transition rates qij are determined in a direct way. They are typically the result

of the interaction of two or more elementary processes of the Poisson type. Con-

trary to the discrete-time case in which the one-step transition probabilities deter-

mine unambiguously a discrete-time Markov chain, it is not generally true that the

infinitesimal transition rates determine a unique continuous-time Markov chain.
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Here we run into subtleties that are well beyond the scope of this book.∗ Note

that fundamental difficulties may arise when the state space is infinite, but these

difficulties are absent in almost all practical applications. To avoid the technical

problems, we make the following assumption for the given data qij .

Assumption 4.1.2 The rates νi =
∑

j �=i qij are positive and bounded in i ∈ I .

The boundedness assumption is trivially satisfied when I is finite and holds in

most applications with an infinite state space. Using very deep mathematics it can

be shown that under Assumption 4.1.2 the infinitesimal transition rates determine a

unique continuous-time Markov chain {X(t)}. This continuous-time Markov chain

is precisely the Markov jump process constructed according to the above rules (a)

and (b), where the leaving rates are given by νi =
∑

j �=i qij and the pij by pij =
qij /νi . The continuous-time Markov chain {X(t)} does indeed have the property

P {X(t + �t) = j | X(t) = i} =
[

qij �t + o(�t), j �= i,

1 − νi�t + o(�t), j = i.
(4.1.1)

It is noted that Assumption 4.1.2 implies that the constructed continuous-time

Markov chain {X(t)} automatically satisfies Assumption 4.1.1.

In solving specific problems it suffices to specify the infinitesimal transition rates

qij . We now give two examples. In these examples the qij are determined as the

result of the interaction of several elementary processes of the Poisson type. The

qij are found by using the interpretation that qij �t represents the probability of

making a transition to state j in the next �t time units when the current state is i

and �t is very small.

Example 4.1.1 (continued) Inventory control for an inflammable product

The stochastic process {X(t), t ≥ 0} with X(t) denoting the stock on hand at

time t is a continuous-time Markov chain with state space I = {0, 1, . . . , Q}. Its

infinitesimal transition rates qij are the result of the interaction of the two indepen-

dent Poisson processes for the demands and the replenishment opportunities. The

qij are given by

qi,i−1 = λ for i = 1, . . . , Q,

q0Q = µ and the other qij = 0.

To see this, note that for any state i with i ≥ 1,

P {X(t + �t) = i − 1 | X(t) = i}

= P {a demand occurs in (t, t + �t]} + o(�t)

= λ�t + o(�t)

∗Conditions under which the infinitesimal parameters determine a unique continuous-time Markov chain
are discussed in depth in Chung (1967).
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Figure 4.1.1 The transition rate diagram for the inventory process

and

P {X(t + �t) = Q | X(t) = 0}

= P {a replenishment opportunity occurs in (t, t + �t]} + o(�t)

= µ�t + o(�t)

for �t → 0. In the analysis of continuous-time Markov chains, it is very helpful

to use a transition rate diagram. The nodes of the diagram represent the states and

the arrows in the diagram give the possible state transitions. An arrow from node

i to node j is only drawn when the transition rate qij is positive, in which case the

arrow is labelled with the value qij . The transition rate diagram not only visualizes

the process, but is particularly useful when writing down its equilibrium equations.

Figure 4.1.1 shows the transition rate diagram for the inventory process.

Example 4.1.2 Unloading ships with an unreliable unloader

Ships arrive at a container terminal according to a Poisson process with rate λ. The

ships bring loads of containers. There is a single unloader for unloading the ships.

The unloader can handle only one ship at a time. The ships are unloaded in order

of arrival. It is assumed that the dock has ample capacity for waiting ships. The

unloading time of each ship has an exponential distribution with mean 1/µ. The

unloader, however, is subject to breakdowns. A breakdown can only occur when

the unloader is operating. The length of any operating period of the unloader has

an exponential distribution with mean 1/δ. The time to repair a broken unloader

is exponentially distributed with mean 1/β. Any interrupted unloading of a ship

is resumed at the point it was interrupted. It is assumed that the unloading times,

operating times and repair times are independent of each other and are independent

of the arrival process of the ships.

The average number of waiting ships, the fraction of time the unloader is down,

and the average waiting time per ship, these and other quantities can be found by

using the continuous-time Markov chain model. For any t ≥ 0, define the random

variables

X1(t) = the number of ships present at time t
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and

X2(t) =
{

1 if the unloader is available at time t,

0 if the unloader is in repair at time t.

Since the underlying distributions are exponential, the process {(X1(t), X2(t))} is

a continuous-time Markov chain. This process has the state space

I = {(i, 0) | i = 1, 2, . . . } ∪ {(i, 1) | i = 0, 1, . . . }.

The next step is to determine the infinitesimal transition rates of the process. Putting

for abbreviation X(t) = (X1(t), X2(t)), we have

P {X(t + �t) = (i, 1) | X(t) = (i, 0)}

= P {the running repair is finished in (t, t + �t) and

no arrival occurs in (t, t + �t)}

= β�t (1 − λ�t) + o (�t) = β�t + o(�t)

for �t → 0. This gives

q(i,0)(i,1) = β for i = 1, 2, . . . .

Alternatively, q(i,0)(i,1) could have been obtained by noting that the sojourn time in

state (i, 0) is exponentially distributed with parameter β + λ and noting that with

probability β/(β + λ) the running repair time is finished before an arrival occurs.

Also,

P {X(t + �t) = (i + 1, 0)|X(t) = (i, 0)}

= P {an arrival occurs in (t, t + �t) and the running repair time

is not finished in (t, t + �t)}

= λ�t(1 − β�t) + o(�t) = λ�t + o(�t)

for �t → 0. This gives

q(i,0)(i+1,0) = λ for i ≥ 1.

Similarly, we find

q(i,1)(i,0) = δ, q(i,1)(i+1,1) = λ and q(i,1)(i−1,1) = µ for i ≥ 1.

The state transitions and transition rates are summarized in Figure 4.1.2.

4.2 THE FLOW RATE EQUATION METHOD

This section discusses the flow rate equation method for obtaining the equilibrium

distribution of a continuous-time Markov chain. The emphasis is to give insight
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Figure 4.1.2 The transition rate diagram for the unloader

into this powerful method, which is widely used by practitioners. The proofs of

the results below are deferred to Section 4.3.

The starting point is a continuous-time Markov chain {X(t)} with state space I

and infinitesimal transition rates qij for i, j ∈ I with j �= i. As before, let

νi =
∑

j �=i

qij , i ∈ I.

The quantity νi is the parameter of the exponentially distributed sojourn time in

state i. It is assumed that the νi satisfy Assumption 4.1.2. For any t ≥ 0, define

the probability pij (t) by

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I.

The computation of the transient probabilities pij (t) will be discussed in Section

4.5. A deep result from continuous-time Markov chain theory is that limt→∞ pij (t)

always exists for all i, j ∈ I . The issue of possible periodicity in the state transitions

is not relevant for continuous-time Markov chains, since the times between state

transitions have a continuous distribution. To ensure that the limits of the pij (t)

are independent of the initial state i and constitute a probability distribution, we

need the following assumption.

Assumption 4.2.1 The process {X(t), t ≥ 0} has a regeneration state r such that

P {τr < ∞ | X(0) = i} = 1 f or all i ∈ I and E(τr | X(0) = r) < ∞,

where τr is the first epoch beyond epoch 0 at which the process {X(t)} makes a

transition into state r .

In other words, state r will ultimately be reached with probability 1 from any

other state and the mean recurrence time from state r to itself is finite. Under this

assumption it can be proved that there is a probability distribution {pj , j ∈ I }
such that

lim
t→∞

pij (t) = pj , j ∈ I,
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independently of the initial state i. The interested reader is referred to Chung

(1967) for a proof. The limiting probability pj can be interpreted as the probability

that an outside observer finds the system in state j when the process has reached

statistical equilibrium and the observer has no knowledge about the past evolution

of the process. The notion of statistical equilibrium relates not only to the length

of time the process has been in operation but also to our knowledge of the past

evolution of the system. But a more concrete interpretation which better serves our

purposes is that

the long-run fraction of time the process will be in state j (4.2.1)

= pj with probability 1,

independently of the initial state X(0) = i. More precisely, denoting for fixed j

the indicator variable Ij (t) by

Ij (t) =
{

1 if X(t) = j,

0 otherwise,

it holds for any j ∈ I that

lim
t→∞

1

t

∫ t

0

Ij (u) du = pj with probability 1,

independently of the initial state X(0) = i. A proof of this result will be given in

Section 4.3 using the theory of renewal-reward processes. In Section 4.3 we also

prove the following important theorem.

Theorem 4.2.1 Suppose the continuous-time Markov chain {X(t)} satisfies

Assumptions 4.1.2 and 4.2.1. Then the probabilities pj , j ∈ I are the unique solution

to the linear equations

νjxj =
∑

k �=j

qkj xk, j ∈ I (4.2.2)

∑

j∈I

xj = 1 (4.2.3)

in the unknowns xj , j ∈ I . Moreover, let {xj , j ∈ I } be any solution to (4.2.2) with∑
j

∣∣xj

∣∣ < ∞. Then, for some constant c, xj = cpj for all j ∈ I .

The linear equations (4.2.2) are called the equilibrium equations or balance

equations of the Markov process. The equation (4.2.3) is a normalizing equation.

The probabilities pj are called the equilibrium probabilities of the continuous-time

Markov chain. They can be computed by solving a system of linear equations.
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Interpretation of the equilibrium equations

A physical explanation of the equilibrium equations can be given by using the

obvious principle that over the long run

the average number of transitions out of state j per time unit

= the average number of transitions into state j per time unit. (4.2.4)

Since pj is the long-run fraction of time the process is in state j and the leaving

rate out of state j is νj , it is intuitively obvious that

the long-run average number of transitions out of state j

per time unit = νjpj . (4.2.5)

Also, the following result will be intuitively obvious:

the long-run average number of transitions from state k to state j

per time unit = qkj pk . (4.2.6)

For a better understanding of (4.2.6), it is helpful to point out that qkj can be

interpreted as the long-run average number of transitions per time unit to state j

when averaging over the time the process is in state k. A rigorous proof of the

result (4.2.6) is given in Section 4.3. By (4.2.6),

the long-run average number of transitions into state j

per time unit =
∑

k �=j

qkj pk. (4.2.7)

Together (4.2.4), (4.2.5) and (4.2.7) give the equilibrium equations (4.2.2). These

equations may be abbreviated as

rate out of state j = rate into state j. (4.2.8)

This principle is the flow rate equation method. To formulate the equilibrium

equations in specific applications, it is convenient to use the transition rate diagram

that was introduced in the previous section. Putting the transition rate diagram in a

physical context, one might think that particles with a total mass of 1 are distributed

over the nodes according to the equilibrium distribution {pj }. Particles move from

one node to another node according to the transition rates qij . In the equilibrium

situation the rate at which particles leave any node must be equal to the rate at

which particles enter that node. The ‘rate in = rate out’ principle (4.2.8) allows for

a very useful generalization. More generally, for any set A of states with A �= I ,

rate out of the set A = rate into the set A. (4.2.9)
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In mathematical terms,
∑

j∈A

pj

∑

k /∈A

qjk =
∑

k /∈A

pk

∑

j∈A

qkj .

The balance principle (4.2.9) enables us to write down a recursive equation for the

pj when

I = {0, 1, . . . , N} and qij = 0 for i ≥ 1 and j ≤ i − 2,

where N ≤ ∞. Then, by taking A = {i, . . . , N} with i �= 0 and applying the

balance principle (4.2.9), we get

qi,i−1pi =
i−1∑

k=0

pk

N∑

j=i

qkj , i = 1, . . . , N. (4.2.10)

This recursive relation is used quite often in queueing applications; see Chapter 5.

In queueing applications it is often the case that direct transitions from any state i

are either to higher states or to the state i − 1 directly below state i. A recursive

computation of the state probabilities is usually much faster than a computation by

any other method. Also the recursion scheme (4.2.10) is numerically stable since

it involves no subtractions.

Next we apply the flow rate equation method to the two examples discussed in

the previous section.

Example 4.1.1 (continued) Inventory control for an inflammable product

In this example the equilibrium probability pj represents the long-run fraction of

time that the stock in the tank equals j units. Assumptions 4.1.2 and 4.2.1 are

trivially satisfied (e.g. take state Q as regeneration state r). Using the transition

rate diagram in Figure 4.1.1 and equating the rate at which the process leaves state

i to the rate at which the process enters state i, it follows that

µp0 = λp1,

λpj = λpj+1, j = 1, 2, . . . , Q − 1,

λpQ = µp0.

These equilibrium equations together with the equation p0 + p1 + · · · + pQ = 1

have a unique solution (in this special case an explicit solution can be given:

p0 = (1 + Qµ/λ)−1 and p1 = · · · = pQ = (µ/λ)p0). Next we can answer the

questions posed earlier:

the long-run average stock on hand =
Q∑

j=0

jpj (4.2.11)

the long-run fraction of demand that is lost = p0. (4.2.12)
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A few words of explanation are in order. Intuitively, (4.2.11) may be obvious by

noting that pj gives the long-run fraction of time the stock on hand is j . The long-

run average stock on hand is defined as limt→∞(1/t)
∫ t

0 X(u) du. This long-run

average can be seen as a long-run average cost per time unit by imagining that a

cost at rate j is incurred when the stock on hand is j . Using this interpretation,

the result (4.2.11) can be seen as a consequence of Theorem 4.2.2, which will be

discussed below. The result (4.2.12) uses the PASTA property: in the long run the

fraction of customers who find the system out of stock upon arrival equals the

fraction of time the system is out of stock. Further, we have

the long-run average number of stock replenishments per time unit = µp0.

This result follows from (4.2.6) by noting that the average replenishment frequency

equals the average number of transitions from state 0 to state Q per time unit.

Example 4.1.2 (continued) Unloading ships with an unreliable unloader

In this example we need a regularity condition to ensure that Assumption 4.2.1 is

satisfied (Assumption 4.1.2 trivially holds). Let γ denote the expected amount of

time needed to complete the unloading of a ship. It is not difficult to verify that

γ = µ−1(1 + δ/β); see (A.5) in Appendix A. In order to satisfy Assumption 4.2.1

it should be required that the arrival rate of ships is less than the reciprocal of the

expected completion time γ . That is, the assumption

λ <
βµ

β + δ

should be made. The proof is omitted that under this condition the expected cycle

length in Assumption 4.2.1 is finite (take state (0, 1) for the regeneration state

r). Denote the equilibrium probabilities by p(j, 0) and p(j, 1). The probability

p(j, 1) gives the long-run fraction of time that j ships are present and the unloader

is available and the probability p(j, 0) gives the long-run fraction of time that j

ships are present and the unloader is in repair. Using the transition rate diagram

in Figure 4.1.2 and applying the ‘rate in = rate out’ principle, we obtain the

equilibrium equations:

λp(0, 1) = µp(1, 1),

(λ + µ + δ)p(i, 1) = λp(i − 1, 1) + µp(i + 1, 1) + βp(i, 0), i = 1, 2, . . . ,

(λ + β)p(1, 0) = δp(1, 1),

(λ + β)p(i, 0) = λp(i − 1, 0) + δp(i, 1), i = 2, 3, . . . .

This infinite system of linear equations together with the normalizing equation

∞∑

i=0

p(i, 0) +
∞∑

i=1

p(i, 1) = 1
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has a unique solution. A brute-force method for solving the equilibrium equations

is to truncate this infinite system through a sufficiently large integer N (to be found

by trial and error) such that
∑∞

i=N+1[p(i, 0) + p(i, 1)] ≤ ε for some prespecified

accuracy number ε. In Section 4.4 we discuss a more sophisticated method to

solve the infinite system of linear equations. Once the state probabilities have been

computed, we find

the long-run average number of ships in the harbour =
∞∑

i=1

i[p(i, 0) + p(i, 1)],

the fraction of time the unloader is in repair =
∞∑

i=1

p(i, 0),

the long-run average amount of time spent in the harbour per ship

=
1

λ

∞∑

i=1

i[p(i, 0) + p(i, 1)].

The latter result uses Little’s formula L = λW .

Continuous-time Markov chains with rewards

In many applications a reward structure is imposed on the continuous-time Markov

chain model. Let us assume the following reward structure. A reward at a rate of

r(j) per time unit is earned whenever the process is in state j , while a lump

reward of Fjk is earned each time the process jumps from state j to state k (�= j ).

In addition to Assumption 4.2.1 involving the regeneration state r , we make the

following assumption.

Assumption 4.2.2 (a) The total reward earned between two visits of the process

{X(t)} to state r has a finite expectation and

∑

j∈I

|r(j)|pj +
∑

j∈I

pj

∑

k �=j

qjk |Fjk | < ∞.

(b) For each initial state X(0) = i with i �= r , the total reward earned until the

first visit of the process {X(t)} to state r is finite with probability 1.

This assumption is automatically satisfied when the state space I is finite and

Assumption 4.2.1 holds. For each t > 0, define the random variable R(t) by

R(t) = the total reward earned up to time t.

The following very useful result holds for the long-run average reward.
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Theorem 4.2.2 Suppose the continuous-time Markov chain {X(t)} satisfies

Assumptions 4.1.2, 4.2.1 and 4.2.2. Then, for each initial state X(0) = i,

lim
t→∞

R(t)

t
=

∑

j∈I

r(j)pj +
∑

j∈I

pj

∑

k �=j

qjk Fjk with probability 1.

A proof of this ergodic theorem will be given in Section 4.3. Intuitively the

theorem can be seen by noting that pj gives the long-run fraction of time the

process is in state j and pjqjk gives the long-run average number of transitions

from state j to state k per time unit.

Example 4.1.1 (continued) Inventory control for an inflammable product

Suppose that the following costs are made in the inventory model. For each unit

kept in stock, a holding cost h > 0 is incurred for each unit of time the unit is

kept in stock. Penalty costs R > 0 are incurred for each demand that is lost and

fixed costs K > 0 are made for each inventory replenishment. Then the long-run

average cost per time unit equals

h

Q∑

j=0

jpj + Rλp0 + Kµp0.

Strictly speaking, the cost term Rλp0 is not covered by Theorem 4.2.2. Alterna-

tively, by using part (a) of Theorem 2.4.1 it can be shown that the long-run average

amount of demand that is lost per time unit equals λp0.

4.3 ERGODIC THEOREMS

In this section we prove Theorems 4.2.1 and 4.2.2. The proofs rely heavily on

earlier results for the discrete-time Markov chain model. In our analysis we need

the embedded Markov chain {Xn, n = 0, 1, . . . }, where Xn is defined by

Xn = the state of the continuous-time Markov chain just

after the nth state transition

with the convention that X0 = X(0). The one-step transition probabilities of the

discrete-time Markov chain {Xn} are given by

pij =
{

qij /νi , j �= i,

0, j = i;
(4.3.1)

see Section 4.1. It is readily verified that Assumption 4.2.1 implies that the embed-

ded Markov chain {Xn} satisfies the corresponding Assumption 3.3.1 and thus state

r is a positive recurrent state for the Markov chain {Xn}.
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Definition 4.3.1 A probability distribution {pj , j ∈ I } is said to be an equilibrium

distribution for the continuous-time Markov chain {X(t)} if

νjpj =
∑

k �=j

pkqkj , j ∈ I.

Just as in the discrete-time case, the explanation of the term ‘equilibrium dis-

tribution’ is as follows. If P {X(0) = j} = pj for all j ∈ I , then for any t > 0,

P {X(t) = j} = pj for all j ∈ I . The proof is non-trivial and will not be given.

Next we prove Theorem 4.2.1 in a somewhat more general setting.

Theorem 4.3.1 Suppose that the continuous-time Markov chain {X(t)} satisfies

Assumptions 4.1.2 and 4.2.1. Then:

(a) The continuous-time Markov chain {X(t)} has a unique equilibrium distribution

{pj , j ∈ I }. Moreover

pj =
πj/νj∑

k∈I

πk/νk

, j ∈ I, (4.3.2)

where {πj } is the equilibrium distribution of the embedded Markov chain {Xn}.

(b) Let {xj } be any solution to νjxj =
∑

k �=j xkqkj , j ∈ I , with
∑

j |xj | < ∞. Then,

for some constant c, xj = cpj for all j ∈ I .

Proof We first verify that there is a one-to-one correspondence between the solu-

tions of the two systems of linear equations

νjxj =
∑

k �=j

xkqkj , j ∈ I

and

uj =
∑

k∈I

ukpkj , j ∈ I.

If {uj } is a solution to the second system with
∑

|uj | < ∞, then {xj = uj/νj } is a

solution to the first system with
∑

|xj | < ∞, and conversely. This is an immediate

consequence of the definition (4.3.1) of the pij . The one-to-one correspondence

and Theorem 3.5.9 imply the results of Theorem 4.3.1 provided we verify

∑

j∈I

πj

νj
< ∞. (4.3.3)

The proof that this condition holds is as follows. By Assumption 4.2.1, the process

{X(t)} regenerates itself each time the process makes a transition into state r . Let a



156 CONTINUOUS-TIME MARKOV CHAINS

cycle be defined as the time elapsed between two consecutive visits of the process

to state r . Using Wald’s equation, it is readily seen that

E(length of one cycle) =
∑

j∈I

E(number of visits to state j in one cycle) ×
1

νj
.

Thus, by Lemma 3.5.10,

E(length of one cycle) =
1

πr

∑

j∈I

πj

νj
.

Since E(length of one cycle) is finite by Assumption 4.2.1, the result now follows.

This completes the proof.

Next it is not difficult to prove Theorem 4.2.2

Proof of Theorem 4.2.2 We first prove the result for initial state X(0) = r , where

r is the regeneration state from Assumptions 4.2.1 and 4.2.2. The process {X(t)}
regenerates itself each time the process makes a transition into state r . Let a cycle

be defined as the time elapsed between two consecutive visits of the process to

state r . In the proof of the above theorem we have already shown

E(length of one cycle) =
1

πr

∑

k∈I

πk

νk

.

The expected length of a cycle is finite. Next apply the renewal-reward theorem

from Chapter 2. This gives

lim
t→∞

R(t)

t
=

E(reward earned during one cycle)

E(length of one cycle)
(4.3.4)

with probability 1. Using Wald’s equation, E(reward earned during one cycle) is

∑

j∈I

E(number of visits to state j during one cycle) ×


r(j)

νj
+

∑

k �=j

pjk Fjk


 .

Hence, by Lemma 3.5.10 and relation (4.3.1),

E(reward earned during one cycle) =
∑

j∈I

πj

πr


 r(j)

νj
+

∑

k �=j

pjk Fjk




=
1

πr

∑

j∈I

πj

νj


r(j) +

∑

k �=j

qjk Fjk


 .

Taking the ratio of the expressions for the expected reward earned during one cycle

and the expected length of one cycle and using relation (4.3.2), we get the result
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of Theorem 4.2.2 for initial state r . It remains to verify that the result also holds

for any initial state X(0) = i with i �= r . This verification proceeds along the same

lines as the proof of the corresponding result in Theorem 3.5.11.

By choosing an appropriate reward structure, Theorem 4.2.2 provides a rigorous

proof of earlier interpretations we gave to the quantities pj and qjk pj .

Corollary 4.3.2 Suppose that the continuous-time Markov chain {X(t)} satisfies

Assumptions 4.1.2 and 4.2.1. Then

(a) For each state k ∈ I , the long-run fraction of time the process is in state k

equals pk with probability 1, independently of the initial state X(0) = i.

(b) For all j, k ∈ I with j �= k, the long-run average number of transitions from

state k to state j per unit time equals pkqkj with probability 1, independently of the

initial state X(0) = i.

4.4 MARKOV PROCESSES ON A SEMI-INFINITE STRIP∗

Many practical (queueing) problems can be modelled as a continuous-time Markov

chain {X(t)} on a semi-infinite strip in the plane. That is, the Markov process has

the two-dimensional state space

I = {(i, s) | i = 0, 1, . . . ; s = 0, 1, . . . , m} (4.4.1)

for some finite positive integer m. Assuming that the continuous-time Markov chain

{X(t)} satisfies Assumption 4.2.1, denote its equilibrium probabilities by p(i, s) for

i = 0, 1, . . . and s = 0, 1, . . . , m. These probabilities are determined by an infinite

system of linear equations. In many cases, however, this infinite system can be

reduced to a finite system of linear equations of moderate size. This can be done

by using the geometric tail approach, discussed for discrete-time Markov chains in

Section 3.4.2. Under rather general conditions the equilibrium probabilities p(i, s)

exhibit a geometric tail behaviour as i → ∞, where the decay factor does not

depend on s. That is, for constants γs > 0 and a constant η with 0 < η < 1,

p(i, s) ∼ γsη
i as i → ∞, (4.4.2)

where the constant η does not depend on s. Then, for a sufficiently large choice of

integer M , we have for each s that

p(i + 1, s)

p(i, s)
≈ η, i ≥ M,

or equivalently

p(i, s) ≈ ηi−Mp(M, s), i > M.

∗This section is more specialized and can be omitted at first reading.



158 CONTINUOUS-TIME MARKOV CHAINS

Usually the constant η can be computed beforehand by solving a non-linear equation

in a single variable. Once η is known, the infinite system of equilibrium equations

is reduced to a finite system of linear equations by replacing any p(i, s) with i > M

by ηi−Mp(M, s). It turns out that in practical applications a relatively small value

of M usually suffices. As will be seen below, the asymptotic expansion (4.4.2) is

valid in the unloader problem of Example 4.1.2.

Markov processes with quasi-birth-death rates

Suppose that the Markov process {X(t)} satisfies the following assumption.

Assumption 4.4.1 In state (i, s) the only possible transitions are:

• from state (i, s) to state (i + 1, s) with rate λs (i = 0, 1, . . . ; s = 0, 1, . . . , m),

• from state (i, s) to state (i − 1, s) with rate µs (i = 1, 2, . . . ; s = 0, 1, . . . , m),

• from state (i, s) to state (i, s + 1) with rate βs (i = 0, 1, . . . ; s = 0, 1, . . . ,

m − 1),

• from state (i, s) to state (i, s − 1) with rate δs (i = 0, 1, . . . ; s = 1, 2, . . . , m).

It is assumed that the transition rates λs , µs , βs and δs are such that the

Markov chain {X(t)} satisfies Assumption 4.2.1 and thus has a unique equilib-

rium distribution {p(i, s)}. Under Assumption 4.4.1 the equilibrium equations for

the continuous-time Markov chain {X(t)} are as follows. Then for i = 1, 2, . . .

and with 0 ≤ s ≤ m,

(λs + µs + βs + δs)p(i, s) = λsp(i − 1, s) + µsp(i + 1, s)

+ βs−1p(i, s − 1) + δs+1p(i, s + 1) (4.4.3)

provided we put β−1 = βm = δ0 = δm+1 = 0 and define p(i, −1) = p(i, m+1) =
0. For i = 0 and 0 ≤ s ≤ m,

(λs + βs + δs)p(0, s) = µsp(1, s) + βs−1p(0, s − 1) + δs+1p(0, s + 1). (4.4.4)

Next we use the powerful tool of generating functions. Define for 0 ≤ s ≤ m the

generating function Gs(z) by

Gs(z) =
∞∑

i=0

p(i, s)zi, |z| ≤ 1.

For notational convenience, define G−1(z) = Gm+1(z) = 0. Multiplying both sides

of (4.4.3) and (4.4.4) by zi and summing over i, we find for each s that
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(λs + µs + βs + δs)

∞∑

i=0

p(i, s)zi − µsp(0, s)

= λs

∞∑

i=1

p(i − 1, s)zi + µs

∞∑

i=0

p(i + 1, s)zi + βs−1

∞∑

i=0

p(i, s − 1)zi

+ δs+1

∞∑

i=0

p(i, s + 1)zi .

This gives for s = 0, 1, . . . , m,

(λs + µs + βs + δs)Gs(z) − µsp(0, s) = λszGs(z) +
µs

z
[Gs(z) − p(0, s)]

+ βs−1Gs−1(z) + δs+1Gs+1(z).

We rewrite this as

[λsz
2 + µs − (λs + µs + βs + δs)z]Gs(z) + βs−1zGs−1(z) + δs+1zGs+1(z)

= µs(1 − z)p(0, s), s = 0, 1, . . . , m. (4.4.5)

This is a system of linear equations in the unknowns G0(z), . . . , Gm(z). To see

what the solution looks like, it is convenient to write (4.4.5) in matrix notation. To

do so, define the diagonal matrices � and M by

� = diag(λ0, λ1, . . . , λm) and M = diag(µ0, µ1, . . . , µm).

Define the transition rate matrix T = (tab) with a, b = 0, 1, . . . , m by

ts,s−1 = βs−1, ts,s+1 = δs+1, tss = −(βs + δs) and tab = 0 otherwise.

Finally, define the matrix A(z) by

A(z) = �z2 − (� − T + M)z + M

and the column vectors p0 and g(z) by

p0 = (p(0, 0), . . . , p(0, m)) and g(z) = (G0(z), . . . , Gm(z)).

Then the linear equations (4.4.5) in matrix notation are

A(z)g(z) = (1 − z)Mp0 (4.4.6)

By Cramer’s rule for linear equations, the solution of (4.4.6) is given by

Gs(z) =
det As(z)

det A(z)
, s = 0, 1, . . . , m, (4.4.7)
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where As(z) is the matrix that results from replacing the (s + 1)th column vec-

tor of A(z) by the vector (1 − z)Mp0. The functions det As(z) and det A(z) are

polynomials in z and are thus defined on the whole complex plane. Assuming that

the function N(z) = det A(z) satisfies the conditions stated in Theorem C.1 in

Appendix C, the representation (4.4.7) implies the following result.

Theorem 4.4.1 For each s = 0, 1, . . . , m, there is a constant γs such that

p(i, s) ∼ γsη
i as i → ∞, (4.4.8)

where η is the reciprocal of the smallest root of the equation

det A(x) = 0 (4.4.9)

on the interval (1, ∞).

How do we solve (4.4.9) in general? A possible way is to use a basic result

from linear algebra stating that det A(x) equals the product of the eigenvalues of

the matrix A(x). It is a routine matter to determine the eigenvalues of a matrix by

using standard software. A search procedure such as bisection can next be used to

find the root of (4.4.9). Another approach to compute the roots of det A(z) = 0

was proposed in Chapter 3 of Daigle (1991). The zeros of det A(z) are equivalent

to the inverses of the eigenvalues of the 2(m + 1)-dimensional square matrix

AE =
[

M−1(� − T + M) −M−1�

I O

]
,

where O is the matrix with all entries equal to zero. Note that M−1 exists. To see

this, let σ be any zero of det A(z) and let xσ be any non-trivial column vector

such that A(σ )xσ = 0. Let yσ = σxσ . Then, by the definition of A(z), we have

σ 2�xσ −σ(� − T + M)xσ +Mxσ = 0. By definition, yσ −σxσ = 0. Combining

these two systems gives

[(
M O

O I

)
− σ

(
� − T + M −�

I O

)][
xσ

yσ

]
= 0.

This system is equivalent to

[(
M−1(� − T + M) −M−1�

I O

)
−

1

σ

(
I O

O I

)][
xσ

yσ

]
= 0.

This proves that the zeros of det A(z) are equivalent to the inverses of the eigenval-

ues of the expanded matrix AE . The largest of the eigenvalues in (0, 1) gives the

decay factor η of the geometric tail of the equilibrium probabilities p(i, s). Daigle

(1991) gives a more sophisticated algorithm for the computation of the p(i, s).

Using the eigenvalues and the eigenvectors of the matrix AE , this algorithm com-

putes for each s the probabilities p(i, s) for i ≥ 1 as a linear combination of a

finite number of geometric terms. The interested reader is referred to Daigle’s book
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for details. The algorithm in Chapter 3 of Daigle (1991) is in fact a special case

of the spectral expansion method discussed in full generality in Mitrani and Mitra

(1992). This is a general method for computing the equilibrium probabilities of a

Markov process whose state space is a semi-infinite strip in the two-dimensional

plane and whose equilibrium equations can be represented by a vector difference

equation with constant coefficients. The solution of that equation is expressed in

terms of the eigenvalues and eigenvectors of its characteristic polynomial. Another

generally applicable method to compute the equilibrium probabilities for the two-

dimensional Markov process with quasi-birth-death rates is the matrix-geometric

method of Neuts (1981). This method requires solving a matrix quadratic equation.

This can be done by a probabilistic and numerically stable algorithm discussed

in Latouche and Ramaswami (1993). The computational effort of this algorithm

increases logarithmically when the server utilization gets larger. The computational

burden of the spectral method, however, is relatively insensitive to the server uti-

lization of the analysed system. Unlike the Latouche–Ramaswami algorithm, the

spectral method often becomes numerically unreliable when the server utilization

gets very close to 1. For the practitioner, the geometric tail approach is much eas-

ier to apply than the other two methods. This approach combines simplicity with

effectiveness. The two steps of the geometric tail algorithm are:

(a) Compute the zero of a non-linear equation in a single variable.

(b) Solve a finite system of linear equations.

These steps are simple, and standard software can be used to perform them. The

finite system of linear equations is usually relatively small for practical examples.

In general it is not possible to use the above computational methods on two-

dimensional continuous-time Markov chain problems in which both state variables

are unbounded. An example of such a problem is the shortest-queue problem in

which arriving customers are assigned to the shortest one of two separate queues

each having their own server. Special methods for this type of problem are the

so-called compensation method and the power-series algorithm discussed in Adan

et al. (1993), Blanc (1992) and Hooghiemstra et al. (1988).

Example 4.1.2 (continued) Unloading ships with an unreliable unloader

The continuous-time Markov chain in the unloader problem satisfies Assump-

tion 4.4.1 except that the Markov chain cannot take on state (0, 0). The unloader

can only break down when it is in operation. However, the assumption made in the

foregoing analysis can be released somewhat. Assume that for some integer N ≥ 1

the state space I = I1 ∪ I2, where I1 = {(i, s) | i = N, N + 1, . . . ; s = 0, . . . , m}
and I2 is a non-empty subset of {(i, s) | i = 0, . . . , N − 1; s = 0, . . . , m}. The

conditions in Assumption 4.4.1 are only assumed for the states (i, s) with i ≥ N .

Further it must be assumed that the only way to enter the set I1 from the set I2 is

through the states (N, s). Then a minor modification of the above analysis shows
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that Theorem 4.4.1 remains valid with the same matrix A(z). For the particular case

of the unloader problem, we find that (4.4.9) reduces to the polynomial equation

(λ + β − λz) (λz2 + µ − (λ + µ + δ)z) + δβz = 0.

Special case of linear birth-death rates

Suppose that the transition rates λs , µs , βs and δs have the special form

λs = b1 × (m − s) + c1s, µs = b−1 × (m − s) + c−1s

βs = a0 × (m − s) and δs = d0s (4.4.10)

for constants a0, b1, b−1, c1, c−1 and d0. Then the numerical problem of computing

the roots of det A(z) = 0 can be circumvented. The decay factor η in (4.4.2) is

then the unique solution of the equation

B(x) + C(x) − x[A(1) + B(1) + C(1) + D(1)] +
√

F(x)2 + 4A(x)D(x) = 0

on the interval (0,1), where

A(x) = a0x, B(x) = b1 + b−1x
2, C(x) = c1 + c−1x

2, D(x) = d0x,

F (x) = [A(1) + B(1) − C(1) − D(1)]x + C(x) − B(x).

In a more general context this result has been proved in Adan and Resing (1999). It

also follows from this reference that Assumption 4.2.1 holds when d0(b−1 − b1)+
a0(c−1−c1) > 0. The condition (4.4.10) is satisfied for several interesting queueing

models. For example, take a queueing model with m traffic sources which act inde-

pendently of each other. Each traffic source is alternately on and off, where the on-

times and off-times have exponential distributions with respective means 1/δ and

1/β. The successive on- and off-times are assumed to be independent of each other.

During on-periods a source generates service requests according to a Poisson pro-

cess with rate λ. There is a single server to handle the service requests and the server

can handle only one request at a time. The service times of the requests are inde-

pendent random variables that have a common exponential distribution with mean

1/µ. This queueing problem can be modelled as a continuous-time Markov chain

whose state space is given by (4.4.1) with i denoting the number of service requests

in the system and s denoting the number of sources that are on. This Markov chain

has the property (4.4.10) with λs = λs, µs = µ, βs = β × (m − s) and δs = δs.

4.5 TRANSIENT STATE PROBABILITIES

In many practical situations one is not interested in the long-run behaviour of a

stochastic system but in its transient behaviour. A typical example concerns airport

runway operations. The demand profile for runway operations shows considerable
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variation over time with peaks at certain hours of the day. Equilibrium models

are of no use in this kind of situation. The computation of transient solutions for

Markov systems is a very important issue that arises in numerous problems in

queueing, inventory and reliability. In this section we discuss two basic methods

for the computation of the transient state probabilities of a continuous-time Markov

chain. The next section deals with the computation of the transient distribution of

the cumulative reward in a continuous-time Markov chain with a reward structure.

The transient probabilities of a continuous-time Markov chain {X(t), t ≥ 0} are

defined by

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I and t > 0.

In Section 4.5.1 we discuss the method of linear differential equations. The proba-

bilistic method of uniformization will be discussed in Section 4.5.2. In Section 4.5.3

we show that the computation of first passage time probabilities can be reduced to

the computation of transient state probabilities by introducing an absorbing state.

4.5.1 The Method of Linear Differential Equations

This basic approach has a solid backing by tools from numerical analysis. We first

prove the following theorem.

Theorem 4.5.1 (Kolmogoroff’s forward differential equations) Suppose that

the continuous-time Markov chain {X(t), t ≥ 0} satisfies Assumption 4.1.2. Then

for any i ∈ I ,

p′
ij (t) =

∑

k �=j

qkj pik (t) − νjpij (t), j ∈ I and t > 0. (4.5.1)

Proof We sketch the proof only for the case of a finite state space I . The proof

of the validity of the forward equations for the case of an infinite state space is

very intricate. Fix i ∈ I and t > 0. Let us consider what may happen in (t, t +�t]

with �t very small. The number of transitions in any finite time interval is finite

with probability 1, so we can condition on the state that will occur at time t :

pij (t + �t) = P {X(t + �t) = j | X(0) = i}

=
∑

k∈I

P {X(t + �t) = j | X(0) = i, X(t) = k}

× P {X(t) = k | X(0) = i}

=
∑

k∈I

P {X(t + �t) = j | X(t) = k}pik (t)

=
∑

k �=j

qkj �tpik (t) + (1 − νj�t)pij (t) + o(�t),
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since a finite sum of o(�t) terms is again o(�t). Hence

pij (t + �t) − pij (t)

�t
=

∑

k �=j

qkj pik (t) − νjpij (t) +
o(�t)

�t
.

Letting �t → 0 yields the desired result.

The linear differential equations (4.5.1) can be explicitly solved only in very

special cases.

Example 4.5.1 An on-off source

A source submitting messages is alternately on and off. The on-times are indepen-

dent random variables having a common exponential distribution with mean 1/α

and the off-times are independent random variables having a common exponential

distribution with mean 1/β. Also the on-times and the off-times are independent

of each other. The source is on at time 0. What is the probability that the source

will be off at time t?

This system can be modelled as a continuous-time Markov chain with two states.

Let the random variable X(t) be equal to 0 when the source is off at time t and

equal to 1 otherwise. Then {X(t)} is a continuous-time Markov chain with state

space I = {0, 1}. The transient probabilities p10(t) and p11(t) satisfy

p′
10(t) = −βp10(t) + αp11(t), t ≥ 0,

p′
11(t) = βp10(t) − αp11(t), t ≥ 0.

A standard result from the theory of linear differential equations states that the

general solution of this system is given by

(p10(t), p11(t)) = c1e
λ1tx1 + c2e

λ2tx2, t ≥ 0

provided that the coefficient matrix

A =
(

−β α

β −α

)

has distinct eigenvalues λ1 and λ2. The vectors x1 and x2 are the corresponding

eigenvectors. The constants c1 and c2 are determined by the boundary conditions

p10(0) = 0 and p11(0) = 1. The eigenvalues of the matrix A are λ1 = 0 and

λ2 = −(α+β) with corresponding eigenvectors x1 = (β−1, α−1) and x2 = (1, −1).

Next it follows from c1/β + c2 = 0 and c1/α − c2 = 1 that c1 = αβ/(α + β) and

c2 = −α/(α + β). This yields

p10(t) =
α

α + β
−

α

α + β
e−(α+β)t , t ≥ 0.
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Example 4.5.2 Transient analysis for the M/M/1 queue

In the M/M/1 queue customers arrive according to a Poisson process with rate

λ and the service times of the customers have an exponential distribution with

mean 1/µ. Letting X(t) denote the number of customers present at time t , the pro-

cess {X(t)} is a continuous-time Markov chain. Kolmogoroff’s forward differential

equations are as follows for the M/M/1 queue:

p′
ij (t) = µpi,j+1(t) + λpi,j−1(t) − (λ + µ)pij (t), i, j = 0, 1, . . . and t > 0

with pi,−1(t) = 0. An explicit solution of these equations is given by

pij (t) =
2

π
ρ(j−i)/2

∫ π

0

e−µtγ (y)

γ (y)
ai(y)aj (y) dy +

{
(1 − ρ)ρj , ρ < 1,

0, ρ ≥ 1,

for i, j = 0, 1, . . . , where ρ = λ/µ and the functions γ (y) and ak(y) are

defined by

γ (y) = 1 + ρ − 2
√

ρ cos(y) and ak(y) = sin(ky) −
√

ρ sin[(k + 1)y].

A proof of this explicit solution is not given here; see Morse (1955) and Takács

(1962). The trigonometric integral representation for pij (t) is very convenient for

numerical computations. A recommended numerical integration method is Gauss–

Legendre integration. Integral representations can also be given for the first two

moments of the number of customers in the system. The formulas will only be

given for the case of ρ < 1. Denoting by L(i, t) the number of customers in the

system at time t when initially there are i customers present, we have

E[L(i, t)] =
2

π
ρ(1−i)/2

∫ π

0

e−µtγ (y)

γ 2(y)
ai(y) sin(y) dy +

ρ

1 − ρ

and

E[L2(i, t)] =
4(1 − ρ)

π
ρ(1−i)/2

∫ π

0

e−µtγ (y)

γ 3(y)
ai(y) sin(y) dy

+ 2ρ(1 − ρ)−2 − E[L(i, t)],

assuming that ρ < 1. If ρ < 1, the transient probabilities pij (t) converge to the

equilibrium probabilities pj = (1 − ρ)ρj as t → ∞ and, similarly, E[L(i, t)]

converges to ρ/(1 − ρ) as t → ∞. A natural question is how fast the convergence

occurs. A heuristic answer to this question has been given by Odoni and Roth (1983)

in the context of the M/G/1 queue. Letting c2
S denote the squared coefficient of

variation of the service time, the M/G/1 queue will ‘forget’ its initial state after a

time comparable to

trelax =
(1 + c2

S)E(S)

2.8(1 − √
ρ)2

provided that the system is empty at epoch 0.
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In general the linear differential equations (4.5.1) have to be solved numerically.

Let us assume in the remainder of this section that the state space I of the Markov

chain is finite. There are several possibilities to numerically solve the homoge-

neous system (4.5.1) of linear differential equations with constant coefficients. In

most applications the matrix of coefficients has distinct eigenvalues and is thus

diagonalizable. In those situations one might compute the eigenvalues λ1, . . . , λn

of the matrix and the corresponding eigenvectors. The transient probabilities pij (t)

are then a linear combination of pure exponential functions eλ1t , . . . , eλnt (zero is

always among the eigenvalues and the corresponding eigenvector gives the equilib-

rium distribution of the Markov process up to a multiplicative constant). In general,

however, one uses a so-called Runge–Kutta method to solve the linear differen-

tial equations numerically. Standard codes for this method are widely available.

From a numerical point of view, the Runge–Kutta method is in general superior

to the eigenvalue approach. The Runge–Kutta method has the additional advan-

tage that it can also be applied to continuous-time Markov processes with time-

dependent transition rates. Another possible way to compute the pij (t) is to use

the discrete FFT method when an explicit expression for the generating function

P (t, z) =
∑

j∈I pij (t)z
j , |z| ≤ 1 is available.

4.5.2 The Uniformization Method

This method falls back on an earlier construction of a continuous-time Markov

chain in Section 4.1. In this construction the process leaves state i after an expo-

nentially distributed time with mean 1/νi and then jumps to another state j (j �= i)

with probability pij . Letting Xn denote the state of the process just after the nth

state transition, the discrete-time stochastic process {Xn} is an embedded Markov

chain with one-step transition probabilities pij . The jump probabilities pij and the

infinitesimal transition rates qij are related to each other by

qij = νipij , i, j ∈ I with j �= i. (4.5.2)

To introduce the uniformization method, consider first the special case in which

the leaving rates νi of the states are identical, say νi = ν for all i. Then the

transition epochs are generated by a Poisson process with rate ν. In this situation an

expression for pij (t) is directly obtained by conditioning on the number of Poisson

events up to time t and using the n-step transition probabilities of the embedded

Markov chain {Xn}. However, the leaving rates νi are in general not identical.

Fortunately, there is a simple trick for reducing the case of non-identical leaving

rates to the case of identical leaving rates. The uniformization method transforms

the original continuous-time Markov chain with non-identical leaving rates into

an equivalent stochastic process in which the transition epochs are generated by

a Poisson process at a uniform rate. However, to achieve this, the discrete-time

Markov chain describing the state transitions in the transformed process has to

allow for self-transitions leaving the state of the process unchanged.
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To formulate the uniformization method, choose a finite number ν with

ν ≥ νi, i ∈ I.

Define now {Xn} as the discrete-time Markov chain whose one-step transition

probabilities pij are given by

pij =
{

(νi/ν)pij , j �= i,

1 − νi/ν, j = i,

for any i ∈ I . Let {N(t), t ≥ 0} be a Poisson process with rate ν such that the

process is independent of the discrete-time Markov chain {Xn}. Define now the

continuous-time stochastic process {X(t), t ≥ 0} by

X(t) = XN(t), t ≥ 0. (4.5.3)

In other words, the process {X(t)} makes state transitions at epochs generated by a

Poisson process with rate ν and the state transitions are governed by the discrete-

time Markov chain {Xn} with one-step transition probabilities pij . Each time the

Markov chain {Xn} is in state i, the next transition is the same as in the Markov

chain {Xn} with probability νi/ν and is a self-transition with probability 1 − νi/ν.

The transitions out of state i are in fact delayed by a time factor of ν/νi , while the

time itself until a state transition from state i is condensed by a factor of νi/ν. This

heuristically explains why the continuous-time process {X(t)} is probabilistically

identical to the original continuous-time Markov chain {X(t)}. Another heuristic

way to see that the two processes are identical is as follows. For any i, j ∈ I with

j �= i

P {X(t + �t) = j | X(t) = i} = ν�t × pij + o(�t)

= νi�t × pij + o(�t) = qij �t + o(�t)

= P {X(t + �t) = j | X(t) = i} for �t → 0.

In the next theorem we give a formal proof that the two processes {X(t)} and

{X(t)} are probabilistically equivalent.

Theorem 4.5.2 Suppose that the continuous-time Markov chain {X(t)} satisfies

Assumption 4.1.2. Then

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I and t > 0.

Proof For any t > 0, define the matrix P(t) by P(t) = (pij (t)), i, j ∈ I . Denote

by Q the matrix Q = (qij ), i, j ∈ I , where the diagonal elements qii are defined by

qii = −νi .
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Then Kolmogoroff’s forward differential equations can be written as P′(t) = P(t)Q

for any t > 0. It is left to the reader to verify that the solution of this system of

differential equations is given by

P(t) = etQ =
∞∑

n=0

tn

n!
Qn, t ≥ 0. (4.5.4)

The matrix P = (pij ), i, j ∈ I , can be written as P = Q/ν + I, where I is the

identity matrix. Thus

P(t) = etQ = eνt (P−I) = eνtPe−νtI = e−νteνtP =
∞∑

n=0

e−νt (νt)n

n!
P

n
.

On the other hand, by conditioning on the number of Poisson events up to time t

in the {X(t)} process, we have

P {X(t) = j | X(0) = i} =
∞∑

n=0

e−νt (νt)n

n!
p

(n)
ij ,

where p
(n)
ij is the n-step transition probability of the discrete-time Markov chain

{Xn}. Together the latter two equations yield the desired result.

Corollary 4.5.3 The probabilities pij (t) are given by

pij (t) =
∞∑

n=0

e−νt (νt)n

n!
p

(n)
ij , i, j ∈ I and t > 0, (4.5.5)

where the probabilities p
(n)
ij can be recursively computed from

p
(n)
ij =

∑

k∈I

p
(n−1)
ik

pkj , n = 1, 2, . . . (4.5.6)

starting with p
(0)
ii = 1 and p

(0)
ij = 0 for j �= i.

This probabilistic result is extremely useful for computational purposes. The

series in (4.5.5) converges much faster than the series expansion (4.5.4). The com-

putations required by (4.5.5) are simple and transparent. For fixed t > 0 the infinite

series can be truncated beforehand, since

∞∑

n=M

e−νt (νt)n

n!
p

(n)
ij ≤

∞∑

n=M

e−νt (νt)n

n!
.

For a prespecified accuracy number ε > 0, we choose M such that the right-hand

side of this inequality is smaller than ε. By the normal approximation to the Poisson
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distribution, the truncation integer M can be chosen as

M = νt + c
√

νt

for some constant c with 0 < c ≤ c0(ε), where c0(ε) depends only on the tolerance

number ε. As a consequence the computational complexity of the uniformization

method is O(νtN2) where N is the number of states of the Markov chain. Hence

the uniformization method should be applied with the choice

ν = max
i∈I

νi .

The number νt is a crucial factor for the computational complexity of the uni-

formization method, as it is for the Runge–Kutta method, and is called the index

of stiffness. Also, the following remark may be helpful. For fixed initial state i,

the recursion scheme (4.5.6) boils down to the multiplication of a vector with the

matrix P. In many applications the matrix P is sparse. Then the computational effort

can be considerably reduced by using a data structure for sparse matrix multiplica-

tions. The uniformization results (4.5.5) and (4.5.6) need only a minor modification

when the initial state X(0) has a given probability distribution {π0(i), i ∈ I }. The

probability p
(n)
ij should then be replaced by p

(n)
j =

∑
i∈I π0(i)p

(n)
ij and this prob-

ability can recursively be computed from p
(n)
j =

∑
k∈I p

(n−1)
k pkj starting with

p
(0)
j = π0(j) for j ∈ I . For example, this modification may be used to compute

the transient state probabilities in finite-capacity queueing systems with a non-

stationary Poisson arrival process and exponential services, where the arrival rate

function λ(t) is (approximately) a piecewise-constant function. One then computes

the transient state probabilities for each interval separately on which λ(t) is constant

and uses the probability distribution of the state at the beginning of the interval as

the distribution of the initial state.

Expected transient rewards

Assume that a reward at rate r(j) is earned whenever the continuous-time Markov

chain {X(t)} is in state j , while a lump reward of Fjk is earned each time the

process makes a transition from state j to state k ( �= j). Let

R(t) = the total reward earned up to time t, t ≥ 0.

The following lemma shows that it is a simple matter to compute the expected

value of the reward variable R(t). The computation of the probability distribution

of R(t) is much more complex and will be addressed in Section 4.6.

Lemma 4.5.4 Suppose that the continuous-time Markov chain {X(t)} satisfies

Assumption 4.1.2. Then

E[R(t) | X(0) = i] =
∑

j∈I

r(j)Eij (t) +
∑

j∈I

Eij (t)
∑

k �=j

qjk Fjk , t > 0, (4.5.7)
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where Eij (t) is the expected amount of time that the process {X(t)} is in state j up

to time t when the process starts in state i. For any i, j ∈ I ,

Eij (t) =
1

ν

∞∑

k=1

e−νt (νt)k

k!

k−1∑

n=0

p
(n)
ij , t > 0. (4.5.8)

Proof The first term on the right-hand side of the relation for the expected reward

is obvious. To explain the second term, we use the PASTA property. Fix j, k ∈ I

with k �= j . Observe that the transitions out of state j occur according to a Poisson

process with rate νj whenever the process {X(t)} is in state j . Hence, using part (b)

of Theorem 1.1.3, transitions from state j to state k( �= j) occur according to a

Poisson process with rate qjk (= pjk νj ) whenever the process {X(t)} is in state j .

Next, by applying part (a) of Theorem 2.4.1, it is readily seen that the expected

number of transitions from state j to state k up to time t equals qjk times the

expected amount of time the process {X(t)} is in state j up to time t . This proves

(4.5.7). To prove (4.5.8), note that the representation (4.5.5) implies

Eij (t) =
∫ t

0

pij (u) du =
∫ t

0

[ ∞∑

n=0

e−νu (νu)n

n!
p

(n)
ij

]
du

=
∞∑

n=0

p
(n)
ij

∫ t

0

e−νu (νu)n

n!
du.

Except for a factor ν we have an integral over an Erlang (n + 1, ν) density. Thus

Eij (t) =
1

ν

∞∑

n=0

p
(n)
ij

∞∑

k=n+1

e−νt (νt)k

k!
.

By interchanging the order of summation, we next get the desired result.

4.5.3 First Passage Time Probabilities

In this section it is assumed that the state space I of the continuous-time Markov

chain {X(t)} is finite. For a given set C of states with C �= I , define

τC = the first epoch at which the continuous-time Markov chain {X(t)}
makes a transition into a state of the set C.

Also, define the first passage time probability QiC (t) by

QiC (t) = P {τC > t | X(0) = i}, i /∈ C and t > 0.

The computation of the first passage time probabilities QiC (t) can be reduced to

the computation of the transient state probabilities in a modified continuous-time

Markov chain with an absorbing state. The most convenient way to model an
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absorbing state is to take its leaving rate equal to zero. In the modified continuous-

time Markov chain the set C is replaced by a single absorbing state to be denoted

by a. The state space I ∗ and the leaving rates ν∗
i in the modified continuous-time

Markov chain are taken as

I ∗ = (I\C) ∪ {a} and ν∗
i =

{
νi, i ∈ I\C,

0, i = a.

The infinitesimal transition rates q∗
ij are taken as

q∗
ij =





qij , i, j ∈ I\C with j �= i,∑
k∈C qik , i ∈ I\C, j = a,

0, i = a, j ∈ I\C.

Denoting by p∗
ij (t) the transient state probabilities in the modified continuous-time

Markov chain, it is readily seen that

QiC (t) = 1 − p∗
ia (t), i /∈ C and t ≥ 0.

The p∗
ij (t) can be computed by using the uniformization algorithm in the previous

subsection (note that p∗
aa = 1 in the uniformization algorithm).

Example 4.5.3 The Hubble space telescope

The Hubble space telescope is an astronomical observatory in space. It carries a

variety of instruments, including six gyroscopes to ensure stability of the telescope.

The six gyroscopes are arranged in such a way that any three gyroscopes can keep

the telescope operating with full accuracy. The operating times of the gyroscopes

are independent of each other and have an exponential distribution with failure

rate λ. Upon a fourth gyroscope failure, the telescope goes into sleep mode. In

sleep mode, further observations by the telescope are suspended. It requires an

exponential time with mean 1/µ to put the telescope into sleep mode. Once the

telescope is in sleep mode, the base station on earth receives a sleep signal. A shuttle

mission to the telescope is next prepared. It takes an exponential time with mean

1/η before the repair crew arrives at the telescope and has repaired the stabilizing

unit with the gyroscopes. In the meantime the other two gyroscopes may fail. If

the last gyroscope fails, a crash destroying the telescope will be inevitable. What

is the probability that the telescope will crash in the next T years?

This problem can be analysed by a continuous-time Markov chain with an

absorbing state. The transition diagram is given in Figure 4.5.1. The state labelled

as the crash state is the absorbing state. As explained above, this convention enables

us to apply the uniformization method for the state probabilities to compute the

first passage time probability

Q(T ) = P {no crash will occur in the next T years

when currently all six gyroscopes are working}.
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Figure 4.5.1 The transition rate diagram for the telescope

Taking one year as time unit, consider the numerical example with the data

λ = 0.1, µ = 100 and η = 5.

The uniformization method is applied with the choice ν = 100 for the uniformized

leaving rate ν (the value 0 is taken for the leaving rate from the state crash). The

calculations yield the value 0.000504 for the probability 1−Q(T ) that a crash will

occur in the next T = 10 years. Similarly, one can calculate that with probability

0.3901 the sleep mode will not be reached in the next 10 years. In other words,

the probability of no shuttle mission in the next 10 years equals 0.3901. However,

if one wishes to calculate the probability distribution of the number of required

shuttle missions in the next 10 years, one must use the Markov reward model with

lump rewards (assume a lump reward of 1 each time the process jumps from either

state 2 or state 1 to the sleep mode). This Markov reward model is much more

difficult to solve and will be discussed in the next section.

4.6 TRANSIENT DISTRIBUTION OF CUMULATIVE REWARDS

A basic and practically important problem is the calculation of the transient prob-

ability distribution of the cumulative reward in a continuous-time Markov chain.

For example, a practical application is an oil-production platform which has to

meet a contractually agreed production level over a specified time period. The pro-

duction rate is not constant but depends on the stochastically varying state of the

platform. In this example a continuous-time Markov chain with reward rates may

be appropriate, where the reward rate r(j) represents the production rate in state j .

In Section 4.6.1 we first consider the special case of a Markov reward model

with reward rates that are either 0 or 1. The cumulative reward in this model

corresponds to the cumulative sojourn time of the process in a certain set of (good)

states. A nice and simple extension of the uniformization method can be given to

compute the transient distribution of the cumulative sojourn time in some given

set of states. The general Markov reward model with both reward rates and lump

rewards is dealt with in Section 4.6.2. A discretization algorithm will be discussed
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for this model. Throughout this section it is assumed that the continuous-time

Markov chain {X(t)} has a finite state space I .

4.6.1 Transient Distribution of Cumulative Sojourn Times

Consider a continuous-time Markov chain {X(t)} whose finite state space I is

divided into two disjoint subsets I0 and If with

I0 = the set of operational states and If = the set of failed states.

Define for any t > 0 the indicator random variable I (t) by

I (t) =
{

1 if X(t) ∈ I0,

0 otherwise.

Then the random variable

O(t) =
∫ t

0

I (u) du

represents the cumulative operational time of the system during (0, t). The transient

probability distribution of O(t) can be calculated by a nice probabilistic algorithm

that is based on the uniformization method.

To find P {O(t) ≤ x}, we first uniformize the continuous-time Markov chain

{X(t)} according to (4.5.3). Denoting by O(t) the cumulative operational time in

the uniformized process {X(t)}, we have

P {O(t) ≤ x} = P {O(t) ≤ x},

since the uniformized process is probabilistically equivalent with the original pro-

cess. By conditioning on the number of state transitions of the uniformized process

during (0, t), we have

P {O(t) ≤ x} =
∞∑

n=0

P {O(t) ≤ x | the uniformized process makes n state

transitions in (0, t)} e−νt (νt)n

n!
.

The next key step in the analysis is the relation between the Poisson process

and the uniform distribution. In the uniformized process the epochs of the state

transitions are determined by a Poisson process that is independent of the discrete-

time Markov chain governing the state transitions. Under the condition that the

uniformized process has made n state transitions during (0, t), the joint distribution

of the epochs of these state transitions is the same as the joint distribution of the

order statistics U (1), . . . , U (n) of n independent random variables U1, . . . , Un that

are uniformly distributed on (0, t); see Theorem 1.1.5. Note that U (k) is the smallest
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kth of the Ui . The n state transitions in the interval (0, t) divide this interval into

n + 1 intervals whose lengths are given by

Y1 = U (1), Y2 = U (2) − U (1), . . . , Yn = U (n) − U (n−1) and Yn+1 = t − U (n).

The random variables Y1, . . . , Yn+1 are obviously dependent variables, but they

are exchangeable. That is, for any permutation i1, . . . , in+1 of 1, . . . , n + 1,

P {Yi1 ≤x1, Yi2 ≤x2, . . ., Yin+1
≤ xn+1} = P {Y1 ≤ x1, Y2 ≤ x2, . . ., Yn+1 ≤ xn+1}.

As a consequence

P {Yi1 + · · · + Yik ≤ x} = P {Y1 + · · · + Yk ≤ x}

for any sequence (Yi1 , . . . , Yik ) of k interval lengths. The probability distribution

of Y1 + · · · + Yk is easily given. Let k ≤ n. Then Y1 + · · · + Yk = U (k) and so

P {Y1 + · · · + Yk ≤ x} = P {U (k) ≤ x} = P {at least k of the Ui are ≤ x}

=
n∑

j=k

(
n

j

) (x

t

)j (
1 −

x

t

)n−j

.

The next step of the analysis is to condition on the number of times the uniformized

process visits operational states during (0, t) given that the process makes n state

transitions in (0, t). If this number of visits equals k (k ≤ n+1), then the cumulative

operational time during (0, t) is distributed as Y1 + · · · + Yk . For any given n ≥ 0,

define

α(n, k) = P {the uniformized process visits k times an operational

state in (0, t) | the uniformized process makes n

state transitions in (0, t)}

for k = 0, 1, . . . , n + 1. Before showing how to calculate the α(n, k), we give the

final expression for P {O(t) ≤ x}. Note that O(t) has a positive mass at x = t .

Choose x < t . Using the definition of α(n, k) and noting that O(t) ≤ x only if the

uniformized process visits at least one non-operational state in (0, t), it follows that

P {O(t) ≤ x | the uniformized processes makes n state transitions in (0, t)}

=
n∑

k=0

P {O(t) ≤ x | the uniformized process makes n state transitions

in (0, t) and visits k times an operational state in (0, t)} α(n, k)
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=
n∑

k=0

P {Y1 + · · · + Yk ≤ x} α(n, k)

=
n∑

k=0

α(n, k)

n∑

j=k

(
n

j

) (x

t

)j (
1 −

x

t

)n−j

, 0 ≤ x < t.

This gives the desired expression

P {O(t) ≤ x} =
∞∑

n=0

e−νt (νt)n

n!

n∑

k=0

α(n, k)

n∑

j=k

(
n

j

) (x

t

)j (
1 −

x

t

)n−j

(4.6.1)

for 0 ≤ x < t . The random variable O(t) assumes the value t if the uniformized

process visits only operational states in (0, t). Thus

P {O(t) = t} =
∞∑

n=0

α(n, n + 1)e−νt (νt)n

n!
.

The above expression for P {O(t) ≤ x} is well suited for numerical computations,

since the summations involve only positive terms. As before, the infinite sum can

be truncated to M terms, where the error associated with the truncation is bounded

by
∑∞

n=M e−νt (νt)n/n! so that M can be determined beforehand for a given error

tolerance.

Computation of the α(n, k)

The probabilities α(n, k) are determined by the discrete-time Markov chain {Xn}
that governs the state transitions in the uniformized process. The one-step transition

probabilities of this discrete-time Markov chain are given by pij = (νi/ν)pij for

j �= i and pii = 1−νi/ν, where pij = qij /νi . To calculate the α(n, k), let α(n, k, j)

be the joint probability that the discrete-time Markov chain {Xt } visits k times an

operational state over the first n state transitions and is in state j after the nth

transition. Then

α(n, k) =
∑

j∈I

α(n, k, j), k = 0, 1, . . . , n + 1 and n = 0, 1, . . . .

The probabilities α(n, k, j) can be recursively computed. In the recursion we have

to distinguish between states j ∈ I0 and states j ∈ If . Obviously,

α(n, k, j) =
∑

i∈I

α(n − 1, k − 1, i)pij , j ∈ I0

and

α(n, k, j) =
∑

i∈I

α(n − 1, k, i)pij , j ∈ If .
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Denoting by {αi} the probability distribution of the initial state of the original

process {X(t)}, we have the boundary conditions

α(0, 1, j) = αj , α(0, 0, j) = 0, j ∈ I0

and

α(0, 0, j) = αj , α(0, 1, j) = 0, j ∈ If .

Example 4.5.3 (continued) The Hubble telescope problem

Assume that the telescope is needed to make observations of important astronomical

events during a period of half a year two years from now. What is the probability

that during this period of half a year the telescope will be available for at least

95% of the time when currently all six gyroscopes are in perfect condition? The

telescope is only working properly when three or more gyroscopes are working.

In states 1 and 2 the telescope produces blurred observations and in states sleep 2,

sleep 1 and crash the telescope produces no observations at all. Let us number the

states sleep 2, sleep 1 and crash as the states 7, 8 and 9. To answer the question

posed, we split the state space I = {1, 2, . . . , 9} into the set I0 of operational states

and the set If of failed states with

I0 = {6, 5, 4, 3} and If = {2, 1, 7, 8, 9}.

Before applying the algorithm (4.6.1) with t = 1
2

and x = 0.95t , we first use

the standard uniformization method from Section 4.5 to compute the probability

distribution of the state of the telescope two years from now. Writing αi = p6i(2),

we obtain the values

α1 = 3.83 × 10−7, α2 = 0.0001938, α3 = 0.0654032, α4 = 0.2216998,

α5 = 0.4016008, α6 = 0.3079701, α7 = 0.0030271, α8 = 0.0000998,

α9 = 0.0000050

for the data λ = 0.1, µ = 100 and η = 5. Next the algorithm (4.6.1) leads to the

value 0.9065 for the probability that the telescope will be properly working for at

least 95% of the time in the half-year that comes two years from now.

4.6.2 Transient Reward Distribution for the General Case

In the general case the continuous-time Markov chain {X(t)} earns a reward at rate

r(j) for each unit of time the process is in state j and earns a lump reward of Fjk

each time the process makes a state transition from state j to another state k. It

is assumed that the r(j)and the Fjk are both non-negative. It is possible to extend

the algorithm from Section 4.6.1 to the general case. However, the generalized

algorithm is very complicated and, worse, it is not numerically stable. For this
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reason we prefer to present a simple-minded discretization approach for the general

reward case. For fixed t > 0, let

R(t) = the cumulative reward earned up to time t.

Assume that for each state j ∈ I the joint probability distribution function P {R(t) ≤
x, X(t) = j} has a density with respect to the reward variable x (a sufficient

condition is that r(j) > 0 for all j ∈ I ). Then we can represent P {R(t) ≤ x} as

P {R(t) ≤ x} =
∑

j∈I

∫ x

0

fj (t, y) dy, x ≥ 0,

where fj (t, x) is the joint probability density of the cumulative reward up to time

t and the state of the process at time t . The idea is to discretize the reward variable

x and the time variable t in multiples of �, where � > 0 is chosen sufficiently

small (the probability of more than one state transition in a time period of length

� should be negligibly small). The discretized reward variable x can be restricted

to multiples of � when the following assumptions are made:

(a) the reward rates r(j) are non-negative integers,

(b) the non-negative lump rates Fjk are multiples of �.

For practical applications it is no restriction to make these assumptions. How do

we compute P {R(t) ≤ x} for fixed t and x? It is convenient to assume a probability

distribution

αi = P {X(0) = i}, i ∈ I

for the initial state of the process. In view of the probabilistic interpretation

fj (t, x)�x ≈ P {x ≤ R(t) < x + �x, X(t) = j} for �x small,

we approximate for fixed � > 0 the density fj (u, y) by a discretized function

f �
j (τ, r). The discretized variables τ and r run through multiples of �. For fixed

� > 0 the discretized functions f �
j (τ, r) are defined by the recursion scheme

f �
j (τ, r) = f �

j (τ − �, r − r(j)�)(1 − νj�)

+
∑

k �=j

f �
k (τ − �, r − r(k)� − Fkj )qkj �

for τ = 0, �, . . . , (t/�) � and r = 0, �, . . . , (x/�) � (for ease assume that x

and t are multiples of �). For any j ∈ I , the boundary conditions are

f �
j (0, r) =

{
αj/�, r = 0,

0, otherwise,
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and

f �
j (τ, r) = 0 for any τ ≥ 0 when r < 0.

Using the simple-minded approximation

∫ x

0

fj (t, y) dy ≈
x/�−1∑

ℓ=0

f �
j (t, ℓ�)�,

the desired probability P {R(t) ≤ x} is approximated by

P {R(t) ≤ x} ≈
∑

j∈I

x/�−1∑

ℓ=0

f �
j (t, ℓ�)�. (4.6.2)

For fixed x and t , the computational effort of the algorithm is proportional to

1/�2 and so it quadruples when � is halved. Hence the computation time of the

algorithm will become very large when the probability P {R(t) ≤ x} is desired at

high accuracy and there are many states. Another drawback of the discretization

algorithm is that no estimate is available for the discretization error. Fortunately,

both difficulties can be partially overcome. Let

P (�) =
∑

j∈I

x/�−1∑

ℓ=0

f �
j (t, ℓ�)�

be the first-order estimate for P {R(t) ≤ x} and let the error term

e(�) = P (�) − P {R(t) ≤ x}.

The following remarkable result was empirically found:

e(�) ≈ P (2�) − P (�)

when � is not too large. Thus the first-order approximation P (�) to P {R(t) ≤ x}
is much improved when it is replaced by

P̃ (�) = P (�) − [P (2�) − P (�)] . (4.6.3)

Example 4.5.3 (continued) The Hubble telescope problem

What is the probability distribution of the number of repair missions that will

be prepared in the next 10 years when currently all six gyroscopes are in perfect

condition? To consider this question we impose the following reward structure on

the continuous-time Markov chain that is described in Figure 4.5.1 (with the states

sleep 2 and sleep 1 numbered as the states 7 and 8). The reward rates r(j) and the

lump rewards Fjk are taken as

r(j) = 0 for all j, F27 = F18 = 1 and the other Fjk = 0.
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Then the cumulative reward variable R(t) represents the number of repair missions

that will be prepared up to time t . Note that in this particular case the stochas-

tic variable R(t) has a discrete distribution rather than a continuous distribution.

However, the discretization algorithm also applies to the case of a reward variable

R(t) with a non-continuous distribution. For the numerical example with λ = 0.1,

µ = 100 and η = 5 we found that P {R(t) > k} has the respective values 0.6099,

0.0636 and 0.0012 for k = 0, 1 and 2 (accurate to four decimal places with

� = 1/256).

EXERCISES

4.1 A familiar sight in Middle East street scenes are the so-called sheroots. A sheroot is a
seven-seat cab that drives from a fixed stand in a town to another town. A sheroot leaves
as soon as all seven seats are occupied by passengers. Consider a sheroot stand which has
room for only one sheroot. Potential passengers arrive at the stand according to a Poisson
process at rate λ. If upon arrival a potential customer finds no sheroot present and seven
other customers already waiting, the customer goes elsewhere for transport; otherwise, the
customer waits until a sheroot departs. After a sheroot leaves the stand, it takes an exponential
time with mean 1/µ until a new sheroot becomes available.

Formulate a continuous-time Markov chain model for the situation at the sheroot stand.
Specify the state variable(s) and the transition rate diagram.

4.2 In a certain city there are two emergency units, 1 and 2, that cooperate in responding
to accident alarms. The alarms come into a central dispatcher who sends one emergency
unit to each alarm. The city is divided in two districts, 1 and 2. The emergency unit i
is the first-due unit for response area i for i = 1, 2. An alarm coming in when only
one of the emergency units is available is handled by the idle unit. If both units are not
available, the alarm is settled by some unit from outside the city. Alarms from the districts
1 and 2 arrive at the central dispatcher according to independent Poisson processes with
respective rates λ1 and λ2. The amount of time needed to serve an alarm from district
j by unit i has an exponential distribution with mean 1/µij . The service times include
travel times.

Formulate a continuous-time Markov chain model to analyse the availability of the emer-
gency units. Specify the state variable(s) and the transition rate diagram.

4.3 An assembly line for a certain product has two stations in series. Each station has only
room for a single unit of the product. If the assembly of a unit is completed at station 1, it
is forwarded immediately to station 2 provided station 2 is idle; otherwise the unit remains
in station 1 until station 2 becomes free. Units for assembly arrive at station 1 according to
a Poisson process with rate λ, but a newly arriving unit is only accepted by station 1 when
no other unit is present in station 1. Each unit rejected is handled elsewhere. The assembly
times at stations 1 and 2 are exponentially distributed with respective means 1/µ1 and 1/µ2.

Formulate a continuous-time Markov chain to analyse the situation at both stations. Spec-
ify the state variable(s) and the transition rate diagram.

4.4 Cars arrive at a gasoline station according to a Poisson process with an average of
10 customers per hour. A car enters the station only if less than four other cars are present.
The gasoline station has only one pump. The amount of time required to serve a car has an
exponential distribution with a mean of four minutes.

(a) Formulate a continuous-time Markov chain to analyse the situation of the gasoline
station. Specify the state diagram.

(b) Solve the equilibrium equations.
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(c) What is the long-run average number of cars in the station?
(d) What is the long-run fraction of potential customers that are lost?

4.5 A production hall contains a fast machine and a slow machine to process incoming
orders. Orders arrive according to a Poisson process with rate λ. An arriving order that finds
both machines occupied is rejected. Unless both machines are occupied, an arriving order
is assigned to the fast machine if available; otherwise, the order is assigned to the slow
machine. The processing time of an order is exponentially distributed with mean 1/µ1 at
the fast machine and mean 1/µ2 at the slow machine. It is not possible to transfer an order
from the slow machine to the fast machine.

(a) Formulate a continuous-time Markov chain to analyse the situation in the production
hall. Specify the state variable(s) and the transition rate diagram

(b) Specify the equilibrium equations for the state probabilities. What is the long-run
fraction of time that the fast (slow) machine is used? What is the long-run fraction of
incoming orders that are lost?

4.6 In Gotham City there is a one-man taxi company. The taxi company has a stand at the
railway station. Potential customers arrive according to a Poisson process with an average
of four customers per hour. The taxi leaves the station immediately a customer arrives. A
potential customer finding no taxi present waits until the taxi arrives only if there are less
than three other customers waiting; otherwise, the customer goes elsewhere for alternative
transport. If the taxi returns to the stand and finds waiting customers, it picks up all waiting
customers and leaves. The amount of time needed to return to the stand has an exponential
distribution with mean 1/µi when the taxi leaves the stand with i customers, i = 1, 2, 3.

(a) Formulate a continuous-time Markov chain to analyse the situation at the taxi stand.
Specify the state variable(s) and the transition rate diagram.

(b) What is the long-run fraction of time the taxi waits idle at the taxi stand? What is the
long-run fraction of potential customers who go elsewhere for transport?

4.7 A container terminal has a single unloader to unload trailers which bring loads of
containers. The unloader can serve only one trailer at a time and the unloading time has
an exponential distribution with mean 1/µ1. After a trailer has been unloaded, the trailer
leaves but the unloader needs an extra finishing time for the unloaded containers before
the unloader is available to unload another trailer. The finishing time has an exponential
distribution with mean 1/µ2. A leaving trailer returns with the next load of containers after
an exponentially distributed time with mean 1/λ. There are a finite number of N unloaders
active at the terminal.

(a) Formulate a continuous-time Markov chain to analyse the situation at the container
terminal. Specify the state variable(s) and the transition rate diagram.

(b) What is the long-run fraction of time the unloader is idle? What is the long-run
average number of trailers unloaded per time unit?

(c) What is the long-run average number of trailers waiting to be unloaded? What is the
long-run average waiting time per trailer?

(d) Write a computer program to compute the performance measures in (b) and (c) for
the numerical data N = 10, µ1 = 1/3, µ2 = 2 and λ = 1/50.

4.8 Messages for transmission arrive at a communication channel according to a Poisson
process with rate λ. The channel can transmit only one message at a time. The transmission
time is exponentially distributed with mean 1/µ. The following access control rule is used.
A newly arriving message is accepted as long as less than R other messages are present at
the communication channel (including any message in transmission). As soon as the number
of messages in the system has dropped to r , newly arriving messages are again admitted to
the transmission channel. The control parameters r and R are given integers with 0 ≤ r < R.

(a) Formulate a continuous-time Markov chain to analyse the situation at the communi-
cation channel. Specify the state variable(s) and the transition rate diagram.
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(b) What is the long-run fraction of time the channel is idle? What is the long-run fraction
of messages that are rejected?

(c) What is the long-run average number of messages waiting to be transmitted? What is
the long-run average delay in queue per accepted message?

4.9 An information centre has one attendant; people with questions arrive according to a
Poisson process with rate λ. A person who finds n other customers present upon arrival
joins the queue with probability 1/(n + 1) for n = 0, 1, . . . and goes elsewhere otherwise.
The service times of the persons are independent random variables having an exponential
distribution with mean 1/µ.

(a) Verify that the equilibrium distribution of the number of persons present has a Poisson
distribution with mean λ/µ.

(b) What is the long-run fraction of persons with requests who actually join the queue?
What is the long-run average number of persons served per time unit?

4.10 (a) Consider Exercise 4.1 again. Specify the equilibrium equations for the state prob-
abilities. What is the long-run average waiting time of a carried passenger? What is the
long-run fraction of potential customers who are lost?

(b) Answer the questions in (a) again for the modified situation in which a potential
customer only waits when, upon his arrival, a sheroot is present.

4.11 Consider Exercise 4.2 again and denote by Sij the time needed to serve an alarm for
district j by unit i. Assume that Sij has a Coxian-2 distribution for all i, j . Show how to
calculate the following performance measures: πL = the fraction of alarms that is lost and

Pi = the fraction of time that unit i is busy for i = 1, 2. Letting mij and c2
ij

denote the

mean and the squared coefficient of variation of Sij , assume the numerical data λ1 = 0.25,
λ2 = 0.25, m11 = 0.75, m12 = 1.25, m21 = 1.25 and m22 = 1. Write a computer program
to verify the following numerical results:

(i) πL = 0.0704, P1 = 0.2006, P2 = 0.2326 when c2
ij

= 1
2

for all i, j ;

(ii) πL = 0.0708, P1 = 0.2004, P2 = 0.2324 when c2
ij

= 1 for all i, j ;

(iii) πL = 0.0718, P1 = 0.2001, P2 = 0.2321 when c2
ij

= 4 for all i, j .

Here the values c2
ij

= 1
2

, 1 and 4 correspond to the E2 distribution, the exponential distri-

bution and the H2 distribution with balanced means.

4.12 In an inventory system for a single product the depletion of stock is due to demand
and deterioration. The demand process for the product is a Poisson process with rate λ. The
lifetime of each unit product is exponentially distributed with mean 1/µ. The stock control
is exercised as follows. Each time the stock drops to zero an order for Q units is placed. The
lead time of each order is negligible. Determine the average stock and the average number
of orders placed per time unit.

4.13 Messages arrive at a communication channel according to a Poisson process with rate
λ. The message length is exponentially distributed with mean 1/µ. An arriving message
finding the line idle is provided with service immediately; otherwise the message waits until
access to the line can be given. The communication line is only able to submit one message
at a time, but has available two possible transmission rates σ1 and σ2 with 0 < σ1 < σ2.
Thus the transmission time of a message is exponentially distributed with mean 1/(σiµ)
when the transmission rate σi is used. It is assumed that λ/(σ2µ) < 1. At any time the
transmission line may switch from one rate to the other. The transmission rate is controlled
by a rule that uses a single critical number. The transmission rate σ1 is used whenever less
than R messages are present, otherwise the faster transmission rate σ2 is used. The following
costs are involved. There is a holding cost at rate hj whenever there are j messages in the
system. An operating cost at rate ri > 0 is incurred when the line is transmitting a message
using rate σi , while an operating cost at rate r0 ≥ 0 is incurred when the line is idle.
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(a) Derive a recursion scheme for computing the limiting distribution of the number of
messages present and give an expression for the long-run average cost per time unit.

(b) Write a computer program for calculating the value of R which minimizes the average
cost and solve for the numerical data λ = 0.8, µ = 1, σ1 = 1, σ2 = 1.5, h = 1, r0 = 0,
r1 = 5 and r2 = 25.

4.14 Customers asking for a certain product arrive according to a Poisson process with
rate λ. The demand sizes of the customers are independent random variables and have a
common discrete probability distribution {pk, k = 1, 2, . . . }. Any demand that cannot be
directly satisfied from stock on hand is back ordered. The control rule is based on the
inventory position, which is defined as the stock on hand minus the amount back ordered
plus the amount on order. Each time the inventory position reaches the reorder level s or
drops below it, the smallest multiple of the basic quantity Q is ordered to bring the inventory
position level above s. The lead time of any replenishment order is a fixed constant L >
0.

(a) Prove that the limiting distribution of the inventory position is a discrete uniform
distribution. (Hint : use relation (4.3.2) and verify that the one-step transition matrix of the
embedded Markov chain is doubly stochastic.)

(b) Derive the limiting distribution of the stock on hand.
(c) What is the average replenishment frequency and what is the average stock on hand?
(d) What is the fraction of customers whose demands are (partially) back ordered? What

is the fraction of demand that is not satisfied directly from stock on hand?

4.15 Consider the transient probabilities pij (t) in a continuous-time Markov chain with finite
space I = {1, . . . , n}. Let the n × n matrix Q be defined as in the proof of Theorem 4.5.2.
Assume that the matrix Q has n different eigenvalues λ1, . . . , λn. Let ak be an eigenvector
corresponding to the eigenvalue λk for k = 1, . . . , n and let S be the n×n matrix whose kth
column vector is ak . For each initial state i, denote by pi(t) the vector whose j th element
equals pij (t). Use results from Section 1.4 to verify the representation

pi(t) =
n∑

k=1

cik eλk t ak, t ≥ 0,

for constants ci1, . . . , cin , where the vector ci = (ci1, . . . , cin ) is given by ci = S−1ei
with ei denoting the ith unit vector (0, . . . , 1, . . . , 0).

4.16 An operating system has r + s identical units where r units must be operating and s
units are in preoperation (warm standby). A unit in operation has a constant failure rate of
λ, while a unit in preoperation has a constant failure rate of β with β < λ. Failed units enter
a repair facility that is able to repair at most c units simultaneously. The repair of a failed
unit has an exponential distribution with mean 1/µ. An operating unit that fails is replaced
immediately by a unit from the warm standby if one is available. The operating system
goes down when less than r units are in operation. Show how to calculate the probability
distribution function of the time until the system goes down for the first time when all of
the r + s units are in good condition at time 0.

4.17 An electronic system uses one operating unit but has built-in redundancy in the form
of R standby units. The standby units are not switched on (cold standby). The operating
unit has an exponentially distributed lifetime with mean 1/λ. If the operating unit fails,
it is immediately replaced by a standby unit if available. Each failed unit enters repair
immediately and is again available after an exponentially distributed repair time with mean
1/µ. It is assumed that the mean repair time is much smaller than the mean lifetime. There
are ample repair facilities. The system is down when all R +1 units are in repair. Assuming
that all R + 1 units are in perfect condition at time 0, let the random variable τ be the time
until the first system failure.
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(a) Use the uniformization method to compute E(τ), σ(τ) and P {τ > t} for t = 2, 5 and
10 when λ = 1, µ = 10 and the number of standby units is varied as R = 1, 2 and 3.

(b) Extend the analysis in (a) for the case that the repair time has a Coxian-2 distribution
and investigate how sensitive the results in (a) are to the second moment of the repair-time
distribution.

4.18 Messages arrive at a node in a communication network according to a Poisson process
with rate λ. Each arriving message is temporarily stored in an infinite-capacity buffer until
it can be transmitted. The messages have to be routed over one of two communication lines
each with a different transmission time. The transmission time over the communication
line is i exponentially distributed with mean 1/µi(i = 1, 2), where 1/µ1 < 1/µ2 and
µ1 + µ2 > λ. The faster communication line is always available for service, but the slower
line will be used only when the number of messages in the buffer exceeds some critical
level. Each line is only able to handle one message at a time and provides non-pre-emptive
service. With the goal of minimizing the average sojourn time (including transmission time)
of a message in the system, the following control rule with switching level L is used. The
slower line is turned on for transmitting a message when the number of messages in the
system exceeds the level L and is turned off again when it completes a transmission and
the number of messages left behind is at or below L. Show how to calculate the average
sojourn time of a message in the system. This problem is taken from Lin and Kumar (1984).

4.19 Two communication lines in a packet switching network share a finite storage space
for incoming messages. Messages of the types 1 and 2 arrive at the storage area according
to two independent Poisson processes with respective rates λ1 and λ2. A message of type j
is destined for communication line j and its transmission time is exponentially distributed
with mean 1/µj , j = 1, 2. A communication line is only able to transmit one message at
a time. The storage space consists of M buffer places. Each message requires exactly one
buffer place and occupies the buffer place until its transmission time has been completed.
A number Nj of buffer places are reserved for messages of type j and a number N0 of
buffer places are to be used by messages of both types, where N0 + N1 + N2 = M . That
is, an arriving message of type j is accepted only when the buffer is not full and less than
N0 + N1 other messages of the same type j are present; otherwise, the message is rejected.
Discuss how to calculate the optimal values of N0, N1 and N2 when the goal is to minimize
the total rejection rate of both types of message. Write a computer program and solve for
the numerical data M = 15, λ1 = λ2 = 1 and µ1 = µ2 = 1. This problem is based on
Kamoun and Kleinrock (1980).

4.20 A traffic source is alternately on and off, where the on- and off-times are exponentially
distributed with respective means 1/δ and 1/β. During on-periods the traffic source gener-
ates messages for a transmission channel according to a Poisson process with rate λ. The
transmission channel can handle only one message at a time and the transmission time of a
message has an exponential distribution with mean 1/µ. The on-times, off-times and trans-
mission times are independent of each other. Further, it is assumed that λβ/[µ(δ +β)] < 1.
Let the states (i, 0) and (i, 1) correspond to the situation that there are i messages at the
transmission channel and the traffic source is off or on respectively.

(a) Verify for the numerical values λ = 1, µ = 1, β = 2, δ = 0.5 that the system of
linear equations (4.4.6) is given by

(
1 − 3z 0.5z

2z z2 − 2.5z + 1

) (
G0(z)
G1(z)

)
=

(
(1 − z)p00
(1 − z)p01

)
.

Verify the roots of det A(z) = 0 are z0 = 1, z1 = 0.2712865 and z2 = 1.2287136.
(b) Use the roots z0 and z1 and the fact that Gi (z) is analytic for |z| ≤ 1 to find p00 and

p01.
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(c) Use partial-fraction expansion to show that p(i, s) = γs (z2)−i for i = 1, 2, . . . and
s = 0, 1. Specify the values of γ0 and γ1.

4.21 Consider a multi-server queueing system with c unreliable servers. Jobs arrive according
to a Poisson process with rate λ. The required service times of the jobs are independent
random variables having a common exponential distribution with mean 1/µ. The service of
a job may be interrupted by a server breakdown. The server operates uninterruptedly during
an exponentially distributed time with mean 1/δ. It takes an exponentially distributed time
with mean 1/β to bring a broken-down server to the operative state. Any interrupted service
is resumed at the point it was interrupted. It is assumed that an interrupted service is taken
over by the first available server.

Denote by p(i, s) the limiting probability of having i jobs present and s operative servers
for i ≥ 0 and 0 ≤ s ≤ c. Prove that the probabilities p(i, s) can be computed by using the
geometric tail approach. In particular, verify that

p(i, s) ∼ γsη
i as i → ∞

for a constant γs , where η is the reciprocal of the smallest root of det [M(z)] = 0 on the
interval (1,∞). Here M(z) = (mst (z)), s, t = 0, 1, . . . , c is a tridiagonal (c + 1) × (c + 1)
matrix with mss (z) = λz − [λ + s(µ + δ) + (c − s)β] + sµ/z, ms,s−1(z) = (c − s + 1)β
and ms,s+1(z) = (s + 1)δ. This problem is based on Mitrani and Avi-Itzhak (1968).

4.22 Consider the unloader problem from Example 4.1.2 again. Assume now that the unload-
ing time of a ship has an Erlang (L,µ) distribution and the repair time of the unloader has
an Erlang (R, β) distribution. Letting ρ = (λL/µ)(1 + δR/β), it is assumed that the server
utilization ρ is less than 1. Interpret the unloading time of a ship as a sequence of L inde-
pendent unloading phases each having an exponential distribution with mean 1/µ. Also,
interpret the repair time of the unloader as a sequence of R independent repair phases each
having an exponential distribution with mean 1/β. Let state (i, 0) correspond to the situ-
ation the unloader is available and i uncompleted unloading phases are present (i ≥ 0).
Let state (i, r) correspond to the situation that there are i uncompleted unloading phases
(i ≥ 1) and the unloader is in repair with r remaining repair phases (1 ≤ r ≤ R). Denote by
p(i, s) the equilibrium probability of state (i, s) and define the generating functions Gs (z)

by G0(z) =
∑∞

i=0 p(i, 0)zi and Gr (z) =
∑∞

i=1 p(i, r)zi for |z| ≤ 1.
(a) Verify that

Gs(z) =
det As(z)

det A(z)
, s = 0, 1, . . . , R.

Here A(z) is the (R + 1) × (R + 1) matrix A(z) = (1 − z)M − λz(1 − zL)I + zQT , where

M = diag(µ, 0, . . . , 0) and QT is the transpose of the transition matrix Q = (qij ) with
q0R = −q00 = δ, qi,i−1 = −qii = β for 1 ≤ i ≤ R and the other qij = 0. The matrix
As(z) results from replacing the (s + 1)th column vector of A(z) by the vector b(z) with

bT (z) = ((µ(1 − z) − δz)p(0, 0), 0, . . . , 0).
(b) Conclude that for any s = 0, 1, . . . , R,

p(i, s) ∼ γsη
i as i → ∞

for a constant γs , where η is the reciprocal of the smallest root of det A(x) = 0 on the
interval (1,∞). Note that for Erlangian service the polynomial equation

det A(z) = (−1)R+1[{λz(1 − zL) − µ(1 − z) + δz}{λz(1 − zL) + βz}R

− δz(βz)R] = 0

is obtained by expanding det A(z) in the cofactors of its first row.
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4.23 Repeat the analysis in Exercise 4.22 when the repair time is H2 distributed with param-
eters (p1, ν1, p2, ν2) rather than Erlang (R, λ) distributed. Verify that the results remain the
same when we take R = 2 and replace the matrix Q by

Q =




−δ δp1 δp2
ν1 −ν1 0
ν2 0 −ν2




4.24 At a facility for train maintenance, work is done on a number of separate parallel tracks.
On each of these tracks there is room for two trains on a front part and a back part. Trains
can leave the tracks only on the same side they enter the tracks. That is, upon completion of
its maintenance a train may be locked in by another train that arrived later on the same track
but has not yet completed its maintenance. For each of the tracks there are two maintenance
crews, one for the train at the front part of the track and one for the train at the back. Trains
requesting maintenance arrive at the maintenance facility according to a Poisson process
with rate λ. A train immediately receives maintenance when it finds a free place at one of
the tracks upon arrival; otherwise, the train waits until a maintenance place becomes free.
A newly arriving train is directed to a front part if both a front part and a back part are free.
The amount of time needed to serve a train has an exponential distribution with mean 1/µ.

It is assumed that λ < 3
2
cµ.

(a) Formulate a continuous-time Markov time chain for the performance evaluation of
the maintenance track.

(b) Argue that the geometric tail approach can be used to reduce the infinite system of
equilibrium equations to a finite system of linear equations. This problem is based on Adan
et al. (1999).

BIBLIOGRAPHIC NOTES

The theory of continuous-time Markov chains is more delicate than the theory

of discrete-time Markov chains. Basic references are Anderson (1991) and Chung

(1967). The continuous-time Markov chain model is the most versatile model in

applied probability. The powerful technique of equating the flow out of a state

to the flow into that state has a long history and goes back to the pioneering

work of Erlang on stochastic processes in the early 1900s; see also Kosten (1973).

The uniformization technique for the transient analysis of continuous-time Markov

chains goes back to Jensen (1953) and is quite useful for both analytical and

computational purposes. The extension of the uniformization method to compute the

transient probability distribution of the sojourn time in a given set of states is due to

De Soua e Silva and Gail (1986). The material in Section 4.6.2 for the computation

of the transient reward distribution is based on Goyal and Tantawi (1988) and Tijms

and Veldman (2000); see also Sericola (2000) for an alternative method. The Hubble

telescope problem from Example 4.5.3 is taken from Hermanns (2001).
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CHAPTER 5

Markov Chains and Queues

5.0 INTRODUCTION

Markov chain theory has numerous applications to queueing systems. This chapter

gives a first introduction to the analysis of queues and stochastic networks. In

Section 5.1 we consider the Erlang delay model with Poisson arrivals and expo-

nential services. We first analyse the single-server M/M/1 queue and next the

multi-server M/M/c queue. Section 5.2 deals with both the Erlang loss model with

Poisson input and the Engset loss model with finite-source input. The Erlang delay

model and Erlang’s loss formula will be used in Section 5.3 to obtain a square-root

staffing rule for the design of stochastic service systems. The Erlang loss model

and the Engset loss model have the so-called insensitivity property stating that the

equilibrium distribution of the number of customers present is insensitive to the

form of the service-time distribution and requires only the mean service time. This

insensitivity property, being of utmost importance in practice, will be discussed in a

more general framework in Section 5.4. The so-called phase method is the subject

of Section 5.5. This powerful method uses the idea that any probability distribution

function of a non-negative random variable can be arbitrarily closely approximated

by a mixture of Erlangian distributions with the same scale parameters. This fun-

damental result greatly enhances the applicability of the continuous-time Markov

chain model. In Section 5.6 the theory of continuous-time Markov chains will be

used to analyse open and closed queueing networks. In particular, a product-form

formula will be established for the joint distribution of the number of customers

present at the various nodes of the network.

5.1 THE ERLANG DELAY MODEL

Consider a multi-server station at which customers arrive according to a Poisson

process with rate λ. There are c servers with a shared infinite-capacity waiting line.

If an arriving customer finds a free server, the customer immediately enters service;

otherwise, the customer joins the queue. The service times of the customers are

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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independent random variables having a common exponential distribution with mean

1/µ. The service times and the arrival process are independent of each other. Let

ρ =
λ

cµ
. (5.1.1)

It is assumed that ρ < 1. Rewriting this condition as λ/µ < c, the condition states

that the average amount of work offered to the servers per time unit is less than

the total service capacity. The factor ρ is called the server utilization. This model

is a basic model in queueing theory and is often called the Erlang delay model. It

is usually abbreviated as the M/M/c queue. Using continuous-time Markov chain

theory we will derive the distributions of the queue size and the delay in queue of

a customer. Let

X(t) = the number of customers present at time t

(including any customer in service). Then the stochastic process {X(t)} is a continu-

ous-time Markov chain with infinite state space I = {0, 1, . . . }. The assumption

ρ < 1 implies that the Markov chain satisfies Assumption 4.2.1 with regeneration

state 0 and thus has a unique equilibrium distribution {pj } (a formal proof is

omitted). The probability pj gives the long-run fraction of time that j customers

are present.

5.1.1 The M/M/1 Queue

For ease of presentation, we first analyse the single-server case with c = 1. The

transition rate diagram of the process {X(t)} is given in Figure 5.1.1

Note that for each state i the transition rate qij = 0 for j ≤ i−2. This implies that

the equilibrium probabilities pj can be recursively computed; see formula (4.2.10).

By equating the rate at which the process leaves the set {i, i + 1, . . . } to the rate

at which the process enters this set, it follows that

µpi = λpi−1, i = 1, 2, . . . .

The recurrence equation allows for an explicit solution. Iterating the equation yields

pi = (λ/µ)ip0 for all i ≥ 1. Noting that this relation also holds for i = 0 and

substituting it into the normalizing equation
∑∞

i=0 pi = 1, we find p0(1−λ/µ)−1 =

0 1 i − 1 i + 1i•  •  • •  •  •

l

m

l

m

l

m

Figure 5.1.1 The transition rate diagram for the M/M/1 queue
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1 and so p0 = 1 − λ/µ. Hence we find the explicit solution

pi = (1 − ρ)ρi , i = 0, 1, . . . (5.1.2)

with ρ = λ/µ. In particular, 1 − p0 = ρ and so ρ can be interpreted as the long-

run fraction of time the server is busy. This explains why ρ is called the server

utilization. Let

Lq = the long-run average number of customers in queue

(excluding any customer in service). The constant Lq is given by

Lq =
∞∑

j=1

(j − 1)pj ,

as can be rigorously proved by assuming a cost at rate k whenever k customers are

waiting in queue and applying Theorem 4.2.2. Substituting (5.1.2) into the formula

for Lq , we obtain

Lq =
ρ2

1 − ρ
,

in agreement with the Pollaczek–Khintchine formula for the general M/G/1 queue.

To determine the waiting-time probabilities we need the so-called customer-

average probabilities

πj = the long-run fraction of customers who find j other

customers present upon arrival, j = 0, 1, . . . .

In the M/M/1 case the customer-average probabilities πj are identical to the

time-average probabilities pj , that is,

πj = pj, j = 0, 1, . . . . (5.1.3)

This identity can be seen from the PASTA property. Alternatively, the identity can

be proved by noting that in a continuous-time Markov chain, pjqjk represents the

long-run average number of transitions from state j to state k (�= j ) per time unit.

Thus in the M/M/1 case the long-run average number of transitions from state

j to state j + 1 per time unit equals λpj . In other words, the long-run average

number of arrivals per time unit finding j other customers present equals λpj .

Dividing λpj by the average arrival rate λ yields the customer-average probability

πj . The probability distribution {πj } is the equilibrium distribution of the embedded

Markov chain describing the number of customers present just before the arrival

epochs of customers. This probability distribution enables us to find the steady-state

waiting-time probabilities under the assumption of service in order of arrival. Let

Wq(x) = lim
n→∞

P {Dn ≤ x}, x ≥ 0, (5.1.4)
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with Dn denoting the delay in queue of the nth customer. The existence of the

limit will be shown below. It holds that

Wq(x) = 1 − ρe−µ(1−ρ)x, x ≥ 0. (5.1.5)

A key step in the proof is the observation that the conditional delay in queue of

a customer finding j other customers present upon arrival has an Erlang (j, µ)

distribution for j ≥ 1. This follows by noting that the delay in queue of this

customer is the sum of j independent exponential random variables with the same

mean 1/µ (the remaining service time of the customer found in service also has

an exponential distribution with mean 1/µ). The probability distribution function

of the Erlang (j, µ) distribution is given by 1−
∑j−1

k=0 e−µx(µx)k/k!. Denoting by

π
(n)
j the probability that the nth arriving customer finds j other customers present

upon arrival, it follows that

P {Dn > x} =
∞∑

j=1

π
(n)
j

j−1∑

k=0

e−µx (µx)k

k!
, x ≥ 0. (5.1.6)

The embedded Markov chain describing the number of customers present just

before the arrival epoch is irreducible and has the property that all states are ape-

riodic and positive recurrent. Thus limn→∞π
(n)
j exists and equals πj for all j ; see

also relation (3.5.11). Using the bounded convergence theorem from Appendix A,

it now follows that limn→∞ P {Dn > x} exists and is given by

lim
n→∞

P {Dn > x} =
∞∑

j=1

πj

j−1∑

k=0

e−µx (µx)k

k!
, x ≥ 0. (5.1.7)

To obtain (5.1.5) from (5.1.7), we use (5.1.2) and (5.1.3). This gives

1 − Wq(x) =
∞∑

j=1

πj

j−1∑

k=0

e−µx (µx)k

k!
=

∞∑

k=0

e−µx (µx)k

k!

∞∑

j=k+1

πj

=
∞∑

k=0

e−µx (µx)k

k!
ρk+1 = ρe−µx

∞∑

k=0

(µρx)k

k!
= ρe−µxeµρx,

which verifies (5.1.5). It is noted that the probability Wq(x) can also be interpreted

as the long-run fraction of customers whose delay in queue is no more than x.

5.1.2 The M/M/c Queue

The analysis of the multi-server M/M/c queue is a rather straightforward extension

of the analysis of the M/M/1 queue. The transition rate diagram for the {X(t)}
process is given in Figure 5.1.2.
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c − 1 c •  •  •

l

cm

j − 1 j •  •  •

l

cm

0 1 i − 1 i + 1i•  •  • •  •  •

l

m

l

im

l

(i + 1) m

Figure 5.1.2 The transition rate diagram for the M/M/c queue

Using the technique of equating the rate at which the process leaves the set of

states {j, j + 1, . . . } to the rate at which the process enters this set, we obtain

min(j, c)µpj = λpj−1, j = 1, 2, . . . . (5.1.8)

An explicit solution for the pj is easily given, but this explicit solution is of little

use for computational purposes. A simple computational scheme can be based on

the recursion relation (5.1.8). To do so, note that pj = ρpj−1 for j ≥ c. This

implies pj = ρj−c+1pc−1 for j ≥ c and so

∞∑

j=c

pj =
ρpc−1

1 − ρ
. (5.1.9)

A simple algorithm now follows.

Algorithm

Step 0. Initialize p0 := 1.

Step 1. For j = 1, . . . , c − 1, let pj := λpj−1/(jµ).

Step 2. Calculate the normalizing constant γ from

γ =




c−1∑

j=0

pj +
ρpc−1

1 − ρ




−1

.

Normalize the pj according to pj := γpj for j = 0, 1, . . . , c − 1.

Step 3. For any j ≥ c, pj := ρj−c+1pc−1.

As before, define the customer-average probability πj as the long-run fraction of

customers who see j other customers present upon arrival. By the same arguments

as used for the M/M/1 queue, we have πj = pj for j = 0, 1, . . . . Denote by

Pdelay =
∑∞

j=c πj the long-run fraction of customers who are delayed. By πj = pj
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for all j and (5.1.9),

Pdelay =
ρ

1 − ρ
pc−1. (5.1.10)

It is also possible to give an explicit expression for the delay probability:

Pdelay =
(cρ)c/c!

[(cρ)c/c! + (1 − ρ)
∑c−1

k=0(cρ)k/k!]
. (5.1.11)

The delay probability for the M/M/c queue is often called Erlang’s delay prob-

ability. Given the representation Lq =
∑∞

j=c(j − c)pj for the long-run average

queue size, it follows from pj = ρj−c+1pc−1 for j ≥ c that

Lq =
ρ2

(1 − ρ)2
pc−1. (5.1.12)

Under the assumption that customers are served in order of arrival, define the

steady-state waiting-time probability Wq(x) in the same way as for the M/M/1

queue. The formula (5.1.5) generalizes to

Wq(x) = 1 −
ρ

1 − ρ
pc−1e

−cµ(1−ρ)x, x ≥ 0. (5.1.13)

This result is obtained by a slight modification of the derivation of (5.1.5). Since

the service times are exponentially distributed and the minimum of c (remaining)

service times has an exponential distribution with mean 1/(cµ), service completions

occur according to a Poisson process with rate cµ as long as c or more customers

are present. Thus the conditional delay in queue of a customer finding j ≥ c other

customers present upon arrival has an Erlang (j −c+1, cµ) distribution. This gives

1 − Wq(x) =
∞∑

j=c

πj

j−c∑

k=0

e−cµx (cµx)k

k!
, x ≥ 0,

which leads to (5.1.13) after some algebra. In particular, the average delay in queue

of a customer equals

Wq =
ρ

cµ(1 − ρ)2
pc−1 (5.1.14)

in agreement with (5.1.12) and Little’s formula Lq = λWq . Also, by Little’s

formula, the long-run average number of busy servers equals cρ; see Section 2.3

Thus the long-run fraction of time that a given server is busy equals ρ.

5.1.3 The Output Process and Time Reversibility

Define for the M/M/c queue

Tn = the epoch at which the nth service completion occurs.

Then the following important result holds for the output process.
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Burke’s output theorem For any k ≥ 1,

lim
n→∞

P {Tn+1 − Tn ≤ x1, . . . , Tn+k − Tn+k−1 ≤ xk}

= (1 − e−λx1) · · · (1 − e−λxk ) for all x1, . . . , xk ≥ 0.

In other words, in statistical equilibrium the process describing the departures of

served customers is a Poisson process with rate λ.

We first give a heuristic argument for this result. If at a given time t there are

i customers present, then the probability that in (t, t + �t) a service is completed

equals min(i, c)µ�t + o(�t) for �t → 0. The equilibrium probability of being in

state i at an arbitrary point in time is given by pi . Assuming that the process is

in statistical equilibrium, it follows that the probability of a customer leaving in

(t, t + �t) is given by

c−1∑

i=0

iµ�tpi +
∞∑

i=c

cµ�tpi + o(�t) =

[
c−1∑

i=0

ipi + c

∞∑

i=c

pi

]
µ�t + o(�t)

as �t → 0. The expression between brackets gives the long-run average number

of busy servers and is thus equal to cρ by Little’s formula. Since ρ = λ/(cµ) it

follows that the probability of a customer leaving in (t, t + �t) equals

cρµ�t + o(�t) = λ�t + o(�t)

as �t → 0. This indicates that the departure process of customers is indeed a

Poisson process with rate λ when the M/M/c system has reached statistical equi-

librium. This result is of utmost importance for tandem queues when the first station

in the tandem queue is described by an M/M/c system.

Time reversibility

The practically useful result that the output process of an M/M/c queue is a Pois-

son process can be given a firm basis by the important concept of time reversibility.

Consider a continuous-time Markov chain {X(t)} that satisfies Assumption 4.2.1

and has the property that all states communicate with each other. The continuous-

time Markov chain {X(t)} is said to satisfy detailed balance if its unique equilib-

rium distribution {pj } has the property that

pkqkj = pjqjk for all j, k ∈ I with j �= k. (5.1.15)

In other words, the long-run average number of transitions from state k to state j

per time unit is equal to the long-run average number of transitions from state j

to state k per time unit for all j �= k. Detailed balance is intimately related to time

reversibility. A convenient way to characterize time reversibility is to consider the

stationary version of the Markov chain {X(t)}. In the stationary version the initial

state at time t = 0 is chosen according to the equilibrium distribution {pj }. For the
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stationary process {X(t)} it holds that P {X(t) = j} = pj , j ∈ I , for all t ≥ 0. It can

be shown that the condition (5.1.15) is satisfied if and only if the stationary version

of the Markov process {X(t)} has the property that for all n ≥ 1 and all u > 0,

(X(u1), . . . , X(un)) is distributed as (X(u − u1), . . . , X(u − un)) (5.1.16)

for all 0 ≤ u1 < · · · < un ≤ u. A Markov process with this property is said to be

time reversible. In other words, the process reversed in time has the same prob-

abilistic structure as the original process when the process has reached statistical

equilibrium. It is as if you would see the same film shown in reverse. Let us return

to the M/M/c system. In the M/M/c system the rate at which the process goes

directly from state i to state i+1 is then equal to the rate at which the process goes

directly from state i+1 to state i; see relation (5.1.8). Hence the M/M/c system has

the property (5.1.16). Going forward in time, the time points at which the number

in the system increases by 1 are exactly the arrival epochs of customers and thus

constitute a Poisson process. Going backwards in time, the time points at which the

number in the system increases by 1 are exactly the time points at which customers

depart. Hence, by time reversibility, the departure process of customers must be a

Poisson process when the M/M/c system has reached statistical equilibrium.

5.2 LOSS MODELS

In a delay system each customer finding no free server upon arrival waits until

a server becomes available. Opposite to delay systems are loss systems in which

customers finding no free server upon arrival are lost and have no further influence

on the system. In this section we consider two basic loss models. The famous

Erlang loss model with Poisson input is dealt with in Section 5.2.1. Section 5.2.2

considers the Engset loss model with finite-source input.

5.2.1 The Erlang Loss Model

Consider a communication system with c transmission channels at which messages

are offered according to a Poisson process with rate λ. The system has no buffer to

temporarily store messages that arrive when all channels are occupied. An arriving

message that finds all c channels busy is lost and has no further influence on the

system; otherwise, the message is assigned to a free channel and its transmission

immediately starts. The transmission times of the messages are independent and

identically distributed random variables. Also, the arrival process and the trans-

mission times are independent of each other. The goal is to find an expression for

the long-run fraction of messages that are lost. This model is called Erlang’s loss

model after the Danish telephone engineer A.K. Erlang. It is often abbreviated as

the M/G/c/c queue. In the early 1900s Erlang studied this model in the frame-

work of a telephone switch which can handle only c calls. Though the theory of

stochastic processes was not yet developed in Erlang’s time, Erlang (1917) was able
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to find a formula for the fraction of calls that are lost. He established this formula

first for the particular case of exponentially distributed holding times. Also, Erlang

conjectured that the formula for the loss probability remains valid for generally

distributed holding times. His conjecture was that the loss probability is insensitive

to the form of the holding time distribution but depends only on the first moment of

the holding time. A proof of this insensitivity result was only given many years after

Erlang made his conjecture; see for example Cohen (1976) and Takács (1969). The

proof of Takács (1969) is rather technical and involves Kolmogoroff’s forward

equations for Markov processes with a general state space. The more insightful

proof in Cohen (1976) is based on the concept of reversible Markov processes.

In Section 5.4 we will discuss the issue of insensitivity for loss systems in a

more general context. It is the insensitivity property that makes the Erlang loss

model such a useful model. Still nowadays the model is often used in the analysis

of telecommunication systems. The Erlang loss model also has applications in a

variety of other fields, including inventory and reliability; see Exercises 5.9 to 5.14.

A nice application is the (S − 1, S) inventory system in which the demand process

is a Poisson process and demands occurring when the system is out of stock are

lost (the back ordering case was analysed in Section 1.1.3 through the M/G/∞
queueing model).

In view of the above discussion, we now assume that the transmission times

have an exponential distribution with mean 1/µ. For any t ≥ 0, let

X(t) = the number of busy channels at time t.

The stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain with state

space I = {0, 1, . . . , c}. Its transition rate diagram is given in Figure 5.2.1. The

time-average probability pi gives the long-run fraction of time that i channels are

occupied. Since for each state i the transition rate qij = 0 for j ≤ i − 2, the

equilibrium probabilities pi can be recursively computed. Equating the rate out of

the set of states {i, i + 1, . . . , c} to the rate into this set, we obtain

iµpi = λpi−1, i = 1, . . . , c.

This equation can be solved explicitly. Iterating the equation gives pi = (λ/µ)ip0/i!

for i = 1, . . . , c. Using the normalizing equation
∑c

i=0 pi = 1, we obtain

pi =
(λ/µ)i/i!∑c

k=0(λ/µ)k/k!
, i = 0, 1, . . . , c. (5.2.1)

0 1 •  •  •

l

m

i − 1 i •  •  •

l

im

c − 1 c

l

cm

Figure 5.2.1 The transition rate diagram for the Erlang loss model
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Note that the distribution in (5.2.1) is a truncated Poisson distribution (multiply

both the numerator and the denominator by e−λ/µ). Denote by the customer-average

probability πi the long-run fraction of messages that find i other messages present

upon arrival. Then, by the PASTA property,

πi = pi, i = 0, 1, . . . , c.

In particular, denoting by Ploss the long-run fraction of messages that are lost,

Ploss =
(λ/µ)c/c!∑c

k=0(λ/µ)k/k!
. (5.2.2)

This formula is called the Erlang loss formula. As said before, the formula (5.2.1)

for the time-average probabilities pj and the formula (5.2.2) for the loss probability

remain valid when the transmission time has a general distribution with mean 1/µ.

The state probabilities pj are insensitive to the form of the probability distribution

of the transmission time and require only the mean transmission time. Letting c →
∞ in (5.2.1), we get the Poisson distribution with mean λ/µ in accordance with

earlier results for the M/G/∞ queue. The insensitivity property of this infinite-

server queue was proved in Section 1.1.3.

5.2.2 The Engset Model

The Erlang loss model assumes Poisson arrivals and thus has an infinite source of

potential customers. The Engset model differs from the Erlang loss model only by

assuming a finite source of customers. There are M sources which generate service

requests for c service channels. It is assumed that M > c. A service request that is

generated when all c channels are occupied is lost. Each source is alternately on and

off. A source is off when it has a service request being served, otherwise the source

is on. A source in the on-state generates a new service request after an exponentially

distributed time (the think time) with mean 1/α. The sources act independently of

each other. The service time of a service request has an exponential distribution

with mean 1/µ and is independent of the think time. This model is called the

Engset model after Engset (1918).

We now let

X(t) = the number of occupied channels at time t.

The process {X(t), t ≥ 0} is a continuous-time Markov chain with state space

I = {0, 1, . . . , c}. Its transition rate diagram is given in Figure 5.2.2. By equating

Ma

m

i − 1 i

(M − i + 1)a

im

c − 1 c

(M − c + 1)a

cm

0 1 •  •  • •  •  •

Figure 5.2.2 The transition rate diagram for the Engset loss model
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the rate at which the process leaves the set of states {i, i + 1, . . . , c} to the rate at

which the process enters this set, we obtain the recursive equation

iµpi = (M − i + 1)αpi−1, i = 1, . . . , c.

This recursive equation allows for the explicit solution (verify):

pi =

(
M

i

)
pi(1 − p)M−i

c∑

k=0

(
M

k

)
pk(1 − p)M−k

, i = 0, 1, . . . , c, (5.2.3)

where p is given by

p =
1/µ

1/µ + 1/α
.

The distribution (5.2.3) is a truncated binomial distribution. To compute the fraction

of service requests that are lost, we need the customer-average probabilities

πi = the long-run fraction of service requests that

find i busy channels upon arrival, i = 0, 1, . . . , c.

The πi are found by noting that

πi = (the long-run average number of service requests that are

generated per time unit and find i busy channels upon

arrival)
/

(the long-run average number of service requests

that are generated per time unit).

In state i, service requests are generated at a rate (M − i)α. Thus the arrival rate

of service requests that see i busy channels equals (M − i)αpi . Hence

πi =
(M − i)αpi∑c

k=0(M − k)αpk

, i = 0, 1, . . . , c.

It next follows from (5.2.3) that

πi =

(
M − 1

i

)
pi(1 − p)M−1−i

c∑

k=0

(
M − 1

k

)
pk(1 − p)M−1−k

, i = 0, 1, . . . , c. (5.2.4)

It is a remarkable finding that the distribution {πi} is the same as the distribution

{pi} except that M is replaced by M−1. In other words, the equilibrium distribution

of the state just prior to the arrival epochs of new service requests is the same as
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the equilibrium distribution of the state at an arbitrary epoch in the system with

one source less. In particular, we find

the long-run fraction of lost service requests =

(
M − 1

c

)
pc(1 − p)M−1−c

c∑

k=0

(
M − 1

k

)
pk(1 − p)M−1−k

.

(5.2.5)
The formulas (5.2.3) to (5.2.5) have been derived under the assumption of expo-

nentially distributed think times and exponentially distributed service times. This

assumption is not needed. The Engset model has the insensitivity property that the

formulas (5.2.3) to (5.2.5) remain valid when the think time has a general prob-

ability distribution with mean 1/α and the service time has a general distribution

with mean 1/µ. This insensitivity result requires the technical condition that either

of these two distributions has a positive density on some interval. We come back

to this insensitivity result in the next section. By letting M → ∞ and α → 0 such

that Mα remains equal to the constant λ, it follows from the Poisson approximation

to the binomial probability that the right-hand side of (5.2.3) converges to

e−λ/µ(λ/µ)i/i!
c∑

k=0

e−λ/µ(λ/µ)k/k!

, i = 0, 1, . . . , c

in agreement with (5.2.1). In other words, the Erlang loss model is a limiting case

of the Engset model. This is not surprising, since the arrival process of service

requests becomes a Poisson process with rate λ when we let M → ∞ and α → 0

such that Mα = λ.

5.3 SERVICE-SYSTEM DESIGN

The Erlang delay model has many practical applications. In particular, it can be

used to analyse capacity and staffing problems such as those arising in the area of

telemarketing and call centre design and in the area of healthcare facilities planning.

In this section it will be shown that a normal approximation to Erlang’s delay

formula is very helpful in analysing such problems. The normal approximation

enables us to derive an insightful square-root staffing rule.

The mathematical analysis of the M/M/c queue was given in Section 5.1.2. In

the M/M/c queue customers arrive according to a Poisson process with rate λ,

the service times of the customers are exponentially distributed with mean 1/µ

and there are c identical servers. It is convenient to denote the offered load to the

system by

R =
λ

µ
.
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Note that R is a dimensionless quantity that gives the average amount of work

offered per time unit to the c servers. The offered load R is often expressed as R

erlangs of work. In order to ensure the existence of a steady-state regime for the

queue, it should be assumed that the service capacity c is larger than the offered

load R. Hence the assumption is made that the server utilization

ρ =
R

c

is less than 1. Note that ρ represents the long-run fraction of time a given server is

busy. In the single-server case the server utilization ρ should not be too close to 1

in order to avoid excessive waiting of the customers. A rule of thumb for practical

applications of the M/M/1 model is that the server utilization should not be much

above 0.8. A natural question is how this rule of thumb should be adjusted for the

multi-server case. It is instructive to have a look at Table 5.3.1. This table gives for

several values of c and R the delay probability PW , the average waiting TW over

the delayed customers and the 95% percentile η0.95 of the steady-state waiting-time

distribution of the delayed customers. In Table 5.3.1 we have normalized the mean

service time 1/µ as 1. The delay probability PW (= Pdelay ) is given by formula

(5.1.11). Since TW = Wq/PW , it follows from (5.1.10) and (5.1.14) that

TW =
1

cµ(1 − ρ)
.

By (5.1.10) and (5.1.13), the steady-state probability that a delayed customer has

to wait longer than x time units is given by e−cµ(1−ρ)x for x ≥ 0. Thus the pth

percentile ηp of the steady-state waiting-time distribution of the delayed customers

is found from e−cµ(1−ρ)x = 1 − p. This gives

ηp =
−1

cµ(1 − ρ)
ln(1 − p), 0 < p < 1.

The following conclusion can be drawn from Table 5.3.1: high values of the

server utilization ρ do not conflict with acceptable service to the customers when

Table 5.3.1 Service measures as function of c and R

ρ = R/c = 0.8 ρ = R/c = 0.95 ρ = R/c = 0.99

PW TW η0.95 PW TW η0.95 PW TW η0.95

c = 1 0.8 5 14.98 0.95 20 59.91 0.99 100 299.6
c = 2 0.711 2.5 7.49 0.926 10 29.96 0.985 50 149.8
c = 5 0.554 1 3.0 0.878 4 11.98 0.975 20 59.91
c = 10 0.409 0.5 1.5 0.826 2 5.99 0.964 10 29.96
c = 25 0.209 0.2 0.6 0.728 0.8 2.40 0.942 4 11.98
c = 50 0.087 0.1 0.3 0.629 0.4 1.20 0.917 2 5.99
c = 100 0.020 0.05 0.15 0.506 0.2 0.60 0.883 1 3.0
c = 250 3.9E-4 0.02 0.06 0.318 0.08 0.24 0.818 0.4 1.2
c = 500 8.4E-7 0.01 0.03 0.177 0.04 0.12 0.749 0.2 0.6
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there are sufficiently many servers. The larger the number of servers, the higher the

server utilization before the service to the customers seriously degrades. A relatively

large value of PW does not necessarily imply bad service to the customers. For

example, take c = 100 and ρ = 0.95. Then on average 50.6% of the customers must

wait, but the average wait of a delayed customer is only 1
5

of its mean service time.

Moreover, on average, only 5% of the delayed customers have to wait more than 3
5

of the mean service time. The situation of many servers is encountered particularly

in the telephone call centre industry. Service level is a key performance metric

of a call centre. In practice it is often defined as ‘80% of the calls answered in

20 seconds’.

Square-root staffing rule

In the remainder of this section we take the delay probability as service mea-

sure. What is the least number c∗ of servers such that the delay probability PW is

below a prespecified level α, e.g. α = 0.20? From a numerical point of view

it is of course no problem at all to find the exact value of c∗ by searching

over c in formula (5.1.11) for a given value of R (= cρ). However, for prac-

titioners it is helpful to have an insightful approximation formula. Such a for-

mula can be given by using the normal distribution. The formula is called the

square-root staffing rule. This simple rule of thumb for staffing large call cen-

tres provides very useful information to the management. In its simplest form

the square-root formula is obtained by approximating the M/M/c queue with

many servers by the M/M/∞ queue. This approach was used in Example 1.1.3.

However, this first-order approximation can considerably be improved by using

a relation between Erlang’s delay probability in the M/M/c delay system and

Erlang’s loss probability in the M/M/c/c loss system. The improved approx-

imation to the least number c∗ of servers such that PW ≤ α is given by the

square-root formula

c∗ ≈ R + kα

√
R, (5.3.1)

where the safety factor kα is the solution of the equation

k�(k)

ϕ(k)
=

1 − α

α
(5.3.2)

with �(x) denoting the standard normal probability distribution function and ϕ(x)

= (1/
√

2π)e− 1
2 x2

denoting its density. It is important to note that the safety fac-

tor kα does not depend on R. Also, it is interesting to point out the similarity

of the square-root staffing rule with the famous rule for the reorder point s in

the (s, Q)-inventory model with a service-level constraint. The factor kα can be

found by solving (5.3.2) by bisection. For example, for α = 0.8, 0.5, 0.2 and 0.1

the safety factor kα has the respective values 0.1728, 0.5061, 1.062 and 1.420.

The approximation (5.3.1) clarifies the interplay of the process parameters and
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Table 5.3.2 The exact and approximate values of c∗

α = 0.5 α = 0.2 α = 0.1

exa app exa app exa app

R = 1 2 2 3 3 3 3
R = 5 7 7 8 8 9 9
R = 10 12 12 14 14 16 15
R = 50 54 54 58 58 61 61
R = 100 106 106 111 111 115 115
R = 250 259 259 268 267 274 273
R = 500 512 512 525 524 533 532
R = 1000 1017 1017 1034 1034 1046 1045

increases the manager’s intuitive understanding of the system. In particular, the

square-root staffing rule quantifies the economies of scale in staffing levels that

can be achieved by combining several call centres into a single call centre. To

illustrate this, consider two identical call centres each having an offered load

of R erlangs of work and each having the same service requirement PW ≤ α.

For two separate call centres a total of 2(R + kα

√
R) agents is needed, whereas

for one combined call centre 2R + kα

√
2R agents are needed. A reduction of

(2 −
√

2)kα

√
R agents.

The quality of the approximation (5.3.1) is excellent. Rounding up the approx-

imation for c∗ to the nearest integer, numerical investigations indicate that the

approximate value is equal to the exact value in most cases and is never off by

more than 1. Table 5.3.2 gives the exact and approximate values of c∗ for several

values of R and α.

Derivation of the square-root formula

The following relation holds between the delay probability Pdelay in the M/M/c

delay system and the loss probability Ploss in the M/M/c/c loss system:

Ploss =
(1 − ρ)Pdelay

1 − ρPdelay

. (5.3.3)

This relation can be directly verified from the explicit formulas (5.1.11) and (5.2.2)

for Pdelay and Ploss . In Section 9.8 we establish the relation (5.3.3) in a more general

framework by showing that the state probabilities in a finite-capacity queue with

Poisson arrivals are often proportional to the state probabilities in the corresponding

infinite-capacity model. By formula (5.2.2),

Ploss =
e−RRc/c!

c∑

k=0

e−RRk/k!

.
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For fixed R, let the random variable XR be Poisson distributed with mean R. Then

the above formula for Ploss can be written as

Ploss =
P {XR = c}
P {XR ≤ c}

.

A Poisson distribution with mean R can be approximated by the normal distribution

with mean R and standard deviation R when R is large. Now take

c = R + k
√

R

for some constant k. Then P {XR ≤ c} = P {(XR − R)/
√

R ≤ k} and so, by the

normal approximation to the Poisson distribution,

P {XR ≤ c} ≈ �(k).

Writing P {XR = c} = P {c − 1 < XR ≤ c}, we also have that

P {XR =c}=P

{
k −

1
√

R
<

XR − R
√

R
≤ k

}
≈ �(k) − �

(
k −

1
√

R

)
≈

1
√

R
ϕ(k).

This gives

Ploss ≈
1

√
R

ϕ(k)

�(k)
. (5.3.4)

By (5.3.3) and ρ = R/c, we have Pdelay = cPloss/(c − R + RPloss ). Substituting

c = R + k
√

R in this formula, noting that k
√

R << R for R large and using

(5.3.4), we find with the abbreviation z = ϕ(k)/�(k) that

Pdelay ≈
(R + k

√
R)z

kR + Rz
≈

Rz

kR + Rz
=

(
1 +

k

z

)−1

=
[

1 +
k�(k)

ϕ(k)

]−1

. (5.3.5)

Equating the last term to α gives the relation (5.3.2). This completes the derivation

of the square-root formula (5.3.1).

5.4 INSENSITIVITY

In many stochastic service systems in which arriving customers never queue, it turns

out that the performance measures are insensitive to the form of the service-time

distribution and require only the mean of the service time. The most noteworthy

examples of such service systems are infinite-server systems and loss systems.

In the M/G/∞ queue with Poisson arrivals and infinitely many servers, rather

simple arguments enable us to prove that the limiting distribution of the num-

ber of busy servers is insensitive to the form of the service-time distribution; see

Section 1.1.3. The Erlang loss model with Poisson input and the Engset model with

finite-source input provide other examples of stochastic service systems possessing

the insensitivity property. Other examples of stochastic service systems having the

insensitivity property will be given in this section and in the exercises. Nowadays
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a well-developed theory for insensitivity is available; see Schassberger (1986) and

Whittle (1985). This theory will not be discussed here. In this section the insensitiv-

ity property for the Erlang loss model and the Engset loss model is made plausible

through a closed two-node network model. This model is also used to argue insen-

sitivity in a controlled loss model with several customer classes. Also, the M/G/1

queue with the processor-sharing discipline is discussed as an example of a stochas-

tic service system with no queueing and possessing the insensitivity property.

5.4.1 A Closed Two-node Network with Blocking

Consider a closed network model with two nodes in cyclic order. A fixed number

of M jobs move around in the network. If a job has completed service at one of the

nodes, it places a request for service at the other node. Node 1 is an infinite-server

node, that is, there is an ample number of servers at node 1. Node 2 is the only

node at which blocking can occur. A job that is accepted at node 2 is immediately

provided with a free server. Further, it is assumed that there are r different job

types h = 1, . . . , r with Mh jobs of type h, where M1 + · · · + Mr = M . The

blocking protocol is as follows: if a job of type h arrives at node 2 when n2 jobs

are already present at node 2, including n
(h)
2 jobs of type h, then the arriving job

of type h is accepted at node 2 with probability

A(n2)Ah(n
(h)
2 ), h = 1, . . . , r (5.4.1)

for given functions A(.), A1(.), . . . , Ar(.). An accepted job is immediately pro-

vided a free server and receives uninterrupted service at a constant rate. If a job

is rejected at node 2, it returns to node 1 and undergoes a complete new service

at node 1. The service time of a job of type h at node i has a general probability

distribution function with mean 1/µih for i = 1, 2 and h = 1, . . . , r . For each type

of job it is assumed that the service-time distribution for at least one of the nodes

has a positive density on some interval. The service requirements at the nodes are

assumed to be independent of each other.

The system is said to be in state n = (n
(h)
i ) when there are n

(h)
i jobs present at

node i for i = 1, 2 and h = 1, . . . , r with n
(h)
1 + n

(h)
2 = Mh for h = 1, . . . , r . Let

p(n) denote the limiting probability that the process is in state n at an arbitrary

point in time. Also, for fixed job type ℓ, let π
(ℓ)
i (̃n) denote the limiting proba-

bility that a job of type ℓ arriving at node i finds the other jobs in state ñ with

ñ
(ℓ)
1 + ñ

(ℓ)
2 = Mℓ − 1 and ñ

(h)
1 + ñ

(h)
2 = Mh for h �= ℓ. Assuming that each of the

service-time distributions is a mixture of Erlangian distributions with the same scale

parameters, Van Dijk and Tijms (1986) used rather elementary arguments to prove

that the probabilities p(n) and π
(h)
i (̃n) depend on the service-time distributions

only through their means and are thus insensitive to the form of the service-time

distributions.∗ Next, by deep mathematics, the insensitivity property for general

∗Also the so-called product-form solution applies to these probabilities. The product-form solution will
be discussed in detail in Section 5.6.
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service-time distributions can be concluded by a continuity argument. This argu-

ment is based on the fact that the class of mixtures of Erlangian distributions with

the same scale parameters is dense in the class of all probability distributions on

the non-negative axis; see Hordijk and Schassberger (1982) and Whitt (1980). In

Section 5.5 we give an elementary proof that any service-time distribution can

be arbitrarily closely approximated by a mixture of Erlangian distributions with

the same scale parameters. Taking for granted the insensitivity property of the

closed two-node network model, we give two applications of loss systems with the

insensitivity property.

Example 5.4.1 Insensitivity for a finite-source model with grading

Let us consider a finite-source model with grading. Such a model is an extension

of the Engset model discussed in Section 5.2.2. In the Engset model a newly

generated message is only blocked when all c servers are occupied. In the grading

model a newly generated message hunts for a free server among K servers that are

randomly chosen from the c servers, with K fixed. The message is blocked when

no free server is found among the K chosen servers. The closed two-node model

with a single job type applies (r = 1). The blocking protocol indeed allows for the

representation (5.4.1). This follows by taking

A(n2) = 1 −
(

n2

K

)/(
c

K

)
and Ah(n

(h)
2 ) = 1, h = 1, . . . , r

with the convention (nm) = 0 for n < m. Thus we can conclude that the time-

average and customer-average probabilities in the grading model are insensitive

to both the form of the think-time distribution and the form of the service-time

distribution. The Engset model is a special case of the grading model with K = c.

Thus we also have insensitivity for the Engset model. By letting the number of

sources tend to infinity and the thinking rate to zero, the input process becomes

a Poisson process. It will now intuitively be clear that the Erlang loss model has

the insensitivity property. However, a rigorous proof of this fact requires deep

mathematics.

Example 5.4.2 A loss model with competing customers

Messages of types 1 and 2 arrive at a communication system according to two

independent Poisson processes with the respective rates λ1 and λ2. The communi-

cation system has c identical service channels for handling the messages but there

is no buffer to temporarily store messages which find all channels occupied. Each

channel can handle only one message at a time. The transmission times of the mes-

sages are independent of each other and the transmission times of messages of the

same type j have a general probability distribution with mean 1/µj for j = 1, 2.

The following admission rule for arriving messages is used. Messages of type 1

are always accepted whenever a free service channel is available. However, for a
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given control parameter L, messages of type 2 are only accepted when less than

L messages of type 2 are present and not all of the channels are occupied. Such a

control rule is used to increase the throughput of accepted messages. What is the

optimal value of L?

To compute the average throughput for a given L-policy, it is no restriction to

assume exponentially distributed transmission times. The reason is that the long-run

average throughput is insensitive to the form of the transmission time distributions.

The average throughput is the difference between the average arrival rate λ1 +
λ2 and the average number of messages lost per time unit. To argue that the

loss probabilities for both types of messages are insensitive to the form of the

transmission-time distribution, consider the finite-source variant of the model with

Poisson input. Messages of type j are generated by Mj identical sources for j =
1, 2, where the think time of the sources has a probability density. A source can

only start a think time when it has no message in transmission at the communication

system. The sources act independently of each other. This finite-source model can

be seen as a cyclic closed two-node network model, where a fixed number of type 1

jobs, M1, and a fixed number of type 2 jobs, M2, move around in the network.

Node 1 is an infinite-server node, while node 2 is a blocking node with c servers.

In the two-node closed network, take the blocking protocol (5.4.1) with

A(n2) =
{

1, n2 < c,

0, n2 = c,

and

A1(n
(1)
2 ) = 1, A2(n

(2)
2 ) =

{
1 for n

(2)
2 < L,

0 otherwise.

The closed two-node network with this blocking protocol behaves identically to

the finite-source model. Thus the finite-source model has the insensitivity property.

This result provides a simple but heuristic argument that the controlled loss model

with Poisson input also has the insensitivity property. In general, insensitivity holds

for a wide class of loss networks; see Kelly (1991) and Ross (1995).

Let us now assume exponentially distributed transmission times for the loss

model controlled by an L-policy. Define

Xj (t) = the number of channels occupied by type j messages at time t

for j = 1, 2. The stochastic process {(X1(t), X2(t))} is a continuous-time Markov

chain with state space

I = {(i1, i2) | 0 ≤ i1 + i2 ≤ c, i1 ≥ 0, 0 ≤ i2 ≤ L}.

Its transition rate diagram is given in Figure 5.4.1. By equating the rate out of state

(i1, i2) to the rate into state (i1, i2), we obtain the equilibrium equations for the
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Figure 5.4.1 The transition rate diagram for the L-rule

state probabilities p(i1, i2). For the states (i1, i2) with i1 + i2 < c and i2 < L,

(i1µ1 + i2µ2 + λ1 + λ2)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1)

+ (i1 + 1)µ1p(i1 + 1, i2)

+ (i2 + 1)µ2p(i1, i2 + 1).

For the states (i1, i2) with i1 + i2 < c and i2 = L,

(i1µ1 + i2µ2 + λ1)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1)

+ (i1 + 1) µ1p(i1 + 1, i2).

For the states (i1, i2) with i1 + i2 = c and i2 ≤ L,

(i1µ1 + i2µ2)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1).

The state probabilities p(i1, i2) exhibit the so-called product form

p(i1, i2) = C
(λ1/µ1)

i1

i1!

(λ2/µ2)
i2

i2!
, i1, i2 ∈ I

for some constant C > 0. The reader may verify this result by direct substitution

into the equilibrium equations. Since service completions occur in state (i1, i2) at

a rate of i1µ1 + i2µ2, the average throughput is given by

T (L) =
∑

(i1,i2)

(i1µ1 + i2µ2)p(i1, i2).
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Denote by �j (L) the long-run fraction of type j messages that are lost. Using the

PASTA property, it follows that

�1(L) =
∑

(i1,i2):
i1+i2=c

p(i1, i2) and �2(L) =
c−L−1∑

i1=0

p(i1, L) +
∑

(i1,i2):
i1+i2=c

p(i1, i2)

Since the sum of the average number of messages lost per time unit and the average

number of messages transmitted per time unit equals the arrival rate λ1 + λ2, we

have the identity λ1�1(L) + λ2�2(L) + T (L) = λ1 + λ2. This relation is useful

as an accuracy check for the calculated values of the p(i1, i2). As an illustration,

we consider the following numerical data:

c = 10, λ1 = 10, λ2 = 7, µ1 = 10, µ2 = 1.

Table 5.4.1 gives the values of T (L), �1(L) and �2(L) for L = 7, 8 and 9.

The L-policy with L = 8 maximizes the long-run average throughput among the

class of L-policies. The above analysis restricted itself to the easily implementable

L-policies, but other control rules are conceivable. The question of how to compute

the overall optimal control rule among the class of all conceivable control rules will

be addressed in the Chapters 6 and 7, which deal with Markov decision processes.

The best L-policy is in general not optimal among the class of all possible control

rules. However, numerical investigations indicate that using the best L-policy rather

than the overall optimal policy often leads to only a small deviation from the

theoretically maximal average throughput. For example, for the above numerical

data the average throughput of 15.209 for the best L-policy is only 0.16% below

the theoretically optimal value of 15.233. This optimal value is achieved by the

following control rule. Each arriving message of type 1 is accepted as long as

not all channels are occupied. A message of type 2 finding i messages of type

1 present upon arrival is accepted only when less than Li other messages of the

same type 2 are present and not all of the channels are occupied. The optimal

values of the Li are L0 = L1 = 8, L2 = L3 = 7, L4 = 6, L5 = 5, L6 = 4,

L7 = 3, L8 = 2 and L9 = 1. The insensitivity property is no longer exactly true

for the Li-policy, but numerical investigations indicate that the dependency on the

distributional form of the transmission times is quite weak. The above Li-policy

was simulated for lognormally distributed transmission times. Denoting by c2
i the

squared coefficient of variation of the transmission time for type i messages, we

varied (c2
1, c2

2) as (1, 1), (2, 0.5) and (0.5, 2). For these three examples the average

Table 5.4.1 Numerical values

L T (L) �1(L) �2(L)

7 15.050 0.0199 0.2501
8 15.209 0.0501 0.1843
9 15.095 0.0926 0.1399
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throughputs of the given Li-policy have the respective values 15.236 (±0.004),

15.244 (±0.004) and 15.231 (±0.005), where the numbers in parentheses indicate

the 95% confidence intervals.

5.4.2 The M/G/1 Queue with Processor Sharing

Another queueing system in which the limiting distribution of the number of cus-

tomers in the system is insensitive to the service-time distribution is the M/G/1

queue with the processor-sharing service discipline. Under this service discipline a

customer never has to wait in queue and the processing rate of the server is equally

divided among all customers present. The M/G/1 processor-sharing system can be

used to approximate time-shared computer systems among others. To formulate the

model, assume that customers arrive according to a Poisson process with rate λ and

that the service requirements of the customers are independent random variables

which are distributed according to the random variable S. It is assumed that S has

a general probability distribution. A generalized processor-sharing rule is used: if

i customers are present, each of the i customers is provided with service at a rate

of f (i) per time unit. That is, the attained service time of each of the i customers

grows by an amount f (i)�x in a time �x with �x small. Here f (i) is a given

positive function. Let ρ = λE(S) denote the offered load and let

φ(j) =





j∏

k=1

f (k)





−1

, j = 0, 1, . . .

with φ(0) = 1 by convention. Assuming that
∑∞

k=0 ρkφ(k)/k! is finite, it holds

that the limiting distribution {pj , j = 0, 1, . . . } of the number of customers present

is insensitive to the form of the service-requirement distribution and is given by

pj =
(ρj/j !)φ(j)∑∞
k=0(ρ

k/k!)φ(k)
, j = 0, 1, . . . .

A proof of this result can be found in Cohen (1979). Denoting by E(W | s) the

expected amount of time spent in the system by a customer who arrives when the

system has reached statistical equilibrium and whose required service time is s, it

was also shown in Cohen (1979) that

E(W | s) =

s

∞∑

k=0

(ρk/k!)φ(k + 1)

∞∑

k=0

(ρk/k!)φ(k)

, s > 0,

This remarkable result shows that the processor-sharing rule discriminates between

customers in a fair way. A customer requiring a service time twice as long as some

other will spend on average twice as long in the system. The standard M/G/1
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processor-sharing queue corresponds to the case of

f (i) =
1

i
, i = 1, 2, . . . .

In this case φ(i) = i! for i = 0, 1, . . . and the above formulas reduce to

pj = (1 − ρ)ρj , j = 0, 1, . . . and E(W | s) =
s

1 − ρ
, s > 0.

In other words, in the standard M/G/1 processor-sharing queue with general ser-

vice times, the equilibrium distribution of the number of customers present is the

same as in the M/M/1 queue with the first-come first-served discipline. This find-

ing also applies to the M/G/1 queue with the pre-emptive resume, last-in first-out

discipline. Under this service discipline each customer begins service upon arrival,

pre-empting anyone in service, and at each time, the most recently arrived customer

receives service.

5.5 A PHASE METHOD

The phase method makes it possible to use the continuous-time Markov chain

approach for a wide variety of practical probability problems in which the under-

lying probability distributions are not necessarily exponential. The method essen-

tially goes back to A.K. Erlang, who did pioneering work on stochastic pro-

cesses at the beginning of the twentieth century. In his analysis of telephone

problems, Erlang devised the trick of considering the duration of a call as the

sum of a number of sequential phases whose lengths are exponentially distributed.

There are several versions of the phase method (or method of stages). A very

useful version is the one that approximates a positive random variable by a ran-

dom sum of exponentials with the same means. In other words, the probabil-

ity distribution of the positive random variable is approximated by a mixture of

Erlangian distributions with the same scale parameters. The theoretical basis for

the use of such mixtures of Erlangian distributions is provided by the follow-

ing theorem.

Theorem 5.5.1 Let F(t) be the probability distribution function of a positive ran-

dom variable. For fixed � > 0 define the probability distribution function F�(x) by

F�(x) =
∞∑

j=1

pj (�)



1 −

j−1∑

k=0

e−x/� (x/�)k

k!



 , x ≥ 0, (5.5.1)

where pj (�) = F(j�) − F((j − 1)�), j = 1, 2, . . . . Then

lim
�→0

F�(x) = F(x)

for each continuity point x of F(t).
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Proof For fixed �, x > 0, let U�,x be a Poisson distributed random variable with

P {U�,x = k�} = e−x/� (x/�)k

k!
, k = 0, 1, . . . .

It is immediately verified that E(U�,x) = x and σ 2(U�,x) = x�. Let g(t) be any

bounded function. We now prove that

lim
�→0

E[g(U�,x)] = g(x) (5.5.2)

for each continuity point x of g(t). To see this, fix ε > 0 and a continuity point x

of g(t). Then there exists a number δ > 0 such that |g(t) − g(x)| ≤ ε/2 for all t

with |t − x| ≤ δ. Also, let M > 0 be such that |g(t)| ≤ M/2 for all t . Then

|E[g(U�,x)] − g(x)| ≤
∞∑

k=0

|g(k�) − g(x)|P {U�,x = k�}

≤
ε

2
+ M

∑

k:|k�−x|>δ

P {U�,x = k�}

=
ε

2
+ MP {|U�,x − E(U�,x)| > δ}.

By Chebyshev’s inequality, P {|U�,x − E(U�,x)| > δ} ≤ x�/δ2. For � small

enough, we have Mx�/δ2 ≤ 1
2
ε. This proves the relation (5.5.2). Next, we apply

(5.5.2) with g(t) = F(t). Hence, for any continuity point x of F(t),

F(x) = lim
�→0

E[F(U�,x)] = lim
�→0

∞∑

k=0

F(k�)e−x/� (x/�)k

k!

= lim
�→0

∞∑

k=0

e−x/� (x/�)k

k!

k∑

j=1

pj (�),

where the latter equality uses that F(0) = 0. Interchanging the order of summation,

we next obtain

F(x) = lim
�→0

∞∑

j=1

pj (�)

∞∑

k=j

e−x/� (x/�)k

k!
,

yielding the desired result.

The proof of Theorem 5.5.1 shows that the result also holds when F(t) has a

positive mass at t = 0. We should then add the term F(0) to the right-hand side

of (5.5.1). Roughly stated, Theorem 5.5.1 tells us that the probability distribution

of any positive random variable can be arbitrarily closely approximated by a mix-

ture of Erlangian distributions with the same scale parameters. The fact that the

Erlangian distributions have identical scale parameters simplifies the construction
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of an appropriate continuous-time Markov chain in specific applications. In practice

it is not always obvious how to choose a mixture that is sufficiently close to the

distribution considered. One often confines oneself to a mixture of two Erlangian

distributions by matching only the first two moments of the distribution considered;

see Appendix B.

The phase method is very useful both for theoretical purposes and practical

purposes. We give two examples to illustrate its power.

Example 5.5.1 The M/G/1 queue and the phase method

Customers arrive at a single-server station according to a Poisson process with rate

λ. The service times of the customers are independent and identically distributed

random variables and are also independent of the arrival process. The single server

can handle only one customer at a time and customers are served in order of arrival.

The phase method will be applied to obtain a computationally useful representation

of the waiting-time distribution of a customer when the probability distribution of

the service time of a customer is given by

P {S ≤ x} =
∞∑

j=1

βj


1 −

j−1∑

k=0

e−µx (µx)k

k!


 , x ≥ 0, (5.5.3)

where βj ≥ 0 and
∑∞

j=1 βj = 1. The random variable S denotes the service time. It

is assumed that λE(S) < 1. In view of (5.5.3) we can think of the service time of a

customer as follows. With probability βj the customer has to go through j sequen-

tial service phases before its service is completed. The phases are processed one

at a time and their durations are independent and exponentially distributed random

variables with mean 1/µ. This interpretation enables us to define a continuous-time

Markov chain. For any t ≥ 0, let

X(t) = the number of uncompleted service phases present at time t.

The process {X(t)} is a continuous-time Markov chain with infinite state space

I = {0, 1, . . . }. Its transition rate diagram is displayed in Figure 5.5.1.

Denote the equilibrium distribution of the process {X(t)} by {fj , j = 0, 1, . . . }.
The time-average probability fj denotes the long-run fraction of time there are j

0 k i − 1 i1 •  •  • •  •  ••  •  •

lbk lbi − k

lb1 lb1

m m

Figure 5.5.1 The transition diagram of the phase process



212 MARKOV CHAINS AND QUEUES

uncompleted service phases present. To find the waiting-time distribution, we need

the customer-average probabilities

πj = the long-run fraction of customers who find j uncompleted

service phases present upon arrival, j = 0, 1, . . . .

Under the assumption of service in order of arrival, let

Wq(x) = lim
n→∞

P {Dn ≤ x}, x ≥ 0

with Dn denoting the delay in queue of the nth arriving customer. In the same way

as (5.1.7) was derived in Section 5.1, it can be shown that this limit exists and is

given by

Wq(x) = 1 −
∞∑

j=1

πj

j−1∑

k=0

e−µx (µx)k

k!
, x ≥ 0. (5.5.4)

By the PASTA property, we have

πj = fj , j = 1, 2, . . . .

The probabilities fj allow for a recursive computation, since the transition rates

of the continuous-time Markov chain {X(t)} have the property that qij = 0 for

j ≤ i − 2. By equating the rate at which the process leaves the set of states

{i, i + 1, . . . } to the rate at which the process enters this set, we obtain

µfi =
i−1∑

k=0

fk


1 −

i−k−1∑

j=0

βj


 , i = 1, 2, . . . . (5.5.5)

This recursion provides an effective method for computing the fj . Note that the

recursion can be initialized with f0 = 1 − λE(S), since by Little’s formula the

long-run fraction of time the server is busy equals λE(S). Note that E(S) =
(1/µ)

∑∞
j=1 jβj . Once the probabilities πj (=fj ) have been computed by applying

(5.5.5), the waiting-time probability Wq(x) can be calculated from (5.5.4).

The expression (5.5.4) for Wq(x) is very useful for computational purposes. For

numerical calculations it is recommended to rewrite (5.5.4) as

Wq(x) = 1 −
∞∑

k=0

e−µx (µx)k

k!

∞∑

j=k+1

fj , x ≥ 0, (5.5.6)

by interchanging the order of summation. The series representation (5.5.6) con-

verges faster than the series (5.5.4). Of course
∑∞

j=k+1 fj should be replaced by

1−
∑k

j=0 fj in (5.5.6). The computational work in (5.5.5) and (5.5.6) can be reduced
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by using asymptotic expansions for fj as j → ∞ and 1 − Wq(x) as x → ∞; see

Exercise 5.26.

Example 5.5.2 A finite-buffer storage problem

Data messages arrive at a transmission channel according to a Poisson process

with rate λ. The transmission channel has a buffer to store arriving messages. The

buffer has a finite capacity K > 0. An arriving message is only stored in the buffer

when its length does not exceed the unoccupied buffer capacity, otherwise the

whole message is rejected. Data are transmitted from the buffer at a constant rate

of σ > 0. The message lengths are independent of each other and are assumed to

have a continuous probability distribution function F(x). An important performance

measure is the long-run fraction of messages that are rejected. This model, which

is known as the M/G/1 queue with bounded sojourn time, is very useful. It also

applies to a finite-capacity production/inventory system in which production occurs

at a constant rate as long as the inventory is below its maximum level and the

demand process is a compound Poisson process, where demands occurring when

the system is out of stock are completely lost.

A possible approach to solving the model is to discretize the model; see

Exercise 9.9 for another approach. In the discretized model a message is repre-

sented by a batch consisting of a discrete number of data units. The probability of

a batch of size k is given by

bk(�) = F(k�) − F((k − 1)�), k = 1, 2, . . .

with F(−�) = 0. The buffer only has room for K(�) data units, where

K(�) =
K

�
.

It is assumed that the number � is chosen such that K(�) is an integer. An

arriving message is only stored in the buffer when its batch size does not exceed

the number of unoccupied buffer places, otherwise the whole message is rejected.

The data units are transmitted one at a time at a constant rate of σ > 0. The key

step is now to take an exponential distribution with mean 1/µ(�) = �/σ for the

transmission time of a data unit. This approach is motivated by Theorem 5.5.1.

A data unit leaves the buffer as soon as its transmission is completed. For the

discretized model, let

π�(K) = the long-run fraction of messages that are rejected.

In view of Theorem 5.5.1 one might expect that π�(K) is an excellent approxima-

tion to the rejection probability in the original model when � is chosen sufficiently
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small. The discretized rejection probability π�(K) is routinely found by using the

continuous-time Markov chain approach. In the discretized model, let the random

variable

X(t) = the number of data units in the buffer at time t.

The process {X(t)} is a continuous-time Markov chain with the finite state space

I = {0, 1 . . . , K(�)}. Denote the equilibrium distribution of the discretized process

by {pj (�)}. The process has the property that for each state i the transition rate

qij = 0 for j ≤ i − 2. Hence pj (�) can recursively be computed. By equating the

rate out of the set {i, . . . , K(�)} to the rate into this set,

µ(�)pi(�) =
i−1∑

j=0

pj (�)


λ

K(�)−j∑

k=i−j

bk(�)


 , i = 1, 2, . . . , K(�).

Using the PASTA property, we next obtain π�(K) from

π�(K) =
K(�)∑

i=0

pi(�)
∑

k>K(�)−i

bk(�).

The computational work is considerably reduced by noting that

∞∑

k=ℓ

bk(�) = 1 −
ℓ−1∑

k=0

bk(�) = 1 − F((ℓ − 1)�), ℓ = 1, 2, . . . .

The accuracy of the discretization is improved by slightly modifying the definition

of the batch-size probabilities bk(�). It is recommended to take

bk(�) =
1

2
[F(k�) − F((k − 1)�)] +

1

2
[F((k + 1)�) − F(k�)]

for k = 1, 2, . . . , in which case
∑

k≥ℓ bk(�) = 1 − 1
2
F((ℓ − 1)�) − 1

2
F(ℓ�). It

remains to decide how small to choose � in order to obtain a sufficiently close

approximation to the rejection probability in the original model. In general one

should search for a value of � such that the answers for the values � and �/2

are sufficiently close to each other.

5.6 QUEUEING NETWORKS

Queueing network models are a useful analysis tool in a wide variety of areas such

as computer performance evaluation, communication network design and produc-

tion planning in flexible manufacturing. Generally speaking, a network of queues

is a collection of service nodes with customers (jobs) moving between the nodes

and making random requests for service at the nodes. Under appropriate condi-

tions these networks can be modelled and analysed by means of continuous-time
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Markov chains. The prominent result of the analysis is the product-form solution

for the joint distribution of the numbers of customers present at the various nodes.

Networks that can be described by a continuous-time Markov chain and have the

product-form solution are often called Jackson networks after J.R. Jackson (1957,

1963), who discovered the product-form solution. In Section 5.6.1 we consider

the open network model. A network is called open if external arrivals occur at

one or more nodes and departures from the system occur at one or more nodes.

A network is called closed when a fixed number of customers move around in

the network. The closed network will be analysed in Section 5.6.2. For clarity

of presentation the analysis is restricted to a single class of customers. In appli-

cations, however, one often encounters networks of queues with several customer

classes. The results presented in this section can be extended to the case of multiple

customer classes.

5.6.1 Open Network Model

As a prelude to the open queueing network model, consider the following medi-

cal application involving the analysis of emergency facilities. Patients arrive at an

emergency room for late-night operations. Incoming patients are initially screened

to determine their level of severity. On average, 10% of incoming patients require

hospital admission. Twenty percent of incoming patients are sent to the ambulatory

unit, 30% to the X-ray unit and 40% to the laboratory unit. Patients sent to the

ambulatory unit are released after having received ambulatory care. Of those going

to the X-ray unit, 25% require admission to the hospital, 20% are sent to the labo-

ratory unit for additional testing, and 55% have no need of additional care and are

thus released. Of patients entering the laboratory unit, 15% require hospitalization

and 85% are released. This emergency system provides an example of a network

of queues.

Consider now the following model for an open network of queues (open Jackson

network ):

• The network consists of K service stations numbered as j = 1, . . . , K .

• External arrivals of new customers occur at stations 1, . . . , K according to inde-

pendent Poisson processes with respective rates r1, . . . , rK .

• Each station is a single-server station with ample waiting room and at each

station service is in order of arrival.

• The service times of the customers at the different visits to the stations are

independent of each other, and the service time of a customer at each visit to

station j has an exponential distribution with mean 1/µj for j = 1, . . . , K .

• Upon service completion at station i, the served customer moves with probability

pij to station j for j = 1, . . . , K or leaves the system with probability pi0 =
1 −

∑K
j=1 pij .
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The routing matrix P = (pij ), i, j = 1, . . . , K , is assumed to be an irreducible

substochastic matrix with the property that Pn → 0 as n → ∞. Thus each newly

arriving customer ultimately leaves the system with probability 1. To ensure that the

process describing the numbers of customers present at the various stations has an

equilibrium distribution, we need an assumption involving the composite (external

and internal) arrival rates at the stations. Define the composite rates λ1, . . . , λK as

the unique solution to the linear equations

λj = rj +
K∑

i=1

λipij , j = 1, . . . , K. (5.6.1)

This system of linear equations has a unique solution since the matrix P is transient

and so (I − P)−1 exists. The assumption is made that

λj

µj

< 1, j = 1, . . . , K. (5.6.2)

The quantity λj can be interpreted as the total arrival rate at station j . In the long

run we have for each station i that the average number of arrivals per time unit

at station i must be equal to the average number of service completions per time

unit at station i. In particular, λipij is the arrival rate of customers to station j of

those coming from station i. Hence the total arrival rate at station j must satisfy

(5.6.1). The equations (5.6.1) are called the traffic equations.

For j = 1, . . . , K , define the random variable

Xj (t) = the number of customers present at station j at time t.

The multidimensional process X(t) = {(X1(t), . . . , XK (t))} is a continuous-time

Markov chain with state space I = {(n1, . . . , nK ) | n1 > 0, . . . , nK > 0}. Since

the routing probability pii is allowed to be positive, self-transitions can occur in

the process {X(t)}. Under assumption (5.6.2) the process {X(t)} has a unique

equilibrium distribution to be denoted by p(n1, . . . , nK). We now state Theo-

rem 5.6.1.

Theorem 5.6.1 The equilibrium probabilities p(n1, . . . , nK ) have the product-

form property

p(n1, . . . , nK) =
K∏

k=1

(
1 −

λk

µk

)(
λk

µk

)nk

. (5.6.3)

Proof Let us use the shorthand notation n =(n1, . . . , nK ). Let ei denote the ith

unit vector, that is, the ith component of ei is 1 and the other components are zero.

By equating the rate out of state n to the rate into state n (including self-transitions),
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we get for the process {X(t)} the equilibrium equations

p(n)

k∑

j=1

rj + p(n)
∑

j :nj >0

µj =
∑

j :nj >0

[
K∑

i=1

p(n + ei − ej )µipij + p(n − ej )rj

]

+
K∑

j=1

p(n + ej )µjpj0.

These equations are certainly satisfied by

p(n) =
K∏

k=1

(
1 −

λk

µk

)(
λk

µk

)nk

(5.6.4)

when this product-form solution satisfies the partial balance equations

p(n)

K∑

j=1

rj =
K∑

j=1

p(n + ej )µjpj0, (5.6.5)

p(n)µj =
K∑

i=1

p(n + ei − ej )µipij + p(n − ej )rj , 1 ≤ j ≤ K. (5.6.6)

For the product-form solution (5.6.4) we have

p(n + ei − ej ) =
(

λi

µi

)(
λj

µj

)−1

p(n) and p(n − ej ) =
(

λj

µj

)−1

p(n).

(5.6.7)

After substitution of (5.6.7) in (5.6.6), it remains to verify whether the relation

µj =
K∑

i=1

(
λi

µi

)(
λj

µj

)−1

µipij +
(

λj

µj

)−1

rj (5.6.8)

holds for each j = 1, . . . , K . This is indeed true since the relation (5.6.8) coincides

with the traffic equation (5.6.1) after cancelling out common terms (verify). In a

similar way we can verify that (5.6.5) holds. Substituting p(n+ej ) = (λj/µj )p(n)

into (5.6.5), we get
K∑

j=1

rj =
K∑

j=1

λjpj0.

This relation is indeed true since it states that the rate of new customers enter-

ing the system equals the rate of customers leaving the system. This completes

the proof.
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The partial balance equations (5.6.5) and (5.6.6) are characteristic for the product-

form solution. These equations express that

the rate out of a state due to a change at node j

= the rate into that state due to a change at node j (5.6.9)

for each j = 0, 1, . . . , K , where node 0 corresponds to the outside world. This

property of node local balance is in general not satisfied in a stochastic network, but

can indeed be verified for the Jackson network model. The product-form solution

(5.6.3) can be expressed as

p(n) = p1(n1) · · ·pK (nK ), (5.6.10)

where for any k the probability distribution {pk(n), n = 0, 1, . . . } of the number

of customers present at station k is the same as the equilibrium distribution of

the number of customers present in an M/M/1 queue with arrival rate λk and

service rate µk. In other words, in steady state the number of customers at the

different service stations are independent of each other and the number at station

k behaves as if station k is an M/M/1 queue with arrival rate λk and service

rate µk . The result (5.6.10) is remarkable in the sense that in the network model

the composite arrival process at station k is in general not a Poisson process. An

easy counterexample is provided by a single-station network with feedback ; that

is, a customer served at the station goes immediately back to the station with a

positive probability. Suppose that in this network the arrival rate from outside is

very small and the service rate is very large. Then, if the feedback probability is

close to 1, two consecutive arrivals at the station are highly correlated and so the

arrival process is not Poisson.

The Jackson network model can be generalized to allow each service station to

have multiple servers with exponential service times. If station j has cj servers,

the ergodicity condition (5.6.2) is replaced by λj/(cjµj ) < 1. Then the node

local balance equation (5.6.9) can again be verified and the equilibrium distribu-

tion {p(n)} of the numbers of customers present at the different stations has the

product form (5.6.10), where the probability distribution {pk(n)} of the number of

customers present at station k is the same as the equilibrium distribution of the

number of customers present in an M/M/c queue with arrival rate λk , service

rate µk and c = ck servers. Note that the multi-server M/M/c queue with service

rate µ can be regarded as a single-server queue with state-dependent service rate

µ(n) =min(n, c)µ when n customers are present. Indeed it can be shown that

the product-form solution also applies to the Jackson network model with state-

dependent service rates provided that the service rate at each station depends only

on the number of customers present at that station. More about the product-form

solution and its ramifications can be found in the books of Boucherie (1992) and

Van Dijk (1993). In these references the product-form solution is also linked to

the concept of insensitivity. Insensitivity of the stochastic network holds when the

condition of node local balance is sharpened to job local balance, requiring that
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the rate out of a state due to a particular job is equal to the rate into that state due

to that same job.

BCMP extension for the product-form solution

The product form has been established under the assumption that each service sta-

tion has the first-come first-served discipline and that the service times are expo-

nentially distributed. In an important paper of Baskett et al. (1975) it has been

shown that the product-form solution (5.6.10) also holds when each service station

uses one of the following four service disciplines, or BCMP disciplines :

1. The service discipline is first-come-first-served and the service times of the

customers are exponentially distributed (multiple servers or state-dependent ser-

vice is allowed).

2. The service discipline is processor-sharing; that is, if n customers are present at

the station, each customer is served and receives service at a rate of 1/n. The

service time of a customer is allowed to have a general probability distribution.

3. The service discipline is determined by an infinite number of servers; that is,

each arriving customer gets immediately assigned a free server. The service time

of a customer is allowed to have a general probability distribution.

4. The service discipline is pre-emptive resume, last-in first-out; that is, customers

are served one at a time in reverse order of arrival and a newly arriving customer

gets immediate service, pre-empting anyone in service. The service time of a

customer is allowed to have a general probability distribution.

The product-form solution (5.6.10) remains valid but the marginal probability

distribution {pk(n), n = 0, 1, . . . } of the number of customers present at station

k depends on the service discipline at station k. Under service discipline 1 with

ck identical servers, the marginal distribution {pk(n)} is given by the equilibrium

distribution of the number of customers present in the M/M/c queue with arrival

rate λ = λk, service rate µ = µk and c = ck servers. Under service discipline 3

at station k the marginal distribution {pk(n)} is given by the Poisson distribution

with mean λkE(Sk), where the random variable Sk denotes the service time of

a customer at each visit to station k. Under both service discipline 2 and service

discipline 4, at station k the marginal distribution {pk(n)} is given by the geometric

distribution {(1 − ρk)ρ
n
k , n = 0, 1, . . . } with ρk = λkE(Sk), where Sk denotes the

service time of a customer at each visit to station k.

5.6.2 Closed Network Model

In the performance evaluation of computer systems and flexible manufacturing sys-

tems it is often more convenient to consider a closed network with a fixed number

of customers (jobs). A job may leave the system but is then immediately replaced

by a new one. The basic closed Jackson network is as follows:

• The network consists of K service stations numbered as j = 1, . . . , K .
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• A fixed number of M identical customers move around in the network.

• Each station is a single-server station with ample waiting room and at each

station service is in order of arrival.

• The service times of the customers at the different visits to the stations are

independent of each other, and the service time of a customer at station j has

an exponential distribution with mean 1/µj for j = 1, . . . , K .

• Upon service completion at station i, the served customer moves with probability

pij to station j for j = 1, . . . , K , where
∑K

j=1 pij = 1 for all i = 1, . . . , K .

The routing matrix P = (pij ), i, j = 1, . . . , K is assumed to be an irreducible

Markov matrix. Since the Markov matrix P is irreducible, its equilibrium distribu-

tion {πj } is the unique positive solution to the equilibrium equations

πj =
K∑

i=1

πipij , j = 1, . . . , K (5.6.11)

in conjunction with the normalizing equation
∑K

j=1 πj = 1. The relative visit

frequencies to the stations are proportional to these equilibrium probabilities. To

see this, let

λj = the long-run average arrival rate of customers at station j .

Since λi is also the rate at which customers depart from station i, we have that

λipij is the rate at which customers arrive at station j from station i. This gives

the traffic equations

λj =
K∑

i=1

λipij , j = 1, . . . , K. (5.6.12)

The solution of the equilibrium equations (5.6.11) of the Markov matrix P is unique

up to a multiplicative constant. Hence, for some constant γ > 0,

λj = γπj , j = 1, . . . , K. (5.6.13)

Denote by Xj (t) the number of customers present at station j at time t . The process

{(X1(t), . . . , XK (t))} is a continuous-time Markov chain with the finite state space

I = {(n1, . . . , nK ) | ni ≥ 0,
∑K

i=1 ni = M}.

Theorem 5.6.2 The equilibrium distribution of the continuous-time Markov chain

{X(t) = (X1(t), . . . , XK(t))} is given by

p(n1, . . . , nK ) = C

K∏

k=1

(
πk

µk

)nk

(5.6.14)

for some constant C > 0.
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Proof The proof is along the same lines as that of Theorem 5.6.1. The equilibrium

equations of the Markov process {X(t)} are given by

p(n)
∑

j :nj >0

µj =
∑

j :nj >0

[
K∑

i=1

p(n + ei − ej )µipij

]
.

It suffices to verify that (5.6.14) satisfies the node local balance equations

p(n)µj =
K∑

i=1

p(n + ei − ej )µipij (5.6.15)

for each j . To do so, note that the solution (5.6.14) has the property

p(n + ei − ej ) =
(

πi

µi

)(
πj

µj

)−1

p(n). (5.6.16)

Hence, after substitution of (5.6.16) in (5.6.15), it suffices to verify that

µj =
K∑

i=1

(
πi

µi

)(
πj

µj

)−1

µipij , j = 1, . . . , K.

This relation is indeed true since it coincides with the equilibrium equation (5.6.11).

This completes the proof.

A computational difficulty in applying the product-form solution (5.6.14) is the

determination of the normalization constant C. Theoretically this constant can be

found by summing p(n1, . . . , nK ) over all possible states (n1, . . . , nK ). How-

ever, the number of possible states (n1, . . . , nK ) such that
∑K

i=1 ni = M equals(
M+K−1

M

)
. This is an enormous number even for modest values of K and M . Hence

a direct summation to compute the constant C is only feasible for relatively small

values of K and M . There are several approaches to handle the dimensionality

problem, including the Gibbs sampler from Section 3.4.3. We discuss here only

the mean-value algorithm.

Mean-value analysis

The mean-value algorithm is a numerically stable method for the calculation of

the average number of customers at station j , the average amount of time a

customer spends at station j on each visit and the average throughput at station

j . The so-called arrival theorem underlies the mean-value algorithm. To formu-

late this theorem, it is convenient to express explicitly the dependency of the state

probability p(n1, . . . , nK ) on the number of customers in the network. We write

p(n1, . . . , nK) = pm(n1, . . . , nK) for the network with a fixed number of m

customers. For any state (n1, . . . , nK ) with n1 + · · · + nK = M the equilibrium

probability pM (n1, . . . , nK) can be interpreted as the long-run fraction of time
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that simultaneously n1 customers are present at station 1, n2 customers at station

2, . . . , nK customers at station K . Define the customer-average probability

πj (n1, . . . , nK ) = the long-run fraction of arrivals at station j that see

nℓ other customers present at station ℓ for ℓ = 1, . . . , K .

Note that in this definition n1 + · · · + nK = M − 1.

Theorem 5.6.3 (arrival theorem) For any (n1, . . . , nK ) with
∑K

ℓ=1 nℓ = M −1,

πj (n1, . . . , nK ) = pM−1(n1, . . . , nK ).

Proof By part (b) of Corollary 4.3.2,

the long-run average number of arrivals per time unit at station j that find

nℓ other customers present at station ℓ for ℓ = 1, . . . , K

=
K∑

i=1

µipij pM (n1, . . . , ni + 1, . . . , nK)

for any (n1, . . . , nK ) with
∑K

ℓ=1 nℓ = M − 1. In particular,

the long-run average number of arrivals per time unit at station j

=
∑

m∈IM−1

K∑

i=1

µipij pM (m1, . . . , mi + 1, . . . , mK)

where m = (m1, . . . , mK) and IM−1 = {m | m ≥ 0 and m1 + . . .+mK = M −1}.
Thus

πj (n1, . . . , nK) =

K∑

i=1

µipij pM (n1, . . . , ni + 1, . . . , nK)

∑

m∈IM−1

K∑

i=1

µipij pM (m1, . . . , mi + 1, . . . , mK)

.

By Theorem 5.6.2,

pM (m1, . . . , mi + 1, . . . , mK) =
πi

µi

C

K∏

k=1

(
πk

µk

)mk

.

Substituting this in the numerator and the denominator of the expression for

πj (n1, . . . , nK ) and cancelling out the common term
∑K

i=1 πipij , we find

πj (n1, . . . , nK) = CM−1

K∏

k=1

(
πk

µk

)nk

.

for some constant CM−1. The desired result now follows from Theorem 5.6.2.
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In other words, the arrival theorem states that in steady state the customer-average

probability distribution of the state seen by an arriving customer (not counting this

customer) is the same as the time-average probability distribution of the state in the

closed network with one customer less. A special case of the arrival theorem was

encountered in the Engset model; see relation (5.2.4). The product-form solution

is crucial for the arrival theorem. It is noted that the arrival theorem remains valid

for the closed network with a BCMP service discipline at each station. Then the

product-form solution

p(n1, . . . , nK ) = Cp1(n1) · · ·pK (nK)

holds for appropriate probability distributions {p1(n1)}, . . . , {pK (nK )}.
To calculate the average number of customers and the average sojourn times at

the different stations, we take the fixed number of customers moving around in the

network as parameter. For the closed network with a fixed number of m customers,

define the following long-run averages:

Lm(j) = the average number of customers present at station j ,

Wm(j) = the average sojourn time of a customer at station j on

each visit,

λm(j) = the average number of arrivals per time unit at station j .

Note that λm(j) also gives the average throughput at station j . Also, by Little’s

formula, λm(j)/µj gives the long-run fraction of time the server at station j is

busy. For a constant γm > 0, we have by (5.6.13) that

λm(j) = γmπj , j = 1, . . . , K, (5.6.17)

where the πj are the equilibrium probabilities associated with the Markov matrix

P =(pij ). By Little’s formula,

Lm(j) = λm(j)Wm(j), j = 1, . . . , K. (5.6.18)

Obviously, we have
K∑

j=1

Lm(j) = m. (5.6.19)

The arrival theorem implies the key relation

Wm(j) =
1

µj

[
1 + Lm−1(j)

]
, j = 1, . . . , K. (5.6.20)

To see this, note that an arriving customer at node j sees on average

∑

(n1,... ,nK ):
n1+···+nK=m−1

njπj (n1, . . . , nK) =
∑

(n1,... ,nK ):
n1+···+nK=m−1

njpm−1(n1, . . . , nK ) = Lm−1(j)
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other customers at node j . By the memoryless property of the exponential dis-

tribution and the assumption of service in order of arrival, the relation (5.6.20)

now follows. This relation enables us to calculate Lm(j), Wm(j) and λm(j) in a

recursive manner. A direct consequence of (5.6.17) to (5.6.19) is the relation

γm =
m

K∑

j=1

πjWm(j)

. (5.6.21)

Mean-value algorithm

Step 0. Calculate first the equilibrium probabilities πj associated with the Markov

matrix P =(pij ). Calculate W1(j) = 1/µj for j = 1, . . . , K . Let m := 1.

Step 1. Calculate the constant γm from (5.6.21). Next calculate λm(j) and Lm(j)

for j = 1, . . . , K from (5.6.17) and (5.6.18). If m < M , then go to step 2.

Step 2. m := m+1. Calculate Wm(j) for j = 1, . . .K from (5.6.20). Repeat step 1.

EXERCISES

5.1 Consider the M/M/c/c + N queueing model with finite waiting room. This model is
the same as the M/M/c model except that there are only N waiting places for customers to
await service. An arriving customer who finds all c servers busy and all N waiting places
occupied is rejected. Denote by {pj , 0 ≤ j ≤ N + c} the equilibrium distribution of the
number of customers present.

(a) Give a recursion scheme for the computation of the pj .
(b) Verify that the limiting distribution of the delay in queue of an accepted customer is

given by

Wq (x) = 1 −
1

pN+c

N+c−1∑

j=c

pj

j−c∑

k=0

e−cµx (cµx)k

k!
, x ≥ 0.

5.2 In the machine-repair queueing model there are N identical machines which are attended
by c repairmen, where N > c. The running time of a machine is exponentially distributed
with mean 1/ν. The running times of the machines are independent of each other. A stopped
machine is attended as soon as possible by a free repairman. Each repairman can handle
only one machine at a time. The service time of a machine is exponentially distributed with
mean 1/µ.

(a) Let pj = limt→∞ P {j service requests are present at time t} for 0 ≤ j ≤ N . Give a
recursion scheme to compute the pj .

(b) Let πj denote the long-run fraction of service requests finding j other requests present

upon occurrence. Argue that πj = (N − j)pj /
∑N

k=0(N − k)pk for 0 ≤ j ≤ N − 1.
(c) What is the limiting distribution of the delay in queue of a service request when

service is in order of arrival? What is the long-run average number of busy repairmen?

5.3 Consider the following modification of the call-centre problem dealt with in Section 5.3.
If the service of a customer has not yet started, the customer becomes impatient after an
exponentially distributed time with mean 1/θ and then leaves the system. It is assumed
that the impatience time of the customer does not depend on their position in the queue
(call-centre customers cannot see each other).
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(a) Give a recursive relation for the computation of the equilibrium distribution {pj } of
the number of customers present.

(b) What is the long-run fraction of customers who are delayed? Can you explain why
θ
∑∞

j=c(j − c)pj /λ gives the long-run fraction of customers who prematurely leave the

system?

5.4 An information centre provides service in a bilingual environment. Requests for ser-
vice arrive by telephone. Service requests of major-language customers and minor-language
customers arrive according to independent Poisson processes with respective rates λ1 and
λ2. There are c bilingual agents to handle the service requests. Each service request find-
ing all c agents occupied upon arrival waits in queue until a free agent becomes available.
The service time of a major-language request is exponentially distributed with mean 1/µ1
and that of a minor-language request has an exponential distribution with mean 1/µ2. Let
p(i, i1, i2) denote the joint equilibrium probability that simultaneously i1 agents are ser-
vicing major-language customers, i2 agents are servicing minor-language customers and i
service requests are waiting in queue. Use the equilibrium equations of an appropriately
chosen continuous-time Markov chain and use generating functions to prove that for any
i1 = 0, 1, . . . , c there is a constant γ (i1) such that

p(i, i1, c − i1) ∼ γ (i1)τ−i as i → ∞,

with τ = 1 + δ/λ, where λ = λ1 + λ2 and δ is the unique solution of

δ2 − (cµ1 + cµ2 − λ)δ + c2µ1µ2 − cλ1µ2 − cλ2µ1 = 0

on the interval (0, c min(µ1, µ2)).

5.5 Consider the following modification of Example 2.5.1. Overflow is allowed from one
loo to another when there is a queue at one of the loos and there is nobody at the other loo.
It is assumed that the occupation times at the loos are exponentially distributed. Formulate
a continuous-time Markov chain to analyse the new situation. Assume the numerical data
λw = λm = 0.6, µw = 1.5 and µm = 0.75. Solve the equilibrium equations and compare
the average queue sizes for the women’s loo and the men’s loo with the average queue sizes
in the situation of strictly separated loos.

5.6 Jobs of types 1 and 2 arrive according to independent Poisson processes with respective
rates λ1 and λ2. Each job type has its own queue. Both queues are simultaneously served,
where service is only provided to the job at the head of the queue. If both queues are not
empty, service is provided at unity rate at each queue. A non-empty queue for type i jobs
receives service at a rate of ri ≥ 1 when the other queue is empty (i = 1, 2). The service
requirement of a type i job has an exponential distribution with mean 1/µi . The service
requirements of the jobs are independent of each other. It is assumed that ρi = λi/µi is
less than 1 for i = 1, 2. Let p(i1, i2) be the joint equilibrium probability of having i1 jobs
at queue 1 and i2 jobs at queue 2. Set up the equilibrium equations for the probabilities

p(i1, i2). Do numerical investigations to find out whether or not p(i1, i2) ∼ γρ
i1
1

ρ
i2
2

as
i1 → ∞ and i2 → ∞ for some constant γ .

5.7 Consider a production hall with two machines. Jobs arrive according to a Poisson process
with rate λ. Upon arrival a job has to be assigned to one of the two machines. Each machine
has ample waiting space for jobs that have to wait. Each machine can handle only one job
at a time. If a job is assigned to machine i, its processing time is exponentially distributed
with mean 1/µi for i = 1, 2. The control rule is to assign an arriving job to the machine
with the shortest queue (if both queues are equal, machine group 1 is chosen). Jockeying of
the jobs is not possible. Use Markov-chain analysis to find the equilibrium probability that
the delay of a job in queue is longer than a given time t0.
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5.8 Consider an irreducible continuous-time Markov chain with state space I and infinitesi-
mal transition rates qij . Let {pj , j ∈ I } be the equilibrium distribution of the Markov chain.
Assume that the Markov chain is time reversible and thus has the detailed balance property
(5.1.15). Suppose that the Markov chain is truncated to the subset A ⊂ I . That is, qij is
changed to 0 for all i ∈ A and j /∈ A. Prove that the equilibrium distribution of the truncated
Markov chain is given by

pA
i =

pi∑
k∈A pk

, i ∈ A.

This important result is due to Kelly (1979).

5.9 Suppose we wish to determine the capacity of a stockyard at which containers arrive
according to a Poisson process with a rate of λ = 1 per hour. A container finding a full
yard upon arrival is brought elsewhere. The time that a container is stored in the yard is
exponentially distributed with mean 1/µ = 10 hours. Determine the required capacity of
the yard so that no more than 1% of the arriving containers find the yard full. How does the
answer change when the time that a container is stored in the yard is uniformly distributed
between 5 and 15 hours?

5.10 Long-term parkers and short-term parkers arrive at a parking place for cars according
to independent Poisson processes with respective rates λ1 = 4 and λ2 = 6 per hour. The
parking place has room for N = 10 cars. Each arriving car which finds all places occupied
goes elsewhere. The parking time of long-term parkers is uniformly distributed between 1
and 2 hours, while the parking time of short-term parkers has a uniform distribution between
20 and 60 minutes. Calculate the probability that a car finds all parking places occupied upon
arrival.

5.11 Consider the loss version of the delay model from Exercise 5.4. In the loss model each
service request finding all c agents occupied upon arrival is lost and has no further influence
on the system. Let p(i1, i2) denote the long-run fraction of time that simultaneously i1
major-language customers are in service and i2 minor-language customers are in service.
Verify from the equilibrium equations for the state probabilities p(i1, i2) that, for some
constant C > 0,

p(i1, i2) = C
(λ1/µ1)i1

i1!

(λ2/µ2)i2

i2!

for all i1, i2 with 0 ≤ i1 + i2 ≤ c. Next conclude that the equilibrium distribution of the
number of occupied agents is given by formula (5.2.1) with λ = λ1 + λ2 and 1/µ =
(λ1/λ) × (1/µ1) + (λ2/λ) × (1/µ2).

5.12 Units offered for repair arrive at a repair facility according to a Poisson process with
rate λ. There are c repairmen. Each repairman can handle only one unit at a time. An offered
unit finding all repairmen busy is rejected and handled elsewhere. The repair time of a unit
consists of two phases. The first phase is exponentially distributed with mean 1/µ1 and the
second one is exponentially distributed with mean 1/µ2.

(a) Let p (i1, i2) be the equilibrium probability of having i1 units in repair phase 1 and
i2 units in repair phase 2. Verify that, for some constant C, the probability p (i1, i2) =
C(λ/µ1)i1(λ/µ2)i2/(i1!i2!) for all i1, i2.

(b) What is the equilibrium distribution of the number of busy repairmen?
(c) What is the long-run fraction of offered units that are rejected? Does this loss prob-

ability increase when the two repair phases are more variable than the exponential phases
but have the same means as the exponential phases?

5.13 Consider a continuous-review inventory system in which customers asking for a certain
item arrive according to a Poisson process with rate λ. Each customer asks for one unit of the
item. Customer demands occurring when the system is out of stock are lost. The (S − 1, S)
control rule is used. Under this control rule the base stock is S and a replenishment for
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exactly one unit is placed each time the on-hand inventory decreases by one unit. The lead
times of the replenishments are independent and identically distributed random variables
with mean τ . Establish an equivalence with the Erlang loss model and give expressions for
the long-run average on-hand inventory and the long-run fraction of demand that is lost.

5.14 In an electronic system there are c elements of a crucial component connected in
parallel to increase the reliability of the system. Each component is switched on and the
lifetimes of the components have an exponential distribution with mean 1/α. The lifetimes
of the components are independent of each other. The electronic system is working as long
as at least one of the components is functioning, otherwise the system is down. A component
that fails is replaced by a new one. It takes an exponentially distributed time with mean 1/β

to replace a failed component. Only one failed component can be replaced at a time.
(a) Use a continuous-time Markov chain to calculate the long-run fraction of time the

system is down. Specify the transition rate diagram first.
(b) Does the answer in (a) change when the replacement time of a failed component has a

general probability distribution with mean 1/α? (Hint : compare the transition rate diagram
with the transition rate diagram in the Erlang loss model.)

5.15 Reconsider Exercise 5.14 but this time assume there are ample repairmen to replace
failed components.

(a) Use a continuous-time Markov chain to calculate the long-run fraction of time the
system is down. Specify the transition rate diagram first.

(b) What happens to the answer in (a) when the replacement time is fixed rather than
exponentially distributed? (Hint : compare the transition rate diagram with the transition rate
diagram in the Engset loss model.)

5.16 Suppose you have two groups of servers each without waiting room. The first group
consists of c1 identical servers each having an exponential service rate µ1 and the second
group consists of c2 identical servers each having an exponential service rate µ2. Customers
for group i arrive according to a Poisson process with rate λi (i = 1, 2). A customer who
finds all servers in his group busy upon arrival is served by a server in the other group,
provided one is free, otherwise the customer is lost. Show how to calculate the long-run
fraction of customers lost.

5.17 Consider a conveyor system at which items for processing arrive according to a Poisson
process with rate λ. The service requirements of the items are independent random variables
having a common exponential distribution with mean 1/µ. The conveyor system has two
work stations 1 and 2 that are placed according to this order along the conveyor. Workstation
i consists of si identical service channels, each having a constant processing rate of σi
(i = 1, 2); that is, an item processed at workstation i has an average processing time of
1/(σiµ). Both workstations have no storage capacity and each service channel can handle
only one item at a time. An arriving item is processed by the first workstation in which a
service channel is free and is lost when no service channel is available at either of the stations.
Show how to calculate the fraction of items lost and solve for the numerical data λ = 10,
µ = 1, σ1 = 2, σ2 = 1.5, s1 = 5 and s2 = 5 (Answer : 0.0306). Verify experimentally that
the loss probability is nearly insensitive to the distributional form of the service requirement
(e.g. compute the loss probability 0.0316 for the data when the service requirement has an
H2 distribution with balanced means and a squared coefficient of variation of 4).

5.18 Consider a stochastic service system with Poisson arrivals at rate λ and two different
groups of servers, where each arriving customer simultaneously requires a server from both
groups. An arrival not finding that both groups have a free server is lost and has no further
influence on the system. The ith group consists of si identical servers (i = 1, 2) and each
server can handle only one customer at a time. An entering customer occupies the two
assigned servers from the groups 1 and 2 during independently exponentially distributed
times with respective means 1/µ1 and 1/µ2. Show how to calculate the loss probability
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and solve for the numerical data λ = 1, 1/µ1 = 2, 1/µ2 = 5, s1 = 5 and s2 = 10. (Answer :
0.0464.) Verify experimentally that the loss probability is nearly insensitive to the distribu-
tional form of the service times (e.g. compute the loss probability 0.0470 for the above data
when the service time in group 1 has an E2 distribution and the service time in group 2 has
an H2 distribution with balanced means and a squared coefficient of variation of 4).

5.19 Customers of the types 1, . . . , m arrive at a service centre according to indepen-
dent Poisson processes with respective rates λ1, . . . , λm. The service centre has c identical
servers. An arriving customer of type j requires bj servers and is lost when there are no bj
servers available. A customer of type j has an exponentially distributed service time with
mean 1/µj for j = 1, . . . , m. The customer keeps all of the assigned bj servers busy during
his service time and upon completion of the service time the bj servers are simultaneously
released. Let p(n1, . . . , nm) be the long-run fraction of time that nj groups of bj servers
are handling type j customers for j = 1, . . . , m.

(a) Verify from the equilibrium equations for the probabilities p(n1, . . . , nm) that, for
some constant C > 0,

p(n1, . . . , nm) = C

m∏

j=1

(λj /µj )nj

nj !

for all (n1, . . . , nm) with n1b1 + · · · + nmbm ≤ c.
(b) What is the long-run fraction of type j customers who are lost?
The above product-form solution can also be proved by considering the process

{(X1(t), . . . , Xm(t))} in the infinite-server model (c = ∞) with Xj (t) denoting the number
of type j customers present at time t . The processes {X1(t)}, . . . , {Xm(t)} are indepen-
dent of each other and each separate process {Xj (t)} constitutes an M/M/∞ queueing
process having a Poisson distribution with mean λj /µj as equilibrium distribution. Noting
that the process {(X1(t), . . . , Xm(t))} is time reversible, it can be concluded from the result
in Exercise 5.8 that the above product-form solution holds. The normalization constant C
can be computed as follows. Let {pj , 0 ≤ j ≤ c} denote the equilibrium distribution of

the numbers of busy servers in the loss model with c servers and let {p(∞)
j

} denote the

equilibrium distribution of the number of busy servers in the infinite-server model. Then

pj =
p

(∞)
j

∑c
k=0 p

(∞)
k

, j = 0, 1, . . . , c.

The normalization constant C is given by p0. It is left to the reader to verify that {p(∞)
j

} can

be computed as the convolution of m compound Poisson distributions. The j th compound
Poisson distribution represents the limiting distribution of the numbers of busy servers in a

batch arrival MX/G/∞ queue with group service, where the arrival rate of batches is λj ,
each batch consists of bj customers and the mean service time of the customers from the
same batch is 1/µj ; see part (b) of Exercise 1.15. Finally, it is noted that the loss model
has the insensitivity property.

5.20 Batches of containers arrive at a stockyard according to a Poisson process with a rate
of λ = 15 batches per day. Each batch consists of two or three containers with respective

probabilities of 2
3

and 1
3

. The stockyard has space for only 50 containers. An arriving batch
finding not enough space is lost and is brought elsewhere. Containers from the same batch
are removed simultaneously after a random time. The holding times of the batches are
independent random variables and have a lognormal distribution with a mean of 1 day and
a standard deviation of 2 days for batches of size 3 and a mean of 1 day and a standard

deviation of 1
2

day for batches of size 3. Calculate the long-run fraction of batches of size
2 that are lost and the long-run fraction of batches of size 3 that are lost.
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5.21 Consider the following modification of Example 5.4.2. Instead of infinite-source input,
there is finite-source input for each of the two message types. The source of messages of type
j has Mj users, where each user generates a new message after an exponentially distributed
think time with mean 1/λj provided the user has no message in service at the communication
system. Assume the numerical data c = 10, M1 = M2 = 10, λ1 = 3, λ2 = 1, µ1 = 4,
µ2 = 1. Use continuous-time Markov chain analysis to compute the L-policy for which
the average throughput is maximal. Does the result change when the transmission times are
constant rather than exponentially distributed?

5.22 Suppose a production facility has M operating machines and a buffer of B standby
machines. Machines in operation are subject to breakdowns. The running times of the oper-
ating machines are independent of each other and have a common exponential distribution
with mean 1/λ. An operating machine that breaks down is replaced by a standby machine if
one is available. A failed machine immediately enters repair. There are ample repair facil-
ities so that any number of machines can be repaired simultaneously. The repair time of a
failed machine is assumed to have an exponential distribution with mean 1/µ. For given
values of µ, λ and M , demonstrate how to calculate the minimum buffer size B in order
to achieve that the long-run fraction of time that less than M machines are operating is no
more than a specific value β. Do you expect the answer to depend on the specific form of
the repair-time distribution?

5.23 Suppose a communication system has c transmission channels at which messages arrive
according to a Poisson process with rate λ. Each message that finds all of the c channels busy
is lost upon arrival, otherwise the message is randomly assigned to one of the free channels.
The transmission length of an accepted message has an exponential distribution with mean
1/µ. However, each separate channel is subject to a randomly changing environment that
influences the transmission rate of the channel. Independently of each other, the channels
alternate between periods of good condition and periods of bad condition. These alternating
periods are independent of each other and have exponential distributions with means 1/γg

and 1/γb. The transmission rate of a channel being in good (bad) condition is σg (σb). Set
up the balance equations for calculating the fraction of messages that are lost. Noting that
σ = (σbγg + σgγb)/(γg + γb) is the average transmission rate used by a channel, make
some numerical comparisons with the case of a fixed transmission rate σ .

5.24 Jobs have to undergo tooling at two stations, 1 and 2, which are linked in series. New
jobs arrive at station 1 according to a Poisson process with rate λ. At station 1 they undergo
their first tooling. Upon completion of the tooling at station 2, there is a given probability
p that both toolings have to be done anew. In this case the job rejoins the queue at station
1, otherwise the job leaves the system. The handling times of a job at stations 1 and 2 are
independent random variables having exponential distributions with respective means 1/µ1
and 1/µ2. Each station can handle only one job at a time. What is the long-run average
amount of time spent in the system by a newly arriving job?

5.25 Consider a closed queueing network as in Section 5.6.2. Assume now that the service
rate at station i is a function µi(ni) of the number (ni) of customers present at station i.
Verify that the product-form solution is given by

p(n1, . . . nK ) = C

K∏

i=1


λ

ni

i
/

ni∏

l=1

µi(l)


 .

5.26 Consider the M/G/1 queue with Erlangian services from Example 5.5.1. Define the

generating functions β(z) =
∑∞

j=1 βj zj and F(z) =
∑∞

j=0 fj zj . Let R be the convergence

radius of the series
∑∞

j=1 βj zj . It is assumed that R > 1.
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(a) Verify that

F(z) =
µf0(1 − z)

µ(1 − z) − λz(1 − β(z))
.

(b) Use Theorem C.1 in Appendix C to prove that fj ∼ γ ηj as j → ∞ for some constant
γ , where η is the reciprocal of the smallest root of µ(1 − x) − λx(1 − β(x)) = 0 on (1, R).

(c) Verify that 1 − Wq (x) ∼ γ1e−µ(1−η)x as x → ∞ for some constant γ1 > 0.

5.27 Consider the so-called MAP/G/1 queue with a Markov modulated Poisson arrival
process (an important application of this model in teletraffic analysis is the buffering of
independent on-off sources at a statistical multiplexer). The arrival rate of customers is
governed by an exogenous phase process. The phase process is a continuous-time Markov
chain with finitely many states s = 0, 1, . . . , m and infinitesimal transition rates αst . It is
assumed that the phase process is irreducible and thus has a unique equilibrium distribution
which is denoted by {es }. If the phase process is in state s, customers arrive according to
a Poisson process with rate λs . The service times of the customers are independent random
variables which are also independent of the arrival process. Customers are served in order of
arrival. It is assumed that the service time of a customer has the same probability distribution

function (5.5.3) as in Example 5.5.1. Letting ρ =
(∑m

s=0 λses

)
×

(
µ−1

∑∞
j=1 jβj

)
, it is

assumed that the server utilization ρ is less than 1. Also it is assumed that the convergence

radius R of the power series β(z) =
∑∞

j=1 βj zj is larger than 1.

(a) Let p(i, s) denote the joint equilibrium probability that i customers are present and
the arrival process is in phase s. Verify that for any s there is a constant γs such that

p(i, s) ∼ γsη
i as i → ∞,

where η is the reciprocal of the smallest root τ of det A(x) = 0 on (1, R). Here the
(m + 1) × (m + 1) matrix A(z) is given by

A(z) = µ(1 − z)I − z(1 − β(z))� + zQT ,

where � is the diagonal matrix � =diag(λ0, λ1, . . . , λm) and QT is the transpose of the
transition matrix Q = (qst ), s, t = 0, 1, . . . , m with qst = αst for t �= s and qss =
−

∑
t �=s αst . For the special case of m = 1 with α01 = ω1 and α10 = ω2 (switched Poisson

process), verify that the determination of τ reduces to finding the smallest root of

[(λ1 + µ + ω1)z − λ1zβ(z) − µ][(λ2 + µ + ω2)z − λ2zβ(z) − µ] − ω1ω2z2 = 0

on the interval (1, R). Conclude that the geometric tail approach can be applied to calculate
the state probabilities p(i, s).

(b) Let πj denote the long-run fraction of customers who find j other customers present

upon arrival. Argue that πj =
∑m

s=0 λsp (j, s) /
∑m

s=0 λses .
(c) Let Wq (x) denote the limiting probability distribution function of the delay in queue

of a customer. Verify that 1 − Wq (x) ∼ γ e−µ(1−η)x as x → ∞ for some constant γ .

BIBLIOGRAPHIC NOTES

Queueing problems have laid the foundation for the continuous-time Markov chain

model. The Erlang delay model and the Erlang loss model stem from teletraffic

analysis. The square-root rule is discussed in many papers and was obtained by

A.K. Erlang in an unpublished paper in 1924. Recommended references are Borst
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et al. (2003), Halfin and Whitt (1981), Jennings et al. (1996) and Whitt (1992).

Influential papers showing Poisson departures for the M/M/c queue are Burke

(1956) and Reich (1957). Insensitivity is a fundamental concept in stochastic ser-

vice systems with no queueing. The illustrative problem from Example 5.4.2 is

adapted from Foschini et al. (1981). A general discussion of the insensitivity phe-

nomenon in stochastic networks can be found in Kelly (1979, 1991) and Van

Dijk (1993). The book of Kelly (1979) makes extensive use of the concept of

time-reversible Markov chains. The method of phases using fictitious stages with

exponentially distributed lifetimes has its origin in the pioneering work of Erlang

on stochastic processes in the early 1900s. The scope of this method was consider-

ably enlarged by Schassberger (1973), who showed that the probability distribution

of any non-negative random variable can be represented as the limit of a sequence

of mixtures of Erlangian distributions with the same scale parameters. This result is

very useful for both analytical and computational purposes. The product-form solu-

tion was first obtained in the paper of R.R.P. Jackson (1954) for a tandem queue

consisting of two single-server stations. This work was considerably extended by

J.R. Jackson (1957, 1963) to produce what have come to be known as Jackson

networks. More material on queueing networks and their applications in computer

and communication networks can be found in the books of Hayes (1984) and

Kleinrock (1976).
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CHAPTER 6

Discrete-Time Markov
Decision Processes

6.0 INTRODUCTION

In the previous chapters we saw that in the analysis of many operational systems

the concepts of a state of a system and a state transition are of basic impor-

tance. For dynamic systems with a given probabilistic law of motion, the simple

Markov model is often appropriate. However, in many situations with uncertainty

and dynamism, the state transitions can be controlled by taking a sequence of

actions. The Markov decision model is a versatile and powerful tool for analysing

probabilistic sequential decision processes with an infinite planning horizon. This

model is an outgrowth of the Markov model and dynamic programming. The lat-

ter concept, being developed by Bellman in the early 1950s, is a computational

approach for analysing sequential decision processes with a finite planning horizon.

The basic ideas of dynamic programming are states, the principle of optimality and

functional equations.

In fact dynamic programming is a recursion procedure for calculating optimal

value functions from a functional equation. This functional equation reflects the

principle of optimality, stating that an optimal policy has the property that what-

ever the initial state and the initial decision, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first transition. This

principle is always valid when the number of states and the number of actions

are finite. At much the same time as Bellman (1957) popularized dynamic pro-

gramming, Howard (1960) used basic principles from Markov chain theory and

dynamic programming to develop a policy-iteration algorithm for solving proba-

bilistic sequential decision processes with an infinite planning horizon. In the two

decades following the pioneering work of Bellman and Howard, the theory of

Markov decision processes has expanded at a fast rate and a powerful technology

has developed. However, in that period relatively little effort was put into applying

the quite useful Markov decision model to practical problems.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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The Markov decision model has many potential applications in inventory control,

maintenance, manufacturing and telecommunication among others. Perhaps this

versatile model will see many more significant applications when it becomes more

familiar to engineers, operations research analysts, computer science people and

others. To that end, Chapters 6 and 7 focus on the algorithmic aspects of Markov

decision theory and illustrate the wide applicability of the Markov decision model

to a variety of realistic problems. The presentation is confined to the optimality

criterion of the long-run average cost (reward) per time unit. For many applications

of Markov decision theory this criterion is the most appropriate optimality criterion.

The average cost criterion is particularly appropriate when many state transitions

occur in a relatively short time, as is typically the case for stochastic control

problems in computer systems and telecommunication networks. Other criteria are

the expected total cost and the expected total discounted cost. These criteria are

discussed in length in Puterman (1994) and will not be addressed in this book.

This chapter deals with the discrete-time Markov decision model in which deci-

sions can be made only at fixed equidistant points in time. The semi-Markov

decision model in which the times between the decision epochs are random will

be the subject of the next chapter. In Section 6.1 we present the basic elements

of the discrete-time Markov decision model. A policy-improvement procedure is

discussed in Section 6.2. This procedure is the key to various algorithms for com-

puting an average cost optimal polity. The so-called relative values of a given

policy play an important role in the improvement procedure. The relative values

and their interpretation are the subject of Section 6.3. In Section 6.4 we present

the policy-iteration algorithm which generates a sequence of improved policies.

Section 6.5 discusses the linear programming formulation for the Markov decision

model, including a formulation to handle probabilistic constraints on the state-action

frequencies. The policy-iteration algorithm and the linear programming formulation

both require the solving of a system of linear equations in each iteration step. In

Section 6.6 we discuss the alternative method of value iteration which avoids the

computationally burdensome solving of systems of linear equations but involves

only recursive computations. The value-iteration algorithm endowed with quickly

converging lower and upper bounds on the minimal average cost is usually the

most effective method for solving Markov decision problems with a large number

of states. Section 6.7 gives convergence proofs for the policy-iteration algorithm

and the value-iteration algorithm.

6.1 THE MODEL

In Chapter 3 we have considered a dynamic system that evolves over time accord-

ing to a fixed probabilistic law of motion satisfying the Markovian assumption.

This assumption states that the next state to be visited depends only on the present

state of the system. In this chapter we deal with a dynamic system evolving over

time where the probabilistic law of motion can be controlled by taking decisions.

Also, costs are incurred (or rewards are earned) as a consequence of the decisions
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that are sequentially made when the system evolves over time. An infinite plan-

ning horizon is assumed and the goal is to find a control rule which minimizes the

long-run average cost per time unit.

A typical example of a controlled dynamic system is an inventory system with

stochastic demands where the inventory position is periodically reviewed. The deci-

sions taken at the review times consist of ordering a certain amount of the product

depending on the inventory position. The economic consequences of the decisions

are reflected in ordering, inventory and shortage costs.

We now introduce the Markov decision model. Consider a dynamic system which

is reviewed at equidistant points of time t = 0, 1, . . . . At each review the system

is classified into one of a possible number of states and subsequently a decision

has to be made. The set of possible states is denoted by I . For each state i ∈ I ,

a set A(i) of decisions or actions is given. The state space I and the action sets

A(i) are assumed to be finite. The economic consequences of the decisions taken at

the review times (decision epochs) are reflected in costs. This controlled dynamic

system is called a discrete-time Markov model when the following Markovian

property is satisfied. If at a decision epoch the action a is chosen in state i, then

regardless of the past history of the system, the following happens:

(a) an immediate cost ci(a) is incurred,

(b) at the next decision epoch the system will be in state j with probability pij (a),

where
∑

j∈I

pij (a) = 1, i ∈ I.

Note that the one-step costs ci(a) and the one-step transition probabilities pij (a)

are assumed to be time homogeneous. In specific problems the ‘immediate’ costs

ci(a) will often represent the expected cost incurred until the next decision epoch

when action a is chosen in state i. Also, it should be emphasized that the choice

of the state space and of the action sets often depends on the cost structure of

the specific problem considered. For example, in a production/inventory problem

involving a fixed set-up cost for restarting production after an idle period, the

state description should include a state variable indicating whether the production

facility is on or off. Many practical control problems can be modelled as a Markov

decision process by an appropriate choice of the state space and action sets. Before

we develop the required theory for the average cost criterion, we give a typical

example of a Markov decision problem.

Example 6.1.1 A maintenance problem

At the beginning of each day a piece of equipment is inspected to reveal its actual

working condition. The equipment will be found in one of the working conditions

i = 1, . . . , N , where the working condition i is better than the working condition
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i + 1. The equipment deteriorates in time. If the present working condition is i

and no repair is done, then at the beginning of the next day the equipment has

working condition j with probability qij . It is assumed that qij = 0 for j < i and
∑

j≥i qij = 1. The working condition i = N represents a malfunction that requires

an enforced repair taking two days. For the intermediate states i with 1 < i < N

there is a choice between preventively repairing the equipment and letting the

equipment operate for the present day. A preventive repair takes only one day. A

repaired system has the working condition i = 1. The cost of an enforced repair

upon failure is Cf and the cost of a pre-emptive repair in working condition i

is Cpi . We wish to determine a maintenance rule which minimizes the long-run

average repair cost per day.

This problem can be put in the framework of a discrete-time Markov decision

model. Also, since an enforced repair takes two days and the state of the system

has to be defined at the beginning of each day, we need an auxiliary state for the

situation in which an enforced repair is in progress already for one day. Thus the

set of possible states of the system is chosen as

I = {1, 2, . . . , N, N + 1}.

State i with 1 ≤ i ≤ N corresponds to the situation in which an inspection reveals

working condition i, while state N + 1 corresponds to the situation in which an

enforced repair is in progress already for one day. Define the actions

a =







0 if no repair is done,

1 if a preventive repair is done,

2 if an enforced repair is done.

The set of possible actions in state i is chosen as

A(1) = {0}, A(i) = {0, 1} for 1 < i < N, A(N) = A(N + 1) = {2}.

The one-step transition probabilities pij (a) are given by

pij (0) = qij for 1 ≤ i < N,

pi1 (1) = 1 for 1 < i < N,

pN,N+1(2) = pN+1,1(2) = 1,

and the other pij (a) = 0. The one-step costs ci(a) are given by

ci(0) = 0, ci(1) = Cpi , cN (2) = Cf and cN+1(2) = 0.

Stationary policies

We now introduce some concepts that will be needed in the algorithms to be

described in the next sections. A rule or policy for controlling the system is a

prescription for taking actions at each decision epoch. In principle a control rule
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may be quite complicated in the sense that the prescribed actions may depend on

the whole history of the system. An important class of policies is the subclass of

stationary policies. A stationary policy R is a policy that assigns to each state i a

fixed action a = Ri and always uses this action whenever the system is in state i.

For example, in the maintenance problem with N = 5, the policy R prescribing

a preventive repair only in the states 3 and 4 is given by R1 = 0, R2 = 0,

R3 = R4 = 1 and R5 = R6 = 2.

For n = 0, 1, . . . , define

Xn = the state of the system at the nth decision epoch.

Under a given stationary policy R, we have

P {Xn+1 = j | Xn = i} = pij (Ri),

regardless of the past history of the system up to time n. Hence under a given

stationary policy R the stochastic process {Xn} is a discrete-time Markov chain with

one-step transition probabilities pij (Ri). This Markov chain incurs a cost ci(Ri)

each time the system visits state i. Thus we can invoke results from Markov chain

theory to specify the long-run average cost per time unit under a given stationary

policy.

In view of the Markov assumption made and the fact that the planning horizon

is infinitely long, it will be intuitively clear that it is sufficient to consider only the

class of stationary policies. However, other policies are conceivable: policies whose

actions depend on the past states or policies whose actions are determined by a

random mechanism. This issue raises a fundamental question in Markov decision

theory: does there exist an optimal policy among the class of all conceivable policies

and, if an optimal policy exists, is such a policy a stationary policy? The answer

to these questions is yes for the average-cost Markov decision model with a finite

state space and finite action sets. However, a mathematical proof requires rather

deep arguments. The interested reader is referred to Derman (1970) and Puterman

(1994) for a proof. From these books the reader will learn that the issue of the

existence of an optimal (stationary) policy is a very subtle one. Especially for the

average cost criterion, the optimality questions become very complicated when

the state space is not finite but countably infinite. Even in simple countable-state

models, average cost optimal policies need not exist and, when they do, they need

not be stationary; see Puterman (1994). In the average-cost Markov decision model

with a finite state space and finite action sets these difficulties do not arise and the

analysis can be restricted to the class of stationary policies.

6.2 THE POLICY-IMPROVEMENT IDEA

In this section we will establish a key result that underlies the various algorithms

for the computation of an average cost optimal policy. Before doing this, we discuss

the long-run average cost per time unit for a stationary policy.
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Average cost for a given stationary policy

Fix a stationary policy R. Under policy R each time the action a = Ri is taken

whenever the system is in state i at a decision epoch. The process {Xn} describing

the state of the system at the decision epochs is a Markov chain with one-step

transition probabilities pij (Ri), i, j ∈ I when policy R is used. Denote the n-step

transition probabilities of this Markov chain by

p
(n)
ij (R) = P {Xn = j | X0 = i}, i, j ∈ I and n = 1, 2, . . . .

Note that p
(1)
ij (R) = pij (Ri). By the equations (3.2.1),

p
(n)
ij (R) =

∑

k∈I

p
(n−1)
ik

(R)pkj (Rk), n = 1, 2, . . . , (6.2.1)

where p
(0)
ij (R) = 1 for j = i and p

(0)
ij (R) = 0 for j �= i. Also, define the expected

cost function Vn(i, R) by

Vn(i, R) = the total expected costs over the first n decision epochs

when the initial state is i and policy R is used.

Obviously, we have

Vn(i, R) =

n−1
∑

t=0

∑

j∈I

p
(t)
ij (R)cj (Rj ), (6.2.2)

Next we define the average cost function gi(R) by

gi(R) = lim
n→∞

1

n
Vn(i, R), i ∈ I. (6.2.3)

This limit exists by Theorem 3.3.1 and represents the long-run average expected

cost per time unit when the system is controlled by policy R and the initial

state is i. A state i is said to be recurrent under policy R if the system ulti-

mately returns to state i with probability 1 when the system starts in state i

and policy R is used; see Section 3.2.3. Otherwise, state i is said to be tran-

sient under policy R. If state i is recurrent under policy R, then gi(R) allows for

the stronger interpretation

the long-run actual average cost per time unit = gi(R) (6.2.4)

with probability 1 when the initial state is i and policy R is used. This is a

direct consequence of the theory for finite-state Markov chains. For the Markov

chain {Xn} corresponding to policy R, the state space can be uniquely split up

into a finite number of disjoint irreducible sets of recurrent states and a (possibly

empty) set of transient states; see Section 3.5.1. Denote the recurrent subclasses by

I1(R), . . . , If (R) and the set of transient states by T (R). Since the system cannot
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leave a closed set, the process {Xn} restricted to any recurrent subclass Iℓ(R) is

a Markov chain itself with its own equilibrium distribution. Since the restricted

Markov chain on Iℓ(R) is irreducible, it follows from Theorem 3.3.3 that (6.2.4)

holds for i ∈ Iℓ(R), ℓ = 1, . . . , f . Moreover,

gi(R) = gj (R), i, j ∈ Iℓ(R).

Let g(ℓ)(R) denote the common value of gi(R) for i ∈ Iℓ(R). For a transient initial

state i, the long-run average cost per time unit is a random variable. This ran-

dom variable assumes the value g(ℓ)(R) with probability f
(ℓ)
i (R), where f

(ℓ)
i (R)

is the probability that the system is ultimately absorbed in the recurrent sub-

class Iℓ(R) when the initial state is i and policy R is used. Obviously, gi(R) =
∑f

ℓ=1 g(ℓ)(R)f
(ℓ)
i (R) for i ∈ T (R).

The above technical discussion involves rather heavy notation and might be

intimidating for some readers. This discussion greatly simplifies when the Markov

chain {Xn} corresponding to policy R is unichain as is mostly the case in practi-

cal situations. The Markov chain is said to be unichain if it has no two disjoint

closed sets. In the unichain case the Markov chain {Xn} has a unique equilibrium

distribution {πj (R), j ∈ I }. For any j ∈ I ,

lim
m→∞

1

m

m
∑

n=1

p
(n)
ij (R) = πj (R), (6.2.5)

independently of the initial state i. The πj (R) are the unique solution to the system

of equilibrium equations

πj (R) =
∑

i∈I

pij (Ri)πi(R), j ∈ I, (6.2.6)

in conjunction with
∑

j∈I πj (R) = 1. By (6.2.2), (6.2.3) and (6.2.5),

gi(R) = g(R) for all i ∈ I

with

g(R) =
∑

j∈I

cj (Rj )πj (R). (6.2.7)

We defined gi(R) as an average expected cost. For the unichain case, it follows

from renewal-reward theory that the long-run average actual cost per time unit

equals g(R) with probability 1 when policy R is used, independently of the initial

state.

In practical applications the Markov chain {Xn} associated with an optimal sta-

tionary policy will typically be unichain. The reader might wonder why we are

still paying attention to the multichain case. The reason is that in some applications

non-optimal policies may have multiple recurrent subclasses and those policies may
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show up in intermediate steps of the algorithms for computing an optimal policy.

However, in most practical applications the Markov chain {Xn} is unichain for

each stationary policy.

Policy-improvement idea

A stationary policy R∗ is said to be average cost optimal if

gi(R
∗) ≤ gi(R)

for each stationary policy R, uniformly in the initial state i. It is stated without

proof that an average cost optimal stationary policy R∗ always exists. Moreover,

policy R∗ is not only optimal among the class of stationary policies but it is also

optimal among the class of all conceivable policies.

In most applications it is computationally not feasible to find an average cost

optimal policy by computing the average cost for each stationary policy separately.

For example, if the number of states is N and there are two actions in each

state, then the number of possible stationary policies is 2N and this number grows

quickly beyond any practical bound. However, several algorithms can be given

that lead in an effective way to an average cost optimal policy. Policy iteration

and value iteration are the most widely used algorithms to compute an average

cost optimal policy. The first method works on the policy space and generates

a sequence of improved policies, whereas the second method approximates the

minimal average cost through a sequence of value functions. In both methods a

key role is played by the so-called relative values. The relative values are the basis

for a powerful improvement step. The improvement step is motivated through a

heuristic discussion of the relative values of a given policy R. In the next section

a rigorous treatment will be presented for the relative values.

Let us fix any stationary policy R. It is assumed that the Markov chain {Xn}

associated with policy R has no two disjoint closed sets. Then the average cost

gi(R) = g(R), independently of the initial state i ∈ I. The starting point is the

obvious relation limn→∞ Vn(i, R)/n = g(R) for all i, where Vn(i, R) denotes the

total expected costs over the first n decision epochs when the initial state is i and

policy R is used. This relation motivates the heuristic assumption that bias values

vi(R), i ∈ I , exist such that, for each i ∈ I ,

Vn(i, R) ≈ ng(R) + υi(R) for n large. (6.2.8)

Note that υi(R) − υj (R) ≈ Vn(i, R) − Vn(j, R) for n large. Thus υi(R) − υj (R)

measures the difference in total expected costs when starting in state i rather than

in state j , given that policy R is followed. This explains the name of relative values

for the υi(R). We have the recursion equation

Vn(i, R) = ci(Ri) +
∑

j∈I

pij (Ri)Vn−1(j, R), n ≥ 1 and i ∈ I
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with V0(i, R) = 0. This equation follows by conditioning on the next state that

occurs when action a = Ri is made in state i when n decision epochs are to go. A

cost ci(Ri) is incurred at the first decision epoch and the total expected cost over

the remaining n − 1 decision epochs is Vn−1(j, R) when the next state is j . By

substituting the asymptotic expansion (6.2.8) in the recursion equation, we find,

after cancelling out common terms,

g(R) + υi(R) ≈ ci(Ri) +
∑

j∈I

pij (Ri)υj (R), i ∈ I. (6.2.9)

The intuitive idea behind the procedure for improving the given policy R is to

consider the following difference in costs:

�(i, a, R) = the difference in total expected costs over an infinitely long period

of time by taking first action a and next using policy R rather

than using policy R from scratch when the initial state is i.

This difference is equal to zero when action a = Ri is chosen. We wish to make

the difference �(i, a, R) as negative as possible. This difference is given by

�(i, a, R) = lim
n→∞



ci(a) +
∑

j∈I

pij (a)Vn−1(j, R)

−{ci(Ri) +
∑

j∈I

pij (Ri)Vn−1(j, R)}



 .

Substituting (6.2.8) into the expression between brackets, we find that for large n

this expression is approximately equal to

ci(a) +
∑

j∈I

pij (a)vj (R) − (n − 1)g(R)

−







ci(Ri) +
∑

j∈I

pij (Ri)vj (R) − (n − 1)g(R)







.

This gives

�(i, a, R) ≈ ci(a) +
∑

j∈I

pij (a)vj (R) − ci(Ri) −
∑

j∈I

pij (Ri)vj (R).

Thus, by using (6.2.9),

�(i, a, R) ≈ ci(a) +
∑

j∈I

pij (a)vj (R) − g(R) − vi(R).
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This relation and the definition of �(i, a, R) suggest we should look for an action

a in state i so that the quantity

ci(a) − g(R) +
∑

j∈I

pij (a)vj (R) (6.2.10)

is as small as possible. The quantity in (6.2.10) is called the policy-improvement

quantity. The above heuristic discussion suggests a main theorem that will be the

basis for the algorithms to be discussed later. A direct proof of this theorem can

be given without using any of the heuristic assumptions made above.

Theorem 6.2.1 (improvement theorem) Let g and vi , i ∈ I , be given numbers.

Suppose that the stationary policy R has the property

ci(Ri) − g +
∑

j∈I

pij (Ri)υj ≤ υi f or each i ∈ I. (6.2.11)

Then the long-run average cost of policy R satisfies

gi(R) ≤ g, i ∈ I, (6.2.12)

where the strict inequality sign holds in (6.2.12) for i = r when state r is recurrent

under policy R and the strict inequality sign holds in (6.2.11) for i = r . The result

is also true when the inequality signs in (6.2.11) and (6.2.12) are reversed.

Proof We first give an intuitive explanation of the theorem and next we give a

formal proof. Suppose that a control cost of ci(a) − g is incurred each time the

action a is chosen in state i, while a terminal cost of υj is incurred when the

control of the system is stopped and the system is left behind in state j . Then

(6.2.11) states that controlling the system for one step according to rule R and

stopping next is preferable to stopping directly when the initial state is i. Since this

property is true for each initial state, a repeated application of this property yields

that controlling the system for m steps according to rule R and stopping after that

is preferable to stopping directly. Thus, for each initial state i ∈ I ,

Vm(i, R) − mg +
∑

j∈I

p
(m)
ij (R)υj ≤ υi, m = 1, 2, . . . .

Dividing both sides of this inequality by m and letting m → ∞, we get (6.2.12).

Next we give a formal proof that yields the result with the strict inequality sign

as well. The proof is first given under the assumption that the Markov chain {Xn}

associated with policy R is unichain. Then this Markov chain has a unique equi-

librium distribution {πj (R), j ∈ I }, where πj (R) > 0 only if state j is recurrent

under policy R. Multiply both sides of (6.2.11) by πi(R) and sum over i. This

gives

∑

i∈I

πi(R)ci(Ri) − g +
∑

i∈I

πi(R)
∑

j∈I

pij (Ri)υj ≤
∑

i∈I

πi(R)υi,
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where the strict inequality sign holds when the strict inequality sign holds in (6.2.11)

for some i with πi(R) > 0. Interchanging the order of summation in the above

inequality and using (6.2.6) and (6.2.7) with R replaced by R, we find

g(R) − g +
∑

j∈I

πj (R)υj ≤
∑

i∈I

πi(R)υi,

where the strict inequality sign holds when the strict inequality sign holds in (6.2.11)

for some i with πi(R) > 0. This verifies the theorem for the case of a unichain

policy R. Next it is easy to establish the theorem for the case of a multichain

policy R. Letting I1(R), . . . , If (R) denote the recurrent subclasses of the Markov

chain associated with policy R, the above proof shows that for any ℓ = 1, . . . , f

the inequality (6.2.12) holds for all i ∈ Iℓ(R). The proof of the theorem is next

completed by noting that for each transient state i the average expected cost gi(R)

is a linear combination of the average costs on the recurrent subclasses.

6.3 THE RELATIVE VALUE FUNCTION

In Section 6.2 we introduced in a heuristic way the relative values for a given

stationary policy R. In this section we give a rigorous treatment. This will be done

for the case of a unichain policy R. Let r be any recurrent state of policy R. In

view of the unichain assumption, the Markov chain {Xn} associated with policy R

will visit state r after finitely many transitions, regardless of the initial state. Thus

we can define, for each state i ∈ I ,

Ti(R) = the expected time until the first return to state r when

starting in state i and using policy R.

In particular, letting a cycle be the time elapsed between two consecutive visits to

the regeneration state r under policy R, we have that Tr (R) is the expected length

of a cycle. Also define, for each i ∈ I ,

Ki(R) = the expected costs incurred until the first return to state r

when starting in state i and using policy R.

We use the convention that Ki(R) includes the cost incurred when starting in state

i but excludes the cost incurred when returning to state r . By the theory of renewal-

reward processes, the average cost per time unit equals the expected costs incurred

in one cycle divided by the expected length of one cycle and so

g(R) =
Kr (R)

Tr (R)
.

Next we define the particular relative value function

wi(R) = Ki(R) − g(R)Ti(R), i ∈ I. (6.3.1)
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Note, as a consequence of (6.3.1), the normalization

wr (R) = 0.

In accordance with the heuristic result (6.2.9), the next theorem shows that the

average cost g = g(R) and the relative values υi = wi(R), i ∈ I satisfy a system

of linear equations.

Theorem 6.3.1 Let R be a given stationary policy such that the associated Markov

chain {Xn} has no two disjoint closed sets. Then

(a) The average cost g(R) and the relative values wi(R), i ∈ I , satisfy the following

system of linear equations in the unknowns g and υi , i ∈ I :

υi = ci(Ri) − g +
∑

j∈I

pij (Ri)υj , i ∈ I. (6.3.2)

(b) Let the numbers g and υi , i ∈ I , be any solution to (6.3.2). Then

g = g(R)

and, for some constant c,

υi = wi(R) + c, i ∈ I.

(c) Let s be an arbitrarily chosen state. Then the linear equations (6.3.2) together

with the normalization equation υs = 0 have a unique solution.

Proof (a) By conditioning on the next state following the initial state i, it can be

seen that

Ti(R) = 1 +
∑

j �=r

pij (Ri)Tj (R), i ∈ I,

Ki(R) = ci(Ri) +
∑

j �=r

pij (Ri)Kj (R), i ∈ I.

This implies that

Ki(R) − g(R)Ti(R) = ci(Ri) − g(R) +
∑

j �=r

pij (Ri){Kj (R) − g(R)Tj (R)}.

Hence, by wr (R) = 0, we find

wi(R) = ci(Ri) − g(R) +
∑

j∈I

pij (Ri)wj (R), i ∈ I.
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(b) Let {g, υi} be any solution to (6.3.2). We first verify by induction that the

following identity holds for each m = 1, 2, . . . .

υi =

m−1
∑

t=0

∑

j∈I

p
(t)
ij (R)cj (Rj ) − mg +

∑

j∈I

p
(m)
ij (R)υj , i ∈ I. (6.3.3)

Clearly, (6.3.3) is true for m = 1. Suppose that (6.3.3) is true for m = n. Substitut-

ing equations (6.3.2) into the right-hand side of (6.3.3) with m = n, it follows that

υi =

n−1
∑

t=0

∑

j∈I

p
(t)
ij (R)cj (Rj )−ng +

∑

j∈I

p
(n)
ij (R)

{

cj (Rj ) − g +
∑

k∈I

pjk (Rj )υk

}

=

n
∑

t=0

∑

j∈I

p
(t)
ij (R)cj (Rj ) − (n + 1)g+

∑

k∈I







∑

j∈I

p
(n)
ij (R)pjk (Rj )







υk, i ∈ I.

where the latter equality involves an interchange of the order of summation. Next,

using (6.2.1), we get (6.3.3) for m = n + 1, which completes the induction step.

Using the relation (6.2.2) for the total expected costs over the first m decision

epochs, we can rewrite (6.3.3) in the more convenient form

υi = Vm(i, R) − mg +
∑

j∈I

p
(m)
ij (R)υj , i ∈ I. (6.3.4)

Since Vm(i, R)/m → g(R) as m → ∞ for each i, the result g = g(R) follows

by dividing both sides of (6.3.4) by m and letting m → ∞. To prove the second

part of assertion (b), let {g, υi} and {g′, υ ′
i} be any two solutions to (6.3.1). Since

g = g′ = g(R), it follows from the representation (6.3.4) that

υi − υ ′
i =

∑

j∈I

p
(m)
ij (R){υj − υ ′

j }, i ∈ I and m ≥ 1.

By summing both sides of this equation over m = 1, . . . , n and then dividing by

n, it follows after an interchange of the order of summation that

υi − υ ′
i =

∑

j∈I

{

1

n

n
∑

m=1

p
(m)
ij (R)

}

(υj − υ ′
j ), i ∈ I and n ≥ 1.

Next, by letting n → ∞ and using (6.2.5), we obtain

υi − υ ′
i =

∑

j∈I

πj (R)(υj − υ ′
j ), i ∈ I.

The right-hand side of this equation does not depend on i. This proves part (b).

(c) Since
∑

j pij (Ri) = 1 for each i ∈ I , it follows that for any constant c the

numbers g and υi = wi(R) + c, i ∈ I , satisfy (6.3.2). Hence the equations (6.3.2)
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together with υs = 0 for some s must have a solution. In view of assertion (b),

this solution is unique. This completes the proof of the theorem.

Interpretation of the relative values

The equations (6.3.2) are referred to as the value-determination equations. The

relative value function vi , i ∈ I is unique up to an additive constant. The particular

solution (6.3.1) can be interpreted as the total expected costs incurred until the

first return to state r when policy R is used and the one-step costs are given by

c′
i(a) = ci(a)−g with g = g(R). If the Markov chain {Xn} associated with policy

R is aperiodic, two other interpretations can be given to the relative value function.

The first interpretation is that, for any two states i, j ∈ I ,

vi − vj = the difference in total expected costs over an infinitely

long period of time by starting in state i rather than in

state j when using policy R.

In other words, vi − vj is the maximum amount that a rational person is willing

to pay to start the system in state j rather than in state i when the system is

controlled by rule R. This interpretation is an easy consequence of (6.3.3). Using the

assumption that the Markov chain {Xn} is aperiodic, we have that limm→∞ p
(m)
ij (R)

exists. Moreover this limit is independent of the initial state i, since R is unichain.

Thus, by (6.3.3),

vi = lim
m→∞

{Vm(i, R) − mg} +
∑

j∈I

πj (R)vj . (6.3.5)

This implies that vi − vj = limm→∞{Vm(i, R) − Vm(j, R)}, yielding the above

interpretation. A special interpretation applies to the relative value function vi ,

i ∈ I with the property
∑

j∈I πj (R)vj = 0. Since the relative value function is

unique up to an additive constant, there is a unique relative value function with

this property. Denote this relative value function by hi , i ∈ I . Then, by (6.3.5),

hi = lim
m→∞

{Vm(i, R) − mg}. (6.3.6)

The bias hi can also be interpreted as the difference in total expected costs between

the system whose initial state is i and the system whose initial state is distributed

according to the equilibrium distribution {πj (R), j ∈ I } when both systems are

controlled by policy R. The latter system is called the stationary system. This

system has the property that at any decision epoch the state is distributed as {πj (R)};

see Section 3.3.2. Thus, for the stationary system, the expected cost incurred at any

decision epoch equals
∑

j∈I cj (Rj )πj (R) being the average cost g = g(R) of policy

R. Consequently, in the stationary system the total expected costs over the first m

decision epochs equals mg. This gives the above interpretation of the bias hi .
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6.4 POLICY-ITERATION ALGORITHM

For ease of presentation we will discuss the policy-iteration algorithm under a

unichain assumption that is satisfied in most applications.

Unichain assumption For each stationary policy the associated Markov chain

{Xn} has no two disjoint closed sets.

The relative values associated with a given policy R provide a tool for construct-

ing a new policy R whose average cost is no more than that of the current policy

R. In order to improve a given policy R whose average cost g(R) and relative

values υi(R), i ∈ I , have been computed, we apply Theorem 6.2.1 with g = g(R)

and υi = υi(R), i ∈ I . By constructing a new policy R such that, for each state

i ∈ I ,

ci(Ri) − g(R) +
∑

j∈I

pij (Ri)υj ≤ υi, (6.4.1)

we obtain an improved rule R according to g(R) ≤ g(R). In constructing such

an improved policy R it is important to realize that for each state i separately

an action Ri satisfying (6.4.1) can be determined. As a side remark, we point

out that this flexibility of the policy-improvement procedure may be exploited in

specific applications to generate a sequence of improved policies within a subclass

of policies having a simple structure. A particular way to find for state i ∈ I an

action Ri satisfying (6.4.1) is to minimize

ci(a) − g(R) +
∑

j∈I

pij (a)υj (R) (6.4.2)

with respect to a ∈ A(i). Noting that the expression in (6.4.2) equals υi(R) for

a = Ri , it follows that (6.4.1) is satisfied for the action Ri which minimizes (6.4.2)

with respect to a ∈ A(i). We are now in a position to formulate the following

algorithm.

Policy-iteration algorithm

Step 0 (initialization). Choose a stationary policy R.

Step 1 (value-determination step). For the current rule R, compute the unique

solution {g(R), υi(R)} to the following system of linear equations:

υi = ci(Ri) − g +
∑

j∈I

pij (Ri)υj , i ∈ I,

υs = 0,

where s is an arbitrarily chosen state.
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Step 2 (policy-improvement step). For each state i ∈ I , determine an action ai

yielding the minimum in

min
a∈A(i)







ci(a) − g(R) +
∑

j∈I

pij (a)υj (R)







.

The new stationary policy R is obtained by choosing Ri = ai for all i ∈ I with the

convention that Ri is chosen equal to the old action Ri when this action minimizes

the policy-improvement quantity.

Step 3 (convergence test). If the new policy R = R, then the algorithm is stopped

with policy R. Otherwise, go to step 1 with R replaced by R.

The policy-iteration algorithm converges after a finite number of iterations to an

average cost optimal policy. We defer the proof to Section 6.7. The policy-iteration

algorithm is empirically found to be a remarkably robust algorithm that converges

very fast in specific problems. The number of iterations is practically independent

of the number of states and varies typically between 3 and 15, say. Also, it can be

roughly stated that the average costs of the policies generated by policy iteration

converge at least exponentially fast to the minimum average cost, with the greatest

improvements in the first few iterations.

Remark 6.4.1 The average cost optimality equation

Since the policy-iteration algorithm converges after finitely many iterations, there

exist numbers g∗ and υ∗
i , i ∈ I , such that

υ∗
i = min

a∈A(i)







ci(a) − g∗ +
∑

j∈I

pij (a)υ∗
j







, i ∈ I. (6.4.3)

This functional equation is called the average cost optimality equation. Using Theo-

rem 6.2.1, we can directly verify that any stationary policy R∗ for which the action

R∗
i minimizes the right-hand side of (6.4.3) for all i ∈ I is average cost optimal.

To see this, note that

υ∗
i = ci(R

∗
i ) − g∗ +

∑

j∈I

pij (R
∗
i )υ∗

j , i ∈ I (6.4.4)

and

υ∗
i ≤ ci(a) − g∗ +

∑

j∈I

pij (a)υ∗
j , a ∈ A(i) and i ∈ I. (6.4.5)

The equality (6.4.4) and Theorem 6.2.1 imply that g(R∗) = g∗. Let R be any sta-

tionary policy. Taking a = Ri in (6.4.5) for all i ∈ I and applying Theorem 6.2.1,

we find g(R) ≥ g∗. In other words, g(R∗) ≤ g(R) for any stationary policy R.

This shows not only that policy R∗ is average cost optimal but also shows that the

constant g∗ in (6.4.3) is uniquely determined as the minimal average cost per time
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unit. It is stated without proof that the function υ∗
i , i ∈ I , in (6.4.3) is uniquely

determined up to an additive constant.

Next the policy-iteration algorithm is applied to compute an average cost optimal

policy for the control problem in Example 6.1.1.

Example 6.1.1 (continued) A maintenance problem

It is assumed that the number of possible working conditions equals N = 5. The

repair costs are given by Cf = 10, Cp2 = 7, Cp3 = 7 and Cp4 = 5. The deteri-

oration probabilities qij are given in Table 6.4.1. The policy-iteration algorithm is

initialized with the policy R(1) = (0, 0, 0, 0, 2, 2), which prescribes repair only in

the states 5 and 6. In the calculations below, the policy-improvement quantity is

abbreviated as

Ti(a, R) = ci(a) − g(R) +
∑

j∈I

pij (a)vj (R)

when the current policy is R. Note that always Ti(a, R) = vi(R) for a = Ri .

Iteration 1

Step 1 (value determination). The average cost and the relative values of policy

R(1) = (0, 0, 0, 0, 2, 2) are computed by solving the linear equations

v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 0 − g + 0.7v3 + 0.1v4 + 0.2v5

v4 = 0 − 9 + 0.5v4 + 0.5v5

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0,

where state s = 6 is chosen for the normalizing equation vs = 0. The solution of

these linear equations is given by

g(R(1)) = 0.5128, v1(R
(1)) = 0.5128, v2(R

(1)) = 5.6410, v3(R
(1)) = 7.4359,

v4(R
(1)) = 8.4615, v5(R

(1)) = 9.4872, v6(R
(1)) = 0.

Table 6.4.1 The deteriorating probabilities qij

i\j 1 2 3 4 5

1 0.90 0.10 0 0 0
2 0 0.80 0.10 0.05 0.05
3 0 0 0.70 0.10 0.20
4 0 0 0 0.50 0.50
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Step 2 (policy improvement). The test quantity Ti(a, R) has the values

T2(0, R(1)) = 5.6410, T2(1, R(1)) = 7.0000, T3(0, R(1)) = 7.4359,

T3(1, R(1)) = 7.0000, T4(0, R(1)) = 9.4872, T4(1, R(1)) = 5.0000.

This yields the new policy R(2) = (0, 0, 1, 1, 2, 2) by choosing for each state i the

action a that minimizes Ti(a, R(1)).

Step 3 (convergence test). The new policy R(2) is different from the previous policy

R(1) and hence another iteration is performed.

Iteration 2

Step 1 (value determination). The average cost and the relative values of policy

R(2) = (0, 0, 1, 1, 2, 2) are computed by solving the linear equations

v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 7 − g + v1

v4 = 5 − g + v1

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0.

The solution of these linear equations is given by

g(R(2)) = 0.4462, v1(R
(2)) = 0.4462, v2(R

(2)) = 4.9077, v3(R
(2)) = 7.000,

v4(R
(2)) = 5.0000, v5(R

(2)) = 9.5538, v6(R
(2)) = 0.

Step 2 (policy improvement). The test quantity Ti(a, R(2)) has the values

T2(0, R(2)) = 4.9077, T2(1, R(2)) = 7.0000, T3(0, R(2)) = 6.8646,

T3(1, R(2)) = 7.0000, T4(0, R(2)) = 6.8307, T4(1, R(2)) = 5.0000.

This yields the new policy R(3) = (0, 0, 0, 1, 2, 2).

Step 3 (convergence test). The new policy R(3) is different from the previous policy

R(2) and hence another iteration is performed.

Iteration 3

Step 1 (value determination). The average cost and the relative values of policy

R(3) = (0, 0, 0, 1, 2, 2) are computed by solving the linear equations
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v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 0 − g + 0.7v3 + 0.1v4 + 0.2v5

v4 = 5 − g + v1

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0.

The solution of these linear equations is given by

g(R(3)) = 0.4338, v1(R
(3)) = 0.4338, v2(R

(3)) = 4.7717, v3(R
(3)) = 6.5982,

v4(R
(3)) = 5.0000, v5(R

(3)) = 9.5662, v6(R
(3)) = 0.

Step 2 (policy improvement). The test quantity Ti(a, R(3)) has the values

T2(0, R(3)) = 4.7717, T2(1, R(3)) = 7, T3(0, R(3)) = 6.5987,

T3(1, R(3)) = 7.0000, T4(0, R(3)) = 6.8493, T
(1)

4 (1, R(3)) = 5.0000.

This yields the new policy R(4) = (0, 0, 0, 1, 2, 2).

Step 3 (convergence test). The new policy R(4) is identical to the previous policy

R(3) and is thus average cost optimal. The minimal average cost is 0.4338 per day.

Remark 6.4.2 Deterministic state transitions

For the case of deterministic state transitions the computational burden of pol-

icy iteration can be reduced considerably. Instead of solving a system of linear

equations at each step, the average cost and relative values can be obtained from

recursive calculations. The reason for this is that under each stationary policy the

process moves cyclically among the recurrent states. The simplified policy-iteration

calculations for deterministic state transitions are as follows:

(a) Determine for the current policy R the cycle of recurrent states among which

the process cyclically moves.

(b) The cost rate g(R) equals the sum of one-step costs in the cycle divided by

the number of states in the cycle.

(c) The relative values for the recurrent states are calculated recursively, in reverse

direction to the natural flow around the cycle, after assigning a value 0 to one

recurrent state.
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(d) The relative values for transient states are computed first for states which reach

the cycle in one step, then for states which reach the cycle in two steps, and

so forth.

It is worthwhile pointing out that the simplified policy-iteration algorithm may be

an efficient technique to compute a minimum cost-to-time circuit in a deterministic

network.

6.5 LINEAR PROGRAMMING APPROACH∗

The policy-iteration algorithm solves the average cost optimality equation (6.4.3)

in a finite number of steps by generating a sequence of improved policies. Another

way of solving the optimality equation is the use of a linear program for the

average cost case. The linear programming formulation to be given below allows

the unichain assumption in Section 6.4 to be weakened as follows.

Weak unichain assumption For each average cost optimal stationary policy the

associated Markov chain {Xn} has no two disjoint closed sets.

This assumption allows non-optimal policies to have multiple disjoint closed

sets. The unichain assumption in Section 6.4 may be too strong for some applica-

tions; for example, in inventory problems with strictly bounded demands it may

be possible to construct stationary policies with disjoint ordering regions such that

the levels between which the stock fluctuates remain dependent on the initial level.

However, the weak unichain assumption will practically always be satisfied in real-

world applications. For the weak unichain case, the minimal average cost per time

unit is independent of the initial state and, moreover, the average cost optimality

equation (6.4.3) applies and uniquely determines g∗ as the minimal average cost

per time unit; see Denardo and Fox (1968) for a proof. This reference also gives

the following linear programming algorithm for the computation of an average cost

optimal policy.

Linear programming algorithm

Step 1. Apply the simplex method to compute an optimal basic solution (x∗
ia) to

the following linear program:

Minimize
∑

i∈I

∑

a∈A(i)

ci(a)xia (6.5.1)

subject to
∑

a∈A(j)

xja −
∑

i∈I

∑

a∈A(i)

pij (a)xia = 0, j ∈ I,

∑

i∈I

∑

a∈A(i)

xia = 1,

xia ≥ 0, a ∈ A(i) and i ∈ I.

∗This section may be skipped at first reading.
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Step 2. Start with the non-empty set I0 := {i |
∑

a∈A(i) x∗
ia > 0}. For any state

i ∈ I0, set the decision

R∗
i := a for some a such that x∗

ia > 0.

Step 3. If I0 = I , then the algorithm is stopped with policy R∗. Otherwise, deter-

mine some state i /∈ I0 and action a ∈ A(i) such that pij (a) > 0 for some j ∈ I0.

Next set R∗
i := a and I0 := I0 ∪ {i} and repeat step 3.

The linear program (6.5.1) can heuristically be explained by interpreting the

variables xia as

xia = the long-run fraction of decision epochs at which

the system is in state i and action a is made.

The objective of the linear program is the minimization of the long-run average

cost per time unit, while the first set of constraints represent the balance equations

requiring that for any state j ∈ I the long-run average number of transitions from

state j per time unit must be equal to the long-run average number of transitions

into state j per time unit. The last constraint obviously requires that the sum of

the fractions xia must be equal to 1.

Next we sketch a proof that the linear programming algorithm leads to an average

cost optimal policy R∗ when the weak unichain assumption is satisfied. Our starting

point is the average cost optimality equation (6.4.3). Since this equation is solvable,

the linear inequalities

g + vi −
∑

j∈I

pij (a)vj ≤ ci(a), a ∈ A(i) and i ∈ I (6.5.2)

must have a solution. It follows from Theorem 6.2.1 that any solution {g, vi} to

these inequalities satisfies g ≤ gi(R) for any i ∈ I and any policy R. Hence we

can conclude that for any solution {g, vi} to the linear inequalities (6.5.2) holds

that g ≤ g∗ with g∗ being the minimal average cost per time unit. Hence, using

the fact that relative values v∗
i , i ∈ I , exist such that {g∗, v∗

i } constitutes a solution

to (6.5.2), the linear program

Maximize g (6.5.3)

subject to

g + vi −
∑

j∈I

pij (a)vj ≤ ci(a), a ∈ A(i) and i ∈ I,

g, vi unrestricted,

has the minimal average cost g∗ as the optimal objective-function value. Next

observe that the linear program (6.5.1) is the dual of the primal linear program
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(6.5.3). By the dual theorem of linear programming, the primal and dual lin-

ear programs have the same optimal objective-function value. Hence the minimal

objective-function value of the linear program (6.5.1) equals the minimal average

cost g∗. Next we show that an optimal basic solution (x∗
ia) to the linear program

(6.5.1) induces an average cost optimal policy. To do so, define the set

S0 =







i

∣

∣

∣

∑

a∈A(i)

x∗
ia > 0







.

Then the set S0 is closed under any policy R having the property that action

a = Ri satisfies x∗
ia > 0 for all i ∈ S0. To see this, suppose that pij (Ri) > 0 for

some i ∈ S0 and j /∈ S0. Then the first set of constraints of the linear program

(6.5.1) implies that
∑

a x∗
ja > 0, contradicting j /∈ S0. Next consider the set I0 as

constructed in the linear programming algorithm. Let R∗ be a policy such that the

actions R∗
i for i ∈ I0 are chosen according to the algorithm. It remains to verify

that I0 = I and that policy R∗ is average cost optimal. To do so, let {g∗, v∗
i } be

the particular optimal basic solution to the primal linear program (6.5.3) such that

this basic solution is complementary to the optimal basic solution (x∗
ia) of the dual

linear program (6.5.1). Then, by the complementary slackness property of linear

programming,

g∗ + v∗
i −

∑

j∈I

pij (R
∗
i )v∗

j = ci(R
∗
i ), i ∈ S0.

The term
∑

j∈I pij (R
∗
i )v∗

j can be replaced by
∑

j∈S0
pij (R

∗
i )v∗

j for i ∈ S0, since

the set S0 is closed under policy R∗. Thus, by Theorem 6.2.1, we can conclude

that gi(R
∗) = g∗ for all i ∈ S0. The states in I0\S0 are transient under policy R∗

and are ultimately leading to a state in S0. Hence gi(R
∗) = g∗ for all i ∈ I0. To

prove that I0 = I , assume to the contrary that I0 �= I . By the construction of I0,

the set I\I0 is closed under any policy. Let R0 be any average cost optimal policy.

Define the policy R1 by

R1(i) =

{

R∗(i), i ∈ I0,

R0(i), i ∈ I\I0.

Since I\I0 and I0 are both closed sets under policy R1, we have constructed an

average cost optimal policy with two disjoint closed sets. This contradicts the weak

unichain assumption. Hence I0 = I . This completes the proof.

We illustrate the linear programming formulation of the Markov decision problem

from Example 6.1.1. The specification of the basic elements of the Markov decision

model for this problem is given in Section 6.1.
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Example 6.1.1 (continued) A maintenance problem

The linear programming formulation for this problem is to minimize

N−1
∑

i=2

Cpi xi1 + Cf xN2

subject to

x10 −

(

q11x10 +

N−1
∑

i=2

xi1 + xN+1,2

)

= 0,

xj0 + xj1 −

j
∑

i=1

qij xi0 = 0, 2 ≤ j ≤ N − 1,

xN2 −

N−1
∑

i=1

qiN xi0 = 0,

xN+1,2 − xN2 = 0,

x10 +

N−1
∑

i=2

(xi0 + xi1) + xN2 + xN+1,2 = 1,

x10, xi0, xi1, xN2, xN+1,2 ≥ 0.

For the numerical data given in Table 6.4.1, this linear program has the minimal

objective value 0.4338 and the optimal basic solution

x∗
10 = 0.5479, x∗

20 = 0.2740, x∗
30 = 0.0913, x∗

41 = 0.0228,

x∗
52 = 0.0320, x∗

62 = 0.0320 and the other x∗
ia = 0.

This yields the average cost optimal policy R∗ = (0, 0, 0, 1, 2, 2) with an average

cost of 0.4338, in agreement with the results obtained by policy iteration.

Linear programming and probabilistic constraints

The linear programming formulation may often be a convenient way to handle

Markovian decision problems with probabilistic constraints. In many practical

applications, constraints are imposed on certain state frequencies. For example,

in inventory problems for which shortage costs are difficult to estimate, probabilis-

tic constraints may be placed on the probability of shortage or on the fraction of

demand that cannot be met directly from stock on hand. Similarly, in a maintenance
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problem involving a randomly changing state, a constraint may be placed on the

frequency at which a certain inoperative state occurs.

The following illustrative example taken from Wagner (1975) shows that for

control problems with probabilistic constraints it may be optimal to choose the

decisions in a random way rather than in a deterministic way. Suppose the daily

demand D for some product is described by the probability distribution

P {D = 0} = P {D = 1} = 1
6 , P {D = 2} = 2

3 .

The demands on the successive days are independent of each other. At the beginning

of each day it has to be decided how much to order of the product. The delivery

of any order is instantaneous. The variable ordering cost of each unit is c > 0.

Any unit that is not sold at the end of the day becomes obsolete and must be

discarded. The decision problem is to minimize the average ordering cost per day,

subject to the constraint that the fraction of the demand to be met is at least 1
3 . This

probabilistic constraint is satisfied when using the policy of ordering one unit every

day, a policy which has an average cost of c per day. However, this deterministic

control rule is not optimal, as can be seen by considering the randomized control

rule under which at any given day no unit is ordered with probability 4
5 and two

units are ordered with probability 1
5 . Under this randomized rule the probability

that the daily demand is met equals ( 4
5 )( 1

6 ) + ( 1
5 )(1) = 1

3 and the average ordering

cost per day equals ( 4
5 )(0) + ( 1

5 )(2c) = 2
5c. It is readily seen that the randomized

rule is optimal.

So far we have considered only stationary policies under which the actions

are chosen deterministically. A policy π is called a stationary randomized policy

when it is described by a probability distribution {πa(i), a ∈ A(i)} for each state

i ∈ I . Under policy π action a ∈ A(i) is chosen with probability πa(i) whenever

the process is in state i. If πa(i) is 0 or 1 for every i and a, the stationary

randomized policy π reduces to the familiar stationary policy choosing the actions

in a deterministic way. For any policy π , let the state-action frequencies fi,a(π)

be defined by

fia(π) = the long-run fraction of decision epochs at which the process

is in state i and action a is chosen when policy π is used.

Consider now a Markovian decision problem in which the goal is to minimize the

long-run average cost per time unit subject to the following linear constraints on

the state-action frequencies:

∑

i∈I

∑

a∈A(i)

α
(s)
ia fia (π) ≤ β(s), s = 1, . . . , L,

where α
(s)
ia and β(s) are given constants. It is assumed that the constraints allow

for a feasible solution. If the unichain assumption from Section 6.4 holds, it can

be shown that an optimal policy may be obtained by solving the following linear
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program; see Derman (1970) and Hordijk and Kallenberg (1984):

Minimize
∑

i∈I

∑

a∈A(i)

ci(a)xia

subject to

∑

a∈A(j)

xja −
∑

i∈I

∑

a∈A(i)

pij (a)xia = 0, j ∈ I,

∑

i∈I

∑

a∈A(i)

xia = 1,

∑

i∈I

∑

a∈A(i)

α
(s)
ia xia ≤ β(s), s = 1, . . . , L,

xia ≥ 0, a ∈ A(i) and i ∈ I .

Denoting by {x∗
ia } an optimal basic solution to this linear program and letting the

set S0 = {i |
∑

a x∗
ia > 0}, an optimal stationary randomized policy π∗ is given by

π∗
a (i) =

{

x∗
ia/

∑

d x∗
id , a ∈ A(i) and i ∈ S0,

arbitrary, otherwise.

Here the unichain assumption is essential for guaranteeing the existence of an

optimal stationary randomized policy.

Example 6.1.1 (continued) A maintenance problem

Suppose that in the maintenance problem a probabilistic constraint is imposed on

the fraction of time the system is in repair. It is required that this fraction is no

more than 0.08. To handle this constraint, we add to the previous linear program

for the maintenance problem the constraint

N−1
∑

i=2

xi1 + xN2 + xN+1,2 ≤ 0.08.

The new linear program has the optimal solution

x∗
10 = 0.5943, x∗

20 = 0.2971, x∗
30 = 0.0286, x∗

31 = 0.0211,

x∗
41 = 0.0177, x∗

52 = x∗
62 = 0.0206 and the other x∗

ia = 0.

The minimal cost is 0.4423 and the fraction of time the system is in repair is exactly

0.08. The LP solution corresponds to a randomized policy. The actions 0, 0, 1, 2

and 2 are prescribed in the states 1, 2, 4, 5 and 6. In state 3 a biased coin is tossed.

The coin shows up heads with probability 0.0286/(0.0286 + 0.0211) = 0.575. No

preventive repair is done if heads comes up, otherwise a preventive repair is done.
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A Lagrange-multiplier approach for probabilistic constraints

A heuristic approach for handling probabilistic constraints is the Lagrange-multi-

plier method. This method produces only stationary non-randomized policies. To

describe the method, assume a single probabilistic constraint

∑

i∈I

∑

a∈A(i)

αiafia(π) ≤ β

on the state-action frequencies. In the Lagrange-multiplier method, the constraint

is eliminated by putting it into the criterion function by means of a Lagrange

multiplier λ ≥ 0. That is, the goal function is changed from
∑

i,a ci(a)xia to
∑

i,a ci(a)xia +λ(
∑

i,a αiaxia −β). The Lagrange multiplier may be interpreted as

the cost to each unit that is used from some resource. The original Markov decision

problem without probabilistic constraint is obtained by taking λ = 0. It is assumed

that the probabilistic constraint is not satisfied for the optimal stationary policy in

the unconstrained problem; otherwise, this policy is optimal for the constrained

problem as well. Thus, for a given value of the Lagrange multiplier λ > 0, we

consider the unconstrained Markov decision problem with one-step costs

cλ
i (a) = ci(a) + λαia

and one-step transition probabilities pij (a) as before. Solving this unconstrained

Markov decision problem yields an optimal deterministic policy R(λ) that pre-

scribes always a fixed action Ri(λ) whenever the system is in state i. Let β(λ) be

the constraint level associated with policy R(λ), that is,

β(λ) =
∑

i∈I

αi,Ri (λ)fi,Ri (λ)(R(λ)).

If β(λ) > β one should increase λ, otherwise one should decrease λ. Why? The

Lagrange multiplier λ should be adjusted until the smallest value of λ is found

for which β(λ) ≤ β. Bisection is a convenient method to adjust λ. How do we

calculate β(λ) for a given value of λ? To do so, observe that β(λ) can be interpreted

as the average cost in a single Markov chain with an appropriate cost structure.

Consider the Markov chain describing the state of the system under policy R(λ).

In this Markov process, the long-run average cost per time unit equals β(λ) when

it is assumed that a direct cost of αi,Ri(λ) is incurred each time the process visits

state i. An effective method to compute the average cost β(λ) is to apply value

iteration to a single Markov chain; see Example 6.6.1 in the next section.

The average cost of the stationary policy obtained by the Lagrangian approach

will in general be larger than the average cost of the stationary randomized policy

resulting from the linear programming formulation. Also, it should be pointed out

that there is no guarantee that the policy obtained by the Lagrangian approach is

the best policy among all stationary policies satisfying the probabilistic constraint,

although in most practical situations this may be expected to be the case. In spite
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of the possible pitfalls of the Lagrangian approach, this approach may be quite

useful in practical applications having a specific structure.

6.6 VALUE-ITERATION ALGORITHM

The policy-iteration algorithm and the linear programming formulation both require

that in each iteration a system of linear equations of the same size as the state

space is solved. In general, this will be computationally burdensome for a large

state space and makes these algorithms computationally unattractive for large-scale

Markov decision problems. In this section we discuss an alternative algorithm

which avoids solving systems of linear equations but uses instead the recursive

solution approach from dynamic programming. This method is the value-iteration

algorithm which computes recursively a sequence of value functions approximating

the minimal average cost per time unit. The value functions provide lower and upper

bounds on the minimal average cost and under a certain aperiodicity condition

these bounds converge to the minimal average cost. The aperiodicity condition is

not restrictive, since it can be forced to hold by a simple data transformation. The

value-iteration algorithm endowed with these lower and upper bounds is in general

the best computational method for solving large-scale Markov decision problems.

This is even true in spite of the fact that the value-iteration algorithm does not

have the robustness of the policy-iteration algorithm: the number of iterations is

problem dependent and typically increases in the number of states of the problem

under consideration. Another important advantage of value iteration is that it is

usually easy to write a code for specific applications. By exploiting the structure of

the particular application one usually avoids computer memory problems that may

be encountered when using policy iteration. Value iteration is not only a powerful

method for controlled Markov chains, but it is also a useful tool to compute bounds

on performance measures in a single Markov chain; see Example 6.6.1.

In this section the value-iteration algorithm will be analysed under the weak

unichain assumption from Section 6.5. Under this assumption the minimal average

cost per time unit is independent of the initial state. Let

g∗ = the minimal long-run average cost per time unit.

The value-iteration algorithm computes recursively for n = 1, 2, . . . the value

function Vn(i) from

Vn(i) = min
a∈A(i)







ci(a) +
∑

j∈I

pij (a)Vn−1(j)







, i ∈ I, (6.6.1)

starting with an arbitrarily chosen function V0(i), i ∈ I . The quantity Vn(i) can

be interpreted as the minimal total expected costs with n periods left to the time

horizon when the current state is i and a terminal cost of V0(j) is incurred when

the system ends up at state j ; see Denardo (1982) and Derman (1970) for a proof.
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Intuitively, one might expect that the one-step difference Vn(i)−Vn−1(i) will come

very close to the minimal average cost per time unit and that the stationary policy

whose actions minimize the right-hand side of (6.6.1) for all i will be very close

in cost to the minimal average cost. However, these matters appear to be rather

subtle for the average cost criterion due to the effect of possible periodicities in the

underlying decision processes. Before explaining this in more detail, we investigate

an operator which is induced by the recursion equation (6.6.1). The operator T

adds to each function v = (vi , i ∈ I ) a function T v whose ith component (T v)i
is defined by

(T v)i = min
a∈A(i)







ci(a) +
∑

j∈I

pij (a)vj







, i ∈ I. (6.6.2)

Note that (T v)i = Vn(i) if vi = Vn−1(i), i ∈ I . The following theorem plays a

key role in the value-iteration algorithm.

Theorem 6.6.1 Suppose that the weak unichain assumption is satisfied. Let v =

(vi) be given. Define the stationary policy R(v) as a policy which adds to each state

i ∈ I an action a = Ri(v) that minimizes the right-hand side of (6.6.2). Then

min
i∈I

{(T v)i − vi} ≤ g∗ ≤ gs(R(v)) ≤ max
i∈I

{(T v)i − vi} (6.6.3)

for any s ∈ I , where g∗ is the minimal long-run average cost per time unit and

gs(R(v)) denotes the long-run average cost per time unit under policy R(v) when

the initial state is s.

Proof To prove the first inequality, choose any stationary policy R. By the defi-

nition of (T v)i , we have for any state i ∈ I that

(T v)i ≤ ci(a) +
∑

j∈I

pij (a)vj , a ∈ A(i), (6.6.4)

where the equality sign holds for a = Ri(v). Choosing a = Ri in (6.6.4) gives

(T v)i ≤ ci(Ri) +
∑

i∈I

pij (Ri)vj , i ∈ I. (6.6.5)

Define the lower bound

m = min
i∈I

{(T v)i − vi}.

Since m ≤ (T v)i − vi for all i, it follows from (6.6.5) that m + vi ≤ ci(Ri) +
∑

j∈I pij (Ri)vj for all i ∈ I , and so

ci(Ri) − m +
∑

j∈I

pij (Ri)vj ≥ vi, i ∈ I.
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An application of Theorem 6.2.1 now gives that

gi(R) ≥ m, i ∈ I.

This inequality holds for each policy R and so g∗ = minR gi(R) ≥ m proving the

first inequality in (6.6.3). The proof of the last inequality in (6.6.3) is very similar.

By the definition of policy R(v),

(T v)i = ci(Ri(v)) +
∑

j∈I

pij (Ri(v))vj , i ∈ I. (6.6.6)

Define the upper bound

M = max
i∈I

{(T v)i − vi} .

Since M ≥ (T v)i − vi for all i ∈ I , we obtain from (6.6.6) that

ci(Ri(v)) − M +
∑

j∈I

pij (Ri(v))vj ≤ vi, i ∈ I.

Hence, by Theorem 6.2.1, gi(R(v)) ≤ M for all i ∈ I , proving the last inequality

in (6.6.3). This completes the proof.

We now formulate the value-iteration algorithm. In the formulation it is no

restriction to assume that

ci(a) > 0 for all i ∈ I and a ∈ A(i).

Otherwise, add a sufficiently large positive constant to each ci(a). This affects the

average cost of each policy by the same constant.

Value-iteration algorithm

Step 0 (initialization). Choose V0(i), i ∈ I with 0 ≤ V0(i) ≤ mina ci(a). Let

n := 1.

Step 1 (value-iteration step). For each state i ∈ I , compute

Vn(i) = min
a∈A(i)







ci(a) +
∑

j∈I

pij (a)Vn−1(j)







.

Let R(n) be any stationary policy such that the action a = Ri(n) minimizes the

right-hand side of the equation for Vn(i) for each state i.

Step 2 (bounds on the minimal costs). Compute the bounds

mn = min
i∈I

{Vn(i) − Vn−1(i)} , Mn = max
i∈I

{Vn(i) − Vn−1(i)} .
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Step 3 (stopping test). If

0 ≤ Mn − mn ≤ εmn

with ε > 0 a prespecified accuracy number (e.g. ε = 10−3), stop with policy R(n).

Step 4 (continuation). n := n + 1 and repeat step 1.

By Theorem 6.6.1, we have

0 ≤
gi(R(n)) − g∗

g∗
≤

Mn − mn

mn

≤ ε, i ∈ I (6.6.7)

when the algorithm is stopped after the nth iteration with policy R(n). In other

words, the average cost of policy R(n) cannot deviate more than 100ε% from

the theoretically minimal average cost when the bounds mn and Mn satisfy 0 ≤

Mn − mn ≤ εmn. In practical applications one is usually satisfied with a policy

whose average cost is sufficiently close to the theoretically minimal average cost.

Convergence of the bounds

The remaining question is whether the lower and upper bounds mn and Mn converge

to the same limit so that the algorithm will be stopped after finitely many iterations.

The answer is yes only if a certain aperiodicity condition is satisfied. In general

mn and Mn need not have the same limit, as the following example demonstrates.

Consider the trivial Markov decision problem with two states 1 and 2 and a single

action a0 in each state. The one-step costs and the one-step transition probabilities

are given by c1(a0) = 1, c2(a0) = 0, p12(a0) = p21(a0) = 1 and p11(a0) =

p22(a0) = 0. Then the system cycles between the states 1 and 2. It is easily

verified that V2k(1) = V2k(2) = k, V2k−1(1) = k and V2k−1(2) = k − 1 for

all k ≥ 1. Hence mn = 0 and Mn = 1 for all n, implying that the sequences

{mn} and {Mn} have different limits. The reason for the oscillating behaviour of

Vn(i) − Vn−1(i) is the periodicity of the Markov chain describing the state of the

system. The next theorem gives sufficient conditions for the convergence of the

value-iteration algorithm.

Theorem 6.6.2 Suppose that the weak unichain assumption holds and that for

each average cost optimal stationary policy the associated Markov chain {Xn} is

aperiodic. Then there are finite constants α > 0 and 0 < β < 1 such that

|Mn − mn| ≤ αβn, n ≥ 1.

In particular, limn→∞ Mn = limn→∞ mn = g∗.

A proof of this deep theorem will not be given. A special case of the theorem

will be proved in Section 6.7. This special case is related to the data transformation

by which the periodicity issue can be circumvented. Before discussing this data

transformation, we prove the interesting result that the sequences {mn} and {Mn}

are always monotone irrespective of the chain structure of the Markov chains.
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Theorem 6.6.3 In the standard value-iteration algorithm the lower and upper

bounds satisfy

mk+1 ≥ mk and Mk+1 ≤ Mk for all k ≥ 1.

Proof By the definition of policy R(n),

Vn(i) = ci(Ri(n)) +
∑

j∈I

pij (Ri(n))Vn−1(j), i ∈ I. (6.6.8)

In the same way as (6.6.5) was obtained, we find for any policy R that

ci(Ri) +
∑

j∈I

pij (Ri)Vn−1(j) ≥ Vn(i), i ∈ I. (6.6.9)

Taking n = k in (6.6.8) and taking n = k + 1 and R = R(k) in (6.6.9) gives

Vk+1(i) − Vk(i) ≤
∑

j∈I

pij (Ri(k)){Vk(j) − Vk−1(j)}, i ∈ I. (6.6.10)

Similarly, by taking n = k + 1 in (6.6.8) and taking n = k and R = R(k + 1) in

(6.6.9), we find

Vk+1(i) − Vk(i) ≥
∑

j∈I

pij (Ri(k + 1)) {Vk(j) − Vk−1(j)} , i ∈ I. (6.6.11)

Since Vk(j) − Vk−1(j) ≤ Mk for all j ∈ I and
∑

j∈I pij (Ri(k)) = 1, it follows

from (6.6.10) that Vk+1(i) − Vk(i) ≤ Mk for all i ∈ I . This gives Mk+1 ≤ Mk .

Similarly, we obtain from (6.6.11) that mk+1 ≥ mk.

Data transformation

The periodicity issue can be circumvented by a perturbation of the one-step transi-

tion probabilities. The perturbation technique is based on the following two obser-

vations. First, a recurrent state allowing for a direct transition to itself must be

aperiodic. Second, the relative frequencies at which the states of a Markov chain

are visited do not change when the state changes are delayed with a constant factor

and the probability of a self-transition is accordingly enlarged. In other words, if

the one-step transition probabilities pij of a Markov chain {Xn} are perturbed as

pij = τpij for j �= i and pii = τpii + 1 − τ for some constant τ with 0 < τ < 1,

the perturbed Markov chain {Xn} with one-step transition probabilities pij is aperi-

odic and has the same equilibrium probabilities as the original Markov chain {Xn}

(verify). Thus a Markov decision model involving periodicities may be perturbed

as follows. Choosing some constant τ with 0 < τ < 1, the state space, the action

sets, the one-step costs and the one-step transition probabilities of the perturbed
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Markov decision model are defined by

I = I,

A(i) = A(i), i ∈ I ,

ci(a) = ci(a), a ∈ A(i) and i ∈ I ,

pij (a) =

{

τpij (a), j �= i, a ∈ A(i) and i ∈ I ,

τpij (a) + 1 − τ, j = i, a ∈ A(i) and i ∈ I .

For each stationary policy, the associated Markov chain {Xn} in the perturbed model

is aperiodic. It is not difficult to verify that for each stationary policy the average

cost per time unit in the perturbed model is the same as that in the original model.

For the unichain case this is an immediate consequence of the representation (6.2.7)

for the average cost and the fact that for each stationary policy the Markov chain

{Xn} has the same equilibrium probabilities as the Markov chain {Xn} in the origi-

nal model. For the multichain case, a similar argument can be used to show that the

two models are in fact equivalent. Thus the value-iteration algorithm can be applied

to the perturbed model in order to solve the original model. In specific problems

involving periodicities, the ‘optimal’ value of τ is usually not clear beforehand;

empirical investigations indicate that τ = 1
2 is usually a satisfactory choice.

Modified value iteration with a dynamic relaxation factor

Value iteration does not have the fast convergence of policy iteration. The number

of iterations required by the value-iteration algorithm is problem dependent and

increases when the number of problem states gets larger. Also, the tolerance number

ε in the stopping criterion affects the number of iterations required. The stopping

criterion should be based on the lower and upper bounds mn and Mn but not on

any repetitive behaviour of the generated policies R(n).

The convergence rate of value iteration can often be accelerated by using a

relaxation factor, such as in successive overrelaxation for solving a single system

of linear equations. Then at the nth iteration a new approximation to the value

function Vn(i) is obtained by using both the previous values Vn−1(i) and the

residuals Vn(i)−Vn−1(i). It is possible to select dynamically a relaxation factor and

thus avoid the experimental determination of the best value of a fixed relaxation

factor. The following modification of the standard value-iteration algorithm can

be formulated. Steps 0, 1, 2 and 3 are as before, while step 4 of the standard

value-iteration algorithm is modified as follows.

Step 4(a). Determine the states u and v such that

Vn(u) − Vn−1(u) = mn and Vn(v) − Vn−1(v) = Mn

and compute the relaxation factor

ω =
Mn − mn

Mn − mn +
∑

j∈I {puj (Ru) − pvj (Rv)}{Vn(j) − Vn−1(j)}
,
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where Ru and Rv are the actions which are prescribed by policy R(n) in the states

u and v.

Step 4(b). For each i ∈ I , change Vn(i) according to

Vn(i) := Vn−1(i) + ω{Vn(i) − Vn−1(i)}.

Step 4(c). n := n + 1 and go to step 1.

In the case of a tie when selecting in step 4(a) the state u for which the minimum

in mn is obtained, it is conventional to choose the minimizing state of the previous

iteration when that state is one of the candidates to choose; otherwise, choose the

first state achieving the minimum in mn. The same convention is used for the

maximizing action v in Mn.

The choice of the dynamic relaxation factor ω is motivated as follows. We change

the estimate Vn(i) as V n(i) = Vn−1(i) + ω{Vn(i) − Vn−1(i)} for all i in order to

accomplish at the (n + 1)th iteration that

cu(Ru) +
∑

j∈I

puj (Ru)V n(j) − V n(u) = cv(Rv) +
∑

j∈I

pvj (Rv)V n(j) − V n(v),

in the implicit hope that the difference between the new upper and lower bounds

Mn+1 and mn+1 will decrease more quickly. Using the relation mn = Vn(u) −

Vn−1(u) = cu(Ru)+
∑

j puj (Ru)Vn−1(j)−Vn−1(u) and the similar relation for Mn,

it is a matter of simple algebra to verify from the above condition the expression

for ω. We omit the easy proof that ω > 0. Numerical experiments indicate that

using a dynamic relaxation factor in value iteration often greatly enhances the

speed of convergence of the algorithm. The modified value-iteration algorithm is

theoretically not guaranteed to converge, but in practice the algorithm will usually

work very well. It is important to note that the relaxation factor ω is kept outside

the recursion equation in step 1 so that the bounds mn and Mn in step 2 are not

destroyed. Although the bounds apply, it is no longer true that the sequences {mn}

and {Mn} are monotonic.

To conclude this section, we apply value iteration to two examples. The first

example concerns the maintenance problem from Example 6.1.1 and the second

example illustrates the usefulness of value iteration for the computation of perfor-

mance measures for a single Markov chain.

Example 6.1.1 (continued) A maintenance problem

For the maintenance problem the recursion equation (6.6.1) becomes

Vn(1) = 0 +

N
∑

j=1

q1jVn−1(j),

Vn(i) = min







0 +

N
∑

j=i

qij Vn−1(j), Cpi + Vn−1(1)







, 1 < i < N,
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Vn(N) = Cf + Vn−1(N + 1),

Vn(N + 1) = 0 + Vn−1(1).

We have applied the standard value-iteration algorithm to the numerical data

from Table 6.4.1. For each stationary policy the associated Markov chain {Xn} is

aperiodic. Taking V0(i) = 0 for all i and the accuracy number ε = 10−3, the

algorithm is stopped after n = 28 iterations with the stationary policy R(n) =

(0, 0, 0, 1, 2, 2) together with the lower and upper lower bounds mn = 0.4336 and

Mn = 0.4340. The average cost of policy R(n) is estimated by 1
2 (mn + Mn) =

0.4338 and this cost cannot deviate more than 0.1% from the theoretically minimal

average cost. In fact policy R(n) is optimal as we know from previous results

obtained by policy iteration. To get a feeling of how strongly the required number

of iterations depends on ε, we applied standard value-iteration for ε = 10−2 and

ε = 10−4 as well. For these choices of the accuracy number ε, standard value-

iteration required 21 and 35 iterations respectively.

Example 6.6.1 A finite-capacity queue with deterministic arrivals

Consider a single-server queueing system having a finite waiting room for K cus-

tomers (including any customer in service). The arrival process of customers is

deterministic. Every D time units a customer arrives. A customer finding a full

waiting room upon arrival is lost. The service times of the customers are indepen-

dent random variables having an Erlang (r, µ) distribution. What is the long-run

fraction of customers who are lost?

Taking the constant interarrival time as time unit, the fraction of lost customers

can be seen as an average cost per time unit when a cost of 1 is incurred each time

an arriving customer finds the waiting room full. The queueing process embedded at

the arrival epochs can be described by a Markov process by noting that the Erlang

(r, µ) distributed service time can be seen as the sum of r independent phases

each having an exponential distribution with mean 1/µ. A customer is served by

serving its phases one at a time. The queueing problem can now be converted into

a Markov decision model with a single action in each state. The state of the system

is observed at the arrival epochs and the set of possible states of the system is

given by

I = {0, 1, . . . , Kr}.

State i corresponds to the situation that i uncompleted service phases are present

just prior to the arrival of a new customer. In each state i there is a single action

to be denoted by a = 0. The action a = 0 in state i corresponds to the acceptance

of the newly arriving customer when i ≤ Kr − r and corresponds to the rejection

of the customer otherwise. The one-step costs ci(a) are given by

ci(a) =

{

0 if i ≤ Kr − r,

1 if i > Kr − r.
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Denote by aℓ = e−µD(µD)ℓ/ℓ! the probability of the completion of ℓ service

phases during an interarrival time D when the server is continuously busy. Then

the recursive value-iteration equation (6.6.1) becomes

Vn(i) =

i+r−1
∑

ℓ=0

aℓVn−1(i + r − ℓ) +

(

1 −

i+r−1
∑

ℓ=0

aℓ

)

Vn−1(0), 0 ≤ i ≤ Kr − r

Vn(i) = 1 +

i−1
∑

ℓ=0

aℓVn−1(i − ℓ) +

(

1 −

i−1
∑

ℓ=0

aℓ

)

Vn−1(0), Kr − r < i ≤ Kr.

The discrete-time Markov chain describing the number of service phases present at

the arrival epochs is aperiodic. Hence the lower and upper bounds mn and Mn from

the value-iteration algorithm both converge to the long-run fraction of customers

who are lost.

6.7 CONVERGENCE PROOFS

In this section we give convergence proofs for the policy-iteration algorithm and

the value-iteration algorithm. The finite convergence of the policy-iteration algo-

rithm is proved for the unichain case. For the standard value-iteration algorithm

the convergence of the bounds mn and Mn to the same limit is proved under the

unichain assumption together with the assumption that the one-step transition prob-

ability pii (a) > 0 for all i ∈ I and a ∈ A(i). The latter aperiodicity assumption

is automatically satisfied when the data transformation discussed in Section 6.6 is

applied.

Convergence proof for policy iteration

We first establish a lexicographical ordering for the average cost and the relative

values associated with the policies that are generated by the algorithm. For that

purpose we need to standardize the relative value functions since a relative value

function is not uniquely determined. Let us number or renumber the possible states

as i = 1, . . . , N . In view of the fact that the relative values of a given policy

are unique up to an additive constant, the sequence of policies generated by the

algorithm does not depend on the particular choice of the relative value function

for a given policy. For each stationary policy Q, we now consider the particular

relative value function wi(Q) defined by (6.3.1), where the regeneration state r is

chosen as the largest state in I (Q). The set I (Q) is defined by

I (Q) = the set of states that are recurrent under policy Q.

Let R and R be immediate successors in the sequence of policies generated by the

algorithm. Suppose that R �= R. We assert that either
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(a) g(R) < g(R), or

(b) g(R) = g(R) and wi(R) ≤ wi(R) for all i ∈ I with strict inequality for at

least one state i.

That is, each iteration either reduces the cost rate or else reduces the relative value

of a (transient) state. Since the number of possible stationary policies is finite, this

assertion implies that the algorithm converges after finitely many iterations. To

prove the assertion, the starting point is the relation

ci(Ri) − g(R) +
∑

j∈I

pij (Ri)wj (R) ≤ wi(R), i ∈ I, (6.7.1)

with strict inequality only for those states i with Ri �= Ri . This relation is an

immediate consequence of the construction of policy R. By Theorem 6.2.1 and

(6.7.1), we have g(R) ≤ g(R). The strict inequality g(R) < g(R) holds only if the

strict inequality holds in (6.7.1) for some state i that is recurrent under the new

policy R.

Consider now the case of g(R) = g(R). Then it is true that the equality sign holds

in (6.7.1) for all i ∈ I (R). Thus, by the convention made in the policy-improvement

step,
Ri = Ri, i ∈ I (R). (6.7.2)

This implies that

I (R) = I (R), (6.7.3)

since the set I (R) is closed under policy R and any two states in I (R) communicate

under policy R. In its turn (6.7.3) implies that

wj (R) = wj (R), j ∈ I (R). (6.7.4)

This can be seen as follows. From the definition (6.3.1) of the relative values and

the fact that the set of recurrent states is a closed set, it follows that for any policy

Q the relative values for the recurrent states i ∈ I (Q) do not depend on the actions

in the transient states i /∈ I (Q). In view of the convention to take the largest state in

I (Q) as the reference state for the definition of the relative value function wi(Q),

it follows from (6.7.2) and (6.7.3) that (6.7.4) holds. The remainder of the proof is

now easy. Proceeding in the same way as in the derivation of (6.3.3), we find by

iterating the inequality (6.7.1) that

wi(R) ≥ ci(Ri) − g(R) +
∑

j∈I

pij (Ri)wj (R) (6.7.5)

≥ Vm(i, R) − mg(R) +
∑

j∈I

p
(m)
ij (R)wj (R), i ∈ I and m ≥ 1,
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where the strict inequality sign holds in the first inequality for each i with Ri �= Ri .

By (6.3.5) with R replaced by R and the fact that g(R) = g(R), we have for any

m ≥ 1 that

wi(R) = Vm(i, R) − mg(R) +
∑

j∈I

p
(m)
ij (R)wj (R), i ∈ I.

Replacing wj (R) by wj (R) − {wj (R) − wj (R)}, we next find that

Vm(i, R) − mg(R) +
∑

j∈I

p
(m)
ij (R)wj (R)

= wi(R) +
∑

j∈I

p
(m)
ij (R){wj (R) − wj (R)}, i ∈ I and m ≥ 1.

Hence (6.7.5) can be rewritten as

wi(R) ≥ ci(Ri) − g(R) +
∑

j∈I

pij (Ri)wj (R)

≥ wi(R) +
∑

j∈I

p
(m)
ij (R){wj (R) − wj (R)}, i ∈ I and m ≥ 1,

where the strict inequality sign holds in the first inequality for each i with Ri �= Ri .

Using (6.7.4) and noting that p
(m)
ij (R) → 0 as m → ∞ for j transient under R,

it follows that wi(R) ≥ wi(R) for all i ∈ I with strict inequality for each i with

Ri �= Ri . This completes the proof.

Convergence proof for value iteration

The proof of Theorem 6.6.2 is only given for the special case that the following

assumption is satisfied.

Strong aperiodicity assumption (i) for each stationary policy R the associated

Markov chain {Xn} has no two disjoint closed sets;

(ii) pii (a) > 0 for all i ∈ I and a ∈ A(i).

Note that assumption (ii) automatically holds when the data transformation from

Section 6.6 is applied to the original model.

We first establish an important lemma about the chain structure of the product of

Markov matrices associated with the stationary policies. In this lemma the notation

P (f ) is used for the stochastic matrix (pij (f (i))), i, j ∈ I associated with the

stationary policy f . The (i, j)th element of the matrix product PQ is denoted by

(PQ)ij .

Lemma 6.7.1 Suppose that the strong aperiodicity assumption holds. Let N be

the number of states of the Markov decision model. Then, for any two N -tuples
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(fN , . . . , f1) and (gN , . . . , g1) of stationary policies and for any two states r and

s, there is some state j such that

[P (fN ) · · ·P (f1)]rj > 0 and [P (gN ) · · ·P (g1)]sj > 0. (6.7.6)

Proof Define for k = 1, . . . , N the sets S(k) and T (k) by

S(k) = {j ∈ I | [P (fk) · · ·P (f1)]rj > 0},

T (k) = {j ∈ I | [P (gk) · · ·P (g1)]sj > 0}.

Since pii (a) > 0 for all j ∈ I and a ∈ A(i), we have

S(k + 1) ⊇ S(k) and T (k + 1) ⊇ T (k), k = 1, . . . , N − 1.

Assume now to the contrary that (6.7.6) does not hold. Then S(N)∩T (N) is empty.

In other words, S(N) and T (N) are disjoint sets with S(N) �= I and T (N) �= I .

Thus, since the sets S(k) and T (k) are non-decreasing, there are integers v and

w with 1 ≤ v, w < N such that S(v) = S(v + 1) and T (w) = T (w + 1). This

implies that the set S(v) of states is closed under policy fv+1 and the set T (w)

of states is closed under policy gw+1. Since the sets S(N) and T (N) are disjoint

and S(N) ⊇ S(v) and T (N) ⊇ T (w), we have that the sets S(v) and T (w) are

disjoint. Construct now a stationary policy R with Ri = fv+1(i) for i ∈ S(v) and

Ri = gw+1(i) for i ∈ T (w). Then policy R has the two disjoint closed sets S(v)

and T (w). This contradicts the first part of the strong aperiodicity assumption.

Hence the result (6.7.6) must hold.

Proof of Theorem 6.6.2 (under the strong aperiodicity assumption) We first intro-

duce some notation. Let R(n) be any stationary policy for which the action Ri(n)

minimizes the right-hand side of the value-iteration equation (6.6.1) for all i ∈ I .

Denote by Pn the stochastic matrix whose (i, j)th element equals pij (Ri(n)) and

define the vector Vn by Vn = (Vn(i), i ∈ I ). By the proof of Theorem 6.6.3,

Vn − Vn−1 ≤ Pn−1(Vn−1 − Vn−2) and Vn − Vn−1 ≥ Pn(Vn−1 − Vn−2).

(6.6.7)

Fix n ≥ 2. Since Mn = Vn(i1) − Vn−1(i1) and mn = Vn(i2) − Vn−1(i2) for some

states i1 and i2, we find

Mn − mn ≤ [Pn−1(Vn−1 − Vn−2)](i1) − [Pn(Vn−1 − Vn−2)](i2).

Applying repeatedly the inequalities (6.6.7), we find for any 1 ≤ k < n

Mn − mn ≤ [Pn−1Pn−2 · · · Pn−k(Vn−k − Vn−k−1)](i1)

−[PnPn−1 · · · Pn−k+1(Vn−k − Vn−k−1)](i2). (6.6.8)
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The remainder of the proof uses the same ideas as in the proof of Theorem 3.5.12.

Fix n > N and choose k = N in (6.6.8), where N is the number of states. This

yields

Mn − mn ≤
∑

j∈I

dj {Vn−N (j) − Vn−N−1(j)},

where dj is a shorthand notation for

dj = [Pn−1 · · ·Pn−N ]i1j − [Pn · · ·Pn−N+1]i2j .

Write d+ = max(d, 0) and d− = − min(d, 0). Then d = d+ −d− and d+, d− ≥ 0.

Thus

Mn − mn ≤
∑

j∈I

d+
j {Vn−N (j) − Vn−N−1(j)} −

∑

j∈I

d−
j {Vn−N (j) − Vn−N−1(j)}

≤ Mn−N

∑

j∈I

d+
j − mn−N

∑

j∈I

d−
j = (Mn−N − mn−N )

∑

j∈I

d+
j ,

by
∑

j d+
j =

∑

j d−
j . This identity is a consequence of

∑

j dj = 0. Next use the

relation (p − q)+ = p − min(p, q) to conclude that

Mn − mn ≤ (Mn−N − mn−N )

×



1 −
∑

j∈I

min([Pn−1 · · · Pn−N ]i1j , [Pn · · ·Pn−N+1]i2j



 .

Now we invoke Lemma 6.7.1. Since the number of states and the number of sta-

tionary policies are both finite, there is a positive number ρ such that

∑

j∈I

min{[P (fN ) · · ·P (f1)]rj , [P (gN ) · · ·P (g1)]sj } ≥ ρ

for any two N -tuples (fN , . . . , f1) and (gN , . . . , g1) of stationary policies and for

any two states r and s. Thus

Mn − mn ≤ (1 − ρ)(Mn−N − mn−N ).

In Theorem 6.6.3 it was shown that {Mn − mn, n ≥ 1} is non-increasing. Thus we

find that

Mn − mn ≤ (1 − ρ)[n/N ](M0 − m0), n ≥ 1,

implying the desired result.
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EXERCISES

6.1 Consider a periodic review production/inventory problem where the demands for a
single product in the successive weeks are independent random variables with a common
discrete probability distribution {φ(j), j = 0, . . . , r}. Any demand in excess of on-hand
inventory is lost. At the beginning of each week it has to be decided whether or not to start
a production run. The lot size of each production run consists of a fixed number of Q units.
The production lead time is one week so that a batch delivery of the entire lot occurs at
the beginning of the next week. Due to capacity restrictions on the inventory, a production
run is never started when the on-hand inventory is greater than M . The following costs are
involved. A fixed set-up cost of K > 0 is incurred for a new production run started after
the production facility has been idle for some time. The holding costs incurred during a
week are proportional to the on-hand inventory at the end of that week, where h > 0 is
the proportionality constant. A fixed lost-sales cost of p > 0 is incurred for each unit of
excess demand. Formulate the problem of finding an average cost optimal production rule
as a Markov decision problem.

6.2 A piece of electronic equipment having two identical devices is inspected at the beginning
of each day. Redundancy has been built into the system so that the system is still operating
if only one device works. The system goes down when both devices are no longer working.
The failure rate of a device depends both on its age and on the condition of the other device.
A device in use for m days will fail on the next day with probability r1(m) when the other
device is currently being overhauled and with probability r2(m) otherwise. It is assumed
that both r1(m) and r2(m) are equal to 1 when m is sufficiently large. A device that is found
in the failure state upon inspection has to be overhauled. An overhaul of a failed device
takes T0 days. Also a preventive overhaul of a working device is possible. Such an overhaul
takes T1 days. It is assumed that 1 ≤ T1 < T0. At each inspection it has to be decided to
overhaul one or both of the devices, or let them continue working through the next day.
The goal is to minimize the long-run fraction of time the system is down. Formulate this
problem as a Markov decision problem. (Hint: define the states (i, j), (i,−k) and (−h−k).
The first state means that both devices are working for i and j days respectively, the second
state means that one device is working for i days and the other is being overhauled with
a remaining overhaul time of k days, and the third state means that both devices are being
overhauled with remaining overhaul times of h and k days.)

6.3 Two furnaces in a steelworks are used to produce pig iron for working up elsewhere
in the factory. Each furnace needs overhauling from time to time because of failure during
operation or to prevent such a failure. Assuming an appropriately chosen time unit, an
overhaul of a furnace always takes a fixed number of L periods. The overhaul facility is
capable of overhauling both furnaces simultaneously. A furnace just overhauled will operate
successfully during i periods with probability qi , 1 ≤ i ≤ M . If a furnace has failed, it must
be overhauled; otherwise, there is an option of either a preventive overhaul or letting the
furnace operate for the next period. Since other parts of the steelworks are affected when not
all furnaces are in action, a loss of revenue of c(j) is incurred for each period during which
j furnaces are out of action, j = 1, 2. No cost is incurred if both furnaces are working.
Formulate the problem of finding an average cost optimal overhauling policy as a Markov
decision problem. This problem is based on Stengos and Thomas (1980).

6.4 A factory has a tank for temporarily storing chemical waste. The tank has a capacity

of 4 m3. Each week the factory produces k m3 of chemical waste with probability pk for
k = 0, . . . , 3 with p0 = 1/8, p1 = 1/2, p2 = 1/4 and p3 = 1/8. If the amount of waste
produced exceeds the remaining capacity of the tank, the excess is specially handled at a
cost of $30 per cubic metre. At the end of the week a decision has to be made as to whether
or not to empty the tank. There is a fixed cost of $25 to empty the tank and a variable cost
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of $5 for each cubic metre of chemical waste that is removed. Compute an average cost
optimal policy by policy iteration or linear programming.

6.5 A stamping machine produces six-cornered plates of the illustrated form.
a

a

c

c

b

b

The machine has three pairs of adjustable knives. In the diagram these pairs are denoted by
a, b and c. Each pair of knives can fall from the correct position during the stamping of a
plate. The following five situations can occur: (1) all three pairs have the correct position,
(2) only pairs b and c have the correct position, (3) only pair b has the correct position, (4)
only pair c has the correct position and (5) no pair has the correct position. The probabilities
qij that during a stamping a change from situation i to situation j occurs are given by

(qij ) =



















3
4

1
4 0 0 0

0 1
2

1
4

1
4 0

0 0 3
4 0 1

4

0 0 0 1
2

1
2

0 0 0 0 1



















.

After each stamping it is possible to adjust the machine such that all pairs of knives have
the correct position again. The following costs are involved. The cost of bringing all pairs
of knives into the correct position is 10. Each plate produced when j pairs of knives have
the wrong position involves an adjustment cost of 4j . Compute a maintenance rule that
minimizes the average cost per stamping by policy iteration or linear programming.

6.6 An electricity plant has two generators j = 1 and 2 for generating electricity. The
required amount of electricity fluctuates during the day. The 24 hours in a day are divided
into six consecutive periods of 4 hours each. The amount of electricity required in period
k is dk kWh for k = 1, . . . , 6. Also the generator j has a capacity of generating cj kWh
of electricity per period of 4 hours for j = 1, 2. An excess of electricity produced during
one period cannot be used for the next period. At the beginning of each period k it has to
be decided which generators to use for that period. The following costs are involved. An
operating cost of rj is incurred for each period in which generator j is used. Also, a set-up
cost of Sj is incurred each time generator j is turned on after having been idle for some
time. Develop a policy-iteration algorithm that exploits the fact that the state transitions are
deterministic. Solve for the numerical data d1 = 20, d2 = 40, d3 = 60, d4 = 90, d5 = 70,
d6 = 30, c1 = 40, c2 = 60, r1 = 1000, r2 = 1100, S1 = 500 and S2 = 300.

6.7 Every week a repairman travels to customers in five towns on the successive working
days of the week. The repairman visits Amsterdam (town 1) on Monday, Rotterdam (town
2) on Tuesday, Brussels (town 3) on Wednesday, Aachen (town 4) on Thursday and Arnhem
(town 5) on Friday. In the various towns it may be necessary to replace a certain crucial
element in a piece of electronic equipment rented by customers. The probability distribution
of the number of replacements required at a visit to town j is given by {pj (k), k ≥ 0} for
j = 1, . . . , 5. The numbers of required replacements on the successive days are independent
of each other. The repairman is able to carry M spare parts. If the number of spare parts
the repairman carries is not enough to satisfy the demand in a town, another repairman has
to be sent the next day to that town to complete the remaining replacements. The cost of
such a special mission to town j is Kj . At the end of each day the repairman may decide to
send for a replenishment of the spare parts to the town where the repairman is. The cost of
sending such a replenishment to town j is aj . Develop a value-iteration algorithm for the
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computation of an average cost optimal policy and indicate how to formulate converging
lower and upper bounds on the minimal costs. Solve for the numerical data M = 5, Kj = 200
for all j , a1 = 60, a2 = 30, a3 = 50, a4 = 25, a5 = 100, where the probabilities pj (k) are
given in the following table.

k\j 1 2 3 4 5

0 0.5 0.25 0.375 0.3 0.5
1 0.3 0.5 0.375 0.5 0.25
2 0.2 0.25 0.25 0.2 0.25

6.8 The slotted ALOHA system is a much used random access protocol in packet commu-
nication systems where the time is slotted in intervals of fixed lengths and a transmission of
a packet can only be started at the beginning of a time slot. There are N terminals. At the
beginning of each time slot, each terminal emits a packet with a certain probability. The ter-
minals act independently of each other in trying to use the transmission channel for sending
a packet. If more than one terminal sends a packet in the same time slot, a collision occurs
and all transmissions attempted in that time slot are unsuccessful. A successful transmission
returns the terminal to its originating mode, whereas an unsuccessful attempt puts it tem-
porarily in retransmission mode. There is a given probability p that a terminal in originating
mode attempts to transmit a packet at the beginning of a time slot. This probability is beyond
control. However, the probability at which a terminal in retransmission mode is allowed to
retransmit its packet at the beginning of a time slot can be controlled. The control rule gives
each terminal in retransmission mode permission to retransmit with the same probability. In
other words, a control rule is specified by probabilities {r1, . . . , rN }, where rn is the per-
mission probability when n terminals are in retransmission mode. Develop a policy-iteration
algorithm to compute an optimal control rule when the criterion is to maximize the average
throughput per time slot. Also compare the maximal average throughput with the average
throughput of the so-called TSO policy, where rn is chosen as [1− (N −n+1)p]/(n−Np)
when 0 < Np < 1 and rn is chosen as 1/n otherwise. Solve for the numerical data (N = 15,
p = 0.05) and (N = 25, p = 0.05). (Hint : the choice of one-step costs ci(a) simplifies
by noting that maximizing the average throughput is equivalent to minimizing the average
number of terminals in retransmission mode at the beginning of a time slot.)

6.9 A motorist has a vehicle insurance which charges reduced premiums when no claims
are made over one or more years. When an accident occurs the motorist has the option of
either making a claim and thereby perhaps losing a reduction in premium, or paying the
costs associated with the accident himself. The premium payment is due at the beginning
of each year and the payment depends only on the previous payment and the number of
claims made in the past year. There are five possible premiums π(1) = 500, π(2) = 375,
π(3) = 300, π(4) = 250, π(5) = 200. The premium structure is as shown in the table

below. In any given month the motorist will have an accident with a probability of λ = 1
24

and no accident with a probability of 1 − λ. The costs associated with any accident have a
lognormal distribution with mean 500 and a squared coefficient of variation of 4.

Subsequent premium

Current premium No claim One claim Two or more claims

π(1) π(2) π(1) π(1)
π(2) π(3) π(1) π(1)
π(3) π(4) π(1) π(1)
π(4) π(5) π(2) π(1)
π(5) π(5) π(3) π(1)
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Develop a value-iteration algorithm to compute an average cost optimal claim rule. (Hint :
take the beginning of each month as the decision epochs and let the action a = d mean
that damage in the coming month will be claimed only if this damage exceeds the level d .
Define the state of the system as (t, i) with t = 0, . . . , 12 and i = 1, . . . , 6, where t denotes
the number of months until the next premium payment and the indicator variable i refers
to the status of the next premium payment. Explain why you need no data transformation
to handle periodicities but you can use the bounds mn = mini{V12n(0, i) − V12(n−1)(0, i)}
and Mn = maxi{V12n(0, i) − V12(n−1)(0, i)}, where V12n+t (t, i) is defined as the minimal
total expected cost if the motorist still has an insurance contract for t + 12n months and the
present state is (t, i).)

6.10 The stock level of a given product is reviewed at the beginning of each week. Upon
review a decision has to be made whether or not to replenish the stock level. The stock can
be replenished up to level M , the maximum amount that can be held in stock. The lead time
of a replenishment order is negligible. The demands for the product in the successive weeks
are independent random variables having a Poisson distribution with a given mean µ. Any
demand occurring when the system is out of stock is lost. The following costs are involved.
For each replenishment order there is a fixed set-up cost of K > 0 and a variable ordering
cost of c ≥ 0 for each unit ordered. In each week a holding cost of h > 0 is charged against
each unit in stock at the end of the week. A penalty cost of p > 0 is incurred for each unit
of demand that is lost. The problem is to find a stock control rule minimizing the long-run
average cost per week.

(a) Use value iteration to solve for the numerical data M = 100, µ = 25, K = 64,
c = 0, h = 1 and p = 5. Also try other numerical examples and verify experimentally that
the optimal control rule is always of the (s, S) type when the maximum stock level M is
sufficiently large. Under an (s, S) policy with s ≤ S the inventory position is ordered up to
the level S when at a review the inventory position is below the reorder point s; otherwise, no
ordering is done. Using the flexibility in the policy-improvement procedure, Federgruen and
Zipkin (1984) developed a tailor-made policy-iteration algorithm that generates a sequence
of improved policies within the class of (s, S) policies.

(b) Suppose the probabilistic constraint is imposed that the long-run fraction of demand
lost should not exceed 1 − β for a prespecified service level β (note that this fraction
equals the average demand lost per week divided by µ). Use linear programming to find an
optimal control minimizing the long-run average cost per week subject to this service level
constraint. Solve for the numerical data β = 0.99, M = 100, µ = 25, K = 64, c = 0, h = 1
and p = 0. Also compare the average cost and the service level of the optimal randomized
policy with the average cost and the service level of the best stationary policy obtained by
the Lagrange-multiplier approach.

BIBLIOGRAPHIC NOTES

The policy-iteration method for the discrete-time Markov decision model was

developed in Howard (1960). A theoretical foundation to Howard’s policy-iteration

method was given in Blackwell (1962); see also Denardo and Fox (1968) and

Veinott (1966). Linear programming formulations for the Markov decision model

were first given by De Ghellinck (1960) and Manne (1960) and streamlined later

by Denardo and Fox (1968), Derman (1970) and Hordijk and Kallenberg (1979,

1984). The computational usefulness of the value-iteration algorithm was greatly

enlarged by Odoni (1969) and Hastings (1971), who introduced lower and upper
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bounds on the minimal average cost and on the average cost of the policies gener-

ated by the algorithm. These authors extended the original value-iteration bounds

of MacQueen (1966) for the discounted cost case to the average cost case. The

modified value-iteration algorithm with a dynamic relaxation factor comes from

Popyack et al. (1979). The first proof of the geometric convergence of the undis-

counted value-iteration algorithm was given by White (1963) under a very strong

recurrence condition. The proof in Section 6.7 is along the same lines as the proof

given in Van der Wal (1980). General proofs for the geometric convergence of

value-iteration can be found in the papers of Bather (1973) and Schweitzer and

Federgruen (1979). These papers demonstrate the deepness and the beauty of the

mathematics underlying the average cost criterion. In general there is a rich math-

ematical theory behind the Markov decision model. A good account of this theory

can be found in the books of Hernandez-Lerma and Lasserre (1996), Puterman

(1994) and Sennott (1999). A recommended reference for constrained Markov

decision processes is the book of Altman (1999).

The Markov decision model finds applications in a wide variety of fields. Golabi

et al. (1982), Kawai (1983), Stengos and Thomas (1980) and Tijms and Van der

Duyn Schouten (1985) give applications to replacement and maintenance problems.

Norman and Shearn (1980) and Kolderman and Volgenant (1985) discuss appli-

cations to insurance and Su and Deininger (1972) give an application to water-

resource control. Applications to control problems in telecommunication are men-

tioned in the next chapter. A survey of real applications of Markov decision models

can be found in White (1985).
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CHAPTER 7

Semi-Markov Decision
Processes

7.0 INTRODUCTION

The previous chapter dealt with the discrete-time Markov decision model. In this

model, decisions can be made only at fixed epochs t = 0, 1, . . . . However, in

many stochastic control problems the times between the decision epochs are not

constant but random. A possible tool for analysing such problems is the semi-

Markov decision model. In Section 7.1 we discuss the basic elements of this model.

Also, for the optimality criterion of the long-run average cost per time unit, we

give a data-transformation method by which the semi-Markov decision model can

be converted into an equivalent discrete-time Markov decision model. The data-

transformation method enables us to apply the recursive method of value-iteration

to the semi-Markov decision model. Section 7.2 summarizes various algorithms for

the computation of an average cost optimal policy.

In Section 7.3 we discuss the value-iteration algorithm for a semi-Markov deci-

sion model in which the times between the decision epochs are exponentially

distributed. For this particular case the computational effort of the value-iteration

algorithm can considerably be reduced by introducing fictitious decision epochs.

This simple trick creates sparse transition matrices leading to a much more effec-

tive value-iteration algorithm. Section 7.4 illustrates how value iteration in com-

bination with an embedding idea can be used in the optimization of queues. The

semi-Markov decision model is a very useful tool for optimal control in queueing

systems. In Section 7.5 we will exploit a remarkable feature of the policy-iteration

algorithm, namely that the algorithm typically achieves its largest improvements in

costs in the first few iterations. This finding is sometimes useful to attack the curse

of dimensionality in applications with a multidimensional state space. The idea is

to determine first the relative values for a reasonable starting policy and to apply

next a single policy-improvement step. This heuristic approach will be illustrated

to a dynamic routing problem.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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7.1 THE SEMI-MARKOV DECISION MODEL

Consider a dynamic system whose state is reviewed at random epochs. At those

epochs a decision has to be made and costs are incurred as a consequence of the

decision made. The set of possible states is denoted by I . For each state i ∈ I , a

set A(i) of possible actions is available. It is assumed that the state space I and the

action sets A(i), i ∈ I are finite. This controlled dynamic system is called a semi-

Markov decision process when the following Markovian properties are satisfied: if

at a decision epoch the action a is chosen in state i, then the time until the next

decision epoch and the state at that epoch depend only on the present state i and

the subsequently chosen action a and are thus independent of the past history of the

system. Also, the costs incurred until the next decision epoch depend only on the

present state and the action chosen in that state. We note that in specific problems

the state occurring at the next transition will often depend on the time until that

transition. Also, the costs usually consist of lump costs incurred at the decision

epochs and rate costs incurred continuously in time. As an example, consider a

single-product inventory system in which the demand process is described by a

Poisson process and the inventory position can be replenished at any time. In this

example the decision epochs are the demand epochs and they occur randomly in

time. The decision is whether or not to raise the inventory position after a demand

has occurred. The costs typically consist of fixed replenishment costs and holding

costs that are incurred continuously in time.

The long-run average cost per time unit

The long-run average cost per time unit is taken as the optimality criterion. For this

criterion the semi-Markov decision model is in fact determined by the following

characteristics:

pij (a) = the probability that at the next decision epoch the system will be in

state j if action a is chosen in the present state i,

τi(a) = the expected time until the next decision epoch if action a is chosen

in the present state i,

ci(a) = the expected costs incurred until the next decision epoch if action a

is chosen in the present state i.

It is assumed that τi(a) > 0 for all i ∈ I and a ∈ A(i). As before, a stationary

policy R is a rule which adds to each state i a single action Ri ∈ A(i) and

always prescribes to take this action whenever the system is observed in state i at

a decision epoch. Since the state space is finite, it can be shown that under each

stationary policy the number of decisions made in any finite time interval is finite

with probability 1. We omit the proof of this result. Let

Xn = the state of the system at the nth decision epoch.

Then it follows that under a stationary policy R the embedded stochastic process

{Xn} is a discrete-time Markov chain with one-step transition probabilities pij (Ri).
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Define the random variable Z (t) by

Z(t) = the total costs incurred up to time t, t ≥ 0.

Fix now a stationary policy R. Denote by Ei,R the expectation operator when the

initial state X0 = i and policy R is used. Then the limit

gi(R) = lim
t→∞

1

t
Ei,R[Z(t)]

exists for all i ∈ I . This result can be proved by using the renewal-reward theorem

in Section 2.2. The details are omitted. Just as in the discrete-time model, we

can give a stronger interpretation to the average cost gi(R). If the initial state i

is recurrent under policy R, then the long-run actual average cost per time unit

equals gi(R) with probability 1. If the Markov chain {Xn} associated with policy

R has no two disjoint closed sets, the average cost gi(R) does not depend on the

initial state X0 = i.

Theorem 7.1.1 Suppose that the embedded Markov chain {Xn} associated with

policy R has no two disjoint closed sets. Then

lim
t→∞

Z(t)

t
= g(R) with probability 1 (7.1.1)

for each initial state X0 = i, where the constant g(R) is given by

g(R) =
∑

j∈I

cj (Rj )πj (R)/
∑

j∈I

τj (Rj )πj (R)

with {πj (R)} denoting the equilibrium distribution of the Markov chain {Xn}.

Proof We give only a sketch of the proof of (7.1.1). The key to the proof of

(7.1.1) is that

lim
t→∞

Z(t)

t
= lim

m→∞

E(costs over the first m decision epochs)

E(time over the first m decision epochs)
(7.1.2)

with probability 1. To verify this relation, fix a recurrent state r and suppose that

X0 = r . Let a cycle be defined as the time elapsed between two consecutive

transitions into state r . By the renewal-reward theorem in Section 2.2,

lim
t→∞

Z(t)

t
=

E(costs induring one cycle)

E(length of one cycle)

with probability 1. By the expected-value version of the renewal-reward theorem,

lim
m→∞

1

m
E(costs over the first m decision epochs)

=
E(costs incurred during one cycle)

E(number of transitions in one cycle)
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and

lim
m→∞

1

m
E(time over the first m decision epochs)

=
E(length of one cycle)

E(number of transitions in one cycle)
.

Together the above three relations yield (7.1.2). The remainder of the proof is

simple. Obviously, we have

E(costs over the first m decision epochs) =

m−1
∑

t=0

∑

j∈I

cj (Rj )p
(t)
rj (R)

and

E(time over the first m decision epochs) =

m−1
∑

t=0

∑

j∈I

τj (Rj )p
(t)
rj (R).

Dividing the numerator and the denominator of the right-hand side of (7.1.2) by

m, letting m → ∞ and using limm→∞(1/m)
∑m−1

t=0 p
(t)
rj (R) = πj (R), the result

(7.1.1) follows when the initial state X0 = r . For initial state X0 = i the result next

follows by mimicking the proof of Theorem 3.5.11 and noting that state r will be

reached from state i with probability 1 after finitely many transitions.

A stationary policy R∗ is said to be average cost optimal if gi(R
∗) ≤ gi(R) for

all i ∈ I and all stationary policies R. The algorithms for computing an average

cost optimal policy in the discrete-time Markov decision model can be extended to

the semi-Markov decision model. This will be done in the next section. However,

before doing this, we discuss a data-transformation method that converts the semi-

Markov decision model into a discrete-time Markov decision model such that for

each stationary policy the average cost per time unit in the discrete-time Markov

model is the same as in the semi-Markov model. This is a very useful result. The

data-transformation method is an extension of the uniformization technique for

continuous-time Markov chains discussed in Section 4.5.

The data-transformation method

First choose a number τ with

0 < τ ≤ min
i,a

τi(a).

Consider now the discrete-time Markov decision model whose basic elements are

given by

I = I, A(i) = A(i), i ∈ I ,

ci(a) = ci(a)/τi(a), a ∈ A(i) and i ∈ I ,
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pij (a) =

{

(τ/τi(a))pij (a), j �= i, a ∈ A(i) and i ∈ I ,

(τ/τi(a))pij (a) + [1 − (τ/τi(a))], j = i, a ∈ A(i) and i ∈ I .

This discrete-time Markov decision model has the same class of stationary policies

as the original semi-Markov decision model. For each stationary policy R, let

gi(R) denote the long-run average cost per time unit in the discrete-time model

when policy R is used and the initial state is i. Then it holds for each stationary

policy R that

gi(R) = gi(R), i ∈ I. (7.1.3)

This result does not require any assumption about the chain structure of the Markov

chains associated with the stationary policies. However, we prove the result (7.1.3)

only for the unichain case. Fix a stationary policy R and assume that the embedded

Markov chain {Xn} in the semi-Markov model has no two disjoint closed sets.

Denote by Xn the state at the nth decision epoch in the transformed discrete-

time model. It is directly seen that the Markov chain {Xn} is also unichain under

policy R. The equilibrium probabilities πj (R) of the Markov chain {Xn} satisfy

the equilibrium equations

πj (R) =
∑

i∈I

π i(R)pij (Ri)

=
∑

i∈I

π i(R)
τ

τi(Ri)
pij (Ri) +

[

1 −
τ

τj (Rj )

]

πj (R), j ∈ I.

Hence, letting uj = πj (R)/τj (Rj ) and dividing by τ , we find that

uj =
∑

i∈I

uipij (Ri), j ∈ I.

These equations are precisely the equilibrium equations for the equilibrium prob-

abilities πj (R) of the embedded Markov chain {Xn} in the semi-Markov model.

The equations determine the πj (R) uniquely up to a multiplicative constant. Thus,

for some constant γ > 0,

πj (R) = γ
πj (R)

τj (Rj )
, j ∈ I.

Since
∑

j∈I πj (R) = 1, it follows that γ =
∑

j∈I τj (Rj )πj (R). The desired result

(7.1.3) now follows easily. We have

g(R) =
∑

j∈I

cj (Rj )πj (R) =
1

γ

∑

j∈I

cj (Rj )

τj (Rj )
πj (R)τj (Rj )

=
∑

j∈I

cj (Rj )πj (R)/
∑

j∈I

τj (Rj )πj (R)
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and so, by Theorem 7.1.1, g(R) = g(R). Thus we can conclude that an average

cost optimal policy in the semi-Markov model can be obtained by solving an

appropriate discrete-time Markov decision model. This conclusion is particularly

useful with respect to the value-iteration algorithm. In applying value iteration to

the transformed model, it is no restriction to assume that for each stationary policy

the associated Markov chain {Xn} is aperiodic. By choosing the constant τ strictly

less than mini,a τi(a), we always have pii (a) > 0 for all i, a and thus the required

aperiodicity.

7.2 ALGORITHMS FOR AN OPTIMAL POLICY

In this section we outline how the algorithms for the discrete-time Markov decision

model can be extended to the semi-Markov decision model.

Policy-iteration algorithm

The policy-iteration algorithm will be described under the unichain assumption.

This assumption requires that for each stationary policy the embedded Markov

chain {Xn} has no two disjoint closed sets. By data transformation, it is directly ver-

ified that the value-determination equations (6.3.2) for a given stationary policy R

remain valid provided that we replace g by gτi(Ri). The policy-improvement pro-

cedure from Theorem 6.2.1 also remains valid when we replace g by gτi(Ri).

Suppose that g(R) and υi(R), i ∈ I , are the average cost and the relative values

of a stationary policy R. If a stationary policy R is constructed such that, for each

state i ∈ I ,

ci(Ri) − g(R)τi(Ri) +
∑

j∈I

pij (Ri)υj (R) ≤ υi(R), (7.2.1)

then g(R) ≤ g(R). Moreover, g(R) < g(R) if the strict inequality sign holds in

(7.2.1) for some state i which is recurrent under R. These statements can be verified

by the same arguments as used in the second part of the proof of Theorem 6.2.1.

Under the unichain assumption, we can now formulate the following policy-

iteration algorithm:

Step 0 (initialization). Choose a stationary policy R.

Step 1 (value-determination step). For the current rule R, compute the average cost

g(R) and the relative values υi(R), i ∈ I , as the unique solution to the linear

equations

υi = ci(Ri) − gτi(Ri) +
∑

j∈I

pij (Ri)υj , i ∈ I,

υs = 0,

where s is an arbitrarily chosen state.
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Step 2 (policy-improvement step). For each state i ∈ I , determine an action ai

yielding the minimum in

min
a∈A(i)







ci(a) − g(R)τi(a) +
∑

j∈I

pij (a)υj (R)







.

The new stationary policy R is obtained by choosing Ri = ai for all i ∈ I with the

convention that Ri is chosen equal to the old action Ri when this action minimizes

the policy-improvement quantity.

Step 3 (convergence test). If the new policy R = R, then the algorithm is stopped

with policy R. Otherwise, go to step 1 with R replaced by R.

In the same way as for the discrete-time Markov decision model, it can be

shown that the algorithm converges in a finite number of iterations to an average

cost optimal policy. Also, as a consequence of the convergence of the algorithm,

there exist numbers g∗ and υ∗
i satisfying the average cost optimality equation

υ∗
i = min

a∈A(i)







ci(a) − g∗τi(a) +
∑

j∈I

pij (a)υ∗
j







, i ∈ I. (7.2.2)

The constant g∗ is uniquely determined as the minimal average cost per time unit.

Moreover, each stationary policy whose actions minimize the right-hand side of

(7.2.2) for all i ∈ I is average cost optimal. The proof of these statements is left

as an exercise for the reader.

Value-iteration algorithm

For the semi-Markov decision model the formulation of a value-iteration algorithm

is not straightforward. A recursion relation for the minimal expected costs over the

first n decision epochs does not take into account the non-identical transition times

and thus these costs cannot be related to the minimal average cost per time unit.

However, by the data transformation method from Section 7.1, we can convert the

semi-Markov decision model into a discrete-time Markov decision model such that

both models have the same average cost for each stationary policy. A value-iteration

algorithm for the original semi-Markov decision model is then implied by the value-

iteration algorithm for the transformed discrete-time Markov decision model. In the

discrete-time model it is no restriction to assume that all ci(a) = ci(a)/τi(a) are

positive; otherwise, add a sufficiently large positive constant to each ci(a). The

following recursion method results for the semi-Markov decision model:

Step 0. Choose V0(i) such that 0 ≤ V0(i) ≤ mina{ci(a)/τi(a)} for all i. Choose a

number τ with 0 < τ ≤ mini,a τi(a). Let n := 1.
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Step 1. Compute the function Vn(i), i ∈ I , from

Vn(i) = min
a∈A(i)





ci(a)

τi(a)
+

τ

τi(a)

∑

j∈I

pij (a)Vn−1(j) +

(

1 −
τ

τi(a)

)

Vn−1(i)



 .

(7.2.3)
Let R(n) be a stationary policy whose actions minimize the right-hand side of

(7.2.3).

Step 2. Compute the bounds

mn = min
j∈I

{Vn(j) − Vn−1(j)], Mn = max
j∈I

{Vn(j) − Vn−1(j)}.

The algorithm is stopped with policy R(n) when 0 ≤ (Mn − mn) ≤ εmn, where ε

is a prespecified accuracy number. Otherwise, go to step 3.

Step 3. n := n + 1 and go to step 1.

Let us assume that the weak unichain assumption from Section 6.5 is satisfied

for the embedded Markov chains {Xn} associated with the stationary policies. It

is no restriction to assume that the Markov chains {Xn} in the transformed model

are aperiodic. Then the algorithm stops after finitely many iterations with a policy

R(n) whose average cost function gi(R(n)) satisfies

0 ≤
gi(R(n)) − g∗

g∗
≤ ε, i ∈ I,

where g∗ denotes the minimal average cost per time unit. Regarding the choice of

τ in the algorithm, it is recommended to take τ = mini,a τi(a) when the embedded

Markov chains {Xn} in the semi-Markov model are aperiodic; otherwise, τ =
1
2

mini,a τi(a) is a reasonable choice.

Linear programming formulation

The linear program for the semi-Markov decision model is given under the weak

unichain assumption for the embedded Markov chains {Xn}. By the data transfor-

mation and the change of variable uia = xia/τi(a), the linear program (6.3.1) in

Section 6.5 becomes:

Minimize
∑

i∈I

∑

a∈A(i)

ci(a)uia

subject to

∑

a∈A(j)

uja −
∑

i∈I

∑

a∈A(i)

pij (a)uia = 0, a ∈ A(i) and i ∈ I,

∑

i∈I

∑

a∈A(i)

τi(a)uia = 1 and uia ≥ 0, a ∈ A(i) and i ∈ I.
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The algorithm for deriving an optimal stationary policy from the LP solution is the

same as in Section 6.5. In the same way as in Section 6.5 the linear programming

formulation can be extended to cover probabilistic constraints such as the fraction

of time that the system is in some subset I0 of states should not exceed α. In

the situation of probabilistic constraints, the average cost optimal policy usually

involves randomized decisions.

7.3 VALUE ITERATION AND FICTITIOUS DECISIONS

The value-iteration method is often the most preferred method to compute a (nearly)

average cost optimal policy. In each iteration of the method the lower and upper

bounds indicate how much the average cost of the current policy deviates from

the minimal average cost. The computational burden of the value-iteration algo-

rithm depends not only on the number of states, but also on the density of the

non-zero transition probabilities pij (a). By the very nature of the value-iteration

algorithm, it is computationally burdensome to have many non-zero pij (a). In

applications with exponentially distributed times between the decision epochs, the

computational effort of the value-iteration algorithm can often be considerably

reduced by including so-called fictitious decision epochs. The state of the system

is left unchanged at the fictitious decision epochs. The inclusion of fictitious deci-

sion epochs does not change the Markovian nature of the decision process, since

the times between state transitions are exponentially distributed and thus have

the memoryless property. The trick of fictitious decision epochs reduces not only

the computational effort, but also simplifies the formulation of the value-iteration

algorithm. The inclusion of fictitious decision epochs has as a consequence that the

state space must be enlarged with an indicator variable to distinguish between the

fictitious decision epochs and the real decision epochs. However, the greater sim-

plicity in formulation and the reduction in computing times outweigh the enlarged

state space.

Example 7.3.1 Optimal allocation of servers to competing customers

In communication networks an important problem is the allocation of servers to

competing customer classes. Suppose messages of the types 1 and 2 arrive at a

communication system according to independent Poisson processes with respective

rates λ1 and λ2. The communication system has c identical transmission channels

for handling the messages, where each channel can handle only one message at a

time. The system has no buffer for storing temporarily messages that find all chan-

nels occupied upon arrival. Such messages have to be rejected anyway. However,

a newly arriving message may also be rejected when there is a free channel. The

goal is to find a control rule that minimizes the average rejection rate or, equiva-

lently, maximizes the average throughput of accepted messages. In Example 5.4.2

the best control rule was determined within the subclass of L-policies. Markov

decision theory enables us to compute an overall optimal policy. To do so, we
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make the assumption that the transmission times of the messages are exponen-

tially distributed with mean 1/µ1 for type 1 messages and with mean 1/µ2 for

type 2 messages.

Formulation with fictitious decision epochs

A straightforward formulation of the problem as a semi-Markov decision problem

uses the arrival epochs as the only decision epochs. In such a formulation the

vectors (pij (a), j ∈ I ) of one-step transition probabilities have many non-zero

entries. In our specific problem this difficulty can be circumvented by including

the service completion epochs as fictitious decision epochs in addition to the real

decision epochs, being the arrival epochs of messages. By doing so, a transition

from any state is always to one of at most four neighbouring states. In the approach

with fictitious decision epochs, we take as state space

I = {(i1, i2, k) | i1, i2 = 0, 1, . . . , c; i1 + i2 ≤ c; k = 0, 1, 2}.

State (i1, i2, k) with k = 1 or 2 corresponds to the situation in which a type k

message arrives and finds i1 messages of type 1 and i2 messages of type 2 being

transmitted. The auxiliary state (i1, i2, 0) corresponds to the situation in which

the transmission of a message is just completed and i1 messages of type 1 and

i2 messages of type 2 are left behind in the system. Note that the type of the

transmitted message is not relevant. For the states (i1, i2, k) with k = 1 or 2 the

possible actions are denoted by

a =

{

0, reject the arriving message,

1, accept the arriving message,

with the stipulation that a = 0 is the only feasible decision when i1 + i2 = c. The

fictitious decision of leaving the system alone in the state s = (i1, i2, 0) is also

denoted by a = 0. Thanks to the fictitious decision epochs, each transition from

a given state is to one of at most four neighbouring states. In other words, most

of the one-step transition probabilities are zero. Further, the transition probabilities

are extremely easy to specify, because of the fact that min(X1, X2) is exponentially

distributed with mean 1/(α1 + α2) and P {X1 < X2} = α1/(α1 + α2) when X1

and X2 are independent random variables having exponential distributions with

respective means 1/α1 and 1/α2. Put for abbreviation

ν(i1, i2) = λ1 + λ2 + i1µ1 + i2µ2.

Then, for action a = 0 in state s = (i1, i2, k),

psv (0) =















λ1/ν(i1, i2), v = (i1, i2, 1),

λ2/ν(i1, i2), v = (i1, i2, 2),

i1µ1/ν(i1, i2), v = (i1 − 1, i2, 0),

i2µ2/ν(i1, i2), v = (i1, i2 − 1, 0).
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and τs(0) = 1/ν(i1, i2). For action a = 1 in state s = (i1, i2, 1),

psv (1) =















λ1/ν(i1 + 1, i2), v = (i1 + 1, i2, 1),

λ2/ν(i1 + 1, i2), v = (i1 + 1, i2, 2),

(i1 + 1)µ1/ν(i1 + 1, i2), v = (i1, i2, 0),

i2µ2/ν(i1 + 1, i2), v = (i1 + 1, i2 − 1, 0).

and τs(1) = 1/ν(i1 + 1, i2). Similarly, for action a = 1 in state (i1, i2, 2). Finally,

the one-step expected costs cs(a) are simply given by

cs(a) =







1, s = (i1, i2, 1) and a = 0,

1, s = (i1, i2, 2) and a = 0,

0, otherwise.

Value-iteration algorithm

Now, having specified the basic elements of the semi-Markov decision model, we

are in a position to formulate the value-iteration algorithm for the computation of

a (nearly) optimal acceptance rule. In the data transformation, we take

τ =
1

λ1 + λ2 + c1µ1 + c2µ2

.

Using the above specifications, the value-iteration scheme becomes quite simple for

the allocation problem. Note that the expressions for the one-step transition times

τs(a) and the one-step transition probabilities pst (a) have a common denominator

and so the ratio pst (a)/τs(a) has a very simple form. In specifying the value-

iteration scheme (7.2.3), we distinguish between the auxiliary states (i1, i2, 0) and

the other states. In the states (i1, i2, 0) the only possible decision is to leave the

system alone. Thus

Vn(i1, i2, 0) = τλ1Vn−1(i1, i2, 1) + τλ2Vn−1(i1, i2, 2) + τ i1µ1Vn−1(i1 − 1, i2, 0)

+ τ i2µ2Vn−1(i1, i2 − 1, 0) + {1 − τν(i1, i2)}Vn−1(i1, i2, 0),

where Vn−1(i1, i2, 1) = 0 when i1 < 0 or i2 < 0. For the states (i1, i2, 1),

Vn(i1, i2, 1) = min
[

ν(i1, i2) + τλ1Vn−1(i1, i2, 1) + τλ2Vn−1(i1, i2, 2)

+ τ i1µ1Vn−1(i1 − 1, i2, 0) + τ i2µ2Vn−1(i1, i2 − 1, 0)

+ {1 − τν(i1, i2)}Vn−1(i1, i2, 1),

τλ1Vn−1(i1 + 1, i2, 1) + τλ2Vn−1(i1 + 1, i2, 2)

+ τ (i1 + 1)µ1Vn−1(i1, i2, 0) + τ i2µ2Vn−1(i1 + 1, i2 − 1, 0)

+ {1 − τν(i1 + 1, i2)}Vn−1(i1, i2, 1)
]

,
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provided we put Vn−1(i1, i2, 1) = Vn−1(i1, i2, 2) = ∞ when i1+i2 = c+1 in order

to exclude the unfeasible decision a = 1 in the states (i1, i2, 1) with i1 + i2 = c. A

similar expression applies to Vn(i1, i2, 2). This completes the specification of the

recursion step of the value-iteration algorithm. The other steps of the algorithm go

without saying.

The value-iteration algorithm for the semi-Markov decision formulation with

fictitious decision epochs requires the extra states (i1, i2, 0). However, the number

of additions and multiplications per iteration is of the order c2 rather than of the

order c4 as in a straightforward semi-Markov decision formulation. It appears from

numerical experiments that there is a considerable overall reduction in computa-

tional effort when using the formulation with fictitious decision epochs. A further

reduction in the computing times can be achieved by applying modified value

iteration rather than standard value iteration; see Section 6.6.

Numerical investigations indicate that the overall optimal control rule has an

intuitively appealing structure. It is characterized by integers L0, L1, . . . , Lc−1

with L0 ≥ L1 ≥ · · · ≥ Lc−1. One type of message (call it the priority type) is

always accepted as long as not all transmission channels are occupied. An arriving

message of the non-priority type finding i priority type messages present upon

arrival is only accepted when less than Li non-priority type messages are present

and not all channels are occupied. In the numerical example with c = 10, λ1 = 10,

λ2 = 7, µ1 = 10 and µ2 = 1, the optimal Li-values are given by

L0 = L1 = 8, L2 = L3 = 7, L4 = 6, L5 = 5, L6 = 4,

L7 = 3, L8 = 2, L9 = 1.

The minimal average loss rate is 1.767. A challenging open problem is to find

a theoretical proof that an overall optimal policy has the Li-structure. Another

empirical result that deserves further investigation is the finding that the average

loss rate under an Li-policy is nearly insensitive to the form of the probability

distributions of the transmission times; see also the discussion in Example 5.4.2.

7.4 OPTIMIZATION OF QUEUES

The semi-Markov model is a natural and powerful tool for the optimization of

queues. Many queueing problems in telecommunication ask for the computation

of an optimal control rule for a given performance measure. If the control rule is

determined by one or two parameters, one might first use Markov chain analysis

to calculate the performance measure for given values of the control parameters

and next use a standard optimization procedure to find the optimal values of the

control parameters. However, this is not always the most effective approach. Below

we give an example of a controlled queueing system for which the semi-Markov

decision approach is not only more elegant, but is also more effective than a direct

search procedure. In this application the number of states is unbounded. However,

by exploiting the structure of the problem, we are able to cast the problem into
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a Markov decision model with a finite state space. Using a simple but generally

useful embedding idea, we avoid brute-force truncation of the infinite set of states.

Example 7.4.1 Optimal control of a stochastic service system

A stochastic service system has s identical channels available for providing service,

where the number of channels in operation can be controlled by turning channels

on or off. For example, the service channels could be checkouts in a supermarket

or production machines in a factory. Requests for service are sent to the service

facility according to a Poisson process with rate λ. Each arriving request for service

is allowed to enter the system and waits in line until an operating channel is

provided. The service time of each request is exponentially distributed with mean

1/µ. It is assumed that the average arrival rate λ is less than the maximum service

rate sµ. A channel that is turned on can handle only one request at a time. At any

time, channels can be turned on or off depending on the number of service requests

in the system. A non-negative switching cost K(a, b) is incurred when adjusting

the number of channels turned on from a to b. For each channel turned on there

is an operating cost at a rate of r > 0 per unit of time. Also, for each request

a holding cost of h > 0 is incurred for each unit of time the message is in the

system until its service is completed. The objective is to find a rule for controlling

the number of channels turned on such that the long-run average cost per unit of

time is minimal.

Since the Poisson process and the exponential distribution are memoryless, the

state of the system at any time is described by the pair (i, t), where

i = the number of service requests present,

t = the number of channels being turned on.

The decision epochs are the epochs at which a new request for service arrives

or the service of a request is completed. In this example the number of possible

states is unbounded since the state variable i has the possible values 0, 1, . . . .

A brute-force approach would result in a semi-Markov decision formulation in

which the state variable i is bounded by a sufficiently large chosen integer U such

that the probability of having more than U requests in the system is negligible

under any reasonable control rule. This approach would lead to a very large state

space when the arrival rate λ is close to the maximum service rate sµ. A more

efficient Markov decision formulation is obtained by restricting the class of control

rules rather than truncating the state space. It is intuitively obvious that under each

reasonable control rule all of the s channels will be turned on when the number of

requests in the system is sufficiently large. In other words, choosing a sufficiently

large integer M with M ≥ s, it is from a practical point of view no restriction

to assume that in the states (i, t) with i ≥ M the only feasible action is to turn

on all of the s channels. However, this implies that we can restrict the control of

the system only to those arrival epochs and service completion epochs at which
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no more than M service requests remain in the system. By doing so, we obtain a

semi-Markov decision formulation with the state space

I = {(i, t) | 0 ≤ i ≤ M, 0 ≤ t ≤ s},

and the action sets

A(i, t) =

{

{a | a = 0, . . . , s}, 0 ≤ i ≤ M − 1, 0 ≤ t ≤ s,

{s}, i = M, 0 ≤ t ≤ s.

Here action a in state (i, t) means that the number of channels turned on is adjusted

from t to a. This semi-Markov decision formulation involves the following stip-

ulation: if action a = s is taken in state (M, t), then the next decision epoch is

defined as the first service completion epoch at which either M or M − 1 service

requests are left behind. Also, if action a = s is taken in state (M, t), the ‘one-

step’ costs incurred until the next decision epoch are defined as the sum of the

switching cost K(t, s) and the holding and operating costs made during the time

until the next decision epoch. Denote by the random variable TM(s) the time until

the next decision epoch when action a = s is taken in state (M, t). The random

variable TM(s) is the sum of two components. The first component is the time until

the next service completion or the next arrival, whichever occurs first. The second

component is zero if a service completion occurs first; otherwise, it is distributed

as the time needed to reduce the number of service requests present from M + 1 to

M . The semi-Markov decision formulation with an embedded state space makes

sense only when it is feasible to calculate the one-step expected transition times

τ(M,t)(s) and the one-step expected costs c(M,t)(s).

The calculation of these quantities is easy, since service completions occur

according to a Poisson process with rate sµ as long as all of the s channels are

occupied. In other words, whenever M or more requests are in the system, we can

equivalently imagine that a single ‘superchannel’ is servicing requests one at a time

at an exponential rate of sµ. This analogy enables us to invoke the formulas (2.6.2)

and (2.6.3). Taking n = 1 and replacing the mean µ by 1/(sµ) in these formulas,

we find that the expected time needed to reduce the number of requests present

from M + 1 to M , given that all channels are on, is

1/(sµ)

1 − λ/(sµ)
=

1

sµ − λ

and the expected holding and operating costs incurred during the time needed to

reduce the number of requests present from M + 1 to M , given that all channels

are on, is

hM

sµ − λ
+

hsµ

sµ − λ

{

1

sµ
+

λ

sµ(sµ − λ)

}

+
rs

sµ − λ
=

h(M+1) + rs

sµ − λ
+

hλ

(sµ − λ)2
.

Here the term hM/(sµ − λ) represents the expected holding costs for the M

service requests which are continuously present during the time needed to reduce



OPTIMIZATION OF QUEUES 293

the number in system from M + 1 to M . If all of the s channels are busy, then

the time until the next event (service completion or new arrival) is exponentially

distributed with mean 1/(λ + sµ) and the next event is generated by an arrival

with probability λ/(λ + sµ). Putting the pieces together, we find

τ(M,t)(s) =
1

λ + sµ
+

λ

λ + sµ

(

1

sµ − λ

)

=
sµ

(λ + sµ)(sµ − λ)

and

c(M,t)(s) = K(t, s) +
hM + rs

λ + sµ
+

λ

λ + sµ

{

h(M + 1) + rs

sµ − λ
+

hλ

(sµ − λ)2

}

.

Also, by the last argument above,

p(M,t)(M−1,s)(s) =
sµ

λ + sµ
and p(M,t)(M,s)(s) =

λ

λ + sµ
.

For the other states of the embedded state space I , the basic elements of the

semi-Markov decision model are easily specified. We have

τ(i,t)(a) =
1

λ + min(i, a)µ
, 0 ≤ i ≤ M − 1, 0 ≤ a ≤ s,

and

c(i,t)(a) = K(t, a) +
hi + ra

λ + min(i, a)µ
, 0 ≤ i ≤ M − 1, 0 ≤ a ≤ s.

The one-step transition probabilities are left to the reader. Next we formulate the

value-iteration algorithm. In the data transformation we take τ = 1/(λ+ sµ). Then

the recurrence relation (7.2.3) becomes

Vn((i, t)) = min
0≤a≤s

[

{λ + min(i, a)µ}K(t, a) + hi + ra

+
λ

λ + sµ
Vn−1((i + 1, a)) +

min(i, a)µ

λ + sµ
Vn−1((i − 1, a))

+

{

1 −
λ + min(i, a)µ

λ + sµ

}

Vn−1((i, t))

]

for the states (i, t) with 0 ≤ i ≤ M − 1, 0 ≤ t ≤ s. For the states (M, t),

Vn((M, t)) =
1

sµ
(λ + sµ)(sµ − λ)K(t, s) +

hλ

sµ − λ
+ hM + rs

+
sµ − λ

λ + sµ
Vn−1((M − 1, s)) +

λ(sµ − λ)

sµ(λ + sµ)
Vn−1((M, s))

+

{

1 −
sµ − λ

sµ

}

Vn−1((M, t))

with the convention Vn−1((−1, t)) = 0.
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Numerical results

We consider the switching cost function K(a, b) = κ |a − b| and assume the numer-

ical data

s = 10, µ = 1, r = 30 and h = 10.

The arrival rate λ is 7 and 8, while the proportionality constant κ for the switching

cost has the two values 10 and 25. In each example, we take the bound M = 20 for

the states (i, t) with i ≥ M in which all of the s channels are always turned on. The

value-iteration algorithm is started with V0((i, t)) = 0 for all states (i, t) and uses

the tolerance number ε = 10−3 for its stopping criterion. Our numerical calculations

indicate that for the case of linear switching costs, the average cost optimal control

rule is characterized by parameters s(i) and t (i): the number of channels turned on

is raised up to the level s(i) in the states (i, t) with t < s(i), the number of channels

turned on is left unchanged in the states (i, t) with s(i) ≤ t ≤ t (i) and the number

of channels turned on is reduced to t (i) in the states (i, t) with t > t (i). Table 7.4.1

gives the (nearly) optimal values of s(i) and t (i) for each of the four examples

considered. In each of these examples we applied both standard value iteration

and modified value iteration; see Section 6.6. It was found that modified value

iteration with a dynamic relaxation factor required considerably fewer iterations

than standard value iteration. In the four examples, standard value iteration required

Table 7.4.1 Numerical results obtained by value iteration

λ = 7, κ = 10 λ = 8, κ = 10 λ = 7, κ = 25 λ = 8, κ = 25

i s(i) t (i) s(i) t (i) s(i) t (i) s(i) t (i)

0 0 3 0 4 0 6 0 6
1 1 4 1 4 1 6 1 7
2 2 4 2 5 2 6 2 7
3 2 5 3 5 3 6 3 7
4 3 6 3 6 3 7 3 8
5 4 6 4 7 4 7 4 8
6 5 7 5 8 5 8 5 8
7 5 8 5 8 5 8 6 9
8 6 9 6 9 6 9 6 9
9 6 9 7 10 6 9 7 10

10 7 10 7 10 7 10 7 10
11 8 10 8 10 7 10 7 10
12 8 10 9 10 7 10 8 10
13 9 10 9 10 8 10 8 10
14 9 10 10 10 8 10 9 10
15 10 10 10 10 8 10 9 10
16 10 10 10 10 9 10 10 10
17 10 10 10 10 9 10 10 10
18 10 10 10 10 9 10 10 10
19 10 10 10 10 10 10 10 10

≥20 10 10 10 10 10 10 10 10
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174, 311, 226 and 250 iterations. Modified value iteration required 59, 82, 87 and

71 iterations and ended up with the respective bounds (mn, Mn) = (319.3, 319.5),

(367.1, 367.4), (331.5, 331.8) and (378.0, 378.3) on the minimal average cost.

7.5 ONE-STEP POLICY IMPROVEMENT

The policy-iteration algorithm has the remarkable feature that it achieves the largest

improvements in costs in the first few iterations. These findings underlie a heuristic

approach for Markov decision problems with a multidimensional state space. In

such decision problems it is usually not feasible to solve the value-determination

equations. However, a policy-improvement step offers in general no computational

difficulties. This suggests a heuristic approach that determines first a good estimate

for the relative values and next applies a single policy-improvement step. By the

nature of the policy-iteration algorithm one might expect to obtain a good decision

rule by the heuristic approach. How to compute the relative values to be used

in the policy-improvement step typically depends on the specific application. The

heuristic approach is illustrated in the next example.

Example 7.5.1 Dynamic routing of customers to parallel queues

An important queueing model arising in various practical situations is one in which

arriving customers (messages or jobs) have to be assigned to one of several different

groups of servers. Problems of this type occur in telecommunication networks and

flexible manufacturing. The queueing system consists of n multi-server groups

working in parallel, where each group has its own queue. There are sk servers in

group k (k = 1, . . . , n). Customers arrive according to a Poisson process with rate

λ. Upon arrival each customer has to be assigned to one of the n server groups.

The assignment is irrevocable. The customer waits in the assigned queue until a

server becomes available. Each server can handle only one customer at a time.

The problem is to find an assignment rule that (nearly) minimizes the average

sojourn time per customer. This problem will be analysed under the assumption that

the service times of the customers are independent and exponentially distributed.

The mean service time of a customer assigned to queue k is 1/µk (k = 1, . . . , n).

It is assumed that λ <
∑n

k=1 skµk. In what follows we consider the minimization

of the overall average number of customers in the system. In view of Little’s

formula, the minimization of the average sojourn time per customer is equivalent

to the minimization of the average number of customers in the system.

Bernoulli-splitting rule

An intuitively appealing control rule is the shortest-queue rule. Under this rule

each arriving customer is assigned to the shortest queue. Except for the special

case of s1 = · · · = sn and µ1 = · · · = µn, this rule is in general not optimal. In

particular, the shortest-queue rule may perform quite unsatisfactorily in the situation
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of a few fast servers and many slow servers. Another simple rule is the Bernoulli-

splitting rule. Under this rule each arrival is assigned with a given probability

pk to queue k (k = 1, . . . , n) irrespective of the queue lengths. This assignment

rule produces independent Poisson streams at the various queues, where queue k

receives a Poisson stream at rate λpk . The probabilities pk must satisfy
∑

k pk = 1

and λpk < skµk for k = 1, . . . , n. This condition guarantees that no infinitely

long queues can build up. Under the Bernoulli-splitting rule it is easy to give an

explicit expression for the overall average number of customers in the system.

The separate queues act as independent queues of the M/M/s type. This basic

queueing model is discussed in Chapter 5. In the M/M/s queue with arrival rate

α and s exponential servers each with service rate µ, the long-run average number

of customers in the system equals

L(s, α, µ) =
ρ(sρ)s

s!(1 − ρ)2

{

s−1
∑

k=0

(sρ)k

k!
+

(sρ)s

s!(1 − ρ)

}−1

+ sρ,

where ρ = α/(sµ). Under the Bernoulli-splitting rule the overall average number

of customers in the system equals

n
∑

k=1

L(sk, λpk, µk). (7.5.1)

The best Bernoulli-splitting rule is found by minimizing this expression with respect

to p1, . . . , pn subject to the condition
∑

k pk = 1 and 0 ≤ λpk < skµk for

k = 1, . . . , n. This minimization problem must be numerically solved by some

search procedure (for n = 2, bisection can be used to find the minimum of a

unimodal function in a single variable).

Policy-improvement step

The problem of assigning the arrivals to one of the server groups is a Markov

decision problem with a multidimensional state space. The decision epochs are

the arrival epochs of new customers. The state of the system at a decision epoch

is an n-dimensional vector x = (i1, . . . , in), where ij denotes the number of

customers present in queue j . This description uses the memoryless property of

the exponential service times. The action a = k in state x means that the new

arrival is assigned to queue k. To deal with the optimality criterion of the long-run

average number of customers in the system, we impose the following cost structure

on the system. A cost at rate j is incurred whenever there are j customers in the

system. Then the long-run average cost per time unit gives the long-run overall

average number of customers in the system.

Denote by policy R(0) the best Bernoulli-splitting rule and let p
(0)
k , k = 1, . . . , n

be the splitting probabilities associated with policy R(0). We already pointed out

that the average cost for rule R(0) is easy to compute. Below it will be shown that

the relative values are also easy to obtain for rule R(0). Let us first explain how to
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derive an improved policy from the Bernoulli-splitting rule R(0). This derivation

is based on first principles discussed in Section 6.2. The basic idea of the policy-

improvement step is to minimize for each state x the difference �(x, a, R(0))

defined by

�(x, a, R(0)) = the difference in total expected costs over an infinitely

long period of time by taking first action a and next using

policy R(0) rather than using policy R(0) from scratch

when the initial state is x.

The difference is well defined since the Markov chain associated with policy R(0)

is aperiodic. Under the Bernoulli-splitting rule the n queues act as independent

M/M/s queues. Define for each separate queue j ,

Dj (i) = the difference in total expected costs in queue j over

an infinitely long period of time by starting with i + 1

customers in queue j rather than with i customers.

Then, for each state x = (i1, . . . , in) and action a = k,

�(x, a, R(0)) =

n
∑

j=1
j �=k

p
(0)
j [−Dj (ij ) + Dk(ik)] + p

(0)
k × 0

= −

n
∑

j=1

p
(0)
j Dj (ij ) + Dk(ik).

Since the term
∑

j p
(0)
j Dj (ij ) does not depend on the action a = k, the step of

minimizing �(x, k, R(0)) over k reduces to the computation of

min
1≤k≤n

{Dk(ik)}.

Hence a remarkably simple expression is evaluated in the policy-improvement

step applied to the Bernoulli-splitting rule. The suboptimal rule resulting from the

single application of the policy-improvement step is called the separable rule. The

performance of this rule will be discussed below.

It remains to specify the function Dk(i), i = 0, 1, . . . , for each queue k. To do

so, consider an M/M/s queue in isolation, where customers arrive according to a

Poisson process with rate α and there are s exponential servers each with service

rate µ. Each arrival is admitted to the queue. The state of the system describes

the number of customers present. A cost at rate j is incurred when there are j

customers present. The long-run average cost per time unit is given by

g = L(s, α, µ).
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The M/M/s queueing process can be seen as a Markov decision process with a

single decision in each state. The decision is to leave the system alone. In this

Markov decision formulation it is convenient to consider the state of the system both

at the arrival epochs and the service completion epochs. In the M/M/s queue the

situation of i customers present just after a service completion is probabilistically

the same as the situation of i customers present just after an arrival. In accordance

with (6.3.1), we define the relative cost function w(i) by

w(i) =

{

K(i) − gT (i), i = 1, 2, . . . ,

0, i = 0,
(7.5.2)

where

T (i) = the expected time until the first return to an empty system starting

with i customers present,

K(i) = the total expected cost incurred until the first return to an empty

system starting with i customers present.

Then, by the economic interpretation of the relative values given in Section 6.3,

we have for any i = 0, 1, . . . that

w(i + 1) − w(i) = the difference in total expected costs over an infinitely long

period of time by starting in state i + 1 rather than in state i.

The desired function Dk(i) for queue k follows by taking

Dk(i) = wk(i + 1) − wk(i) with α = λpk, s = sk and µ = µk.

The basic functions K(i) and T (i) are easy to compute. By conditioning,

Ti =
1

α + iµ
+

α

α + iµ
Ti+1 +

iµ

α + iµ
Ti−1, 1 ≤ i ≤ s. (7.5.3)

Ki =
i

α + iµ
+

α

α + iµ
Ki+1 +

iµ

α + iµ
Ki−1, 1 ≤ i ≤ s. (7.5.4)

where T0 = K0 = 0. Further, we have

Ti =
i − s

sµ − α
+ Ts, i > s,

Ki =
1

sµ − α

{

1

2
(i − s)(i − s − 1) + i − s +

α(i − s)

sµ − α

}

+
s(i − s)

sµ − α
, i > s.

To see the latter relations, note that the time to reach an empty system from state

i > s is the sum of the time to reach state s and the time to reach an empty system

from state s. By the memoryless property of the exponential distribution, the multi-

server M/M/s queue operates as a single-server M/M/1 queue with service rate sµ

when s or more customers are present. Next, by applying the formulas (2.6.2) and

(2.6.3), we find the formulas for Ti and Ki when i > s. Substituting the expressions
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for Ts+1 and Ks+1 into (7.5.3) and (7.5.4) with i = s, we get two systems of linear

equations for Ti , 1 ≤ i ≤ s and Ki , 1 ≤ i ≤ s. Once these systems of linear

equations have been solved, we can next compute Ti and Ki for any desired i > s.

Summarizing, the heuristic algorithm proceeds as follows.

Heuristic algorithm

Step 1. Compute the best values p
(0)
k , k = 1, . . . , n, of the Bernoulli-splitting

probabilities by minimizing the expression (7.5.1) subject to
∑n

k=1 pk = 1 and

0 ≤ λpk < skµk for k = 1, . . . , n.

Step 2. For each queue k = 1, . . . , n, solve the system of linear equations (7.5.3)

and (7.5.4) with α = λp
(0)
k , s = sk and µ = µk. Next compute for each queue k

the function wk(i) from (7.5.2) with α = λp
(0)
k , s = sk and µ = µk .

Step 3. For each state x = (i1, . . . , in), determine an index k0 achieving the mini-

mum in

min
1≤k≤n

{wk(ik + 1) − wk(ik)}.

The separable rule assigns a new arrival in state x = (i1, . . . , in) to queue k0.

Numerical results

Let us consider the numerical data

s1 = 10, s2 = 1, µ1 = 1 and µ2 = 9.

The traffic load ρ, which is defined by

ρ = λ/(s1µ1 + s2µ2),

is varied as ρ = 0.2, 0.5, 0.7, 0.8 and 0.9. In addition to the theoretically minimal

average sojourn time, Table 7.5.1 gives the average sojourn time per customer for

the Bernoulli-splitting rule (B-split) and for the heuristic separable rule. The table

also gives the average sojourn time per customer under the shortest expected delay

(SED) rule. Under this rule an arriving customer is assigned to the queue in which

its expected individual delay is smallest (if there is a tie, the customer is sent

to queue 1). The results in the table show that this intuitively appealing control

policy performs unsatisfactorily for the case of heterogeneous services. However,

the heuristic separable rule shows an excellent performance for all values of ρ.

Table 7.5.1 The average sojourn times

ρ SED B-split Separable Optimal

0.2 0.192 0.192 0.191 0.191
0.5 0.647 0.579 0.453 0.436
0.7 0.883 0.737 0.578 0.575
0.8 0.982 0.897 0.674 0.671
0.9 1.235 1.404 0.941 0.931
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EXERCISES

7.1 Consider a production facility that operates only intermittently to manufacture a single
product. The production will be stopped if the inventory is sufficiently high, whereas the
production will be restarted when the inventory has dropped sufficiently low. Customers
asking for the product arrive according to a Poisson process with rate λ. The demand of
each customer is for one unit. Demand which cannot be satisfied directly from stock on
hand is lost. Also, a finite capacity C for the inventory is assumed. In a production run, any
desired lot size can be produced. The production time of a lot size of Q units is a random
variable TQ having a probability density fQ(t). The lot size is added to the inventory at the
end of the production run. After the completion of a production run, a new production run is
started or the facility is closed down. At each point of time the production can be restarted.
The production costs for a lot size of Q ≥ 1 units consist of a fixed set-up cost K > 0 and
a variable cost c per unit produced. Also, there is a holding cost of h > 0 per unit kept in
stock per time unit, and a lost-sales cost of p > 0 is incurred for each lost demand. The
goal is to minimize the long-run average cost per time unit. Formulate the problem as a
semi-Markov decision model.

7.2 Consider the maintenance problem from Example 6.1.1 again. The numerical data are
given in Table 6.4.1. Assume now that a repair upon failure takes either 1, 2 or 3 days,
each with probability 1/3. Use the semi-Markov model to compute by policy iteration or
linear programming an average cost optimal policy. Can you explain why you get the same
optimal policy as in Example 6.1.1?

7.3 A cargo liner operates between the five harbours A1, . . . , A5. A cargo shipment from
harbour Ai to harbour Aj (j �= i) takes a random number τij of days (including load and
discharge) and yields a random pay-off of ξij . The shipment times τij and the pay-offs ξij
are normally distributed with means µ(τij ) and µ(ξij ) and standard deviations σ(τij ) and
σ(ξij ). We assume the numerical data:

µ(τij )[σ(τij )]

i\j 1 2 3 4 5

1 - 3
[

1
2

]

6 [1] 3
[

1
2

]

2
[

1
2

]

2 4 [1] - 1
[

1
4

]

7 [1] 5 [1]

3 5 [1] 1
[

1
4

]

- 6 [1] 8 [1]

4 3
[

1
2

]

8 [1] 5 [1] - 2
[

1
2

]

5 2
[

1
2

]

5 [1] 9 [1] 2
[

1
2

]

-

µ(ξij )[σ(ξij )]

i\j 1 2 3 4 5
1 - 8 [1] 12 [2] 6 [1] 6 [1]

2 20 [3] - 2
[

1
2

]

14 [3] 16 [2]

3 16 [3] 2
[

1
2

]

- 18 [3] 16 [1]

4 6 [1] 10 [2] 20 [2] - 6
[

1
2

]

5 8 [2] 16 [3] 20 [2] 8 [1] -

Compute by policy iteration or linear programming a sailing route for which the long-run
average reward per day is maximal.
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7.4 Consider Exercise 2.20 again. Assume that the assignment types j = 1, . . . , n are
numbered or renumbered according to E(ξ)/E(τj ) ≥ E(ξj+1)/E(τj+1) for all j . Use
the optimality equation (7.2.2) to verify that the long-run average reward per time unit is
maximal by accepting only assignments of the types j = 1, . . . , r , where r is the smallest
integer such that

r
∑

j=1

λjE(ξj )

/



1 +

r
∑

j=1

λjE(τj )



 > E(ξr+1)/E(τr+1)

with E(ξn+1)/E(τn+1) = 0 by convention.

7.5 Adjust the value-iteration algorithm for the control problem from Example 7.3.1 when
finite-source input is assumed rather than Poisson input. Solve for the numerical data c = 10,
M1 = M2 = 10, δ1 = 3, δ2 = 1, µ1 = 4, µ2 = 1, where Mi is the number of customers
from source i and δi is the exponential rate at which a customer from source i generates
new service requests when the customer has no other request in service. Try other numerical
examples and investigate the structure of an optimal control rule.

7.6 Consider a flexible manufacturing facility producing parts, one at a time, for two assem-
bly lines. The time needed to produce one part for assembly line k is exponentially distributed
with mean 1/µk , k = 1, 2. Each part produced for line k is put into the buffer for line k.
This buffer has space for only Nk parts, including the part (if any) in assembly. Each line
takes parts one at a time from its buffer as long as the buffer is not empty. At line k,
the assembly time for one part is exponentially distributed with mean 1/λk , k = 1, 2. The
production times at the flexible manufacturing facility and the assembly times at the lines
are independent of each other. A real-time control for the flexible manufacturing facility is
exercised. After each production at this facility, it must be decided what type of part is to be
produced next. The system cannot produce for a line whose buffer is full. Also, the system
cannot remain idle if not all the buffers are full. The control is based on the full knowledge
of the buffer status at both lines. The system incurs a lost-opportunity cost at a rate of
γk per time unit when line k is idle. The goal is to control the production at the flexible
manufacturing facility in such a way that the long-run average cost per time unit is minimal.
Develop a value-iteration algorithm for this control problem. Solve for the numerical data
µ1 = 5, µ2 = 10, λ1 = 4, λ2 = 8, N1 = N2 = 5, γ1 = γ2 = 1. This problem is based on
Seidman and Schweitzer (1984).

7.7 Consider a tandem network with two assembly facilities in series. The output of the first
station is the input for the second station. Raw material is processed at station 1, and half-
finished goods at station 2. Each of the stations 1 and 2 has a finite buffer for temporarily
storing raw material and half-finished goods. The buffer size is M at station 1 and N
at station 2 (excluding any unit in processing). Units of raw material arrive at station 1
according to a Poisson process with rate λ. A unit of raw material finding the buffer full
at station 1 upon arrival is rejected and is brought elsewhere. Station 1 is a single-server
station and station 2 is a multiple-server station with c servers. Each server can handle only
one unit at a time and the processing times are exponentially distributed with mean 1/µ1
at station 1 and mean 1/µ2 at station 2. If the assembly of a unit is finished at station 1,
it is forwarded to station 2 provided the buffer is not full at station 2; otherwise, the unit
remains at station 1 and blocks this station until room becomes available at station 2. Station
1 cannot start a new assembly as long as it is blocked. The control problem is as follows.
Upon arrival of a new unit at station 1, a decision has to be made to accept this unit or
to reject it. The cost of rejecting a unit at station 1 is R > 0. Also, there is a blocking
cost at rate b > 0 per time unit that station 1 is blocked. The goal is to find a control rule
minimizing the long-run average cost per time unit. Develop a value-iteration algorithm.
Solve for the numerical data λ = 20, µ1 = 15, µ2 = 3, c = 5, M = 10, N = 3, R = 3.5
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and b = 20. Try other numerical examples and investigate whether the optimal control rule
is characterized by integers L0, . . . , LM so that an arriving unit of raw material finding i
units present at station 1 is only accepted when less than Li units are present at station 2.

7.8 Consider the situation that two groups of servers share a common waiting room. The
first group consists of c1 servers and the second group consists of c2 servers. Customers
for the first group arrive according to a Poisson process with rate λ1 and, independently of
this process, customers for the second group arrive according to a Poisson process with rate
λ2. Upon arrival of a new customer, a decision has to be made to accept or reject them.
An accepted customer keeps one place in the waiting room occupied until their service is
completed. The service times of the customers are exponentially distributed with a mean
1/µ1 for a customer going to the first group and mean 1/µ2 for a customer going to the
second group. Each server can handle only one customer at a time and serves only customers
for the group to which the server belongs. The goal is to find a control rule minimizing the
total average rejection rate. Develop a value-iteration algorithm for this control problem.
Solve for the numerical data c1 = c2 = 1, λ1 = 1.2, λ2 = 1, µ1 = µ2 = 1 and M = 15,
where M denotes the number of places in the waiting room. Try other numerical examples
and verify experimentally that the optimal control rule is characterized by two sequences

{a
(r)
1

, 0 ≤ r ≤ M} and {a
(r)
2

, 0 ≤ r ≤ M} so that an arriving customer of type k finding r

customers of the other type present upon arrival is accepted only if less than a
(k)
r customers

of the same type k are present and the waiting room is not full. This problem is based on
Tijms and Eikeboom (1986).

7.9 Consider the problem of designing an optimal buffer management policy in a shared-
memory switch with the feature that packets already accepted in the switch can be dropped
(pushed out). The system has two output ports and a finite buffer shared by the two output
ports. Packets of types 1 and 2 arrive according to independent Poisson processes with rates
λ1 and λ2. Packets of type i are destined for output port i for i = 1, 2. At each of the
two output ports there is a single transmission channel. Each channel can transmit only one
packet at a time and the transmission time at output port i is exponentially distributed with
mean 1/µi for i = 1, 2. Upon arrival of a new packet, the system has to decide whether to
accept the packet, to reject it, or to accept it and drop a packet of the other type. A packet
that is rejected or dropped is called a lost packet and has no further influence on the system.
The total buffer size is B and it is assumed that an accepted packet occupies a buffer place
until its transmission is completed. The goal is to find a control rule minimizing the overall
fraction of packets that are lost. Develop a value-iteration algorithm. Solve for the numerical
data λ1 = 1, λ2 = 10, µ1 = 2, µ2 = 20 and B = 12. Try other numerical examples and
investigate whether the optimal control rule has a specific structure. This problem is based
on Cidon et al. (1995).

7.10 Consider a two-server facility with heterogeneous servers. The faster server is always
available and the slower server is activated for assistance when too many customers are
waiting. Customers arrive according to a Poisson process with rate λ. The service facility
has ample waiting room. The service times of the customers are independent of each other
and have an exponential distribution. The mean service time is 1/µ1 when service is provided
by the faster server and is 1/µ2 for the slower server, where 1/µ1 < 1/µ2. It is assumed
that the load factor λ/(µ1 + µ2) is less than 1. The slower server can only be turned off
when it has completed a service. The slower server cannot be on when the system is empty.
If the slower server is kept on while customers are waiting for service, it cannot remain idle.
Each server can handle only one customer at a time. Service is non-pre-emptive; that is, the
faster server cannot take over a customer from the slower server. A fixed cost of K ≥ 0 is
incurred each time the slower server is turned on and there is an operating cost of r > 0
per time unit the slower server is on. Also, a holding cost of h > 0 per time unit is incurred
for each customer in the system. The goal is to find a switching rule that minimizes the
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long-run average cost per time unit. Using the embedding idea from Section 7.4, develop
a value-iteration algorithm for the control problem. Solve for the numerical data λ = 3,
µ1 = 2.8, µ2 = 2.2, h = 2, r = 4 and K = 10. Try other numerical examples and
verify experimentally that the optimal control rule is a so-called hysteretic (m,M) rule
under which the slower server is turned on when the number of customers present is M
or more and the slower server is switched off when this server completes a service and
the number of customers left behind in the system is below m. This problem is based
on Nobel and Tijms (2000), who developed a tailor-made policy-iteration algorithm for
this problem.

7.11 Consider again the heterogeneous server problem from Exercise 7.10. Assume now that
there are two slower servers in addition to the faster server, where the two slower servers
may have different speeds. The faster server is always available for service, while the slower
servers are activated for service when too many customers are present. The service time of
a customer is exponentially distributed with mean 1/µi when service is provided by server
i. Server 1 is the faster server and servers 2 and 3 are the slower servers. It is assumed that
λ/(µ1 + µ2 + µ3) < 1 and µ1 > max(µ2, µ3). There is an operating cost of ri > 0 per
time unit when the slower server i is on for i = 2, 3. A holding cost of h > 0 per time unit
is incurred for each customer in the system. There is no switching cost for turning either of
the slower servers on. Develop a value-iteration algorithm for this problem. Assuming that
the slower servers are numbered such that r2/µ2 < r3/µ3, verify experimentally that the
optimal control rule is characterized by critical numbers 1 ≤ m1 < m2 and prescribes using
the slower server 2 when the number of customers present is more than m1, and using both
slow servers when the number of customers present is more than m2.

7.12 Messages arrive at a transmission channel according to a Poisson process with a con-
trollable arrival rate. The two possible arrival rates are λ1 and λ2 with 0 ≤ λ2 < λ1. The
buffer at the transmission channel has ample space for temporarily storing arriving mes-
sages. The channel can only transmit one message at a time. The transmission time of each
message is exponentially distributed with mean 1/µ. It is assumed that λ2/µ < 1. At any
point in time it can be decided to change the arrival intensity from one rate to the other.
There is a fixed cost of K ≥ 0 for changing the arrival rate. An operating cost of ri > 0
per time unit is incurred when the prevailing arrival rate is λi , i = 1, 2. Also, there is a
holding cost of h > 0 per time unit for each message awaiting service. The goal is to find
a control rule that minimizes the long-run average cost per time unit. Using the embedding
idea from Example 7.4.1, develop a value-iteration algorithm for this control problem. Solve
for the numerical data λ1 = 4, λ2 = 2, µ = 5, K = 5, r1 = 1, r2 = 10 and h = 2. Try
other numerical examples and investigate whether the optimal control rule has a specific
structure.

7.13 Customers of types 1 and 2 arrive at a shared resource according to independent
Poisson processes with respective rates λ1 and λ2. The resource has c service units. An
arriving customer of type i requires bi service units. The customer is rejected when less
than bi units are available upon arrival. An accepted customer of type i immediately enters
service and has an exponentially distributed residency time with mean 1/µi . During this
residency time the customer keeps all of the bi assigned service units occupied. These units
are released simultaneously when the customer departs. Develop a value-iteration algorithm
for the computation of a control rule that minimizes the total average rejection rate. Solve
for the numerical data c = 30, b1 = 2, b2 = 5, λ1 = 6, λ2 = 8, µ1 = 1 and µ2 = 0.5.
Try other numerical examples and verify experimentally that the optimal control rule can

be characterized by two monotone sequences {a
(r)
1

} and {a
(r)
2

}. Under this control rule an
arriving customer of type i finding r customers of the other type present upon arrival is

accepted only when less than a
(r)
i

customers of the same type i are present and at least bi
service units are free.
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7.14 Consider Exercise 7.13 again, but assume now that the residency times have a Coxian-2
distribution. Develop a value-iteration algorithm to compute the total average rejection rate
under a fixed reservation policy. A reservation policy is characterized by two integers r1 and
r2 with r1 ≥ b1 and r2 ≥ b2. Under the reservation policy an arriving customer of type i is
accepted only if ri or more service units are available. Verify experimentally that the total
average rejection rate for a fixed reservation policy is nearly insensitive to the second and
higher moments of the residency times. For the case of exponentially distributed residency
times, take the average rejection rate of the best reservation policy and verify how close it
is to the theoretically minimal average rejection rate.

7.15 Consider a production/inventory system with N inventory points that share a common
production unit. At the beginning of each period, the production unit can produce for any
number of inventory points, with the stipulation that the total production size is restricted by
the capacity C of the production unit. The production time is negligible for any production
scheme. The demands at the various inventory points are independent of each other. In
each period the demand at inventory point j is Poisson distributed with mean µj for j =
1, . . . , N . Excess demand is lost at any inventory point. The following costs are involved.
The cost of producing zj units for inventory point j equals Kj + cj zj for zj > 0 regardless
of how much is produced for each of the other inventory points. In any period there is a
holding cost of hj > 0 for each unit in stock at inventory point j at the end of the period.
A stockout cost of pj is incurred for each unit of lost demand at inventory point j . Can you
think of a heuristic approach based on solving N one-dimensional problems and performing
a single policy-improvement step? This problem is based on Wijngaard (1979).

BIBLIOGRAPHIC NOTES

Semi-Markov decision processes were introduced in De Cani (1964), Howard

(1964), Jewell (1963) and Schweitzer (1965). The semi-Markov decision model

has many applications, especially in queueing control. The data-transformation

method converting a semi-Markov decision model into an equivalent discrete-time

Markov decision model was introduced in Schweitzer (1971). This uniformization

method was used in the paper of Lippman (1975) to establish the structure of

optimal control rules in queueing applications of continuous-time Markov decision

processes with exponentially distributed times between the decision epochs. The

idea of using fictitious decision epochs is also contained in this paper. The embed-

ding idea used in Section 7.4 is adapted from De Leve et al. (1977); see also Tijms

(1980). Embedding is especially useful for developing a tailor-made policy-iteration

algorithm that operates on a subclass of structured policies. The heuristic approach

of attacking a multidimensional Markov decision problem through decomposition

and a single-improvement step goes back to Norman (1970) and has been success-

fully applied in Krishnan and Ott (1986,1987) and Wijngaard (1979), among others.

The heuristic solution for the dynamic routing problem from Example 7.5.1 comes

from Krishnan and Ott (1987) and has been extended in Sassen et al. (1997) to

the case of general service times. Other heuristic approaches to handle large-scale

Markov decision processes are discussed in Cooper et al. (2003) and Schweitzer

and Seidman (1985).
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CHAPTER 8

Advanced Renewal Theory

8.0 INTRODUCTION

A renewal process is a counting process that generalizes the Poisson process. In

the Poisson process the interoccurrence times between the events are independent

random variables with an exponential distribution, whereas in a renewal process the

interoccurrence times have a general distribution. A first introduction to renewal

theory has been already given in Section 2.1. In that section several limit theorems

were given without proof. These limit theorems will be proved in Section 8.2 after

having discussed the renewal function in more detail in Section 8.1. A key tool

in proving the limit theorems is the so-called key renewal theorem. Section 8.3

deals with the alternating renewal model and gives an application of this model to

a reliability problem. In queueing and insurance problems it is often important to

have asymptotic estimates for the waiting-time probability and the ruin probability.

In Section 8.4 such estimates are derived by using renewal-theoretic methods. This

derivation illustrates the simplicity of analysis to be achieved by a general renewal-

theoretic approach to hard individual problems.

8.1 THE RENEWAL FUNCTION

Let us first repeat some definitions and results that were given earlier in Section 2.1.

The starting point is a sequence X1, X2, . . . of non-negative independent random

variables having a common probability distribution function

F(x) = P {Xk ≤ x}, x ≥ 0

for k = 1, 2, . . . . Letting µ1 = E(Xk), it is assumed that 0 < µ1 < ∞. The

random variable Xk denotes the interoccurrence time between the (k − 1)th and

kth events in some specific probability problem; see Section 2.1 for examples.

Letting

S0 = 0 and Sn =

n
∑

i=1

Xi, n = 1, 2, . . . ,

A First Course in Stochastic Models H.C. Tijms
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we have that Sn is the epoch at which the nth event occurs. For each t ≥ 0, let

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

Then the random variable N(t) represents the number of events up to time t . The

counting process {N(t), t ≥ 0} is called the renewal process generated by the

interoccurrence times X1, X2, . . . . It is said that a renewal occurs at time t if

Sn = t for some n. Since F(0) < 1 the number of renewals up to time t is finite

with probability 1 for any t ≥ 0. The renewal function M(t) is defined by

M(t) = E[N(t)], t ≥ 0.

For n = 1, 2, . . . , define the probability distribution function Fn(t) by

Fn(t) = P {Sn ≤ t}, t ≥ 0.

The function Fn(t) is the n-fold convolution of F(t) with itself. Using the important

observation that N(t) ≥ n if and only if Sn ≤ t , it was shown in Section 2.1 that

E[N(t)] =

∞
∑

n=1

Fn(t), t ≥ 0. (8.1.1)

Moreover, it was established in Section 2.1 that M(t) < ∞ for all t ≥ 0. Another

important quantity introduced in Section 2.1 is the excess or residual life at time

t . This random variable is defined by

γt = SN(t)+1 − t

and denotes the waiting time from time t onwards until the first occurrence of an

event after time t . Using Wald’s equation, it was shown in Section 2.1 that

E(γt ) = µ1{1 + M(t)} − t. (8.1.2)

The following bounds apply to the renewal function:

t

µ1

− 1 ≤ M(t) ≤
t

µ1

+
µ2

µ2
1

,

where µ2 = E(X2
1). The left inequality is an immediate consequence of (8.1.2) and

the fact that γt ≥ 0. The proof of the other inequality is demanding and lengthy.

The interested reader is referred to Lorden (1970).

8.1.1 The Renewal Equation

A useful characterization of the renewal function is provided by the so-called

renewal equation.
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Theorem 8.1.1 Assume that the probability distribution function F(x) of the inte-

roccurrence times has a probability density f (x). Then the renewal function M(t)

satisfies the integral equation

M(t) = F(t) +

∫ t

0

M(t − x)f (x) dx, t ≥ 0. (8.1.3)

This integral equation has a unique solution that is bounded on finite intervals.

Proof The proof of (8.1.3) is instructive. Fix t > 0. To compute E[N(t)], we

condition on the time of the first renewal and use that the process probabilistically

starts over after each renewal. Under the condition that X1 = x, the random variable

N(t) is distributed as 1+N(t −x) when 0 ≤ x ≤ t and N(t) is 0 otherwise. Hence,

by conditioning upon X1, we find

E[N(t)] =

∫ ∞

0

E[N(t) | X1 = x]f (x) dx =

∫ t

0

E[1 + N(t − x)]f (x) dx,

which gives (8.1.3). To prove that the equation (8.1.3) has a unique solution,

suppose that H(t) = F(t) +
∫ t

0 H(t − x)f (x) dx, t ≥ 0 for a function H(t)

that is bounded on finite intervals. We substitute this equation repeatedly into itself

and use the convolution formula

Fn(t) =

∫ t

0

F(t − x)fn−1(x) dx,

where fk(x) denotes the probability density of Fk(x). This gives

H(t) =

n
∑

k=1

Fk(t) +

∫ t

0

H(t − x)fn(x) dx, n = 1, 2, . . . . (8.1.4)

Fix now t > 0. Since H(x) is bounded on [0, t], the second term on the right-hand

side of (8.1.4) is bounded by cFn(t) for some c > 0. Since M(t) < ∞, we have

Fn(t) → 0 as n → ∞. By letting n → ∞ in (8.1.4), we find H(t) =
∑∞

k=1 Fk(t)

showing that H(t) = M(t).

Theorem 8.1.1 allows for the following important generalization.

Theorem 8.1.2 Assume that F(x) has a probability density f (x). Let a(x) be a

given, integrable function that is bounded on finite intervals. Suppose the function

Z(t), t ≥ 0, is defined by the integral equation

Z(t) = a(t) +

∫ t

0

Z(t − x)f (x) dx, t ≥ 0. (8.1.5)

Then this equation has a unique solution that is bounded on finite intervals. The

solution is given by
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Z(t) = a(t) +

∫ t

0

a(t − x)m(x) dx, t ≥ 0, (8.1.6)

where the renewal density m(x) denotes the derivative of M(x).

Proof We give only a sketch of the proof. The proof is similar to the proof of

the second part of Theorem 8.1.1. Substituting the equation (8.1.5) repeatedly into

itself yields

Z(t) = a(t) +

n
∑

k=1

∫ t

0

a(t − x)fk(x) dx +

∫ t

0

Z(t − x)fn+1(x) dx.

Next, by letting n → ∞, the desired result readily follows. It is left to the reader

to verify that the various mathematical operations are allowed.

The integral equation (8.1.5) is called the renewal equation. This important

equation arises in many applied probability problems. As an application of The-

orem 8.1.2, we derive an expression for the second moment of the excess life at

time t .

Lemma 8.1.3 Assuming that µ2 = E(X2
1) is finite,

E(γ 2
t ) = µ2[1 + M(t)] − 2µ1

[

t +

∫ t

0

M(x) dx

]

+ t2, t ≥ 0. (8.1.7)

Proof Fix t ≥ 0. Given that the epoch of the first renewal is x, the random

variable γt is distributed as γt−x when x ≤ t and γt equals x − t otherwise. Thus

E(γ 2
t ) =

∫ ∞

0

E(γ 2
t | X1 = x)f (x) dx

=

∫ t

0

E(γ 2
t−x)f (x) dx +

∫ ∞

t

(x − t)2f (x) dx.

Hence, by letting Z(t) = E(γ 2
t ) and a(t) =

∫ ∞

t
(x − t)2f (x) dx, we obtain a

renewal equation of the form (8.1.5). Next it is a question of tedious algebra to

derive (8.1.7) from (8.1.6). The details of the derivation are omitted.

8.1.2 Computation of the Renewal Function

The following tools are available for the numerical computation of the renewal

function:

(a) the series representation,

(b) numerical Laplace inversion,

(c) discretization of the renewal equation.
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In Section 2.1.1 we have already seen that the renewal function can be directly

computed from the series representation (8.1.1) when the interoccurrence times

have a gamma distribution. If the interoccurrence times have a Coxian-2 distribution

an explicit expression can be given for the renewal function; see Exercise 8.1. In

general the renewal function M(x) can be computed by numerical inversion of its

Laplace transform. The Laplace transform M∗(s) =
∫ ∞

0 e−sxM(x) dx is given by

M∗(s) =
f ∗(s)

s[1 − f ∗(s)]
,

where f ∗(s) =
∫ ∞

0 e−sxf (x) dx denotes the Laplace transform of the probabil-

ity density of the interoccurrence times; see Appendix E. How to proceed with

numerical Laplace inversion is discussed in Appendix F. In this appendix it is

also discussed how to proceed when the Laplace transform f ∗(s) is analytically

intractable.

Next we discuss a simple but useful discretization method. The renewal equation

(8.1.3) for M(t) is a special case of an integral equation which is known in numer-

ical analysis as a Volterra integral equation of the second kind. Many numerical

methods have been proposed to solve such equations. Unfortunately, these meth-

ods typically suffer from the accumulation of round-off errors when t gets larger.

However, using basic concepts from the theory of Riemann–Stieltjes integration, a

simple and direct solution method with good convergence properties can be given

for the renewal equation (8.1.3). This method discretizes the time and computes

recursively the renewal function on a grid of points. For fixed t > 0, let [0, t] be

partitioned according to 0 = t0 < t1, < . . . < tn = t , where ti = ih for a given

grid size h > 0. Put for abbreviation

Mi = M(ih), Fi = F((i − 0.5)h) and Ai = F(ih), 1 ≤ i ≤ n.

The recursion scheme for computing the Mi is as follows:

Mi =
1

1 − F1



Ai +

i−1
∑

j=1

(Mj − Mj−1)Fi−j+1 − Mi−1F1



 , 1 ≤ i ≤ n,

starting with M0 = 0. This recursion scheme is a minor modification of the Rie-

mann–Stieltjes method proposed in Xie (1989) (the original method uses Fi instead

of Ai). The recursion scheme is easy to program and gives surprisingly accurate

results. It is remarkable how well the recursion scheme is able to resist the accu-

mulation of round-off errors as t gets larger. How to choose the grid size h > 0

depends not only on the desired accuracy in the answers, but also on the shape of

the distribution function F(x) and the length of the interval [0, t]. The usual way

to find out whether the answers are accurate enough is to do the computations for

both a grid size h and a grid size h/2. In many cases of practical interest a four-

digit accuracy is obtained for a grid size h in the range 0.05 − 0.01. In Table 8.1.1

some results are given for the renewal function of the Weibull distribution, where
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Table 8.1.1 Renewal function for the Weibull distribution

c2
X

= 0.25 c2
X

= 2

t exact asymp t exact asymp

0.1 0.0061 −0.275 0.2 0.3841 0.700
0.2 0.0261 −0.175 0.5 0.7785 1.000
0.4 0.1087 0.025 1.0 1.357 1.500
0.6 0.2422 0.225 1.5 1.901 2.000
0.8 0.4141 0.425 2.0 2.428 2.500
1.0 0.6091 0.625 2.5 2.947 3.000
1.2 0.8143 0.825 3.0 3.460 3.500
1.5 1.124 1.125 3.5 3.969 4.000
2.0 1.627 1.625 5.0 5.485 5.500
2.5 2.125 2.125 7.5 7.995 8.000

a grid size h = 0.02 is used for the case c2
X = 0.25 and a grid size h = 0.01 for

the case c2
X = 2. In both cases the normalization µ1 = 1 is used for the mean

interoccurrence time. The table also gives the values of the asymptotic expansion

of M(x) that will be discussed in Section 8.2.

The discretization algorithm can also be used to solve an integral equation of the

type (8.1.5). The only change is to replace Ai = F(ih) by Ai = a(ih)+a(0)F (ih).

A more sophisticated discretization method for the renewal equation (8.1.5) is

discussed in Den Iseger et al. (1997).

Computation of the distribution of N(t)

Numerical Laplace inversion can also be used to calculate the probability distribu-

tion of N(t). Since the events {N(t) ≥ n} and {Sn ≤ t} are equivalent, we have

P {N(t) ≥ n} = Fn(t) and so

P {N(t) = n} = Fn(t) − Fn+1(t), n = 0, 1, . . . ,

where F0(t) = 1 and Fn(t) = P {Sn ≤ t} for n ≥ 1. Assuming that the probability

distribution function of the interoccurrence times X1, X2, . . . has a probability

density f (t), the probability distribution function Fn(t) of the sum X1 + · · · + Xn

has a probability density fn(t). The Laplace transform of this probability density

is given by

∫ ∞

0

e−stfn(t) dt = E
(

e−s(X1+···+Xn)
)

=
[

f ∗(s)
]n

,

where f ∗(s) =
∫ ∞

0 e−sxf (x) dx denotes the Laplace transform of f (x). Using the

relation (E.4) in Appendix E, we thus find
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∫ ∞

0

e−stP {N(t) = n} dt =

[

f ∗(s)
]n

−
[

f ∗(s)
]n+1

s
, n = 0, 1, . . .

Hence for fixed n the probability P {N(t) = n} can be calculated by numerical

Laplace inversion. Another interesting question is how to compute the probability

lim
t→∞

P {N(t + D) − N(t) = n}, n = 0, 1, . . .

for a given constant D. Denote this probability by an(D). Using the limiting dis-

tribution P {γt ≤ x} from Theorem 8.2.5 in the next subsection and the relations

(E.4) and (E.6) in Appendix E, it is not difficult for the reader to verify that

∫ ∞

0

e−sxa0(x) dx =
1

s
−

1 − f ∗(s)

µ1s2
(8.1.8)

∫ ∞

0

e−sxan(x) dx =

(

1 − f ∗(s)

µ1s

) (

[f ∗(s)]n−1 − [f ∗(s)]n

s

)

, n ≥ 1. (8.1.9)

This is a useful result. For example, the probability distribution {an(D)} gives

the limiting distribution of the number of busy servers in the infinite-server queue

with renewal input and deterministic service times (GI /D/∞ queue). This result

is easily proved. Since each customer gets immediately assigned a free server upon

arrival and the service time of each customer equals the constant D, the only

customers present at time t + D are those who have arrived in (t, t + D].

8.2 ASYMPTOTIC EXPANSIONS

In Section 2.2 we proved a law of large numbers for the process {N(t)}:

lim
t→∞

N(t)

t
=

1

µ1

with probability 1. (8.2.1)

The proof was elementary. It is tempting to conclude from (8.2.1) that M(t)/t →

1/µ1 as t → ∞. Although this result is correct, it cannot be directly concluded

from (8.2.1). The reason is that the random variable N(t)/t need not be bounded in

t . For a sequence of unbounded random variables Yn it is not necessarily true that

limn→∞ E(Yn) = E(Y) when Yn converges to Y with probability 1 as n → ∞.

Consider the counterexample in which Yn = 0 with probability 1−1/n and Yn = n

with probability 1/n. Then E(Yn) = 1 for all n, whereas Yn converges to 0 with

probability 1.

Theorem 8.2.1 (elementary renewal theorem)

lim
t→∞

M(t)

t
=

1

µ1

.
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Proof The proof will be based on the relation (8.1.2) for the excess variable. By

the relation (8.1.2), we have µ1[1 +M(t)] − t ≥ 0 and so we obtain the inequality

M(t)

t
≥

1

µ1

−
1

t
for all t > 0. (8.2.2)

Next we prove that for any constant c > 0,

M(t)

t
≤

1

µ(c)
+

1

t

(

c

µ(c)
− 1

)

for all t > 0. (8.2.3)

where µ(c) =
∫ c

0 [1 − F(x)] dx. To prove this inequality, fix c > 0 and consider

the renewal process {N(t)} associated with the sequence {Xn}, where

Xn =

{

Xn if Xn ≤ c,

c if Xn > c.

Since N(t) ≤ N(t), we have M(t) ≤ M(t) for all t ≥ 0. For the renewal process

{N(t)}, the excess life γ t satisfies γ t ≤ c for all t . Since E(X1) =
∫ ∞

0 P {X1 >

x} dx, we have

E(X1) =

∫ c

0

{1 − F(x)} dx = µ(c).

Thus, by (8.1.2),

µ(c)
[

M(t) + 1
]

− t ≤ c, t ≥ 0.

This inequality in conjunction with M(t) ≤ M(t) yields the inequality (8.2.3). The

remainder of the proof is simple. Letting t → ∞ in (8.2.2) and (8.2.3) gives

1

µ(c)
≥ lim

t→∞
sup

M(t)

t
≥ lim

t→∞
inf

M(t)

t
≥

1

µ1

for any constant c > 0. Next, by letting c → ∞ and noting that µ(c) → µ1 as

c → ∞, we obtain the desired result.

So far our results have not required any assumption about the distribution func-

tion F(x) of the interoccurrence times. However, in order to characterize the

asymptotic behaviour of the solution to the renewal equation it is required that

the distribution function F(x) is non-arithmetic. The distribution function F is

called non-arithmetic if the mass of F is not concentrated on a discrete set of

points 0, λ, 2λ, . . . for some λ > 0. A distribution function that has a positive

density on some interval is non-arithmetic. In the discussion below we make for

convenience the even stronger assumption that F(x) has a probability density. To

establish the limiting behaviour of the solution to the renewal equation (8.1.5), we

need also to impose on the function a(x) a stronger condition than integrability. It
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must be required that the function a(x) is directly Riemann integrable. Direct Rie-

mann integrability can be characterized in several ways. A convenient definition is

the following one. A function a(x) defined on [0, ∞) is said to be directly Riemann

integrable when a(x) is almost everywhere continuous and
∑∞

n=1 an < ∞, where

an is the supremum of |a(x)| on the interval [n − 1, n). A sufficient condition

for a function a(x) to be directly Riemann integrable is that it can be written as

a finite sum of monotone, integrable functions. This condition suffices for most

applications.

Theorem 8.2.2 (key renewal theorem) Assume F(x) has a probability density

f (x). For a given function a(t) that is bounded on finite intervals, let the function

Z(t) be defined by the renewal equation

Z(t) = a(t) +

∫ t

0

Z(t − x)f (x) dx, t ≥ 0.

Suppose that a(t) is directly Riemann integrable. Then

lim
t→∞

Z(t) =
1

µ1

∫ ∞

0

a(x) dx.

The proof of this theorem is demanding and will not be given. The interested reader

is referred to Feller (1971). Next we derive a number of useful results from the

key renewal theorem.

Theorem 8.2.3 Suppose F(x) is non-arithmetic with µ2 = E(X2
1) < ∞. Then

lim
t→∞

[

M(t) −
t

µ1

]

=
µ2

2µ2
1

− 1, (8.2.4)

lim
t→∞

[

∫ t

0

M(x) dx −

{

t2

2µ1

+

(

µ2

2µ2
1

− 1

)

t

}]

=
µ2

2

4µ3
1

−
µ3

6µ2
1

, (8.2.5)

provided that µ3 = E(X3
1) < ∞.

Proof The asymptotic result M(t)/t → 1/µ1 as t → ∞ suggests that, for some

constant c, M(t) ≈ t/µ1 + c for t large. Let us therefore define the function

Z0(t) by

Z0(t) = M(t) −
t

µ1

, t ≥ 0.

Assuming for ease that F(x) has a density f (x), we easily deduce from (8.1.3)

that

Z0(t) = a(t) +

∫ t

0

Z0(t − x)f (x) dx, t ≥ 0, (8.2.6)
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where

a(t) = F(t) −
t

µ1

+
1

µ1

∫ t

0

(t − x)f (x) dx, t ≥ 0.

Writing
∫ t

0 (t − x)f (x) dx =
∫ ∞

0 (t − x)f (x) dx −
∫ ∞

t
(t − x)f (x) dx, we find

a(t) = −[1 − F(t)] +
1

µ1

∫ ∞

t

(x − t)f (x) dx.

This shows that a(t) is the sum of two monotone, integrable functions. We have

∫ ∞

0

a(t) dt = −

∫ ∞

0

[1 − F(t)] dt +
1

µ1

∫ ∞

0

dt

∫ ∞

t

(x − t)f (x) dx

= −µ1 +
1

µ1

∫ ∞

0

f (x) dx

∫ x

0

(x − t) dt

= −µ1 +
1

µ1

∫ ∞

0

1

2
x2f (x) dx

= −µ1 +
µ2

2µ1

.

By applying the key renewal theorem to (8.2.6), the result (8.2.4) follows. The

proof of (8.2.5) proceeds along the same lines. The relation (8.2.4) suggests that,

for some constant c,

∫ t

0

M(x) dx ≈
t2

2µ1

+ t

(

µ2

2µ2
1

− 1

)

+ c for t large.

To determine the constant c, define the function

Z1(t) =

∫ t

0

M(x) dx −

[

t2

2µ1

+ t

(

µ2

2µ2
1

− 1

)]

, t ≥ 0.

By integrating both sides of the equation (8.1.3) over t and interchanging the order

of integration, we get the following renewal equation for the function U(x) =
∫ x

0 M(t) dt :

U(t) =

∫ t

0

F(x) dx +

∫ t

0

U(t − x)f (x) dx, t ≥ 0.

From this renewal equation, we obtain after some algebra

Z1(t) = a(t) +

∫ t

0

Z1(t − x)f (x) dx, t ≥ 0, (8.2.7)
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where

a(t) =
µ2

2µ2
1

∫ ∞

t

{1 − F(x)} dx

+
1

µ1

[

t

∫ ∞

t

{1 − F(x)} dx −

∫ ∞

t

x{1 − F(x)} dx

]

.

The function a(t) is the sum of two monotone functions. Each of the two terms is

integrable. Using formula (A.8) in Appendix A, we find after some algebra

∫ ∞

0

a(t) dt =
µ2

2

4µ2
1

−
µ3

6µ1

.

Next, by applying the key renewal theorem to (8.2.7), we obtain (8.2.5).

The asymptotic expansions in Theorem 8.2.3 are very useful. They are accurate

for practical purposes already for moderate values of t . Asymptotic expansions for

the second moment of N(t) are discussed in Exercise 8.3. An immediate conse-

quence of the relations (8.1.2) and (8.1.7) and Theorem 8.2.3 is the following result

for the excess life γt .

Corollary 8.2.4 Suppose F(x) is non-arithmetic. Then

lim
t→∞

E(γt ) =
µ2

2µ1

and lim
t→∞

E(γ 2
t ) =

µ3

3µ1

.

Next we discuss the limiting distribution of the excess life γt for t → ∞.

Theorem 8.2.5 Suppose F(x) is non-arithmetic. Then

lim
t→∞

P {γt ≤ x} =
1

µ1

∫ x

0

{1 − F(y)} dy, x ≥ 0. (8.2.8)

Proof For fixed u ≥ 0, define Z(t) = P {γt > u}, t ≥ 0. By conditioning on the

time of the first renewal, we derive a renewal equation for Z(t). Since after each

renewal the renewal process probabilistically starts over, it follows that

P {γt > u | X1 = x} =







P {γt−x > u} if x ≤ t,

0 if t < x ≤ t + u,

1 if x > t + u.

By the law of total probability,

P {γt > u} =

∫ ∞

0

P {γt > u | X1 = x}f (x) dx.

This yields the renewal equation

Z(t) = 1 − F(t + u) +

∫ t

0

Z(t − x)f (x) dx, t ≥ 0.
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The function a(t) = 1 − F(t + u), t ≥ 0 is monotone and integrable. By applying

the key renewal theorem it now follows that

lim
t→∞

Z(t) =
1

µ1

∫ ∞

0

{1 − F(y + u)} dy =
1

µ1

∫ ∞

u

{1 − F(y)} dy,

yielding the desired result by using the fact that
∫ ∞

0 {1 − F(y)} dy = µ1.

In many practical applications the asymptotic expansion (8.2.8) gives a useful

approximation to the distribution of γt already for moderate values of t . The limiting

distribution of the excess life is called the equilibrium excess distribution and has

applications in a wide variety of contexts. The equilibrium excess distribution can

be given the following interpretation. Suppose that an outside person observes the

state of the process at an arbitrarily chosen point in time when the process has

been in operation for a very long time. Assuming that the outside person has no

information about the past history of the process, the best prediction the person

can give about the residual life of the item in use is according to the equilibrium

excess distribution.

The asymptotic expansions in Theorem 8.2.3 will be illustrated by the next

example.

Example 8.2.1 The D-policy for controlling the workload

Batches of fluid material arrive at a processing plant according to a Poisson process

with rate λ. The batch amounts are independent random variables having a contin-

uous probability distribution with finite first two moments µ1 and µ2. It is assumed

that λµ1 < 1. The unprocessed material is temporarily stored in an infinite-capacity

buffer. If the processing plant is open, the material is processed at a unity rate.

The plant is controlled by the so-called D-policy. If the inventory of unprocessed

material becomes zero, the plant is temporarily closed down. The plant is reopened

as soon as the buffer content exceeds the threshold value D. The set-up time to

restart the processing is zero. The following costs are incurred. A holding cost at

rate hx is incurred when the buffer content is x. A fixed set-up cost of K > 0 is

incurred each time the plant is reopened. What value of the control parameter D

minimizes the long-run average cost per time unit?

Preliminary analysis

To answer the above question, we first derive some preliminary results for the

M/G/1 queue. Note that the control problem can be seen as an M/G/1 queue in

which the workload is controlled. The workload is defined as the remaining amount

of work for the server. Define the basic functions

t (x) = the expected amount of time until the workload is zero

when the current workload is x and the server is working
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and

h(x) = the expected holding costs incurred until the workload is zero

when the current workload is x and the server is working.

The functions t (x) and h(x) are given by

t (x) =
x

1 − λµ1

and h(x) =
h

2(1 − λµ1)

(

x2 +
λxµ2

1 − λµ1

)

(8.2.9)

for x ≥ 0. The proof is as follows. By conditioning on the number of arrivals

during a time x, it follows that

t (x) = x +

∞
∑

n=1

e−λx (λx)n

n!
tn, x ≥ 0,

where tn is defined as the expected amount of time needed to empty the system

when service is begun with n batches (= customers) present. Let us also define hn

as the expected holding cost incurred during the time needed to empty the system

when service is begun with n batches present. Then, using relation (1.1.8),

h(x) =
h

2
x2 +

∞
∑

n=1

e−λx (λx)n

n!

[

h

n
∑

k=1

(

x −
kx

n + 1

)

µ1 + hn

]

=
h

2
x2 + h

λ

2
x2µ1 +

∞
∑

n=1

e−λx (λx)n

n!
hn, x ≥ 0.

The formula tn = nµ1/(1−λµ1) was obtained in Section 2.6. Substituting this into

the above relation for t (x) gives the first relation in (8.2.9). By the same arguments

as used in Section 2.6 to obtain tn, we find

hn =

n
∑

k=1

{h1 + (n − k)t1hµ1} = nh1 +
1

2
hµ1n(n − 1)t1.

Substituting this into the relation for h(x) gives

h(x) =
h

2
x2 + h

λ

2
x2µ1 + λxh1 +

1

2
hµ1(λx)2t1, x ≥ 0.

Integrating both sides of this equation over the probability density f (x) of the

batch size and noting that h1 =
∫ ∞

0 h(x)f (x) dx, we find an explicit expression

for h1 and next we obtain the second relation in (8.2.9). The details are left to the

reader.
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Analysis of the D-policy

For a given D-policy the stochastic process describing jointly the inventory of

unprocessed material and the status of the plant (on or off) is regenerative. The

epochs at which the plant is closed down are regeneration epochs. Define a cycle

as the time elapsed between two consecutive shutdowns. The long-run average cost

per time unit equals the value of E(cost incurred during one cycle) divided by the

value of E(expected length of one cycle). To find these two expected values, we

define the functions

α(x) = E(time until the buffer content exceeds the level D when the
current buffer content is D − x and there is no processing),

β(x) = E(holding costs incurred until the buffer content exceeds the level D
when the current buffer content is D − x and there is no processing)

for 0 ≤ x ≤ D. In particular, α(D) and β(D) denote the expected length of the

idle period in a cycle and the expected holding costs during that idle period. Also,

define the random variable γD as the excess of the inventory over the level D

when the plant is reopened. Then E
[

t (D + γD)
]

and E
[

h(D + γD)
]

represent

the expected length of the busy period in a cycle and the expected holding cost

incurred during that busy period. Thus, under a given D-policy,

the long-run average cost per time unit =
β(D) + K + E[h(D + γD)]

α(D) + E[t (D + γD)]

with probability 1. It remains to find α(D) and β(D). By conditioning on the batch

size,

α(x) =
1

λ
+

∫ x

0

α(x − y)f (y) dy, 0 ≤ x ≤ D,

β(x) =
(D − x)h

λ
+

∫ x

0

β(x − y)f (y) dy, 0 ≤ x ≤ D,

where f (y) denotes the density of the batch size. Let M(x) denote the renewal

function in the renewal process in which the interoccurrence times have the batch-

size density f (x). Denote by m(x) the density of M(x). Then it follows from

Theorem 8.1.2 that

α(x) =
1

λ
+

∫ x

0

1

λ
m(y) dy =

1

λ
{1 + M(x)}, 0 ≤ x ≤ D

β(x) =
(D − x)h

λ
+

h

λ

∫ x

0

(D − x + y)m(y) dy

=
(D − x)h

λ
+

h

λ
DM(x) −

h

λ

∫ x

0

M(y) dy, 0 ≤ x ≤ D.
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Table 8.2.1 Approximate and exact values for D

λ = 0.5 λ = 0.8

c2
B

Dapp Dopt error (%) Dapp Dopt error (%)

1
3

2.911 2.911 0.00 2.214 2.214 0.00

1
2

2.847 2.847 0.00 2.155 2.155 0.00

1 1
2

2.259 2.298 0.13 1.545 1.629 0.24

3 1.142 1.588 11.9 0.318 1.049 15.6

Using this result and the formulas (8.2.9), (8.1.7) and (8.1.2), the above expression

for the long-run average cost can be worked out as

g(D) =
Kλ(1 − λµ1) − h

[

D +
∫ D

0 M(y) dy
]

1 + M(D)
+ hD +

hλµ2

2(1 − λµ1)
.

The function g(D) is minimal for the unique solution of the equation

D +

∫ D

0

M(y) dy =
Kλ(1 − λµ1)

h
. (8.2.10)

In general it is computationally demanding to find an exact solution of this equation.

Except for special cases, one needs numerical Laplace inversion to compute
∫ x

0 M(y) dy; see Appendix F. However, an approximate solution to (8.2.10) is

easily calculated when it is assumed that the optimal value of D is sufficiently

large compared to µ1. Then, by Theorem 8.2.3,

∫ D

0

M(y) dy ≈
D2

2µ1

+ D

(

µ2

2µ2
1

− 1

)

+
µ2

2

4µ3
1

−
µ3

6µ2
1

.

Table 8.2.1 gives for several examples the optimal value Dopt and the approximate

value Dapp together with the relative error 100×
[

g(Dapp) − g(Dopt )/g(Dopt )
]

. In

all examples we take µ1 = 1, h = 1 and K = 25. The arrival rate λ is 0.5 and 0.8.

The squared coefficient of variation c2
B of the batch size is 1

3
, 1

2
, 1 1

2
and 3, where

the first two values correspond to an Erlang distribution and the latter two values

to an H2 distribution with balanced means. Can you give a heuristic explanation

why the optimal value of D decreases when the coefficient of variation of the batch

size increases?

8.3 ALTERNATING RENEWAL PROCESSES

An alternating renewal process is a two-state process alternating between an on-

state and an off-state. The on-times and the off-times are independent and identically

distributed random variables. The two sequences of on-times and off-times are



322 ADVANCED RENEWAL THEORY

mutually independent. For any s > 0, let

Pon(s) = P {the process is in the on-state at time s}

and

U(s) = P {the amount of time the process is in the on-state during [0, s]}.

Theorem 8.3.1 Suppose that the on-times and off-times have exponential distri-

butions with respective means 1/α and 1/β. Then, assuming that an on-time starts

at epoch 0,

Pon(s) =
β

α + β
+

α

α + β
e−(α+β)s , s ≥ 0 (8.3.1)

and

P {U(s) ≤ x} =

∞
∑

n=0

e−β(s−x)

[

β(s − x)

n!

]n
[

1 −

n
∑

k=0

e−αx (αx)k

k!

]

, 0 ≤ x < s.

(8.3.2)

The distribution function P {U(s) ≤ x} has a mass of e−αs at x = s.

Proof Let Poff(s) = P {the process is in the off-state at time s}. By considering

what may happen in the time interval (s, s+�s] with �s small, it is straightforward

to derive the linear differential equation

P ′
on(s) = βPoff(s) − αPon(s), s > 0.

Since Poff(s) = 1−Pon(s), we find P ′
on(s) = β−(α+β)Pon(s), s > 0. The solution

of this equation is given by (8.3.1). The proof of (8.3.2) is more complicated. The

random variable U(s) is equal to s only if the first on-time exceeds s. Hence

P {U(s) ≤ x} has mass e−αs at x = s. Now fix 0 ≤ x < s. By conditioning on the

lengths of the first on-time and the first off-time, we obtain

P {U(s) ≤ x} =

∫ x

0

αe−αy dy

∫ ∞

0

P {U(s − y − u) ≤ x − y}βe−βu du.

Noting that P {U(s − y − u) ≤ x − y} = 1 if s − y − u ≤ x − y, we next obtain

P {U(s) ≤ x} = e−β(s−x)(1 − e−αx)

+

∫ x

0

αe−αy dy

∫ s−x

0

P {U(s − y − u) ≤ x − y}βe−βu du.

Substituting this equation repeatedly into itself leads to the desired result (8.3.2).
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Corollary 8.3.2 Suppose that the on-times and off-times have exponential distri-

butions with respective means 1/α and 1/β. Then, for any t0 > 0 and 0 ≤ x < t0,

lim
t→∞

P {U(t + t0) − U(t) ≤ x}

=
β

α + β

∞
∑

n=0

e−β(t0−x) [β(t0 − x)]n

n!

[

1 −

n
∑

k=0

e−αx (αx)k

k!

]

+
α

α + β

∞
∑

n=0

e−β(t0−x) [β(t0 − x)]n

n!

[

1 −

n−1
∑

k=0

e−αx (αx)k

k!

]

. (8.3.3)

Proof Since limt→∞ Pon(t) = β/(α + β), it follows that

lim
t→∞

P {U(t + t0) − U(t) ≤ x}

=
β

α + β
P {U(t0) ≤ x}

+
α

α + β

[∫ t0−x

0

P {U(t0 − y) ≤ x}βe−βy dy +

∫ ∞

t0−x

βe−βy dy}

]

.

Next it is a matter of algebra to obtain the desired result from (8.3.2).

Exercises 8.4 to 8.8 give results for the alternating renewal process with non-

exponential on- and off-times. The alternating renewal process is particularly useful

in reliability applications. This is illustrated by the next example.

Example 8.3.1 The 1-out-of-2 reliability model with repair

The 1-out-of-2 reliability model deals with a repairable system that has one operat-

ing unit and one cold standby unit as protection against failures. The lifetime of an

operating unit has a general probability distribution function FL(x) having density

fL(x) with mean µL. If the operating unit fails, it is replaced immediately by the

standby unit if available. The failed unit is sent to a repair facility and immediately

enters repair if the facility is idle. Only one unit can be in repair at a time. The

repair time of a failed unit has a general probability distribution function GR(x)

with mean µR . It is assumed that µR << µL. The operating times and repair times

are mutually independent. The system is down when both units are broken down

and is up otherwise.

We are interested in the probability distribution function

A(x, t0) = lim
t→∞

P {the total uptime in (t, t + t0] is ≤ x}

for an interval of length t0. In other words, the performance measure is the prob-

ability distribution function of the total amount of time the system is available

during a time interval of given length t0 when the system has reached statistical
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equilibrium. An approximate analysis will be given. The analysis is based on the

following ideas:

1. Compute the means of the up- and down-periods.

2. Approximate the stochastic process of the up- and down-periods by an alter-

nating renewal process in which both the up-periods and the down-periods are

independent, exponential random variables and the up-periods are independent

of the down-periods.

In view of the assumption µR << µL, the occurrence of a system failure is a rare

event. This justifies the approximate step of assuming an exponential distribution

for the up-period; see also the discussion on rare events at the end of Section 2.2.

A similar justification for approximating the distribution of the downtime by an

exponential distribution cannot be given. However, in view of the fact that the

uptime dominates the downtime, it is reasonable to expect that the distributional

form of the downtime has only a minor effect on the accuracy of the approximation.

The process alternates between the up-state and the down-state. With the possible

exception of the first up-period, the up-periods start when a unit is put into operation

while the other unit enters repair. The system regenerates itself at the beginning

of those up-periods. We assume that epoch 0 is such a regeneration epoch. Let the

random variables τup and τdown denote the lengths of an up-period and a down-

period. Denote by the sequences {Li} and {Ri} the successive operating times and

the successive repair times. Then

E(τup) = E

[

N
∑

i=1

Li

]

,

where N = min{n ≥ 1 | Rn > Ln}. The event {N = n} is independent of

Ln+1, Ln+2, . . . for any n ≥ 1. Thus, by Wald’s equation, E(τup) = E(N)µL. Let

q = P {R > L}

where the random variables L and R denote the operating time and the repair time

of a unit. Since P {N = n} = (1 − q)n−1q for n ≥ 1, we find

E(τup) =
µL

q
.

By conditioning on the lifetime, we have

q =

∫ ∞

0

{1 − GR(x)}fL(x) dx.

To find E(τdown), note that E(τdown) = E(R − L | R > L). Using the formula
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(A.7) in Appendix A, we find

E(τdown) =

∫ ∞

0

P {R − L > t | R > L} dt

=
1

q

∫ ∞

0

[∫ ∞

0

{1 − GR(x + t)}fL(x) dx

]

dt

=
1

q

∫ ∞

0

fL(x)

[∫ ∞

x

{1 − GR(u)} du

]

dx,

where the latter equality uses an interchange of the order of integration. Interchang-

ing again the order of integration, we next find that

E(τdown) =
1

q

∫ ∞

0

{1 − GR(u)}FL(u) du.

We are now in a position to calculate an approximation for the probability dis-

tribution function of the total uptime in a time interval of given length t0 when

the system has reached statistical equilibrium. An approximation to the desired

probability A(x, t0) is obtained by applying formula (8.3.3) in which 1/α and 1/β

are replaced by E(τup) and E(τdown) respectively. The numerical evaluation of the

right-hand side of (8.3.3) is easy, since the infinite series converges rapidly and

involves only Poisson probabilities. Numerical integration is required to calculate

the integrals for E(τup) and E(τdown). It remains to investigate the quality of the

approximation for the probabilities A(x, t0). Several assumptions have been made

to get the approximation. The most serious weakness of the approximation is the

assumption that the off-time is approximately exponentially distributed. Neverthe-

less it turns out that the approximation performs very well for practical purposes.

Denoting by Dx the probability that the fraction of time the system is unavailable

in the time interval of length t0 is more than x%, Table 8.3.1 gives the approximate

and exact values of Dx for several values of x. Note that Dx = A(1− t0x/100, t0).

Table 8.3.1 The unavailability probabilities

c2
L

= 0.5 c2
L

= 1

D0 D2 D5 D10 D0 D2 D5 D10

c2
R

= 0 app 0.044 0.030 0.016 0.006 0.117 0.086 0.054 0.024

sim 0.043 0.033 0.020 0.005 0.108 0.091 0.066 0.027

c2
R

= 0.5 app 0.051 0.040 0.028 0.015 0.117 0.095 0.068 0.040

sim 0.050 0.040 0.029 0.016 0.109 0.092 0.070 0.042

c2
R

= 1 app 0.056 0.047 0.036 0.024 0.117 0.099 0.077 0.050

sim 0.055 0.047 0.036 0.024 0.110 0.094 0.074 0.050

c2
R

= 4 app 0.076 0.071 0.063 0.053 0.117 0.108 0.096 0.079

sim 0.075 0.069 0.061 0.050 0.112 0.101 0.089 0.072
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The exact values of Dx are obtained by computer simulation. The length of the

simulation run has been taken long enough to ensure that the half-width of the

95% confidence interval for the simulated probability is no more than 0.001. The

lifetime L of a unit has a Weibull distribution with mean E(L) = 1 and the repair

time R of a unit has a gamma distribution with mean E(R) = 0.125. The squared

coefficients of variation of the lifetime and the repair time are c2
L = 0.5, 1 and

c2
R = 0, 0.5, 1, 4. For the length of the interval we have taken t0 = 1.

8.4 RUIN PROBABILITIES

In many applied probability problems asymptotic expansions provide a simple alter-

native to computationally intractable solutions. A nice example is the ruin proba-

bility in risk theory. Suppose claims arrive at an insurance company according to

a Poisson process {N(t)} with rate λ. The successive claim amounts X1, X2, . . .

are positive, independent random variables having a common probability distri-

bution function B(x) with finite mean µ. The claim amounts are independent of

the arrival process. In the absence of claims, the company’s reserve increases at a

constant rate of σ > 0 per time unit. It is assumed that σ > λµ, i.e. the average

premium received per time unit is larger than the average claim rate. Denote by

the compound Poisson variable

X(t) =

N(t)
∑

k=1

Xk

the total amount claimed up to time t . If the company’s initial reserve is x > 0,

then the company’s total reserve at time t is x + σ t − X(t). We say that a ruin

occurs at time t if x + σ t − X(t) < 0 and x + σu − X(u) ≥ 0 for u < t . Let

Q(x) = P {X(t) > x + σ t for some t ≥ 0}.

Then Q(x) is the probability that a ruin will ever occur when the initial capital is

x. Since a ruin can occur only at the claim epochs, we can equivalently write

Q(x) = P







k
∑

j=1

Xj − σTk > x for some k ≥ 1







, (8.4.1)

where Tk is the epoch at which the kth claim occurs for k = 1, 2, . . . . We are

interested in the asymptotic behaviour of Q(x) for large x.

The ruin probability Q(x) arises in a variety of contexts. As another example

consider a production/inventory situation in which demands for a given product

arrive according to a Poisson process. The successive demands are independent

and identically distributed random variables. On the other hand, inventory replen-

ishments of the product occur at a constant rate of σ > 0 per time unit. In this

context, the ruin probability Q(x) represents the probability that a shortage will

ever occur when the initial inventory is x.
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The ruin probability as waiting-time probability

A less obvious context in which the ruin probability appears is the M/G/1 queue.

Customers arrive at a single server station according to a Poisson process with rate

λ. The service or work requirements of the successive customers are independent

random variables having a common probability distribution function B(x) with

finite mean µ. The server works at a rate of σ > 0. It is assumed that σ > λµ.

For n = 1, 2, . . . define the random variable Dn by

Dn = the delay in queue of the nth customer (excluding service time).

Assuming that service is in order of arrival, limn→∞ P {Dn ≤ x} exists for all x.

Moreover, letting

Wq(x) = lim
n→∞

P {Dn ≤ x},

it holds that

Wq(x) = 1 − Q(σx), x ≥ 0. (8.4.2)

A proof of these statements goes as follows. Let τn denote the time between the

arrival of the nth and (n + 1)th customers for n = 1, 2, . . . with the convention

that the 0th customer arrives at epoch 0. Then

Dn+1 =

{

Dn + Xn/σ − τn if Dn + Xn/σ − τn ≥ 0,

0 if Dn + Xn/σ − τn < 0.

Hence, letting Un = Xn/σ − τn for n ≥ 1, we have

Dn+1 = max(0, Dn + Un).

Substituting this equation in itself, it follows that

Dn+1 = max{0, Un + max(0, Dn−1 + Un−1)}

= max(0, Un, Un + Un−1 + Dn−1), n ≥ 1.

By a repeated application of this equation and by D1 = 0, we find

max(0, Un, Un + Un−1 + Dn−1)

= max(0, Un, Un + Un−1, . . . , Un + Un−1 + · · · + U1), n ≥ 1.

Since the random variables U1, U2, . . . are independent and identically distributed,

(Un, . . . , U1) has the same joint distribution as (U1, . . . , Un). Thus

Dn+1 = max(0, U1, U1 + U2, . . . , U1 + · · · + Un), n ≥ 1.
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This implies that

P {Dn+1 > x} = P







k
∑

j=1

Uj > x for some 1 ≤ k ≤ n







, x ≥ 0.

Since limn→∞ P {En} = P {limn→∞ En} for any monotone sequence {En} of

events, it follows that limn→∞ P {Dn > x} exists for all x ≥ 0. Moreover,

lim
n→∞

P {Dn > x} = P







k
∑

j=1

Xj − σ

k
∑

j=1

τj > σx for some k ≥ 1







, x ≥ 0.

Together this relation and (8.4.1) prove the result (8.4.2).

A renewal equation for the ruin probability

We now turn to the determination of the ruin probability Q(x). For that purpose,

we derive first an integro-differential equation for Q(x). For ease of presentation

we assume that the probability distribution function B(x) of the claim sizes has a

probability density b(x). Fix x > 0. To compute Q(x − �x) with �x small, we

condition on what may happen in the first �t = �x/σ time units. In the absence

of claims, the company’s capital grows from x − �x to x. However, since claims

arrive according to a Poisson process with rate λ, a claim occurs in the first �x/σ

time units with probability λ�x/σ + o(�x), in which case the company’s capital

becomes x − S if S is the size of that claim. A ruin occurs if S > x. Thus, by

conditioning, we get for fixed x > 0,

Q(x − �x) =

(

1 −
λ�x

σ

)

Q(x) +
λ�x

σ

∫ ∞

x

b(y) dy

+
λ�x

σ

∫ x

0

Q(x − y)b(y) dy + o(�x).

Subtracting Q(x) from both sides of this equation, dividing by h = −�x and

letting �x → 0, we obtain the integro-differential equation

Q′(x) = −
λ

σ
{1 − B(x)} +

λ

σ
Q(x) −

λ

σ

∫ x

0

Q(x − y)b(y) dy, x > 0. (8.4.3)

Equation (8.4.3) can be converted into an integral equation of the renewal type. To

do so, note that

d

dx

∫ x

0

Q(x − y){1 − B(y)} dy

= Q(0){1 − B(x)} +

∫ x

0

Q′(x − y){1 − B(y)} dy
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= Q(0){1 − B(x)} − Q(x − y)}{1 − B(y)}

∣

∣

∣

x

0
−

∫ x

0

Q(x − y)b(y) dy

= Q(x) −

∫ x

0

Q(x − y)b(y) dy.

Hence (8.4.3) can be rewritten as

Q′(x) = −
λ

σ
{1 − B(x)} +

λ

σ

d

dx

∫ x

0

Q(x − y){1 − B(y)} dy (8.4.4)

for x > 0. Integrating both sides of this equation gives

Q(x) = Q(0) −
λ

σ

∫ x

0

{1 − B(y)} dy +
λ

σ

∫ x

0

Q(x − y){1 − B(y)} dy (8.4.5)

for all x ≥ 0. The unknown constant Q(0) is easily determined by taking the

Laplace transforms of both sides of (8.4.5). Using the relations (E.5), (E.6) and

(E.7) in Appendix E and noting limx→∞ Q(x) = 0, it is readily verified that

Q(0) = λµ/σ,

where µ = E(X) is the mean claim size. The details are left to the reader. Hence

the integro-differential equation (8.4.3) is equivalent to

Q(x) = a(x) +

∫ x

0

Q(x − y)h(y) dy, x ≥ 0, (8.4.6)

where the functions a(x) and h(x) are given by

a(x) = Q(0) −
λ

σ

∫ x

0

{1 − B(y)} dy and h(x) =
λ

σ
{1 − B(x)}, x ≥ 0.

The equation (8.4.6) has the form of a standard renewal equation except that the

function h(x), x ≥ 0, is not a proper probability density. It is true that the function

h is non-negative, but

∫ ∞

0

h(x) dx =
λ

σ

∫ ∞

0

{1 − B(x)} dx =
λµ

σ
< 1.

Thus h is the density of a distribution whose total mass is less than 1 with a defect

of 1−λµ/σ . Equation (8.4.6) is called a defective renewal equation.

Asymptotic expansion for the ruin probability

A very useful asymptotic expansion of Q(x) can be given when it is assumed that

the probability density of the claim size (service time) is not heavy-tailed. To be

more precise, the following assumption is made.
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Assumption 8.4.1 There are positive numbers a and b such that the complemen-

tary distribution function 1 − B(y) ≤ ae−by for all y sufficiently large.

This assumption excludes probability distributions with long tails like the log-

normal distribution. The assumption implies that the number s0 defined by

s0 = sup

{

s |

∫ ∞

0

esy{1 − B(y)} dy < ∞

}

exists and is positive (possibly s0 = ∞). In addition to Assumption 8.4.1 we make

the technical assumption

lim
s→s0

λ

σ

∫ ∞

0

esy{1 − B(y)} dy > 1.

Then it is readily verified that the equation

λ

σ

∫ ∞

0

eδy{1 − B(y)} dy = 1 (8.4.7)

has a unique solution δ on the interval (0, s0). Next we convert the defective

renewal equation (8.4.6) into a standard renewal equation. This enables us to apply

the key renewal theorem to obtain the asymptotic behaviour of Q(x). Let

h∗(x) =
λ

σ
eδx{1 − B(x)}, x ≥ 0.

Then h∗(x), x ≥ 0 is a probability density with finite mean. Multiplying both sides

of equation (8.4.6) by eδx and defining the functions

Q∗(x) = eδxQ(x) and a∗(x) = eδxa(x), x ≥ 0,

we find that the defective renewal function (8.4.6) is equivalent to

Q∗(x) = a∗(x) +

∫ x

0

Q∗(x − y)h∗(y) dy, x ≥ 0. (8.4.8)

This is a standard renewal equation to which we can apply the key renewal theorem.

The function a∗(x) is directly Riemann integrable as can be shown by verifying

that |a∗(x)| ≤ ce−(a−δ)x as x → ∞ for finite constants c > 0 and a > δ. Using

definition (8.4.7) for δ and the relation
∫ ∞

0 {1 − B(y)} dy = µ, we find

∫ ∞

0

a∗(x) dx =

∫ ∞

0

eδx

[

λ

σ

∫ ∞

x

{1 − B(y)} dy

]

dx

=
λ

σ

∫ ∞

0

{1 − B(y)}

[∫ y

0

eδx dx

]

dy

=
λ

δσ

∫ ∞

0

(

eδy − 1
)

{1 − B(y)} dy =
1 − ρ

δ
,
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where the load factor ρ is defined by ρ = λµ/σ . Applying the key renewal theorem

from Section 8.2 to the renewal equation (8.4.8), we find

lim
x→∞

Q∗(x) = γ,

where the constant γ is given by

γ =
(1 − ρ)

δ

[

λ

σ

∫ ∞

0

yeδy{1 − B(y)} dy

]−1

.

This yields the asymptotic expansion

Q(x) ∼ γ e−δx as x → ∞, (8.4.9)

where f (x) ∼ g(x) as x → ∞ means that limx→∞ f (x)/g(x) = 1. This is an

extremely important result. The asymptotic expansion is very useful for practical

purposes in view of the remarkable finding that already for relatively small values

of x the asymptotic estimate predicts quite well the exact value of Q(x) when the

load factor ρ is not very small. To illustrate this, Table 8.4.1 gives the numerical

values of Q(x) and the asymptotic estimate Qasy (x) = γ e−δx for several examples.

We take µ = 1 and σ = 1. The squared coefficient of variation c2
X of the claim size

X is c2
X = 0 (deterministic distribution), c2

X = 0.5 (E2 distribution) and c2
X = 1.5

(H2 distribution with balanced means). The load factor ρ is 0.2, 0.5 and 0.8. It

turns out that the closer ρ is to 1, the earlier the asymptotic expansion applies.

Table 8.4.1 Exact and asymptotic values for Q(x)

c2
X

= 0 c2
X

= 0.5 c2
X

= 1.5

x Q(x) Qasy (x) Q(x) Qasy (x) Q(x) Qasy (x)

ρ = 0.2 0.5 0.11586 0.07755 0.12462 0.14478 0.13667 0.09737
1 0.02288 0.03007 0.07146 0.07712 0.09669 0.07630
2 0.00196 0.00210 0.02144 0.02188 0.05234 0.04685
3 0.00015 0.00015 0.00617 0.00621 0.03025 0.02877
5 7.20E-7 7.20E-7 0.00050 0.00050 0.01095 0.01085

ρ = 0.5 0.5 0.35799 0.30673 0.37285 0.38608 0.39390 0.34055
1 0.17564 0.18817 0.26617 0.26947 0.31629 0.28632
2 0.05304 0.05356 0.13106 0.13126 0.21186 0.20239
5 0.00124 0.00124 0.01517 0.01517 0.07179 0.07149
10 2.31E-6 2.31E-6 0.00042 0.00042 0.01262 0.01262

ρ = 0.8 0.5 0.70164 0.67119 0.71197 0.71709 0.72705 0.70204
1 0.55489 0.56312 0.62430 0.62549 0.66522 0.65040
2 0.36548 0.36601 0.47582 0.47589 0.56345 0.55825
5 0.10050 0.10050 0.20959 0.20959 0.35322 0.35299
10 0.01166 0.01166 0.05343 0.05343 0.16444 0.16444
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Heavy-tailed distributions

The probability distribution function B(x) of the claim sizes (service times) is said

to be heavy-tailed when B(x) does not satisfy Assumption 8.4.1. An important sub-

class of heavy-tailed distributions is the class of subexponential distributions. Let

X1, X2, . . . be a sequence of non-negative independent random variables which are

distributed according to the probability distribution function B(x). The distribution

function B(x) is said to be subexponential if B(x) < 1 for all x > 0 and

P {X1 + · · · + Xn > x} ∼ nP {X1 > x} as x → ∞ (8.4.10)

for all n ≥ 2. It can be shown that (8.4.10) holds for all n ≥ 2 if it holds for n = 2.

A physical interpretation of subexponentiality follows by noting that condition

(8.4.10) is equivalent to

P {X1 + · · · + Xn > x} ∼ P {max (X1, . . . , Xn) > x} as x → ∞ (8.4.11)

for all n ≥ 2. In other words, subexponentiality means that a very large value

of a finite sum of independent subexponential random variables is most likely

caused by a very large value of one of the random variables. This property makes

subexponentiality a commonly used paradigm in insurance mathematics, especially

in modelling catastrophes. The class of subexponential distributions is a natural

subclass of heavy-tailed distributions. This subclass includes the lognormal distri-

bution, the Pareto distribution and the Weibull distribution with a shape parameter

less than 1. The equivalence of (8.4.10) and (8.4.11) is easily proved. Therefore

note that

P {max (X1, . . . , Xn) > x} = 1 − [B(x)]n

= [1 − B(x)]

n−1
∑

k=0

[B(x)]k ∼ n[1 − B(x)]

as x → ∞

and so P {max(X1, . . . , Xn) > x} ∼ nP {X1 > x} as x → ∞. From this result the

equivalence of (8.4.10) and (8.4.11) follows.

Denote by

Be(x) =
1

µ

∫ x

0

{1 − B(y)} dy, x ≥ 0

the equilibrium excess distribution function associated with B(x). Then the follow-

ing result can be proved:

Q(x) ∼
ρ

1 − ρ
[1 − Be(x)] as x → ∞ (8.4.12)

if and only if B(x) is subexponential. Here ρ = λµ/σ . This result is mainly of

theoretical importance. Unlike the asymptotic expansion (8.4.9) for the light-tailed
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case, the asymptotic expansion (8.4.12) for the heavy-tailed case is typically bad for

x-values of interest. It takes very large x before the asymptotic expansion (8.4.12)

applies. In practice one has to use numerical Laplace inversion to calculate the tail

probabilities Q(x) in the heavy-tailed case; see Appendix F.

We give no rigorous proof for the result (8.4.12), but we do make it plausible.

To do so, we first establish the relation

Q(x) =

∞
∑

n=0

(1 − ρ)ρn[1 − Bn,e(x)], x ≥ 0, (8.4.13)

where B0,e(x) = 1 for all x ≥ 0 and Bn,e(x) is the n-fold convolution of Be(x)

with itself for n ≥ 1. The formula (8.4.13) does not require any condition on the

distribution function B(x). To prove (8.4.13), denote the Laplace transform of Q(x)

by Q∗(s) =
∫ ∞

0 e−sxQ(x) dx. Taking Laplace transforms of both sides of (8.4.5),

we find

Q∗(s) =
ρ

s
−

ρb∗
e (s)

s
+ ρQ∗(s)b∗

e (s),

where b∗
e (s) is the Laplace transform of the derivative be(x) = (1/µ)[1 − B(x)]

of the equilibrium excess distribution function Be(x). This gives

Q∗(s) =
ρ − ρb∗

e (s)

s[1 − ρb∗
e (s)]

=
ρ − ρb∗

e (s)

s

∞
∑

n=0

ρn[b∗
e (s)]

n

=
1

s
− (1 − ρ)

∞
∑

n=0

ρn [b∗
e (s)]

n

s
. (8.4.14)

It is left to the reader to verify that [b∗
e (s)]

n/s is the Laplace transform of Bn,e(x);

see also relation (E.12) in Appendix E. Inversion of (8.4.14) yields

Q(x) = 1 −

∞
∑

n=0

(1 − ρ) ρnBn,e(x) =

∞
∑

n=0

(1 − ρ) ρn[1 − Bn,e(x)],

proving (8.4.13). Next the expansion (8.4.12) can be made plausible. Assume that

B(x) is subexponential. If in addition an integrability condition is imposed on

B(x) to exclude pathological cases, it can be shown that the equilibrium excess

distribution function Be(x) is subexponential as well. Then 1 − Bn,e(x) ∼ n[1 −

Be(x)] as x → ∞ for all n and thus

Q(x) ∼

∞
∑

n=0

(1 − ρ)ρnn[1 − Be(x)] as x → ∞,

which yields (8.4.12) by noting that
∑∞

n=0(1 − ρ)ρnn = ρ/(1 − ρ).
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EXERCISES

8.1 Use Laplace transform theory to verify the following results:
(a) The renewal function associated with the interoccurrence-time density f (x) =

pλ1e−λ1x + (1 − p)λ2e−λ2x is

M(x) =
x

E(X)
+

1

2
(c2

X − 1)[1 − e−(pλ1+(1−p)λ2)x ], x ≥ 0,

where the random variable X denotes the interoccurrence time.
(b) The renewal function associated with the interoccurrence-time density f (x) =

pλe−λx + (1 − p)λ2xe−λx is

M(x) =
x

E(X)
+

1

2
(c2

X − 1)[1 − e−λ(2−p)x ], x ≥ 0.

8.2 For a renewal process let M2(t) = E[N2(t)] be the second moment of the number of
renewals up to time t . Verify that M2(t) satisfies the renewal equation

M2(t) = 2M(t) − F(t) +

∫ t

0
M2(t − x)f (x) dx, t ≥ 0,

where f (x) is the probability density of the interoccurrence times. Next verify that

lim
t→∞

E[N2(t)] −

{

t2

µ2
1

+

(

2µ2

µ3
1

−
3

µ1

)

t

}

=
3µ2

2

2µ4
1

−
2µ3

3µ3
1

−
3µ2

2µ2
1

+ 1,

where µk denotes the kth moment of the density f (x). Also, prove that

lim
t→∞

∫ t

0
E[N2(y)] dy −

[

t3

3µ3
1

+

(

µ2

µ3
1

−
3

2µ1

)

t2 +

(

3µ2
2

2µ4
1

−
2µ3

3µ3
1

−
3µ2

2µ2
1

+ 1

)

t

]

=
µ4

6µ3
1

−
µ2µ3

µ4
1

+
µ3

2

µ5
1

+
µ3

2µ2
1

−
3µ2

2

4µ3
1

.

8.3 Consider a renewal process generated by the interoccurrence times X1, X2, . . . with
mean µ1 and second moment µ2. Let L1 be the length of the interoccurrence time covering
epoch t . Derive a renewal equation for E(Lt ). Verify the following results:

(a) E(Lt ) = 2µ1 − µ1e−t/µ1 for all t when the Xi are exponentially distributed.
(b) limt→∞ E(Lt ) = µ2/µ1 when the Xi are continuously distributed.
Also derive a renewal equation for P {Lt > x}. Prove that the limiting distribution of Lt

has the density xf (x)/µ1 when the Xi have a probability density f (x). Can you give a
heuristic explanation of why E(Lt ) ≥ µ1?

8.4 Consider an alternating renewal process in which the on-times and the off-times are
generally distributed. The on-times are assumed to have a probability density. Let Pon(t)
be the probability that the process is in the on-state at time t given that an on-time starts at
epoch 0.

(a) Prove that

Pon(t) = 1 − Fon(t) +

∫ t

0
[1 − Fon(t − x)]m(x) dx, t ≥ 0,
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where Fon(t) is the probability distribution function of the on-time and m(x) is the renewal
density for the renewal process in which the interoccurrence time is distributed as the sum
of an on-time and an off-time. Express the Laplace transform of Pon(t) in terms of the
Laplace transforms of the on-time density and the off-time density. Give an expression for

the Laplace transform of E(U(t)) =
∫ t

0 Pon(u) du, where the random variable U(t) denotes
the cumulative on-time during [0, t].

(b) Use the result of (a) to verify that

Pon(t) =

[t/D]
∑

k=0

(t − kD)k

µkk!
e−(t−kD)/µ, t ≥ 0,

when the off-time is a constant D and the on-time has an exponential distribution with mean
1/µ.

8.5 Consider the alternating renewal process in which both the on-times and the off-times
have a general probability distribution. Assuming that an on-time starts at epoch 0, denote
by the random variable U(t) the cumulative amount of time the system is in the on-state
during [0, t].

(a) Use Theorem 2.2.5 to verify that U(t) is asymptotically normally distributed with

mean µont/(µon +µoff) and variance (µ2
onσ 2

off
+µ2

off
σ 2

on)t/(µon +µoff)
3, where µon(µoff)

and σ 2
on(σ 2

off
) denote the mean and the variance of the on-time (off-time).

(b) Derive a renewal equation for E(U(t)). Assuming that the on-time distribution and
the off-time distribution are not both arithmetic, prove that

lim
t→∞

[

E(U(t)) −
µon

µon + µoff
t

]

=
µonσ 2

off
− µoffσ

2
on

2(µon + µoff)
2

+
µonµoff

2(µon + µoff)
.

8.6 Consider the alternating renewal process in which both the on-times and the off-times
have a general probability distribution. Let µon and µoff denote the respective means of an
on-time and an off-time. Denote by Gon(x, t) the joint probability that the system is on at
time t and that the residual on-time at time t is no more than x. Derive a renewal equation
for Gon(x, t). Assuming that the distribution functions of the on-time and off-time are not
both arithmetic, prove that

lim
t→∞

Gon(x, t) =
µon

µon + µoff
×

1

µon

∫ x

0
[1 − Fon(y)] dy, x ≥ 0,

where Fon(x) denotes the probability distribution function of the on-time.

8.7 Consider the alternating renewal process. Let Fon(t) and Foff(t) denote the probability
distribution functions of the on-time and the off-time. Assume that these distribution func-
tions have respective densities fon(t) and foff(t). For any fixed t > 0, define Hon(t, x)

(Hoff(t, x)) as the probability that the cumulative on-time during [0, t] is no more than x
given that an on-time (off-time) starts at epoch 0.

(a) Argue the integral equations

Hon(t, x) =

∫ x

0
Hoff(t − u, x − u)fon(u) du, 0 ≤ x < t

Hoff(t, x) = 1 − Foff(t − x) +

∫ t−x

0
Hon(t − u, x)foff(u) du, 0 ≤ x < t.
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(b) By repeated substitution, verify that

Hon(t, x) =

∞
∑

n=0

{Fn∗
off (t − x) − F

(n+1)∗
off

(t − x)}F
(n+1)∗
on (x), 0 ≤ x < t,

Hoff(t, x) =

∞
∑

n=0

{Fn∗
off (t − x) − F

(n+1)∗
off

(t − x)}Fn∗
on (x), 0 ≤ x < t,

where Fn∗(x) denotes the n-fold convolution of a probability distribution of F(x) with

itself for n ≥ 1 and F 0∗(x) = 1 for all x ≥ 0.

8.8 Consider Exercise 8.7 again. Define for any fixed t0 > 0,


(t0, x) = lim
t→∞

P {the cumulative on-time during the time

interval [t, t + t0] is no more than x}

for 0 ≤ x < t0. Use results from Exercise 8.7 to argue that 
(t0, x) is given by

µon

µon + µoff

∞
∑

n=0

{Fn∗
off (t0 − x) − F

(n+1)∗
off

(t0 − x)}F e
on ∗ Fn∗

on (x)

+
µoff

µon + µoff

∞
∑

n=0

{F e
off ∗ Fn∗

off (t0 − x) − F e
off ∗ F

(n+1)∗
off

(t0 − x)}F
(n+1)∗
on (x)

+
µoff

µon + µoff
{1 − F e

off(t0 − x)}, 0 ≤ x < t0,

where F e(x) denotes the equilibrium excess distribution function of a probability distribution
function F(x) and A ∗ B(x) denotes the convolution of two distribution functions A(x) and
B(x).

8.9 Consider an age-replacement model in which preventive replacements are only possible
at special times. Opportunities for preventive replacements occur according to a Poisson
process with rate λ. The item is replaced by a new one upon failure or upon a preventive
replacement opportunity occurring when the age of the item is T or more, whichever occurs
first. The lifetime of the item has a probability density f (x). The cost of replacing the
item upon failure is c0 and the cost of a preventive replacement is c1 with 0 < c1 < c0.
Determine the long-run average cost per time unit. This problem is motivated by Dekker
and Smeitink (1994).

8.10 A production machine gradually deteriorates in time. The machine has N possible work-
ing conditions 1, . . . , N which describe increasing degrees of deterioration. Here working
condition 1 represents a new system and working condition N represents a failed system.
If the system reaches the working condition i, it stays in this condition during an expo-
nentially distributed time with mean 1/µ for each i with 1 ≤ i < N . A change of the
working condition cannot be observed except for a failure which is detected immediately.
The machine is replaced by a new one upon failure or upon having worked during a time T ,
whichever occurs first. Each planned replacement involves a fixed cost of J1 > 0, whereas
a replacement because of a failure involves a fixed cost of J2 > 0. The replacement time
is negligible in both cases. Also, the system incurs an operating cost of ai > 0 for each
time unit the system is operating in working condition i. Use Lemma 1.1.4 to verify that
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the long-run average cost per time unit is given by







T

N−2
∑

k=0

pk +
N − 1

µ



1 −

N−1
∑

k=0

pk











−1

×







J2 + (J2 − J1)

N−2
∑

k=0

pk +

N−2
∑

k=0

pk

k+1
∑

i=1

ai
T

k + 1
+

N−1
∑

i=1

ai

∞
∑

k=N−1

pk
T

k







,

where pk = e−µT (µT )k/k!. This problem is motivated by Luss (1976).

8.11 Consider a two-unit reliability model with one operating unit and one unit in warm
standby. The operating unit has a constant failure rate of λ0, while the unit in warm standby
has a constant failure rate of λ1. Upon failure of the operating unit, the unit in warm standby
is put into operation if available. The repair time of a failed unit has a general probability
distribution function G(x) with density g(x) and mean µR . The system is down when both
units have failed. For the case of a single repair facility, prove that the long-run fraction of
time the system is down is as follows. This problem is based on Gaver (1963).

µR −
∫ ∞

0 {1 − G(x)}e−λ0x dx

µR + (λ0 + λ1)−1
∫ ∞

0 e−λ0xg(x) dx
.

8.12 Consider an unreliable production unit whose output is temporarily stored in a finite
buffer with capacity K . The buffer serves for the demand process as protection against
random interruptions in the production process. For the output there is a constant demand
at rate ν. When operating, the production unit produces at a constant rate P > ν if the
buffer is not full and produces at the demand rate ν otherwise. If demand occurs while
the unit is down and the buffer is empty then it is lost. The operating time of the unit is
exponentially distributed with mean 1/λ. If a failure occurs, the unit enters repair for an
exponentially distributed time with mean 1/µ. Determine the long-run fraction of demand
lost and determine the average inventory level in the buffer. (Hint : define the state of the
system as (1, x) and (0, x) respectively when the inventory in the buffer is x and the unit is
operating or down. The process regenerates itself each time the system enters state (0,0). Use
differential equations to get the desired performance measures). This problem is motivated
by Wijngaard (1979).

BIBLIOGRAPHIC NOTES

The key renewal theorem has a long history, and analytic proofs were given under

rather restrictive conditions. The reader is referred to the book of Feller (1971) for a

transparent proof under the weak condition of direct Riemann integrability; see also

Asmussen (1987). The results for the alternating renewal process in Section 8.3 are

proved in greater generality in Takács (1957). The material from Example 8.3.1 is

based on the paper of Van der Heijden (1987). The renewal-theoretic method used

in Section 8.4 to derive asymptotic estimates for ruin and waiting-time probabilities

comes from Feller (1971). Another application of this powerful method to a storage

problem for dams is given in De Kok et al. (1984). A good reference on heavy-

tailed distributions is Embrechts et al. (1997).
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Takács, L.J. (1957) On certain sojourn time problems in the theory of stochastic processes.

Acta Mathematica Academiae Scientiarum Hungaricae, 8, 169–191.

Van der Heijden, M.C. (1987) Interval availability distribution for a 1-out-of-2 reliability

system. Prob. Engng. Inform. Sci., 2, 211–224.

Wijngaard, J. (1979) The effect of interstage buffer storage on the output of two unreliable

production units in series with different production rates. AIEE Trans., 11, 42–47.

Xie, M. (1989) On the solution of renewal-type integral equations. Commun. Statist., 18,

281–293.



CHAPTER 9

Algorithmic Analysis of
Queueing Models

9.0 INTRODUCTION

Queueing models have their origin in the study of design problems of automatic

telephone exchanges and were first analysed by the queueing pioneer A.K. Erlang in

the early 1900s. In planning telephone systems to meet given performance criteria,

questions were asked such as: How many lines are required in order to give a certain

grade of service? What is the probability that a delayed customer has to wait more

than a certain time before getting a connection? Similar questions arise in the design

of many other systems: How many terminals are needed in a computer system so

that 80% of the users get access to a terminal within 20 seconds? What will be

the effect on the average waiting time of customers when changing the size of a

maintenance staff to service leased equipment? How much storage space is needed

in buffers at workstations in an assembly line in order to keep the probability of

blocking below a specified acceptable level?

These design problems and many others concern, in fact, facilities serving a

community of users, where both the times at which the users ask for service and

the durations that the requests for service will occupy facilities are stochastic, so

that inevitably congestion occurs and queues may build up. In the first stage of

design the system engineer usually needs quick answers to a variety of questions

like those posed above. Queueing theory constitutes a basic tool for making first-

approximation estimates of queue sizes and probabilities of delays. Such a simple

tool should in general be preferred to simulation, especially when it is possible to

have a large number of different configurations in the design problem.

In this chapter we discuss a number of basic queueing models that have proved to

be useful in analysing a wide variety of stochastic service systems. The emphasis

will be on algorithms and approximations rather than on mathematical aspects.

We feel that there is a need for such a treatment in view of the increased use

of queueing models in modern technology. Actually, the application of queueing

theory in the performance analysis of computer and communication systems has

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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stimulated much practically oriented research on computational aspects of queueing

models. It is to these aspects that the present chapter is addressed. Here considerable

attention is paid to robustness results. While it was seen in Section 5.2 that many

loss systems (no access of arrivals finding all servers busy) are exactly or nearly

insensitive to the distributional form of the service time except for its first moment,

it will be demonstrated in this chapter that many delay systems (full access of

arrivals) and many delay-loss systems (limited access of arrivals) allow for two-

moment approximations. The approximate methods for complex queueing models

are usually based on exact results for simpler related models and on asymptotic

expansions. The usefulness of asymptotic expansions can hardly be overestimated.

Algorithmic analysis of queueing systems is more than getting numerical answers.

The essence of algorithmic probability is to find probabilistic ideas which make

the computations transparent and natural. However, once an algorithm has been

developed according to these guidelines, one should always verify that it works in

practice. The algorithms presented in this chapter have all been thoroughly tested.

The cornerstones of the algorithms are:

• the embedded Markov chain method,

• the continuous-time Markov chain approach,

• renewal-theoretic methods,

• asymptotic expansions,

• discrete FFT method and numerical Laplace inversion.

This chapter is organized as follows. Section 9.1 reviews some basic concepts

including phase-type distributions and Little’s formula. In Section 9.2 we derive

algorithms for computing the state probabilities and the waiting-time probabilities

in the single-server queue with Poisson input and general service times (M/G/1

queue). These results are extended in Section 9.3 to the single-server queue with

batch Poisson input. In Section 9.4 we consider the finite-buffer M/G/1 queue

and the M/G/1 queue with impatient customers. The solution of these queue-

ing systems can be expressed in terms of the solution for the infinite-capacity

M/G/1 queue. The single-server queue with general interarrival times and ser-

vice times is the subject of Section 9.5. Section 9.6 deals with multi-server queues

with Poisson input, including both the case of single arrivals and the case of batch

arrivals. Tractable exact results are only obtained for the special case of determin-

istic services and exponential services. For the case of general service times we

derive several approximations. These approximations include two-moment approx-

imations that are based on exact results for simpler models and use a linear inter-

polation with respect to the squared coefficient of variation of the service time. In

Section 9.7 the multi-server queue with renewal input is discussed. In particular,

attention is paid to the tractable models with exponential services and determin-

istic services. In Section 9.8 we consider finite-capacity queueing systems with
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limited access of arrivals. In particular, attention is paid to approximations for

the rejection probability. Throughout this chapter numerical results are given in

order to provide insight into the performance of the solution methods. Indispens-

able tools for the solution of queues are the discrete Fast Fourier Transform (FFT)

method and numerical Laplace inversion. This is a remarkable twist in the history

of queueing analysis. The irony is that complaints about the ‘Laplacian curtain’

stimulated to a large extent the development of algorithmic analysis for queues.

Most of the results for queues in the post-war period were in terms of generat-

ing functions or Laplace transforms. For a long time it was believed that such

results were not very useful for computational purposes. However, the situation

dramatically changed with the invention of the discrete FFT method in 1965, one

of the greatest breakthroughs in numerical analysis. The power of this method

was directly realized in the field of engineering, but it took some time before the

immense usefulness of the discrete FFT method was recognized in the field of

applied probability as well.

9.1 BASIC CONCEPTS

In this section we discuss a number of basic concepts for queueing systems. The

discussion is restricted to queueing systems with only one service node. However,

the fundamental results below are also useful for networks of queues.

Let us start by giving Kendall’s notation for a number of standard queueing

models in which the source of population of potential customers is assumed to

be infinite. The customers arrive singly and are served singly. In front of the

servers there is a common waiting line. A queueing system having waiting room

for an unlimited number of customers can be described by a three-part code a/b/c.

The first symbol a specifies the interarrival-time distribution, the second symbol b

specifies the service-time distribution and the third symbol c specifies the number

of servers. Some examples of Kendall’s shorthand notation are:

1. M/G/1: Poisson (Markovian) input, general service-time distribution, 1 server.

2. M/D/c: Poisson input, deterministic service times, c servers.

3. GI/M/c: general, independently distributed interarrival times, exponential (Mar-

kovian) service times, c servers.

4. GI/G/c: general, independently distributed interarrival times, general service-

time distribution, c servers.

The above notation can be extended to cover other queueing systems. For

example, queueing systems have waiting room only for K customers (excluding

those in service) are often abbreviated by a four-part code a/b/c+K . The notation

GIX/G/c is used for infinite-capacity queueing systems in which customers arrive

in batches and the batch size is distributed according to the random variable X.
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Phase-type distributions

In queueing applications it is often convenient to approximate the interarrival time

and/or the service time by distributions that are built out of a finite sum or a

finite mixture of exponentially distributed components, or a combination of both.

These distributions are called phase-type distributions. For practical purposes it

usually suffices to use finite mixtures of Erlangian distributions with the same scale

parameters or Coxian-2 distributions. These distributions are discussed in detail

in Appendix B. The class of Coxian-2 distributions contains the hyperexponential

distribution of order 2 as special case. The hyperexponential distribution always has

a coefficient of variation greater than or equal to 1. This distribution is particulary

suited to model irregular interarrival (or service) times which have the feature that

most outcomes tend to be small and large outcomes occur only occasionally. The

class of mixtures of Erlangian distributions with the same scale parameters is much

more versatile than the class of Coxian-2 distributions and allows us to cover any

positive value of the coefficient of variation. In particular, a mixture of Ek−1 and

Ek distributions with the same scale parameters is convenient to represent regular

interarrival (or service) times which have a coefficient of variation smaller than or

equal to 1. The theoretical basis for the use of mixtures of Erlangian distributions

with the same scale parameters is provided by Theorem 5.5.1. This theorem states

that each non-negative random variable can be approximated arbitrarily closely by a

random sum of exponentially distributed phases with the same means. This explains

why finite mixtures of Erlangian distributions with the same scale parameters are

widely used for queueing calculations.

Performance measures

It is convenient to use the GI/G/c/c + N queue as a vehicle to introduce some

basic notation. Thus, we assume a multi-server queue with c identical servers and

a waiting room of capacity N (≤ ∞) for customers awaiting to be served. A

customer who finds c +N other customers present upon arrival is rejected and has

no further influence on the system. Otherwise, the arriving customer is admitted

to the system and waits in queue until a server becomes available. The customers

arrive according to a renewal process. In other words, the interarrival times are

positive, independent random variables having a common probability distribution

function A(t). The service times of the customers are independent random variables

with a common probability distribution function B(x) and are also independent of

the arrival process. The queue discipline specifying which customer is to be served

next is first-come first-served (FCFS) unless stated otherwise. A server cannot be

idle when customers are waiting in queue and a busy server works at unity rate. A

customer leaves the system upon service completion. Let

λ = the long-run average arrival rate of customers,

E(S) = the mean service time of a customer.
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The random variable S denotes the service time of a customer. Note that λ =
1/E(A), where the random variable A denotes the interarrival time. An important

quantity is the offered load, which is defined as λE(S). This dimensionless quan-

tity indicates the average amount of work that is offered to the system per time

unit. In the GI/G/c queue (N = ∞) the offered load should be less than the

maximum load the system can handle, otherwise infinitely long queues ultimately

build up. Letting

ρ =
λE(S)

c
,

the following assumption is made.

Assumption 9.1.1 For the GI/G/c queue the load factor ρ is below 1.

It will be seen below that in the GI/G/c queue the quantity ρ can be interpreted

as the long-run fraction of time that a given server is busy. This explains why ρ is

called the server utilization in the GI/G/c queue. In addition to Assumption 9.1.1

we make the following technical assumption.

Assumption 9.1.2 (a) The interarrival-time distribution A(t) or the service-time

distribution B(t) has a positive density on some interval.

(b) The probability that the interarrival time A is larger than the service time S

is positive.

Define a cycle as the time elapsed between two consecutive arrivals that find

the system empty. Then, under Assumptions 9.1.1 and 9.1.2, it can be shown that

the expected value of the cycle length is always finite. The proof of this result is

quite deep and is not given here; see Wolff (1989). Let us now define the following

random variables:

L(t) = the number of customers in the system at time t (including those

in service),

Lq(t) = the number of customers in the queue at time t (excluding those

in service),

Dn = the amount of time spent by the nth accepted customer in the

queue (excluding service time),

Un = the amount of time spent by the nth accepted customer in the

system (including service time).

The continuous-time stochastic process {L(t)} and {Lq(t)} and the discrete-time

stochastic processes {Dn} and {Un} are all regenerative. The regeneration epochs are

the epochs at which an arriving customer finds the system empty. The regeneration

cycles have finite means. Thus the following long-run averages exist:

L = lim
t→∞

1

t

∫ t

0

L(u) du (the long-run average number in system)
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Lq = lim
t→∞

1

t

∫ t

0

Lq(u) du (the long-run average number in queue)

Wq = lim
n→∞

1

n

n
∑

k=1

Dk (the long-run average delay in queue)

W = lim
n→∞

1

n

n
∑

k=1

Uk (the long-run average wait in system).

These long-run averages are constants with probability 1. The steady-state probabil-

ities pj and the steady-state waiting-time distribution function Wq(x) are defined by

pj = lim
t→∞

P {L(t) = j}, j = 0, 1, . . .

and

Wq(x) = lim
n→∞

P {Dn ≤ x}, x ≥ 0.

These limits exist and represent proper probability distributions; see Theorem 2.2.4.

As pointed out in Section 2.2, it is often preferable to interpret pj and Wq(x) as

the long-run fraction of time that j customers are in the system and as the long-run

fraction of accepted customers whose delay in queue is at most x. In batch-arrival

queues the above limits need not exist, while pj and Wq(x) can still be defined as

long-run averages. The long-run averages Lq and Wq can be expressed in terms of

the state probabilities pj and the waiting-time probabilities Wq(x):

Lq =
c+N
∑

j=c

(j − c)pj and Wq =
∫ ∞

0

{1 − Wq(x)} dx.

It is important to note that the distribution of the number of customers in the

system is invariant to the order of service, provided that the queue discipline is

service-time independent and work-conserving. Here ‘service-time independent’

means that the rule for selecting the next customer to be served does not depend

on the service time of a customer, while ‘work-conserving’ means that the work or

service requirement of a customer is not affected by the queue discipline. Queue

disciplines having these properties include first-come first-served, last-come first-

served and service in random order. The waiting-time distribution will obviously

depend on the order of service.

Let the random variable In = 1 if the nth arrival is rejected and let In = 0

otherwise. Then the long-run fraction of customers who are rejected is given by

the constant

Prej = lim
n→∞

1

n

n
∑

k=1

Ik.



THE M/G/1 QUEUE 345

Little’s formula

The most basic result for queueing systems is Little’s formula. This formula relates

certain averages like the average number of customers in queue and the average

delay in queue per customer. Little’s formula is valid for almost any queueing

system. In particular, for the GI/G/c/c + N queue, we have the fundamental

relations

Lq = λ(1 − Prej )Wq , L = λ(1 − Prej )W, (9.1.1)

the long-run average number of busy servers = (1 − Prej )E(S). (9.1.2)

Note that Prej = 0 if N = ∞. A heuristic but insightful motivation of these for-

mulas was given in Section 2.3. The result (9.1.2) has two interesting implications.

First, since each of the c servers carries on average the same load,

the long-run fraction of time a given server is busy =
1

c
λ(1 − Prej )E(S).

In particular, the long-run fraction of time a given server is busy equals ρ in the

GI/G/c queue. Second, since pj represents the long-run fraction of time that j

customers are present, the long-run average number of busy servers is also given

by the expression
∑c−1

j=0 jpj + c
∑

j≥c pj . Thus we obtain the useful identity

c−1
∑

j=1

jpj + c



1 −
c−1
∑

j=0

pj



 = λ(1 − Prej )E(S). (9.1.3)

In particular, we find the relation p0 = 1 − λE(S) for the GI/G/1 queue. The

above relations can be directly extended to queueing systems with batch arrivals.

9.2 THE M/G/1 QUEUE

In the M/G/1 queue, customers arrive according to a Poisson process with rate

λ and the service times of the customers are independent random variables with a

common general probability distribution function B(x) with B(0) = 0. There is a

single server and an infinite waiting room. Denoting by the random variable S the

service time of a customer, it is assumed that the server utilization ρ = λE(S) is

smaller than 1.

In Section 9.2.1 we derive a recursive algorithm for the computation of the state

probabilities. Several derivations are possible for the recursion relation. Our deriva-

tion uses the so-called regenerative approach, which involves simple renewal-

theoretic arguments. The regenerative approach directly leads to a numerically

stable recursion scheme for the state probabilities and also allows in a natural

way for generalizations to more complex queueing models. Using the technique of

generating functions, we also derive an asymptotic expansion for the state prob-

abilities. Since an explicit expression is available for the generating function of
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the state probabilities, the discrete FFT method provides an alternative method to

compute the state probabilities. In Section 9.2.2 we discuss the computation of the

waiting-time probabilities when service is in order of arrival. Also attention is paid

to an approximation for the waiting-time distribution. This approximation is based

on the asymptotic expansion of the tail of the waiting-time distribution. Further, we

discuss a simple but generally useful two-moment approximation for the waiting-

time percentiles. Section 9.2.3 discusses the probability distribution of the length

of a busy period and the computation of the waiting-time probabilities when the

last-come first-served discipline is used. The distribution of work in system is the

subject of Section 9.2.4.

9.2.1 The State Probabilities

The time-average probability pj can be interpreted as the long-run fraction of

time that j customers are in the system. Using a basic result from the theory of

regenerative processes and a simple up- and downcrossing argument, we derive a

numerically stable recursion scheme for the state probabilities pj .

Theorem 9.2.1 The state probabilities pj satisfy the recursion

pj = λaj−1p0 + λ

j
∑

k=1

aj−kpk, j = 1, 2, . . . , (9.2.1)

where the constants an are given by

an =
∫ ∞

0

e−λt (λt)n

n!
{1 − B(t)} dt, n = 0, 1, . . . .

Proof The stochastic process {L(t), t ≥ 0} describing the number of customers

in the system is regenerative. The process regenerates itself each time an arriving

customer finds the system empty. Denoting by a cycle the time elapsed between two

consecutive arrivals who find the system empty, we define the random variables

T = the length of one cycle,

Tj = the amount of time that j customers are present during one cycle

for j = 0, 1, . . . . The expected length of one cycle is finite (this is in fact a

by-product of the analysis in Section 2.6). By Theorem 2.2.3,

pj =
E(Tj )

E(T )
, j = 0, 1, . . . . (9.2.2)

By the lack of memory of the Poisson process, E(T0) = 1/λ and so

p0 =
1

λE(T )
. (9.2.3)
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The following simple idea is crucial for the derivation of a recurrence relation

for the probabilities pj . Divide a cycle into a random number of disjoint intervals

separated by the service completion epochs and calculate E(Tj ) as the sum of the

contributions from the disjoint intervals to the expected sojourn time in state j

during one cycle. Thus, for k = 0, 1, . . . , we define the random variable Nk by

Nk = the number of service completion epochs in one cycle

at which k customers are left behind.

Using the lack of memory of the Poisson arrival process, define

Akj = the expected amount of time that j customers are present

during a given service time that starts with k customers present.

Then, noting that the first service in a cycle starts with one customer present,

E(Tj ) = A1j +
j
∑

k=1

E(Nk)Akj , j = 1, 2, . . . . (9.2.4)

It should be pointed out that Wald’s equation is used to justify that E(Nk)Akj

is the contribution to E(Tj ) of those service intervals starting with k customers

present. To find another relation between E(Tj ) and E(Nk), observe that for each

k = 0, 1, . . . , the number of downcrossings from state k + 1 to state k in one cycle

equals the number of upcrossings from state k to state k + 1 in one cycle. The

expected number of downcrossings of the {L(t)} process from state k + 1 to state

k in one cycle equals E(Nk) by definition. On the other hand, since the arrival

process is a Poisson process, we have by Corollary 2.4.2 that the expected number

of upcrossings from state k to state k + 1 in one cycle equals λE(Tk). Thus

E(Nk) = λE(Tk), k = 0, 1, . . . . (9.2.5)

Together the relations (9.2.2) to (9.2.5) imply that

pj = λp0A1j +
j
∑

k=1

λpkAkj , j = 1, 2, . . . . (9.2.6)

To specify the constants Akj , suppose that at epoch 0 a service starts when k

customers are present. Define the random variable Ij (t) = 1 if at time t the service

is still in progress and j customers are present and let Ij (t) = 0 otherwise. Then,

for j ≥ k,

Akj = E

[∫ ∞

0

Ij (t) dt

]

=
∫ ∞

0

E[Ij (t)] dt

=
∫ ∞

0

P {Ij (t) = 1} dt =
∫ ∞

0

{1 − B(t)}e−λt (λt)j−k

(j − k)!
dt. (9.2.7)

Together (9.2.6) and (9.2.7) yield the desired result.



348 ALGORITHMIC ANALYSIS OF QUEUEING MODELS

The recursion (9.2.1) enables us to compute recursively p1, p2, . . . starting with

p0 = 1 − ρ. In Section 2.5 we proved that p0 = 1 − ρ; see also relation (9.1.3).

The recursion scheme is numerically stable, since the calculations involve only

additions with positive numbers and thus cannot cause a loss of significant digits.

For many service-time distributions of practical interest, numerical integration can

be avoided for the computation of the constants an. Explicit expressions for the an

can be given for the cases of deterministic and phase-type services.

Define the generating function P (z) by

P (z) =
∞
∑

j=0

pj z
j , |z| ≤ 1.

Multiplying both sides of (9.2.1) by zj and summing over j , it is a matter of simple

algebra to derive that

P (z) − p0 = λp0z

∞
∑

n=0

anz
n + λ{P (z) − p0}

∞
∑

n=0

anz
n.

Since p0 = 1 − ρ, we obtain

P (z) = (1 − ρ)
1 − λ(1 − z)α(z)

1 − λα(z)
, (9.2.8)

where α(z) =
∑∞

n=0 anz
n is given by

α(z) =
∫ ∞

0

{1 − B(t)}e−λ(1−z)t dt.

Expression (9.2.8) for P (z) coincides with expression (2.5.8), since
∫∞

0 e−λ(1−z)t

b(t) dt = 1−λ(1− z)α(z) when b(t) is the probability density of the service time.

The discrete FFT method provides an alternative method for the computation of the

state probabilities using the explicit expression (9.2.8) for the generating function

P (z). A by-product of (9.2.8) is the famous Pollaczek–Khintchine formula

Lq =
λ2E(S2)

2(1 − ρ)
(9.2.9)

for the long-run average queue size. Using Little’s formula Lq = λWq , it follows

that the long-run average delay in queue per customer is given by

Wq =
λE(S2)

2(1 − ρ)
. (9.2.10)
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Asymptotic expansion for the state probabilities

The representation (9.2.8) shows that the generating function P (z) is the ratio of

two functions, N(z) and D(z). These functions allow for an analytic continuation

outside the unit circle when the following assumption is made.

Assumption 9.2.1 (a)
∫∞

0 est {1 − B(t)} dt < ∞ for some s > 0.

(b) lims→B

∫∞
0 est {1 − B(t)} dt = ∞, where B is the supremum over all s with

∫ ∞

0

est {1 − B(t)} dt < ∞.

The assumption requires that the service-time distribution is not heavy-tailed. This

is the case in most situations of practical interest. Under Assumption 9.2.1, it can

be obtained from Theorem C.1 in Appendix C that

pj ∼ στ−j as j → ∞, (9.2.11)

where τ is the unique solution of the equation
∫ ∞

0

e−λ(1−τ )t {1 − B(t)} dt =
1

λ
(9.2.12)

on the interval (1, 1 + B/λ) and the constant σ is given by

σ =
(1 − ρ)

λ2

[∫ ∞

0

te−λ(1−τ )t {1 − B(t)} dt

]−1

. (9.2.13)

It is empirically found that the asymptotic expansion (9.2.11) already applies for

relatively small values of j . The asymptotic expansion can be used to reduce the

computational effort of the recursion scheme (9.2.1). Since pj−1/pj ≈ τ for j

large enough, the recursive calculations can be halted as soon as the ratio pj−1/pj

has sufficiently converged to the constant τ .

9.2.2 The Waiting-Time Probabilities

In this subsection we discuss the computation of the waiting-time probabilities

under the assumption that customers are served in order of arrival. Both exact

methods and approximate methods are discussed.

Exact methods

The following exact methods can be used for the computation of Wq(x):

(a) discretization,

(b) Laplace-inversion,

(c) phase method.
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(a) By relation (8.4.5),

Wq(x) = Wq(0) + λ

∫ x

0

Wq(x − y){1 − B(y)} dy, x ≥ 0 (9.2.14)

with Wq(0) = 1 − ρ. This integral equation can be solved by using the dis-

cretization method discussed in Section 8.1.2. However, when a high accuracy

is required, this method is computationally rather demanding even when it is

combined with the asymptotic expansion for Wq(x) to be given below.

(b) By (2.5.13), the Laplace transform of 1 − Wq(x) is given by

∫ ∞

0

e−sx{1 − Wq(x)} dx =
ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
, (9.2.15)

where b∗(s) =
∫∞

0 e−sxb(x) dx is the Laplace transform of the service-time

density b(x). In Appendix F the computation of Wq(x) by numerical Laplace

inversion is discussed.

(c) In Section 5.5 it was shown that any service-time distribution function B(x)

can be arbitrarily closely approximated by a distribution function of the form

∞
∑

j=1

qj



1 −
j−1
∑

k=0

e−µx (µx)k

k!



 , x ≥ 0,

where qj ≥ 0 and
∑∞

j=1 qj = 1. This distribution function is a mixture of Erlangian

distribution functions with the same scale parameters. It allows us to interprete the

service time as a random sum of independent phases each having the same expo-

nential distribution. Example 5.5.1 explains how to use continuous-time Markov

chain analysis for the computation of Wq(x) when the service-time distribution has

the above form. This approach leads to a simple and fast algorithm.

A simple approximation to the waiting-time probabilities

Assume that Assumption 9.2.1 holds. Then, as was shown in Section 8.4,

1 − Wq(x) ∼ γ e−δx as x → ∞, (9.2.16)

with

δ = λ(τ − 1) and γ =
σ

τ − 1
, (9.2.17)

where the constants τ and σ are given by (9.2.12) and (9.2.13).

We found empirically that the asymptotic expansion for 1 − Wq(x) is accu-

rate enough for practical purposes for relatively small values of x. However, why
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not improve this first-order estimate by adding a second exponential term? This

suggests the following approximation to 1 − Wq(x):

1 − Wapp(x) = αe−βx + γ e−δx , x ≥ 0. (9.2.18)

The constants α and β are found by matching the behaviour of Wq(x) at x = 0 and

the first moment of Wq(x). Since 1−Wq(0) = Pdelay and Wq =
∫∞

0 {1−Wq(x)} dx,

it follows that

α = Pdelay − γ and β = α(Wq − γ/δ)−1, (9.2.19)

where Pdelay = ρ and an explicit expression for Wq is given by (9.2.10). It should be

pointed out that the approximation (9.2.18) can be applied only if β > δ, otherwise

1 − Wapp(x) for x large would not agree with the asymptotic expansion (9.2.16).

Numerical experiments indicate that β > δ holds for a wide class of service-time

distributions of practical interest. Further support to (9.2.18) is provided by the fact

that the approximation is exact for Coxian-2 services.

Numerical investigations show that the approximation (9.2.18) performs quite

satisfactorily for all values of x. Table 9.2.1 gives the exact values of 1 − Wq(x),

the approximate values (9.2.18) and the asymptotic values (9.2.16) for E10 and E3

service-time distributions. The server utilization ρ is 0.2, 0.5, 0.8. In all examples

the normalization E(S) = 1 is used.

A two-moment approximation for the waiting-time percentiles

In applications it often happens that only the first two moments of the service time

are available. In these situations, two-moment approximations may be very helpful.

Table 9.2.1 The waiting-time probabilities

Erlang-10 Erlang-3
x exact approx asymp exact approx asymp

ρ = 0.2 0.10 0.1838 0.1960 0.3090 0.1839 0.1859 0.2654
0.25 0.1590 0.1682 0.2222 0.1594 0.1615 0.2106
0.50 0.1162 0.1125 0.1282 0.1209 0.1212 0.1432
0.75 0.0755 0.0694 0.0739 0.0882 0.0875 0.0974
1.00 0.0443 0.0413 0.0427 0.0626 0.0618 0.0663

ρ = 0.5 0.10 0.4744 0.4862 0.5659 0.4744 0.4764 0.5332
0.25 0.4334 0.4425 0.4801 0.4342 0.4361 0.4700
0.50 0.3586 0.3543 0.3651 0.3664 0.3665 0.3810
0.75 0.2808 0.2745 0.2887 0.3033 0.3026 0.3088
1.00 0.2127 0.2102 0.2111 0.2484 0.2476 0.2502

ρ = 0.8 0.10 0.7833 0.7890 0.8219 0.7834 0.7844 0.8076
0.25 0.7557 0.7601 0.7756 0.7562 0.7571 0.7708
0.50 0.7020 0.6998 0.7042 0.7074 0.7074 0.7131
0.75 0.6413 0.6381 0.6394 0.6577 0.6573 0.6597
1.00 0.5812 0.5801 0.5805 0.6097 0.6093 0.6103
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However, such approximations should not be used blindly. Numerical experiments

indicate that the waiting-time probabilities are rather insensitive to more than the

first two moments of the service time S provided that the squared coefficient of

variation c2
S is not too large (say, 0 ≤ c2

S ≤ 2) and the service-time density satisfies

a reasonable shape constraint. The sensitivity becomes less and less manifest when

the traffic intensity ρ gets closer to 1.

The motivation for the two-moment approximation is provided by the Pollaczek–

Khintchine formula for the average delay in queue. The expression (9.2.10) for Wq

can be written as

Wq =
1

2
(1 + c2

S)
E(S)

1 − ρ
, (9.2.20)

where c2
S = σ 2(S)/E2(S). Denote by Wq(exp) and Wq(det) the average delay

in queue for the special cases of exponential services (c2
S = 1) and deterministic

services (c2
S = 0). The formula (9.2.20) is equivalent to the representations

Wq =
1

2
(1 + c2

S)Wq(exp), (9.2.21)

and

Wq = (1 − c2
S)Wq(det) + c2

SWq(exp). (9.2.22)

A natural question is whether the representations (9.2.21) and (9.2.22) can be

used as a basis for approximations to the waiting-time probabilities. Numerical

investigations reveal that the waiting-time probabilities themselves do not allow for

two-moment approximations of the forms (9.2.21) and (9.2.22), but the waiting-

time percentiles do allow for such two-moment approximations. The pth percentile

ξ(p) of the waiting-time distribution function Wq(x) is defined as the solution to

Wq(x) = p. In statistical equilibrium the percentage of customers having a delay

in queue no more than ξ(p) is 100p%. Since Wq(0) = 1 − ρ, the percentile ξ(p)

is only defined for 1 − ρ ≤ p < 1. Denote by ξexp(p) and ξdet(p) the percentile

ξ(p) for the cases of exponential services and deterministic services with the same

means E(S). The representation (9.2.21) suggests the first-order approximation

ξapp1(p) =
1

2
(1 + c2

S)ξexp(p), (9.2.23)

while the representation (9.2.22) suggests the second-order approximation

ξapp2(p) = (1 − c2
S)ξdet(p) + c2

Sξexp(p). (9.2.24)

In Section 5.1 it was shown that 1 − Wq(x) = ρ exp [−µ(1 − ρ)x] for all x ≥ 0

when the service time has an exponential distribution with mean 1/µ = E(S).

Hence ξexp(p) is simply computed as ξexp(p) = E(S) ln[ρ/(1 − p)]/(1 − ρ).

A relatively simple algorithm for the computation of ξdet(p) is given in

Section 9.6.2 in the more general context of the M/D/c queue. For higher values
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Table 9.2.2 The waiting-time percentiles η(p)

c2
S

= 0.5 c2
S

= 2

ρ p 0.2 0.5 0.9 0.99 0.999 0.2 0.5 0.9 0.99 0.999

0.2 exa 0.25 0.70 2.06 3.90 5.73 0.32 1.20 4.53 9.30 14.1
app1 0.21 0.65 2.16 4.32 6.48 0.42 1.30 4.32 8.63 13.0
app2 0.26 0.73 1.98 3.87 5.76 0.31 1.14 4.67 9.52 14.4

0.5 exa 0.39 1.09 3.34 6.54 9.75 0.54 2.00 7.12 14.5 21.8
app1 0.33 1.04 3.45 6.91 10.4 0.67 2.08 6.91 13.8 20.7
app2 0.41 1.10 3.33 6.55 9.77 0.53 1.96 7.16 14.5 21.9

0.8 exa 0.91 2.64 8.52 16.9 25.4 1.53 5.14 17.49 35.2 52.8
app1 0.84 2.60 8.63 17.3 25.9 1.67 5.20 17.27 34.5 51.8
app2 0.93 2.63 8.52 16.9 25.4 1.50 5.14 17.49 35.2 52.9

of p (say p ≥ 1 − 1
2
ρ) the percentile ξdet(p) can be simply computed from the

asymptotic expansion of Wq(x) for deterministic services.

Table 9.2.2 gives some numerical results. In the table we work with the per-

centiles of the waiting-time distribution of the delayed customers. The probability

that a delayed customer has to wait longer than x is [1 − Wq(x)]/Pdelay, where

Pdelay = 1 − Wq(0). The percentile η(p) is defined as the solution to

1 −
1 − Wq(x)

Pdelay

= p.

The conditional percentiles η(p) are defined for all 0 ≤ p < 1. Note that η(p1) =
ξ(p0) when p0 = 1−(1−p1)ρ. Table 9.2.2 gives the exact and approximate values

of η(p) for E2 services (c2
S = 0.5) and H2 services with the gamma normalization

(c2
S = 2). The numerical results show an excellent performance of the second-order

approximation for all values of ρ and p. The first-order approximation (1/2)(1 +
c2
S)ηexp(p) is only useful for quick engineering calculations when ρ is not too small

(say, ρ > 0.5) and p is sufficiently close to 1 (say, p > 1 − ρ).

9.2.3 Busy Period Analysis

The busy period is an important concept in queueing. A busy period begins when

an arriving customer finds the system empty and ends when a departing customer

leaves the system empty behind. In this subsection we derive the Laplace transform

of the probability distribution of the length of a busy period in the M/G/1 queue.

Also it will be seen that both the transient emptiness probability and the steady-

state waiting-time distribution under the last-come first-served discipline are closely

related to the distribution of a busy period.

Denote by the random variable B the length of a busy period and let β(x) be

the probability density of B. Then the Laplace transform

β∗(s) =
∫ ∞

0

e−sxβ(x) dx (= E(e−sB))
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of the busy period density is determined by the functional equation

β∗(s) = b∗(s + λ − λβ∗(s)), (9.2.25)

where b∗(s) =
∫∞

0 e−sxb(x) dx is the Laplace transform of the probability density

b(x) of the service time of a customer. By relation (E.8) in Appendix E, the Laplace

transform of P {B > x} is given by

∫ ∞

0

e−sxP {B > x} dx =
1 − β∗(s)

s
. (9.2.26)

The key to the proof of (9.2.25) is the assertion that the amount of time needed to

empty the system when the system starts with n customers present is distributed as

the sum of the lengths of n independent busy periods B1, . . . , Bn. To see this, note

first that the order of service has no effect on the amount of time needed to empty

the system. Following Takács (1962), imagine now the following service discipline.

The initial n customers C1, . . . , Cn are separated. Customer C1 is served first, after

which all customers (if any) are served who have arrived during the service time

of customer C1, and this way of service is continued until the system is free of all

customers but C2, . . . , Cn. Next this procedure is repeated with customer C2, etc.

This verifies the above assertion. The remainder of the proof is now simple. Let

the random variables S1 and ν1 denote the length of the service initiating the busy

period and the number of customers arriving during that first service time. Then,

by conditioning on S1 and ν1, we find

E(e−sB) =
∫ ∞

0

[ ∞
∑

n=0

e−λt (λt)n

n!
E(e−sB | S1 = t, ν1 = n)

]

b(t) dt

=
∫ ∞

0

[ ∞
∑

n=0

e−λt (λt)n

n!
E(e−s(t+B0+···+Bn))

]

b(t) dt,

where B0 = 0 and B1, . . . , Bn are independent random variables each having the

same distribution as the busy period B. Thus we find

β∗(s) =
∫ ∞

0

[ ∞
∑

n=0

e−λt (λt)n

n!
e−st [β∗(s)]n

]

b(t) dt

=
∫ ∞

0

e−ste−λ[1−β∗(s)]tb(t) dt = b∗(s + λ − λβ∗(s)),

as was to be proved. In the same way as (9.2.25) was derived, we can derive the

generating function of the random variable N which is defined as the number of

customers served in one busy period. Letting F(z) =
∑∞

k=0 P {N = k}zk , it is left

to the reader to verify that

F(z) = zb∗(λ − λF(z)), |z| ≤ 1. (9.2.27)
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Using relation (E.2) in Appendix E, it easily follows from (9.2.25) that the first

two moments of the length of a busy period are given by

E(B) =
E(S)

1 − ρ
and E(B2) =

E(S2)

(1 − ρ)3
, (9.2.28)

where the random variable S denotes the service time of a customer. The result

(9.2.28) shows that the squared coefficient of variation of the length of a busy period

equals c2
B = (1+c2

S)/(1−ρ), where c2
S is the squared coefficient of variation of the

service time S. The value of c2
B explodes when ρ approaches 1. Consequently, the

density of the busy period has a very long tail for ρ close to 1. As an illustration,

consider the case of gamma services with E(S) = 1 and c2
S = 2. Then the tail

probability P {B > 1000} has the respective values 4.70 × 10−4, 3.63 × 10−3 and

1.15 × 10−2 for ρ = 0.90, 0.95 and 0.99. These values have been computed by

using the general formula

P {B ≤ x} =
∞
∑

n=1

∫ x

0

e−λy (λy)n−1

n!
bn(y) dy, x ≥ 0, (9.2.29)

where bn(x) denotes the probability density of the sum S1 + · · · + Sn of n service

times S1, . . . , Sn. The reader is referred to Takács (1962) for a proof of this formula.

The numerical evaluation of this infinite series offers no difficulties when the service

time has a gamma distribution. Then bn(x) is a gamma density as well, so that each

term of the series can be written as an incomplete gamma integral; see Appendix B.

Fast codes for the numerical evaluation of an incomplete gamma integral are widely

available.

If the service times are not gamma distributed, one has to resort to numerical

inversion of the Laplace transform (9.2.26) for the computation of P {B > x}. In

inverting this Laplace transform, the problem is that β∗(s) is not explicitly given

but is given in the form of a functional equation. However, the value of β∗(s) for

a given point s can be simply computed by an iterative procedure.

Iterative procedure for β∗(s)

For a given point s, the function value β∗(s) can be seen as a ‘fixed point’ of the

equation

z = b∗(s + λ − λz).

It was shown in Abate and Whitt (1992) that this equation can be solved by repeated

substitution. Starting with z0 = 1, compute the (complex) number zn from

zn = b∗(s + λ − λzn−1), n = 1, 2, . . . .

The sequence {zn} converges to the desired value β∗(s).
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Transient emptiness probability

The distribution of the length of the busy period is closely related to the transient

emptiness probability p00(t) defined by

p00(t) = P {no customers will be present at time t when

at the current epoch 0 the system is empty}

for t ≥ 0. Defining the Laplace transform p∗
00(s) by

p∗
00(s) =

∫ ∞

0

e−stp00(t) dt,

it holds that

p∗
00(s) =

1

λ + s − λβ∗(s)
. (9.2.30)

The derivation is simple. By conditioning on the epoch of the first arrival and on

the length of the subsequent busy period, it is readily seen that

p00(t) = e−λt +
∫ t

0

h(t − x)λe−λx dx, t ≥ 0,

where

h(u) =
∫ u

0

p00(u − v)β(v) dv.

Taking the Laplace transform of both sides of the integral equation for p00(t) and

using the convolution formula (E.6) in Appendix E, we obtain

p∗
00(s) =

1

s + λ
+

λ

s + λ
p∗

00(s)β
∗(s).

Solving this equation gives the desired result (9.2.30).

Waiting-time probabilities for LCFS service

Under the last-come first-served discipline (LCFS) the latest arrived customer enters

service when the server is free to start a new service. The LCFS discipline was

in fact used in the derivation of the Laplace transform of the busy period. It will

therefore be no surprise that under this service discipline the limiting distribution

of the waiting time of a customer can be related to the distribution of the length

of a busy period. Assuming the LCFS discipline, let Dn be the delay in queue of

the nth arriving customer and let Wq(x) = limn→∞ P {Dn ≤ x}. Then

∫ ∞

0

e−sx{1 − Wq(x)} dx =
1

s

{

ρ −
λ(1 − β∗(s))

s + λ − λβ∗(s)

}

. (9.2.31)
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We give only a sketch of the proof. Let the random variable D(∞) have Wq(x) as

probability distribution function. By relation (E.8) in Appendix E,

∫ ∞

0

e−sx{1 − Wq(x)} dx =
1 − E(e−sD(∞)

)

s
.

To find E(e−sD(∞)
), let the random variable Un be 0 if the server is idle upon the

nth arrival and let Un be the remaining service time of the service in progress upon

the epoch of the nth arrival otherwise. Under the LCFS discipline, the delay Dn of

the nth arrival depends only on Un. The random variable Dn has a positive mass

at x = 0. Thus

E(e−sDn) = P {Un = 0} + E(e−sDn | Un > 0)P {Un > 0}.

Next the following observation is made. Under the condition that Un = u and that

k new customers arrive during the remaining service time u, the delay in queue of

the nth arrival is distributed as u +
∑k

i=1 Bi , where B1, . . . , Bk are independent

random variables each distributed as the length of a busy period. Hence

E(e−sDn | Un = u) =
∞
∑

k=0

e−λu (λu)k

k!
e−su[β∗(s)]k = e−[s+λ(1−β∗(s))]u.

Define now the random variable Rt as the remaining service time of the service

in progress at time t given that the server is busy at time t . Using the PASTA

property, it follows that

lim
n→∞

P {Un = 0} = 1 − ρ and lim
n→∞

P {Un ≤ u | Un > 0} = lim
t→∞

P {Rt ≤ u}.

Using the result

lim
t→∞

P {Rt ≤ u} =
1

E(S)

∫ u

0

{1 − B(y)} dy, u ≥ 0, (9.2.32)

it is a matter of some algebra to verify that

E(e−sD(∞)

) = lim
n→∞

E(e−sDn) = 1 − ρ +
λ(1 − β∗(s))

s + λ − λβ∗(s)
.

This result gives (9.2.31). A remark is made about the important result (9.2.32).

It is tempting to conclude this result by considering only those times when the

server is busy and next using the equilibrium excess distribution from renewal

theory; see Theorem 8.2.5. However, more subtle renewal-theoretic arguments are

needed to prove (9.2.32). A probabilistic proof is as follows. Fix u ≥ 0. Let the

random variable I (t) = 1 if the server is busy at time t and the remaining service

time of the service in progress is larger than u and let I (t) = 0 otherwise. The

stochastic process {I (t)} is regenerative. The regeneration epochs are the service

completion epochs at which the server becomes idle. The length of a regeneration
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cycle is continuously distributed with a finite expectation. Thus, by Theorem 2.2.4,

limt→∞ P {I (t) = 1} exists and equals E(D1)/E(L1), where L1 is the length of

one cycle and D1 is the total amount of time in one cycle that a service is in

progress with a remaining service time larger than u. Denoting by N the number

of customers served in one cycle and using Wald’s equation, we find

E(D1) = E(N)

∫ ∞

u

(y − u)b(y) dy = E(N)

∫ ∞

u

{1 − B(y)} dy.

By (9.2.27) and (9.2.28), E(N) = 1/(1 − ρ) and E(L1) = 1/λ + E(S)/(1 − ρ).

This gives

lim
t→∞

P {the server is busy at time t and the remaining service time

of the service in progress is larger than u}

= λ

∫ ∞

u

{1 − B(y)} dy.

Noting that limt→∞ P {the server is busy at time t} exists and equals ρ = λE(S),

the result (9.2.32) follows.

9.2.4 Work in System

Let the random variable Vt be defined by

Vt = the total amount of work that remains to be done on all

customers in the system at time t.

In other words, Vt is the sum of the remaining service times of the customers in the

system at time t . The stochastic process {Vt , t ≥ 0} is called the work-in-system

process or the virtual-delay process. Let

V∞(x) = lim
t→∞

P {Vt ≤ x}, x ≥ 0.

Also, V∞(x) is the long-run fraction of time that the work in system is no more

than x. By the PASTA property, it holds that V∞(x) is identical to the limiting

distribution function Wq(x) of the waiting time of a customer when service is in

order of arrival. In particular, by (2.5.13),

∫ ∞

0

e−sx{1 − V∞(x)} dx =
ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
, (9.2.33)

where b∗(s) is the Laplace transform of the service-time density b(x). For later

purposes, we mention here the following additional relations for V∞(x):

V ′
∞(x) = λV∞(x) − λ

∫ x

0

V∞(x − y)b(y) dy, x > 0, (9.2.34)
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V ′
∞(x) = λ

d

dx

∫ x

0

V∞(x − y){1 − B(y)} dy, x > 0. (9.2.35)

Since V∞(x) = Wq(x), these formulas follow from relations (8.4.2), (8.4.3) and

(8.4.4); take σ = 1 in these relations. Also, by (8.4.9), it holds under Assump-

tion 9.2.1 that

1 − V∞(x) ∼ γ e−δx as x → ∞, (9.2.36)

where γ and δ are given by (9.2.17).

Unlike the waiting-time distribution, the distribution of the work in system is

invariant among the so-called work-conserving queue disciplines. A queue disci-

pline is called work-conserving when the amount of time a customer is in service

is not affected by the queue discipline.

The maximum work in system during a busy period

Define the random variable Vmax as

Vmax = the maximum amount of work in system during a busy period.

A busy period is the time elapsed between the arrival epoch of a customer finding

the system empty and the next epoch at which the system becomes empty. The

following result holds:

P {Vmax > K} =
1

λ

V ′
∞(K)

V∞(K)
, K > 0, (9.2.37)

where V ′
∞(x) is the derivative of V∞(x) for x > 0. To prove this result, we fix

K > 0 and define the probability pK (x) for 0 < x < K by

pK (x) = the probability that the work process {Vt } reaches the

level 0 before it exceeds the level K when the current

amount of work in system equals x.

It will be shown that

pK (x) =
V∞(K − x)

V∞(K)
, 0 < x < K. (9.2.38)

The proof of this result is as follows. If the amount of work in the system is x < K

upon arrival of a new customer, the workload remains below the level K only if

the amount of work brought along by the customer is less than K − x. Thus, by

conditioning on what may happen in a very small time interval of length �t = �x,

we find

pK(x + �x) = (1 − λ�x)pK (x) + λ�x

∫ K−x

0

pK (x + y)b(y) dy + o(�x).
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This gives the following expression for the derivative of pK(x):

p′
K (x) = −λpK(x) + λ

∫ K−x

0

pK (x + y)b(y) dy, 0 < x < K.

Mimicking the derivation of (8.4.4) gives

p′
K (x) = λ

d

dx

∫ K−x

0

pK(x + y){1 − B(y)} dy, 0 < x < K.

Letting qK (x) = pK (K − x) for 0 < x < K , we thus have

q ′
K (x) = λ

d

dx

∫ x

0

qK(x − y){1 − B(y)} dy, 0 < x < K.

This equation has a unique solution since it can be reduced to a renewal-type

equation. Comparing this equation with equation (9.2.34) reveals that, for some

constant c,

qK (x) = cV∞(x), 0 < x < K.

Since limx→0pK (x) = 1, the result (9.2.38) now follows. It remains to verify

(9.2.37). To do so, note that

P {Vmax > K} = 1 −
∫ K

0

pK (x)b(x) dx

=
V∞(K) −

∫ K

0 V∞(K − x)b(x) dx

V∞(K)
. (9.2.39)

The numerator of the last expression equals λ−1V ′
∞(K) by relation (9.2.34). This

completes the verification of (9.2.37).

The probability distribution (9.2.37) of Vmax can be calculated by numerical

inversion of the Laplace transforms of V∞(x) and V ′
∞(x). The Laplace transform

of 1 − V∞(x) is given by (9.2.33). Letting v∞(x) denote the derivative of V∞(x)

for x > 0 and noting that V∞(x) = V∞(0) +
∫ x

0 v∞(y) dy, we find

∫ ∞

0

e−sxv∞(x) dx =
(1 − ρ)

[

λ − λb∗(s)
]

s − λ + λb∗(s)
.

9.3 THE MX/G/1 QUEUE

Queueing systems with customers arriving in batches rather than singly have many

applications in practice, for example in telecommunication. A useful model is

the single-server MX/G/1 queue where batches of customers arrive according

to a Poisson process with rate λ and the batch size X has a discrete probability

distribution {βj , j = 1, 2, . . . } with finite mean β. The customers are served
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individually by a single server. The service times of the customers are independent

random variables with a common probability distribution function B(t). Denoting

by the random variable S the service time of a customer, it is assumed that the

server utilization ρ defined by

ρ = λβE(S)

is smaller than 1. The analysis for the M/G/1 queue can be extended to the

MX/G/1 queue. In Section 9.3.1 we give an algorithm for the state probabilities.

The computation of the waiting-time probabilities is discussed in Section 9.3.2.

9.3.1 The State Probabilities

The stochastic process {L(t), t ≥ 0} describing the number of customers in the

system is regenerative. The process regenerates itself each time an arriving batch

finds the system empty. The cycle length has a continuous distribution with finite

mean. Thus the process {L(t)} has a limiting distribution {pj }. The probability

pj can be interpreted as the long-run fraction of time that j customers are in the

system. The probability p0 allows for the explicit expression

p0 = 1 − ρ. (9.3.1)

To see this, we apply the ‘reward principle’ that was used in Section 2.3 to obtain

Little’s formula. Assume that the system earns a reward at rate 1 whenever a

customer is in service. Then the average reward per time unit represents the fraction

of time that the server is busy. The long-run average reward earned per customer is

equal to E(S), while the long-run average arrival rate of customers is λβ. Hence the

long-run average reward earned per time unit equals λβE(S). The long-run fraction

of time that the server is busy equals 1−p0. This shows that 1−p0 = λβE(S) = ρ.

A recursion scheme for the pj is given in the following theorem.

Theorem 9.3.1 The state probabilities pj satisfy the recursion

pj = λp0

j
∑

s=1

βsaj−s + λ

j
∑

k=1

(

k
∑

i=0

pi

∑

s>k−i

βs

)

aj−k, j = 1, 2, . . . , (9.3.2)

where

an =
∫ ∞

0

rn(t){1 − B(t)} dt, n = 0, 1, . . .

with rn(t) = P {a total of n customers will arrive in (0,t)}.

Proof The proof is along the same lines as the proof of Theorem 9.2.1. The only

modification is with respect to the up- and downcrossing relation (9.2.5). We now

use the following up- and downcrossing argument: the number of downcrossings
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from a state in the set {k + 1, k + 2, . . . } to a state outside this set during one cycle

equals the number of upcrossings from a state outside the set {k + 1, k + 2, . . . } to

a state in this set during one cycle. Thus relation (9.2.5) generalizes to

E(Nk) =
k
∑

i=0

E(Ti)λ
∑

s>k−i

βs, k = 0, 1, . . . .

The remainder of the proof is analogous to the proof of Theorem 9.2.1.

The recursion scheme (9.3.2) is not as easy to apply as the recursion scheme

(9.2.1). The reason is that the computation of the constants an is quite burden-

some. In general, numerical integration must be used, where each function eval-

uation in the integration procedure requires an application of Adelson’s recursion

scheme for the computation of the compound Poisson probabilities rn(t), n ≥ 0;

see Section 1.2.

The best general-purpose approach for the computation of the state probabilities

is the discrete FFT method. An explicit expression for the generating function

P (z) =
∞
∑

j=0

pj z
j , |z| ≤ 1

can be given. It is a matter of tedious algebra to derive from (9.3.2) that

P (z) = (1 − ρ)
1 − λα(z){1 − G(z)}

1 − λα(z){1 − G(z)}/(1 − z)
, (9.3.3)

where

G(z) =
∞
∑

j=1

βjz
j and α(z) =

∫ ∞

0

e−λ{1−G(z)}t (1 − B(t)) dt.

The derivation uses that e−λ{1−G(z)}t is the generating function of the compound

Poisson probabilities rn(t); see Theorem 1.2.1. Moreover, the derivation uses that

the generating function of the convolution of two discrete probability distributions

is the product of the generating functions of the two probability distributions. The

other details of the derivation of (9.3.3) are left to the reader. For constant and

phase-type services, no numerical integration is required to evaluate the function

α(z) in the discrete FFT method.

Asymptotic expansion

The state probabilities allow for an asymptotic expansion when it is assumed that

the batch-size distribution and the service-time distribution are not heavy-tailed.

Let us make the following assumption.
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Assumption 9.3.1 (a) The convergence radius R of G(z) =
∑∞

j=1 βjz
j is larger

than 1. Moreover,
∫∞

0 est {1 − B(t)} dt < ∞ for some s > 0.

(b) lims→B

∫∞
0 est {1 − B(t)} dt = ∞, where B is the supremum over all s with

∫ ∞

0

est {1 − B(t)} dt] < ∞.

(c) limx→R0
G(x) = 1 + B/λ for some number R0 with 1 < R0 ≤ R.

Under this assumption we obtain from Theorem C.1 in Appendix C that

pj ∼ στ−j as j → ∞, (9.3.4)

where τ is the unique solution to the equation

λα(τ){1 − G(τ)} = 1 − τ (9.3.5)

on (1, R0) and the constant σ is given by

σ = (1 − ρ)(1 − τ )

[

λα′(τ ){1 − G(τ)} −
(1 − τ )G′(τ )

1 − G(τ)
+ 1

]−1

. (9.3.6)

A formula for the average queue size

The long-run average number of customers in queue is Lq =
∑∞

j=1(j − 1)pj .

Using the relation P ′(1) =
∑∞

j=1 jpj , we obtain after some algebra from (9.3.3)

that

Lq =
1

2
(1 + c2

S)
ρ2

1 − ρ
+

ρ

2(1 − ρ)

[

E(X2)

E(X)
− 1

]

,

where X denotes the batch size. Note that the first part of the expression for Lq

gives the average queue size in the standard M/G/1 queue, while the second part

reflects the additional effect of the batch size. The formula for Lq implies directly a

formula for the long-run average delay in queue per customer. By Little’s formula

Lq = λβWq .

9.3.2 The Waiting-Time Probabilities

The concept of waiting-time distribution is more subtle for the case of batch arrivals

than for the case of single arrivals. Let us assume that customers from each arrival

group are numbered as 1, 2, . . . . Service to customers from the same arrival group

is given in the order in which those customers are numbered. For customers from

different batches the service is in order of arrival. Define the random variable Dn as

the delay in queue of the customer who receives the nth service. In the batch-arrival

queue, limn→∞ P {Dn ≤ x} need not exist. To see this, consider the particular case
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of a constant batch size of 2. Then P {Dn > 0} = 1 for n even and P {Dn > 0} < 1

for n odd. The limit

Wq(x) = lim
n→∞

1

n

n
∑

k=1

P {Dk ≤ x}, x ≥ 0

always exists. To see this, fix x and imagine that a reward of 1 is earned for each

customer whose delay in queue is no more than x. Using renewal-reward theory,

it can be shown that the limit Wq(x) exists and represents the long-run fraction of

customers whose delay in queue is no more than x. If the batch size distribution

is non-arithmetic, then limn→∞ P {Dn ≤ x} exists and equals Wq(x).

Denote by

b∗(s) =
∫ ∞

0

e−sxb(x) dx

the Laplace transform of the probability density b(x) of the service time of a

customer. Let β∗
SC(s) be the Laplace transform of the probability density of the

total time needed to serve all customers from one batch. It is left to the reader to

verify that

β∗
SC(s) =

∞
∑

k=1

βk[b∗(s)]k = G(b∗(s)).

The following result now holds:

∫ ∞

0

e−sx{1 − Wq(x)} dx =
1 − W ∗

SC(s)W ∗
r (s)

s
, (9.3.7)

where

WSC(s∗) =
(1 − ρ)s

s − λ + λβ∗
SC(s)

and W ∗
r (s) =

1 − G(b∗(s))

β[1 − b∗(s)]

with β =
∑∞

k=1 kβk denoting the average batch size. The waiting-time probabili-

ties Wq(x) can be numerically obtained from (9.3.7) by using numerical Laplace

inversion.

We give only a heuristic sketch of the proof of (9.3.7). A rigorous treatment

is given in Van Ommeren (1988). An essential part of the proof is the following

result. For k = 1, 2, . . . , let

ηk = the long-run fraction of customers taking the kth position in their batch.

Then it holds that

ηk =
1

β

∞
∑

j=k

βj , k = 1, 2, . . . . (9.3.8)
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To prove this result, fix k and imagine that a reward of 1 is earned for each customer

taking the kth position in its batch. Then the long-run average reward per customer

is ηk by definition. By the renewal-reward theorem, the long-run average reward per

customer equals the expected reward
∑∞

j=k βj earned for a single batch divided

by the expected batch size β. This gives (9.3.8). Consider now a test customer

belonging to a batch that arrives when the system has reached steady state. Denote

by D(∞) the delay in queue of this test customer. The delay D(∞) can be written

as D(∞) = X0 + X1, where X0 is the delay caused by the customers present

just before the batch of the test customer arrives and X1 is the delay caused by

customers belonging to the batch of the test customer. The random variables X0

and X1 are independent of each other and so E(e−sD(∞)
) = E(e−sX0)E(e−sX1).

Assuming that the position of the test customer in the batch is distributed according

to {ηk}, we have by (9.3.8) that

E(e−sX1) =
∞
∑

k=1

ηk[b∗(s)]k−1 =
1

β

∞
∑

k=1

[b∗(s)]k−1
∞
∑

j=k

βj

=
1

β

∞
∑

j=1

βj

j
∑

k=1

[b∗(s)]k−1 =
1 − G(b∗(s))

β[1 − b∗(s)]
.

To find E(e−sX0), note that an arriving group of customers can be considered as

a singly arriving supercustomer. The probability density of the total time to serve

a supercustomer has the Laplace transform β∗
SC(s). In other words, the delay in

queue of the first customer of each batch can be described by a standard M/G/1

queue for which the service-time density has the Laplace transform β∗
SC(s). Thus,

using the result (2.5.12) for the M/G/1 queue,

E(e−sX0) =
(1 − ρ)s

s − λ + λβ∗
SC(s)

.

Since
∫∞

0 e−sx{1 − Wq(x)} dx = s−1[1 − E(e−sD(∞)
)] by relation (E.8) in

Appendix E, we have now derived (9.3.7) heuristically.

Alternative algorithm

A simpler algorithm than numerical Laplace inversion can be given for the

MX/D/1 queue with deterministic services. This alternative algorithm is discussed

in Section 9.5.3 in the more general context of the MX/D/c queue. A simple algo-

rithm is also possible when the service time of a customer is a mixture of Erlangian

distributions with the same scale parameters. In this case the service time of a cus-

tomer can be interpreted as a random sum of independent phases each having

an exponentially distributed length with the same mean. The MX/G/1 queue with

generalized Erlangian services is in fact an MY /M/1 queue in which the batch size

Y is distributed as the total number of service phases generated by all customers in
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one batch. For this particular MX/G/1 queue the waiting-time probabilities Wq(x)

can be computed by a modification of the algorithm given in Example 5.5.1.

Approximations for the waiting-time probabilities

Suppose that Assumption 9.3.1 is satisfied and let b(t) denote the density of the

service-time distribution function B(t). Then the following asymptotic expansion

applies:

1 − Wq(x) ∼ γ e−δx as x → ∞,

where δ is the smallest positive solution to

∞
∑

j=1

βj

{∫ ∞

0

eδtb(t) dt

}j

= 1 +
δ

λ

and the constant γ is given by

γ =
(1 − ρ)δ

λβ



1 − λ

∫ ∞

0

teδtb(t) dt

∞
∑

j=1

jβj

{
∫ ∞

0

eδtb(t) dt

}j−1




−1

×
[

1 −
∫ ∞

0

eδtb(t) dt

]−1

.

9.4 M/G/1 QUEUES WITH BOUNDED WAITING TIMES

In Section 9.2.4 we studied the limiting distribution function V∞(x) of the work

in system in the M/G/1 queue. This distribution function will play a key role in

the analysis of both the finite-buffer M/G/1 queue with partial overflow and the

M/G/1 queue with impatient customers.

9.4.1 The Finite-Buffer M/G/1 Queue

Consider the M/G/1 queue with a finite buffer, i.e. the finite dam model. Instead

of a service time of a customer, we speak of the amount of work brought in by

a customer. Customers arrive according to a Poisson process with rate λ. The

amounts of work brought in by the customers are independent random variables

having a common probability distribution function B(x) with probability density

b(x). Denoting by µ the first moment of the amount of work brought in by a

customer, it is assumed that ρ = λµ is less than 1. Each customer puts their

amount of work into a buffer. The buffer has a finite capacity of K . A customer

who brings more work than can be stored in the buffer causes an overflow, where

only the excess of work is lost (partial overflow). The buffer is emptied at a unity

rate whenever there is work in the buffer. The finite-buffer M/G/1 queue has

a variety of applications such as dam and production/inventory systems with a
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finite storage space and telecommunication systems with a finite buffer for storing

incoming data.

An important characteristic of the finite-buffer M/G/1 queue is

π(K) = the long-run fraction of arrivals that cause a partial overflow.

The following result can be proved:

π(K) =
1

λ

V ′
∞(K)

V∞(K)
, (9.4.1)

where V∞(x) is defined in Section 9.2.4. It is remarkable that π(K) is identical to

the probability P {Vmax > K}, where Vmax is the maximal buffer content during

a busy period in the infinite-buffer model; see relation (9.2.37). The proof of the

result (9.4.1) is based on the proportionality relation

VK (x) =
V∞(x)

V∞(K)
for 0 ≤ x ≤ K, (9.4.2)

where VK (x) is defined by

VK (x) = lim
t→∞

P {V (K)
t ≤ x}

with the random variable V
(K)
t denoting the amount of work in the buffer at time t .

We defer the proof of (9.4.2) to later. First we sketch how the result (9.4.1) can be

obtained from the proportionality relation (9.4.2). A customer who finds an amount

of work x in the buffer upon arrival causes an overflow only if the customer brings

an amount of work larger than K −x. In statistical equilibrium the amount of work

in the buffer seen by an arrival has VK (x) as probability distribution function by

the PASTA property. Hence, by conditioning,

π(K) = {1 − B (K)}VK (0) +
∫ K

0

{1 − B(K − x)}vK(x) dx,

where vK(x) denotes the derivative of VK (x) for x > 0. Using (9.4.2), it is not

difficult to verify by partial integration that

π(K) =
1

V∞(K)

[

V∞(K) −
∫ K

0

V∞(K − x)b(x) dx

]

.

By (9.2.34) the term between brackets equals λ−1V
′
∞(K), proving (9.4.1).

Assuming that the probability distribution function B(x) satisfies Assumption

9.2.1, it follows from (9.2.36) that

π(K) ∼
γ δ

λ
e−δK as K → ∞,

where γ and δ are given by (9.2.17).
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Derivation of the proportionality relation

Several proofs can be given for the proportionality relation (9.4.2). An insight-

ful proof can be based on renewal-theoretic arguments. The workload process

{V (K)(t), t ≥ 0} regenerates itself each time the buffer becomes empty. Let a

cycle be the time interval between two consecutive regeneration epochs. Denote

by the random variable T (K) the length of one cycle and by the random variable

T (K)(x) the amount of time in one cycle that the work in system is no more than x.

The corresponding random variables for the workload process {Vt } in the infinite-

buffer M/G/1 queue are denoted by T (∞) and T (∞)(x). Then, by the theory of

regenerative processes,

VK (x) =
E
[

T (K)(x)
]

E(T (K))
and V∞(x) =

E
[

T (∞)(x)
]

E(T (∞))
(9.4.3)

for 0 ≤ x ≤ K . The crucial observation is that T (K)(x) has the same distribution as

T (∞)(x) for any 0 ≤ x ≤ K . The assumption of Poisson arrivals and the assumption

of partial overflow of work in excess of the buffer capacity are essential in order

to establish this result. A rigorous proof requires a lot of technical machinery. The

result can be made plausible as follows. In the infinite-buffer model the distribution

of T (∞)(x) for 0 ≤ x ≤ K does not depend on the duration of excursions of the

workload process above the level K . The workload process in the infinite-buffer

system returns to the level K after each upcrossing of the level K . However, by the

lack of memory of the Poisson process, the situation in the infinite-buffer system

at the epochs at which a return to level K occurs is probabilistically the same as in

the finite-buffer system at the epochs at which an overflow of level K occurs. This

explains why T (K)(x) and T (∞)(x) have the same distribution for any 0 ≤ x ≤ K .

Thus we can conclude from (9.4.3) that, for the constant γ = E[T (∞)]/E(T (K)),

VK (x) = γV∞(x), 0 ≤ x ≤ K. (9.4.4)

Since VK (K) = 1, we next get the desired result (9.4.2). A rigorous proof of (9.4.4)

can be found in Hooghiemstra (1987).

Other performance measures

Other performance measures of interest are:

f (K) = the long-run fraction of input that overflows,

I (K) = the long-run average amount of work in the buffer.

The following results hold:

f (K) =
(1 − ρ)[1 − V∞(K)]

ρV∞(K)
(9.4.5)
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I (K) = K −
1

V∞(K)

∫ K

0

V∞(x) dx. (9.4.6)

The proof of (9.4.5) is based on Little’s formula for the average number of busy

servers. The long-run fraction of time the server is busy equals 1 − VK (0) =
1 − V∞(0)/V∞(K). Hence, by Little’s formula,

λ(1 − f (K))µ = 1 −
V∞(0)

V∞(K)
.

Since V∞(0) = 1−ρ, the formula (9.4.5) next follows. Using partial integration, the

result (9.4.6) directly follows by using (9.4.2). The performance measures π(K),

f (K) and I (K) can be calculated by using numerical Laplace inversion for the

computation of V∞(x), V ′
∞(x) and

∫ x

0 V∞(y) dy from the corresponding Laplace

transforms. The formula (9.4.5) for the overflow probability f (K) has an interesting

form. It is our conjecture that this structural form provides a useful approximation

to the overflow probability in more complex finite-buffer models such as the finite-

buffer fluid model with a Markov modulated Poisson input process determined by

a number of independent on-off sources. The solution of the infinite-buffer version

of this model is given in the classic paper of Anick et al. (1982); see also Schwartz

(1996). In this paper the linear differential equations for the work in system are

solved through eigenvalues and eigenvectors.

9.4.2 An M/G/1 Queue with Impatient Customers

A queueing system often encountered in practice is one in which customers wait for

service for a limited time and leave the system if service has not begun within that

time. Practical examples of queueing systems with customer impatience include

real-time telecommunication systems in which data received after a hard deadline

are useless, telecommunication systems in which subscribers give up due to impa-

tience before the requested connection is established and inventory systems with

perishable goods.

In this subsection we consider an M/G/1 queue in which customers arrive

according to a Poisson process with rate λ. The service or work requirements

of the customers are independent random variables having a general probability

distribution function B(x) with finite mean µ. It is assumed that ρ = λµ is less

than 1. The service discipline is first-come first-served. Each arriving customer

enters the system, but is only willing to wait in queue for a fixed time τ > 0. A

customer who waits for a time τ without his service having begun leaves the system

after that time τ and becomes a lost customer. A basic measure for the quality of

service in such a system is the fraction of customers who are lost. Define the

performance measure Ploss by

Ploss = the long-run fraction of customers who are lost.
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The following result holds:

Ploss =
(1 − ρ)P {W (∞)

q > τ }
1 − ρP {W (∞)

q > τ }
, (9.4.7)

where the random variable W
(∞)
q is distributed as the steady-state delay in queue of

a customer in the standard M/G/1 queue with service in order of arrival. That is,

P {W (∞)
q ≤ x} = Wq(x). The computation of Wq(x) is discussed in Section 9.2.2.

The proof of (9.4.7) is very similar to that of (9.4.1). To obtain the formula for Ploss ,

it is no restriction on the mathematical analysis to assume that customers finding

an amount of work in system larger than τ upon arrival do not enter the system but

are immediately lost. Using this convention, denote by the random variable V
(τ )
t

the amount of work in system at time t and let V (τ )(x) = limt→∞ P {V (τ )
t ≤ x}

for x ≥ 0. Then, using the PASTA property,

Ploss = 1 − V (τ )(τ ). (9.4.8)

By the same arguments as used to obtain (9.4.4), there is a constant γ so that

V (τ )(x) = γV∞(x), 0 ≤ x ≤ τ. (9.4.9)

To find the constant γ , we use Little’s formula for the average number of busy

servers. Since 1 − V (τ )(0) gives the fraction of time the server is busy,

λ(1 − Ploss )µ = 1 − V (τ )(0). (9.4.10)

Since V (τ )(0) = γV∞(0) and V∞(0) = 1 − ρ, we obtain from (9.4.10) that

Ploss =
(1 − ρ)(γ − 1)

λµ
. (9.4.11)

Also, by (9.4.8), Ploss = 1 − γV∞(τ ) and so

γ =
1

1 − ρ [1 − V∞(τ )]
. (9.4.12)

Finally, the desired result (9.4.7) follows by substituting (9.4.12) in (9.4.11) and

noting that V∞(x) equals the waiting-time distribution function Wq(x). Assuming

that the service-time distribution function satisfies Assumption 9.2.1, it follows

from (9.4.7) and the asymptotic expansion (9.2.16) that

Ploss ∼
(1 − ρ) γ e−δτ

1 − ργ e−δτ
∼ (1 − ρ) γ e−δτ as τ → ∞,

where γ and δ are given by (9.2.17). In other words, Ploss decreases exponen-

tially fast as τ gets larger. The structural form of (9.4.7) is remarkable. The loss

probability is expressed in terms of the waiting-time probability P {W (∞)
q > τ }.

The latter probability represents for the M/G/1 queue without impatience the
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probability that a customer arriving in steady state has to wait longer than a time τ

when service is in order of arrival. The result (9.4.7) can be shown to hold for the

M/M/c queue with impatient customers as well; see Boots and Tijms (1999). In

fact the result (9.4.7) applies to both the MX/G/1 queue and the MX/M/c queue

with impatient customers. In Section 9.8 the structural form (9.4.7) will again be

encountered in queueing systems with finite buffers. It will be seen that the loss

probabilities in a finite-buffer queue can often be expressed in terms of the solution

for the corresponding infinite-buffer queue. This finding is extremely useful from a

computational point of view: to analyse the finite-buffer model for different buffer

sizes it suffices to compute only once the solution for the infinite-buffer model.

9.5 THE GI /G/1 QUEUE

This section deals with the GI/G/1 queue in which the interarrival times and the

service times both have a general probability distribution. The server utilization ρ

is assumed to be smaller than 1. Computationally tractable results can be obtained

only for special cases. However, the exact results for simpler models may be used

as a basis for approximations to the complex GI/G/1 model; see also the discussion

in Section 9.7. The discussion will concentrate on the computation of the waiting-

time probabilities for the cases of phase-type services and phase-type arrivals. For

these cases the computational method is based on numerical Laplace inversion.

The embedded Markov chain method is an alternative approach when the service

times are distributed as a mixture of Erlangian distributions with the same scale

parameters. The probabilistic approach for this particular case will be discussed

first. The discussion below assumes that service is in order of arrival.

9.5.1 Generalized Erlangian Services

Suppose that the service-time density b(t) is given by

b(t) =
m
∑

i=1

qi

µi t i−1e−µt

(i − 1)!
, t ≥ 0,

where qm > 0. In other words, with probability qi the service time of a customer

is the sum of i independent phases each having an exponential distribution with

mean 1/µ. Thus we can define the embedded Markov chain {Xn} by

Xn = the number of uncompleted service phases just before the arrival

of the nth customer.

Denoting by {πj , j = 0, 1, . . . } the equilibrium distribution of this Markov chain,

we find by the same arguments as used to derive (5.1.7) that

Wq(x) = 1 −
∞
∑

k=0

e−µx (µx)k

k!



1 −
k
∑

j=0

πj



 , x ≥ 0. (9.5.1)
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Thus we have a computationally useful algorithm for the waiting-time distribution

when the probabilities πj can be efficiently computed. These probabilities are the

unique solution to the equilibrium equations

πj =
∞
∑

k=0

πkpkj , j = 0, 1, . . . (9.5.2)

together with the normalizing equation
∑∞

j=0 πj = 1, where the pij are the one-step

transition probabilities of the Markov chain {Xn}. The pij are easily found. Since

service completions of phases occur according to a Poisson process with rate µ as

long as the server is busy, it is readily seen that for any i ≥ 0

pij =
m
∑

k=max(j−i,1)

qk

∫ ∞

0

e−µt (µt)i+k−j

(i + k − j)!
a(t) dt, 1 ≤ j ≤ i + m,

where a(t) denotes the probability density of the interarrival time. The geometric

tail approach from Section 3.4.2 can be used to reduce the infinite system of linear

equations (9.5.2) to a finite system of linear equations. To see that

πj+1

πj

∼ η as j → ∞ (9.5.3)

for some constant 0 < η < 1, note that for any i ≥ 0 the one-step transition

probability pij equals 0 for j > i + m and depends on i and j only through the

difference j − i for j ≥ 1. Next we can apply a general result from Section 3.4.2

to obtain (9.5.3). Using the expression for pij , the equation (3.4.9) reduces after

some algebra to

wm −
{
∫ ∞

0

e−µ(1−w)ta(t) dt

} m
∑

i=1

qiw
m−i = 0. (9.5.4)

The decay factor η is the largest root on (0,1) of this equation. By replacing πj

for j ≥ M by πMηj−M for an appropriately chosen integer M , we obtain a finite

system of linear equations.

9.5.2 Coxian-2 Services

Suppose that the service time S of a customer has a Coxian-2 distribution with

parameters (b, µ1, µ2). That is, S is distributed as U1 with probability 1 − b and

S is distributed as U1 + U2 with probability b, where U1 and U2 are indepen-

dent exponentials with respective means 1/µ1 and 1/µ2. Then the waiting-time

distribution function Wq(x) allows for the explicit expression

1 − Wq(x) = a1e−η1x + a2e−η2x, x ≥ 0, (9.5.5)
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where η1 and η2 with 0 < η1 < min(µ1, µ2) ≤ η2 are the roots of

x2 − (µ1 + µ2)x + µ1µ2 − {µ1µ2 − (1 − b)µ1x}
∫ ∞

0

e−xta(t) dt = 0. (9.5.6)

The function a(t) denotes the interarrival-time density and

a1 = [−η2
1η2 + η1η2(µ1 + µ2) − η2µ1µ2]/ [µ1µ2(η1 − η2)]

a2 = [η1η
2
2 − η1η2(µ1 + µ2) + η1µ1µ2]/ [µ1µ2(η1 − η2)] .

A derivation of this explicit result can be found in Cohen (1982). In particular,

Pdelay and Wq are given by

Pdelay = 1 −
η1η2

µ1µ2

and Wq = −
(µ1 + µ2)

µ1µ2

+
1

η1

+
1

η2

. (9.5.7)

Since the computation of the roots of a function of a single variable is standard fare

in numerical analysis, the above results are very easy to use for practical purposes.

Bisection is a safe and fast method to compute the roots.

9.5.3 The GI /Ph/1 Queue

The results in Section 9.5.2 can be extended to the GI/Ph/1 queue with phase-

type services. Let b∗(s) =
∫∞

0 e−stb(t) dt denote the Laplace transform of the

service-time density b(t). For phase-type service b∗(s) can be written as

b∗(s) =
b1(s)

b2(s)

for polynomials b1(s) and b2(s), where the degree of b1(s) is smaller than the

degree of b2(s). Let m be the degree of b2(s). It is no restriction to assume that

b1(s) and b2(s) have no common zeros and that the coefficient of sm in b2(s) is

equal to 1. Also, let a∗(s) =
∫∞

0 e−sta(t) dt denote the Laplace transform of the

interarrival-time density a(t). It is assumed that a∗(s) and b2(s) have no common

zero. In Cohen (1982) it has been proved that

∫ ∞

0

e−sx{1 − Wq(x)} dx =
1

s

{

1 −
b2(s)

b2(0)

m
∏

i=1

ηi

ηi + s

}

, (9.5.8)

where η1, . . . , ηm are the roots of

b2(−s) − a∗(s)b1(−s) = 0 (9.5.9)

in the right half-plane {s|Re(s) > 0}. Moreover,

Pdelay = 1 −
1

b2(0)

m
∏

i=1

ηi (9.5.10)
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and

Wq = −
b′

2(0)

b2(0)
+

m
∑

i=1

1

ηi

, (9.5.11)

where b′
2(0) is the derivative of b2(s) at s = 0. Once the roots η1, . . . , ηm have

been computed, the waiting-time probabilities can be obtained by numerical Laplace

inversion of (9.5.8). A few words are in order on the computation of the (com-

plex) roots η1, . . . , ηm. If the interarrival-time density is a phase-type density as

well, then equation (9.5.9) reduces to a polynomial equation. Standard methods are

available to compute the roots of a polynomial equation; see Appendix G. Another

important case is the case of constant interarrival times. For the D/Ph/1 queue,

equation (9.5.9) becomes

b2(−s) − e−sDb1(−s) = 0. (9.5.12)

For Coxian-2 services this equation is a special case of (9.5.6) and has two real

roots that are easily found by bisection. In general the equation (9.5.12) can be

numerically solved by tools discussed in Appendix G. In Appendix G we give

special attention to the numerical solution of (9.5.12) when the service-time dis-

tribution is a mixture of an Erlang (m − 1, µ) distribution and an Erlang (m, µ)

distribution.

9.5.4 The Ph/G/1 Queue

For phase-type arrivals the Laplace transform a∗(s) =
∫∞

0 e−sta(t) dt of the prob-

ability density a(t) of the interarrival time can be written as

a∗(s) =
a1(s)

a2(s)
,

for polynomials a1(s) and a2(s), where the degree of a1(s) is lower than the degree

of a2(s). Let m be the degree of a2(s). It is no restriction to assume that a1(s) and

a2(s) have no common zeros and that the coefficient of sm in a2(s) is equal to 1.

Also, let b∗(s) =
∫∞

0 e−stb(t) dt denote the Laplace transform of the service-time

density b(t). It is assumed that b∗(s) and a2(s) have no common zero. For the case

of m ≥ 2, it follows from results in Cohen (1982) that

∫ ∞

0

e−sx
{

1 − Wq(x)
}

dx =
1

s

{

1 −
−αa2(0)s(1 − ρ)

a2(−s) − b∗(s)a1(−s)

m−1
∏

i=1

δi − s

δi

}

,

(9.5.13)
where δ1, . . . , δm−1 are the roots of

a2(−s) − b∗(s)a1(−s) = 0 (9.5.14)
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in the right half-plane {s|Re(s) > 0} and

α =
a′

2(0) − a′
1(0)

a2(0)
.

As usual, a′
2(0) and a′

1(0) denote the derivatives of a2(s) and a1(s) at s = 0.

Moreover,

Pdelay = 1 − (1 − ρ)αa2(0)

m−1
∏

i=1

δi (9.5.15)

and

Wq =
ρ

2(1 − ρ)E(S)

{

E(S2) + E(A2) + 2E(S)
a′

1(0)

a1(0)
− 2α

a′
2(0)

a2(0)
+

m−1
∑

i=1

1

δi

}

,

(9.5.16)
where the random variables S and A represent the service time and the interarrival

time. If m = 1 (i.e. Poisson input), formulas (9.5.13), (9.5.15) and (9.5.16) remain

valid provided we put the empty product equal to 1 and the empty sum equal

to 0. Note that there is a subtle difference between equations (9.5.9) and (9.5.14):

equation (9.5.9) has m roots with Re(s) > 0 and the other equation has m−1 roots.

The explanation lies in the asymmetric role of the interarrival time A and the service

time S in the ergodicity condition E(S)/E(A) < 1. For the numerical computation

of the roots of equation (9.5.14) the same remarks apply as for equation (9.5.9). In

particular, the Ph/D/1 queue is important. It will be seen in Section 9.7 that the

waiting-time distribution in the multi-server GI/D/c queue can be found through

an appropriate Ph/D/1 queue.

9.5.5 Two-moment Approximations

The general GI/G/1 queue is very difficult to analyse. In general one has to resort

to approximations. There are several approaches to obtain approximate numerical

results for the waiting-time probabilities:

(a) Approximate the service-time distribution by a mixture of Erlangian distribu-

tions or a Coxian-2 distribution.

(b) Approximate the continuous-time model by a discrete-time model and use the

discrete FFT method.

(c) Use two-moment approximations.

Approach (a) has been discussed in Sections 9.5.1 and 9.5.2. This approach

should only be used when the squared coefficient of variation of the service time

is not too large, say 0 ≤ c2
S ≤ 2.

Let us now briefly discuss approach (b) for the GI/G/1 queue. This approach

is based on Lindley’s integral equation. Define the random variables
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Dn = the delay in queue of the nth customer,

Sn = the service time of the nth customer,

An = the interarrival time between the nth and (n + 1)th customers.

For ease, let us assume that the service times and interarrival times have probability

densities b(t) and a(t). In the same way as in Section 8.4, we obtain

Dn+1 = max(0, Dn + Un), n = 1, 2, . . . , (9.5.17)

where Un = Sn −An. Using this recurrence equation, it is not difficult to show that

the waiting-time distribution function Wq(x) satisfies the so-called Lindley integral

equation

Wq(x) =
∫ x

−∞
Wq(x − t)c(t) dt, x ≥ 0, (9.5.18)

where c(t) is the probability density of the Un. Note that c(t) is the convolution

of a(−t) and b(t). A discretized version of Lindley’s integral equation can be

effectively solved by using the discrete FFT method. The details will not be given

here, but can be found in Ackroyd (1980) and Tran-Gia (1986). In De Kok (1989)

a moment-approximation method is suggested to solve Lindley’s integral equation.

This method is generally applicable and yields good approximations to the waiting-

time probabilities. In particular, the moment-approximation method is well suited

for both the GI/D/1 queue and the D/G/1 queue.

KLB approximation

Using a hybrid combination of basic queueing results and experimental analysis,

the following two-moment approximations for the delay probability and the aver-

age delay in queue per customer were obtained by Krämer and Langenbach-Belz

(1976):

P KLB
delay = ρ + (c2

A − 1)ρ(1 − ρ) ×



















1 + c2
A + ρc2

S

1 + ρ(c2
S − 1) + ρ2(4c2

A + c2
S)

if c2
A ≤ 1,

4ρ

c2
A + ρ2(4c2

A + c2
S)

if c2
A > 1,

WKLB
q =

ρE(S)

2(1 − ρ)
(c2

A + c2
S) ×



























exp

{

−2(1 − ρ)(1 − c2
A)2

3ρ(c2
A + c2

S)

}

if c2
A ≤ 1,

exp

{

−(1 − ρ)(c2
A − 1)

c2
A + 4c2

S

}

if c2
A > 1.
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Table 9.5.1 Some numerical results for the GI/G/1 queue

ρ = 0.2 ρ = 0.5 ρ = 0.8

Pdelay Wq Pdelay Wq Pdelay Wq

D/E4/1 exact 0.000 0.000 0.047 0.017 0.446 0.319
KLB 0.005 0.000 0.091 0.009 0.457 0.257

D/E2/1 exact 0.001 0.000 0.116 0.078 0.548 0.757
KLB 0.009 0.000 0.143 0.066 0.557 0.717

E4/D/1 exact 0.009 0.002 0.163 0.050 0.578 0.386
KLB 0.021 0.000 0.188 0.028 0.621 0.344

E2/D/1 exact 0.064 0.024 0.323 0.177 0.702 0.903
KLB 0.064 0.016 0.313 0.179 0.719 0.920

E2/H2/1 exact 0.110 0.203 0.405 1.095 0.752 4.825
KLB 0.088 0.239 0.375 1.169 0.743 4.917

H2/E2/1 exact 0.336 0.387 0.650 1.445 0.870 5.281
KLB 0.255 0.256 0.621 1.103 0.869 4.756

These approximations are only useful as rough estimates for practical engineering

purposes provided that the traffic load on the system is not small and c2
A is not too

large. In fact, one should be very careful in using the KLB approximation when c2
A

is larger than 1. A reason for this is that performance measures in queueing systems

are usually much more sensitive to the shape of the interarrival-time density than to

the shape of the service-time density, particularly when the traffic load on the sys-

tem is light. To illustrate the KLB approximation, Table 9.5.1 gives some numerical

results. The H2 distributions in the table refer to a hyperexponential distribution

with gamma normalization and a squared coefficient of variation equal to 2.

9.6 MULTI-SERVER QUEUES WITH POISSON INPUT

Multi-server queues are notoriously difficult and a simple algorithmic analysis is

possible only for special cases. In principle any practical queueing process could

be modelled as a Markov process by incorporating sufficient information in the

state description, but the dimensionality of the state space would grow quickly

beyond any practical bound and would therefore obstruct an exact solution. In many

situations, however, one resorts to approximation methods for calculating measures

of system performance. Useful approximations for complex queueing systems are

often obtained through exact results for simpler related queueing systems.

In this section we discuss both exact and approximate solution methods for the

state probabilities and the waiting-time probabilities in multi-server queues with

Poisson arrivals. The general M/G/c queue does not allow for a tractable exact

solution except for the special cases of the M/M/c queue and the M/D/c queue.

The M/M/c queue was analysed in detail in Section 5.1. An exact analysis for
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the M/D/c queue will be given in Section 9.6.1. In Section 9.6.2 we consider the

M/G/c queue with general service times and give several approximations including

two-moment approximations based on exact results for the M/M/c queue and the

M/D/c queue. In Section 9.6.3 we consider the MX/G/c queue with batch arrivals

and general service times. In particular, the MX/M/c queue and the MX/D/c

queue are dealt with.

9.6.1 The M/D/c Queue

In this model the arrival process of customers is a Poisson process with rate λ, the

service time of a customer is a constant D, and c identical servers are available. It

is assumed that the server utilization ρ = λD/c is smaller than 1.

An exact algorithm analysis of the M/D/c queue goes back to Crommelin (1932)

and is based on the following observation. Since the service times are equal to the

constant D, any customer in service at time t will have left the system at time

t + D, while the customers present at time t + D are exactly those customers

either waiting in queue at time t or having arrived in (t, t + D). Let pj (s) be the

probability of having j customers in the system at time s. Then, by conditioning

on the number of customers present at time t ,

pj (t + D) =
c
∑

k=0

pk(t)e
−λD (λD)j

j !
+

c+j
∑

k=c+1

pk(t)e
−λD (λD)j−k+c

(j − k + c)!

for j = 0, 1, . . . , since the number of arrivals in a time D is Poisson distributed

with mean λD. Next, by letting t → ∞ in these equations, we find that the

time-average probabilities pj satisfy the linear equations

pj = e−λD (λD)j

j !

c
∑

k=0

pk +
c+j
∑

k=c+1

pke−λD (λD)j−k+c

(j − k + c)!
, j ≥ 0. (9.6.1)

Also, we have the normalizing equation
∑∞

j=0 pj = 1. This infinite system of

linear equations can be reduced to a finite system of linear equations by using the

geometric tail approach discussed in Section 3.4.2. It will be shown below that the

state probabilities pj exhibit the geometric tail behaviour

pj ∼ στ−j as j → ∞, (9.6.2)

where τ is the unique solution of the equation

eλD(1−τ )τ c = 1 (9.6.3)

on the interval (1, ∞) and the constant σ is given by

σ = (c − λDτ)−1
c−1
∑

k=0

pk(τ
k − τ c). (9.6.4)
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Since pj/pj−1 ≈ τ−1 for j large enough, we replace pj for j ≥ M by pMτ−(j−M)

for an appropriately chosen integer M . Then the infinite system of linear equations

(9.6.1) together with the normalizing equation
∑∞

j=0 pj = 1 is reduced to a finite

system of linear equations of dimension M + 1. A relatively small value of M is

usually good enough for practical purposes. The value of M does not grow beyond

any practical bound when the traffic load on the system gets close to 1. It is an

empirical fact that the asymptotic expansion (9.6.2) already applies for relatively

small values of j . For practical purposes the value M = 1
2
(1+ρ)c+10ρ

√
c seems

large enough to obtain the state probabilities to at least nine decimal places (e.g.

for c = 25 and ρ = 0.99 we have M = 75, which is in marked contrast with

the brute-force value N = 1056 that is required when the infinite system of linear

equations is truncated such that �∞
i=Npi ≤ 10−9). In general the geometric tail

approach leads to a relatively small system of linear equations that can usually

be solved by a standard Gaussian elimination method. This approach requires that

beforehand we compute the constant τ from (9.6.3). Using logarithms, the equation

(9.6.3) is equivalent to λD(1 − τ ) + c ln(τ ) = 0. Noting that λD = cρ and using

the transformation η = 1/τ , it follows that τ can be obtained by computing the

unique η ∈ (0, 1) satisfying

ρ(1 − η) + η ln(η) = 0.

We can conclude that the state probabilities in the M/D/c queue can be routinely

computed by solving a finite system of linear equations. An accuracy check on the

calculated values of the pj is Little’s relation

c−1
∑

j=1

jpj + c



1 −
c−1
∑

j=0

pj



 = λD (9.6.5)

for the average number of busy servers. An alternative and more advanced method

for computing the state probabilities is based on the discrete FFT method. Before

giving this method, we derive the generating function of the state probabilities. This

generating function will also be used to verify the asymptotic expansion (9.6.2).

Generating function

Let P (z) =
∑∞

j=0 pj z
j for |z| ≤ 1. Multiplying both sides of (9.6.1) by zj and

summing over j gives

P (z) = eλD(z−1)

c
∑

k=0

pk +
∞
∑

j=1

zj

c+j
∑

k=c+1

pke−λD (λD)j−k+c

(j − k + c)!

= eλD(z−1)

c
∑

k=0

pk +
∞
∑

k=c+1

pkz
k−c

∞
∑

j=k−c

e−λD (λD)j−k+c

(j − k + c)!
zj−k+c
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= eλD(z−1)

c
∑

k=0

pk + eλD(z−1)

∞
∑

k=c+1

pkz
k−c

= eλD(z−1)z−c

c
∑

k=0

pkz
c + eλD(z−1)z−c

[

P (z) −
c
∑

k=0

pkz
k

]

.

This gives the desired result

P (z) =
∑c−1

k=0 pk(z
k − zc)

1 − zceλD(1−z)
. (9.6.6)

The generating function P (z) is the ratio of two functions that allow for an ana-

lytic continuation outside the unit circle. Next the asymptotic expansion (9.6.2) fol-

lows by applying Theorem C.1 in Appendix C. Also, we obtain after considerable

algebra from (9.6.6) that the average queue size is given by

Lq =
1

2c(1 − ρ)



(cρ)2 − c(c − 1) +
c−1
∑

j=2

{c(c − 1) − j (j − 1)}pj



 . (9.6.7)

An expression for the average delay in queue per customer next follows by using

Little’s formula Lq = λWq .

The discrete FFT method for the state probabilities

An alternative method for the computation of the probabilities pj is to use the

discrete FFT method. We cannot directly apply this method to (9.6.6) since the

expression for P (z) involves the unknowns p0, . . . , pc−1. However, by a generally

useful method, we can obtain from (9.6.6) an explicit expression for P (z). The

method is to compute first the zeros of the denominator on the right-hand side of

(9.6.6) in the region |z| ≤ 1 in the complex plane. The denominator 1− zceλD(1−z)

has c distinct zeros z0, z1, . . . , zc−1 inside or on the unit circle, where z0 = 1. A

simple algorithm for the computation of these roots is given in Appendix G. Each

zero zk must also be a zero of the numerator on the right-hand side of (9.6.6) for

the simple reason that P (z) =
∑∞

j=0 pjz
j is analytic for |z| ≤ 1. Thus we can

write (9.6.6) as

P (z) =
δ(z − 1)

1 − zceλD(1−z)

c−1
∏

k=1

(z − zk)

for some constant δ. Since P (1) = 1, we find by using L’Hôpital’s rule that

δ = −c(1 − ρ)/

c−1
∏

k=1

(1 − zk) .
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This gives for P (z) the following explicit expression:

P (z) =
c(1 − ρ)(1 − z)

1 − zceλD(1−z)

c−1
∏

k=1

(

z − zk

1 − zk

)

, |z| ≤ 1. (9.6.8)

This expression for P (z) allows for a direct application of the FFT method. It

is important to have an accuracy check on the calculated complex roots zk and

the subsequent calculations by the discrete FFT method. Such an accuracy check

is provided by Little’s relation (9.6.5). Another accuracy check is obtained by

calculating the average queue size Lq both from formula (9.6.7) and from the

direct expression Lq =
∑∞

j=c(j − c)pj .

Waiting-time probabilities

In the paper of Crommelin (1932) an explicit expression has been derived for Wq(x)

in terms of an infinite alternating series. However, this explicit expression turns out

to be of little computational use and is therefore not further discussed. It is possible

to deduce a recursion scheme for Wq(x) from Crommelin’s original derivation, but

this recursion scheme is also hampered by numerical difficulties. It took more than

sixty years before a satisfying solution was found for the computation of Wq(x).

An elegant and numerically stable algorithm was found by Franx (2001) using an

ingenious argument. The following expression holds for Wq(x):

Wq(x) =
kc−1
∑

j=0

Qkc−1−j e−λ(kD−x) [λ(kD − x)]j

j !
, (k − 1)D ≤ x < kD (9.6.9)

for k = 1, 2, . . . , where

Qj =
c+j
∑

i=0

pi, j = 0, 1, . . . .

The first step in the proof is to assume that the arriving customers are assigned

in cyclic order to the servers: the customers with labels i, i + c, i + 2c, . . . are

assigned to server i for i = 1, . . . , c (the nth arriving customer gets label n). This

service discipline is not violating the assumption of service in order of arrival since

the service times are deterministic. Denote by Wj the waiting time in queue of the

customer with label j . It is assumed that there is a single queue in front of all c

servers. Fix now x > 0. Also fix the positive integer k by (k − 1)D ≤ x < kD.

Next choose any integer n such that n > kc. Consider now the customers with the

labels n − kc and n. Both customers are served by the same server. This server is

called the marked server. To derive P (Wn ≤ x), we condition upon the number

of waiting customers in the queue just after the epoch at which the customer with

label n− kc enters service with the marked server. Distinguish between two cases:
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(a) There are at least kc customers waiting in queue just after the epoch at which

the customer with label n − kc enters service. Then the customer with label

n must be among those waiting customers and its waiting time in queue is

D + (k − 1)D which is larger than x.

(b) There are i ≤ kc − 1 customers waiting in queue just after the epoch at

which the customer with label n−kc enters service. Denote this epoch by S∗.

Since the customer with label n is the (kc)th customer to enter service after

epoch S∗, the customer with label n is not yet present at epoch S∗ and is the

(kc − i)th customer to arrive after epoch S∗. Suppose that the customer with

label n arrives at epoch S∗+y. Distinguish between the two cases y < kD−x

and y ≥ kD − x.

(b1) y < kD−x. Since y < kD−x ≤ kD−(k−1)D = D the customer with label

n arrives during the service time of the customer with label n − kc. Thus the

waiting time in queue of the customer with label n equals D − y + (k − 1)D,

which is larger than x.

(b2) y ≥ kD − x. The amount of time that the customer with label n spends

in queue during the service time of the customer with label n − kc equals

max(D − y, 0). The customer with label n is the kth customer to be served

by the marked server after the customer with label n − kc. Hence

Wn ≤ max(D − y, 0) + (k − 1)D

≤ max(D − (kD − x), 0) + (k − 1)D

= x − (k − 1)D + (k − 1)D = x.

Denote now by Sj the epoch at which the customer with label j enters service

and let L+
j be the number of customers waiting in queue just after epoch Sj ,

j = 1, 2, . . . . Under the condition that L+
n−kc = i with i ≤ kc − 1 the customer

with label n will be the (kc − i)th customer to arrive after epoch Sn−kc. Denote by

An the number of arrivals during the interval [Sn−kc, Sn−kc +kD−x]. The random

variable An is Poisson distributed with mean λ(kD − x). The above arguments

show that

Wn ≤ x if and only if L+
n−kc ≤ kc − 1 and An ≤ kc − 1 − L+

n−kc.

This leads to

P (Wn ≤ x) =
kc−1
∑

i=0

P (L+
n−kc = i)

kc−1−i
∑

ℓ=0

e−λ(kD−x) [λ(kD − x)]ℓ

ℓ!
.

For fixed x and k, we now let n → ∞. This gives

Wq(x) =
kc−1
∑

i=0

qi

kc−1−i
∑

ℓ=0

e−λ(kD−x) [λ(kD − x)]ℓ

ℓ!
, (9.6.10)
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where qi = limj→∞ P (L+
j = i). It remains to find the limiting probabilities qi .

These limiting probabilities can be obtained by a simple up- and downcrossing

argument: the long-run fraction of customers finding k other customers in queue

upon arrival equals the long-run fraction of customers leaving k other customers

behind in queue when entering service. This holds for any integer k ≥ 0. For

k �= 0 we also have that the long-run fraction of arrivals finding k other customers

in queue equals the long-run fraction of arrivals who find k + c other customers

in the system. This latter fraction equals the time-average probability pc+k by the

PASTA property. Hence we find

qi = pc+i for i = 1, 2, . . . and q0 =
c
∑

j=0

pj .

Interchanging the order of summation in (9.6.10), the result (9.6.9) now follows.

Asymptotic expansion

It is also possible to give an asymptotic expansion for 1 − Wq(x):

1 − Wq(x) ∼ γ e−λ(τ−1)x as x → ∞, (9.6.11)

where

γ =
σ

(τ − 1)τ c−1

with τ and σ as in (9.6.3) and (9.6.4). To prove this result, we fix u with 0 ≤ u < D

and let x run through (k − 1)D + u for k = 1, 2, . . . . Defining

br(u) =
r
∑

j=0

Qr−je
−λ(D−u) [λ(D − u)]j

j !
for r = 0, 1, . . . ,

we have by (9.6.9) that

1 − Wq(x) = 1 − bkc−1(u) for x = (k − 1)D + u.

Next consider the generating function Bu(z) =
∑∞

r=0(1 − br(u))zr . Since the

generating function of the convolution of two discrete sequences is the product of

the generating functions of the separate sequences, it follows that

Bu(z) =
1

1 − z
− Q(z)eλ(D−u)(z−1),

where Q(z) =
∑∞

j=0 Qjz
j . Since Qj =

∑c+j

k=0 pk, we find after some algebra that

Q(z) =
z−c

1 − z

[

P (z) −
c−1
∑

k=0

pk(z
k − zc)

]

=

eλD(1−z)

c−1
∑

k=0

pk(z
k − zc)

(1 − z)(1 − zceλD(1−z))
,
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where the latter equality uses (9.6.6). This leads to

Bu(z) =

[

1 − zceλD(1−z) − eλu(1−z)

c−1
∑

k=0

pk(z
k − zc)

]

/(1 − z)

1 − zceλD(1−z)
.

Next, by Theorem C.1 in Appendix C and τ ceλD(1−τ ) = 1, we find

1 − bj (u) ∼
σe−λ(τ−1)u

τ − 1
τ−j as j → ∞.

Take now j = kc − 1 and x = (k − 1)D + u. Then 1 − bj (u) = 1 − Wq(x). Since

the equation τ ceλD(1−τ ) = 1 implies τ−(k−1)c = e−λ(τ−1)(k−1)D, we obtain

1 − bkc−1 ∼
σe−λ(τ−1)x

(τ − 1)τ c−1
as k → ∞,

which proves the desired result (9.6.11).

9.6.2 The M/G/c Queue

In this multi-server model with c servers the arrival process of customers is a

Poisson process with rate λ and the service time S of a customer has a general

probability distribution function B(t). It is assumed that the server utilization ρ =
λE(S)/c is smaller than 1.

The M/G/c queue with general service times permits no simple analytical solu-

tion, not even for the average waiting time. Useful approximations can be obtained

by the regenerative approach discussed in Section 9.2.1. In applying this approach

to the multi-server queue, we encounter the difficulty that the number of customers

left behind at a service completion epoch does not provide sufficient information

to describe the future behaviour of the system. In fact we need the additional infor-

mation of the elapsed service times of the other services (if any) still in progress. A

full inclusion of this information in the state description would lead to an intractable

analysis. However, as an approximation, we will aggregate the information of the

elapsed service times in such a way that the resulting approximate model enables

us to carry through the regenerative analysis. A closer look at the regenerative

approach reveals that we need only a suitable approximation to the probability

distribution of the time elapsed between service completions. We now make the

following approximation assumption with regard to the behaviour of the process at

the service completion epochs.

Assumption 9.6.1 (approximation assumption) (a) If at a service completion

epoch, k customers are left behind in the system with 1 ≤ k < c, then the time

until the next service completion epoch is distributed as min(Se
1, . . . , Se

k), where
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Se
1, . . . , Se

k are independent random variables that have the equilibrium excess dis-

tribution function

Be(t) =
1

E(S)

∫ t

0

{1 − B(x)}dx, t ≥ 0,

as probability distribution function.

(b) If at a service completion epoch, k customers are left behind in the system

with k ≥ c, then the time until the next service completion is distributed as S/c,

where S denotes the original service time of a customer.

This approximation assumption can be motivated as follows. First, if not all

c servers are busy, the M/G/c queueing system may be treated as an M/G/∞
queueing system in which a free server is immediately provided to each arriving

customer. For the M/G/∞ queue in statistical equilibrium it was shown by Takács

(1962) that the remaining service time of any busy server is distributed as the

residual life in a renewal process with the service times as the interoccurrence

times. The same is true for the M/G/1 queue; see formula (9.2.32). The equilibrium

excess distribution of the service time is given by Be(t); see Theorem 8.2.5. Second,

if all of the c servers are busy, then the M/G/c queue may be approximated by

an M/G/1 queue in which the single server works c times as fast as each of the c

servers in the original multi-server system. It is pointed out that the approximation

assumption holds exactly for both the case of the c = 1 server and the case of

exponentially distributed service times.

Approximations to the state probabilities

Under the approximation assumption the recursion scheme derived in Section 9.2.1

for the M/G/1 queue can be extended to the M/G/c queue to yield approximations

p
app

j to the state probabilities pj . These approximations are given in the next

theorem, whose lengthy proof may be skipped at first reading. The approximation

to the state probabilities implies an approximation to the waiting-time probabilities.

The latter approximation is discussed in Exercise 9.11.

Theorem 9.6.1 Under the approximation assumption,

p
app

j =
(cρ)j

j !
p

app

0 , j = 0, 1, . . . , c − 1, (9.6.12)

p
app

j = λaj−cp
app

c−1 + λ

j
∑

k=c

bj−kp
app

k , j = c, c + 1, . . . , (9.6.13)

where the constants an and bn are given by

an =
∫ ∞

0

{1 − Be(t)}c−1{1 − B(t)}e−λt (λt)n

n!
dt, n = 0, 1, . . . ,
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bn =
∫ ∞

0

{1 − B(ct)}e−λt (λt)n

n!
dt, n = 0, 1, . . . .

Proof In the same way as in the proof of Theorem 9.2.1, we find

p
app

j = λp
app

0 A0j +
j
∑

k=1

λp
app

k Akj , j = 1, 2, . . . , (9.6.14)

where the constant Akj is defined by

Akj = the expected amount of time that j customers are present during the

time until the next service completion epoch when a service has just

been completed with k customers left behind in the system.

By the same argument as used to derive (9.2.7), we find under the approximation

assumption that

Akj =
∫ ∞

0

{1 − B(ct)}e−λt (λt)j−k

(j − k)!
dt, k ≥ c and j ≥ k. (9.6.15)

However, the problem is to find a tractable expression for Akj when 0 ≤ k ≤
c − 1. An explicit expression for Akj involves a multidimensional integral when

0 ≤ k ≤ c − 1. Fortunately, this difficulty can be circumvented by defining, for

any 1 ≤ k ≤ c and j ≥ k, the probability Mkj (t) by

Mkj (t) = P {j − k customers arrive during the next t time units and the

service of none of these customers is completed in the next t time

units when only c − k servers are available for the new arrivals}.

Then, using the approximation assumption,

Akj =
∫ ∞

0

{1 − Be(t)}kMkj (t) dt, 1 ≤ k ≤ c − 1, j ≥ k. (9.6.16)

Further, we have

A0j =
∫ ∞

0

{1 − B(t)}M1j (t) dt, j ≥ 1.

The definition of Mkj (t) implies that

Mkk (t) = e−λt , k ≥ 1 and Mcj (t) = e−λt (λt)j−c

(j − c)!
, j ≥ c.

Next we derive a differential equation for Mkj (t) when j > k. By conditioning on

what may happen in the first �t time units, we find for any 1 ≤ k ≤ c − 1 and

j > k that

Mkj (t + �t) = (1 − λ�t)Mkj (t) + λ�t{1 − B(t)}Mk+1,j (t) + o(�t), t > 0.
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Hence, for any 1 ≤ k ≤ c − 1 and j > k,

M
′
kj (t) = −λMkj (t) + λ{1 − B(t)}Mk+1,j (t), t > 0.

Multiplying both sides of this differential equation by {1−Be(t)}k, integrating over

t and using (9.6.16), we find after partial integration that

Akj = Bk+1,j −
k

λE(S)
Bkj , 1 ≤ k ≤ c − 1, j > k, (9.6.17)

where Bkj is a shorthand notation for

Bkj =
∫ ∞

0

{1 − Be(t)}k−1{1 − B(t)}Mkj (t) dt.

Next it is easy to establish the recursion scheme for p
app

j . To verify (9.6.12), we

use induction. Obviously, (9.6.12) holds for j = 0. Suppose now that (9.6.12)

holds for j = 0, . . . , n− 1 for some 1 ≤ n ≤ c − 1. Then, by (9.6.14) and (9.6.17)

p
app
n (1 − λAnn ) = λp

app

0 A0n +
n−1
∑

k=1

λp
app

k

{

Bk+1,n −
k

λE(S)
Bkn

}

=
n−1
∑

k=0

λp
app

k Bk+1,n −
n−1
∑

k=1

λp
app

k−1Bkn = λp
app

n−1Bnn , (9.6.18)

where the second equality uses A0n = B1n and uses the induction assumption

that p
app

k = cρp
app

k−1/k for 1 ≤ k ≤ n − 1. Using partial integration it is readily

verified that Bnn = (1−λAnn)E(S)/n. Hence we obtain from (9.6.18) that p
app
n =

cρp
app

n−1/n, which completes the induction step. To verify (9.6.13) we first note that

λp
app

0 A0j +
c−1
∑

k=1

λp
app

k Akj = λp
app

c−1Bcj , j ≥ c. (9.6.19)

The derivation of this relation is similar to that of (9.6.18). Inserting (9.6.19) into

(9.6.14) and using (9.6.15), the desired result (9.6.17) follows.

Computational aspects

The recursion scheme for p
app

j is easy to apply in practice. In general the constants

an and bn have to be evaluated by numerical integration. An explicit expression

for bn can be given for deterministic and phase-type services. To compute the an,

it is recommended to use Gauss–Legendre integration for deterministic services.

To do so for phase-type services, the infinite integral for an must be first reduced

to an integral over (0, 1) by using that E[g(X)] = E[g(F−1(U))] when F(x) =
P {X ≤ x} and U is uniformly distributed on (0, 1) (take F(x) = Be(x)). The

computational effort of the approximation algorithm depends only to a slight degree
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on c, as opposed to exact methods for which the computing times quickly increase

when c gets larger. For the first c state probabilities, we have

p
app

j = p
exp

j , j = 0, 1, . . . , c − 1, (9.6.20)

where p
exp

j denotes the state probability pj in the M/M/c queue. To prove (9.6.20),

sum both sides of (9.6.3) over j ≥ c. This yields

∞
∑

j=c

p
app

j =
ρ

1 − ρ
p

app

c−1. (9.6.21)

By (5.1.8) and (9.6.12),

p
exp

j =
cρ

j
p

exp

j−1 and p
app

j =
cρ

j
p

app

j−1 for 1 ≤ j ≤ c − 1,

Hence, for some constant γ, p
app

j = γp
exp

j for 0 ≤ j ≤ c−1. To verify that γ = 1,

we use (9.6.21) and (5.1.9) to obtain

ρ

1 − ρ
p

app

c−1 = 1 −
c−1
∑

j=0

p
app

j = 1 −
c−1
∑

j=0

γp
exp

j = 1 − γ
(

1 − P
exp

delay

)

= 1 − γ +
γρ

1 − ρ
p

exp

c−1.

and so ρp
app

c−1/ (1 − ρ) = 1 − γ + ρp
app

c−1/ (1 − ρ). This implies that γ = 1 and

so (9.6.20) holds. The relation (9.6.20) says that the approximate queueing system

behaves like an M/M/c queue when not all of the c servers are busy. As a by-

product of the above proof, we find for the delay probability Pdelay =
∑∞

j=c pj

that

P
app

delay
= P

exp

delay
,

where P
exp

delay
denote Erlang’s delay probability in the M/M/c queue. It has long

been known that Erlang’s delay probability gives a good approximation to the

delay probability in the general M/G/c queue. Further support for the quality

of the approximation to the state probabilities pj is provided by the result that

p
app

j /p
app

j−1 is asymptotically exact as j → ∞. This result will be proved below.

The generating function

The algorithm in Section 5.1 gives a very simple scheme to compute p
app

j = p
exp

j

for 0 ≤ j ≤ c − 1. Define the generating function

Pq(z) =
∞
∑

j=0

p
app

c+j z
j , |z| ≤ 1.
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It is a matter of simple algebra to derive from (9.6.13) that

Pq(z) = λp
app

c−1

α (z)

1 − λβ (z)
, (9.6.22)

where

α(z) =
∫ ∞

0

{1 − Be(t)}c−1{1 − B(t)}e−λ(1−z)t dt,

β(z) =
∫ ∞

0

{1 − B(ct)}e−λ(1−z)t dt.

The discrete FFT method can be used to obtain the p
app

j for j ≥ c.

Also, the generating function Pq(z) enables us to obtain an approximation to

the average queue size. Since Lq =
∑∞

j=c(j − c)pj , the derivative P ′
q(1) yields

an approximation to Lq . By differentiation of (9.6.22), we find after lengthy alge-

bra that

L
app
q =

[

(1 − ρ)γ1
c

E(S)
+ ρ

1

2
(1 + c2

S)

]

Lq(exp), (9.6.23)

where c2
S = σ 2(S)/E2(S) and

γ1 =
∫ ∞

0

{1 − Be(t)}c dt.

The quantity Lq(exp) denotes the average queue size in the M/M/c queue. If c2
S ≤

1, the constant γ1 is very well approximated by (c+1)−1c2
SE(S)+c−1(1−c2

S)E(S).

The approximation (9.6.23) has the term γ1 in common with the approximation pro-

posed in Boxma et al. (1979). This approximation improves the first-order approx-

imation 1
2

(

1 + c2
S

)

Lq(exp) to Lq through

LBox
q =

1

2
(1 + c2

S)
2Lq(exp)Lq(det)

2αLq(det) + (1 − α)Lq(exp)
,

where α = 1
c−1

[

E(S2)
γ1E(S)

− c − 1
]

and Lq(det) denotes the average queue size in

the M/D/c queue.

Table 9.6.1 gives for several examples the exact and approximate values of

Pdelay and Lq . We consider the cases of deterministic service (c2
S = 0), E2 service

(c2
S = 0.5) and H2 service with the gamma normalization (c2

S = 2). In the table

we also include the two-moment approximation

L
app2
q = (1 − c2

S)Lq(det) + c2
SLq(exp). (9.6.24)
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Table 9.6.1 Exact and approximate results

c2
S

= 0 c2
S

= 0.5 c2
S

= 2

Pdelay Lq Pdelay Lq Pdelay Lq

c = 2 exac 0.3233 0.177 0.3308 0.256 0.3363 0.487
ρ = 0.5 app 0.3333 0.194 0.3333 0.260 0.3333 0.479

app2 — 0.176 — 0.255 — 0.491

c = 5 exa 0.1213 0.077 0.1279 0.104 0.1335 0.181
ρ = 0.5 app 0.1304 0.087 0.1304 0.107 0.1304 0.176

app2 — 0.076 — 0.103 — 0.185

c = 10 exa 0.0331 0.024 0.0352 0.030 0.0373 0.048
ρ = 0.5 app 0.0361 0.025 0.0361 0.030 0.0361 0.047

app2 — 0.023 — 0.030 — 0.049

c = 2 exa 0.7019 1.445 0.7087 2.148 0.7141 4.231
ρ = 0.8 app 0.7111 1.517 0.7111 2.169 0.7111 4.196

app2 — 1.442 — 2.143 — 4.247

c = 5 exa 0.5336 1.156 0.5484 1.693 0.5611 3.250
ρ = 0.8 app 0.5541 1.256 0.5541 1.723 0.5541 3.191

app2 — 1.155 — 1.686 — 3.277

c = 25 exact 0.1900 0.477 0.2033 0.661 0.2164 1.173
ρ = 0.8 approx 0.2091 0.495 0.2091 0.663 0.2091 1.178

approx2 — 0.477 — 0.657 — 1.196

c = 50 exa 0.0776 0.214 0.0840 0.282 0.0908 0.471
ρ = 0.8 app 0.0870 0.207 0.0870 0.277 0.0870 0.488

app2 — 0.211 — 0.279 — 0.485

This two-moment approximation can be found in Cosmetatos (1976) and Page

(1972). The useful special-purpose approximation

L
app
q (det) =

1

2

[

1 + (1 − ρ)(c − 1)

√
4 + 5c − 2

16cρ

]

Lq(exp)

to Lq(det) was proposed in Cosmetatos (1976). The results in Table 9.6.1 for the

approximation (9.6.24) use this approximation to Lq(det).

Asymptotic expansions

It is assumed that the probability distribution function Bc(t) = B(ct) satisfies

Assumption 9.2.1. In other words, the service-time distribution is not heavy-tailed.

Let B = sup[s |
∫∞

0 est {1 − B(ct)} dt < ∞]. Then, using (9.6.22) and Theorem

C.1 in Appendix C, it is a routine matter to verify that

p
app

j ∼ σappτ
−j as j → ∞, (9.6.25)
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where τ is the unique solution to the equation
∫ ∞

0

e−λ(1−τ )t {1 − B(ct)} dt =
1

λ
(9.6.26)

on the interval (1, 1 + B/λ). The constant σapp is given by

σapp =
p

app

c−1τ
c−1

∫∞
0 e−λ(1−τ )t {1 − Be(t)}c−1{1 − B(t)}dt

λ
∫∞

0 te−λ(1−τ )t {1 − B(ct)} dt
. (9.6.27)

In Section 9.7 we give asymptotic expansions for the state probabilities and the

waiting-time probabilities in the general GI/G/c queue. Using equation (9.6.26)

and equation (9.7.4), it is not difficult to verify that p
app

j /p
app

j−1 is asymptoti-

cally exact as j → ∞. Also, an approximation to the asymptotic expansion of

the waiting-time probabilities can be given. Using (9.6.25) and (9.7.1) to (9.7.4),

we find

1 − Wq(x) ∼ γ e−λ(τ−1)x as x → ∞, (9.6.28)

where an approximation to γ is given by

γapp =
σapp

(τ − 1)τ c−1
. (9.6.29)

Two-moment approximations for the waiting-time percentiles

It is convenient to work with the percentiles η(p) of the waiting-time distribution

of the delayed customers. The percentiles η(p) are defined for all 0 ≤ p < 1; see

Section 9.2.2. Just as in the M/G/1 case, we suggest the first-order approximation

ηapp1(p) =
1

2
(1 + c2

S)ηexp(p) (9.6.30)

and the second-order approximation

ηapp2(p) = (1 − c2
S)ηdet(p) + c2

Sηexp(p), (9.6.31)

where ηexp(p) and ηdet(p) are the corresponding percentiles for the M/M/c queue

and the M/D/c queue. Both approximations require that the squared coefficient

of variation of the service time is not too large (say, 0 ≤ c2
S ≤ 2) and the traffic

load on the system is not very small. In the multi-server case the fraction of

time that all servers are busy is an appropriate measure for the traffic load on the

system. This fraction is given by Pdelay. The second-order approximation (9.6.31)

performs quite satisfactorily for all parameter values. The simple approximation

(9.6.30) is only useful for quick engineering calculations when Pdelay is not small

and p is sufficiently close to 1 (say, p > 1 − Pdelay). Table 9.6.2 gives for several

examples the exact value and the approximate values (9.6.30) and (9.6.31) for the

conditional waiting-time percentiles. It also includes the asymptotic value based on

the approximation (9.6.28). We consider the cases of E2 services (c2
S = 0.5) and

H2 services with gamma normalization (c2
S = 2).
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Table 9.6.2 Conditional waiting-time percentiles

c2
S

= 0.5 c2
S

= 2

p 0.2 0.5 0.9 0.99 0.2 0.5 0.9 0.99

c = 2 exa 0.200 0.569 1.72 3.32 0.256 0.930 3.48 7.15
ρ = 0.5 app1 0.167 0.520 1.73 3.45 0.335 1.04 3.45 6.91

app2 0.203 0.580 1.70 3.31 0.264 0.920 3.52 7.20
asy 0.282 0.609 1.73 3.33 0.158 0.907 3.47 7.14

c = 5 exa 0.082 0.240 0.722 1.37 0.099 0.339 1.32 2.78
ρ = 0.5 app1 0.067 0.208 0.691 1.38 0.134 0.416 1.38 2.76

app2 0.082 0.243 0.725 1.36 0.104 0.346 1.32 2.82
asy 0.146 0.277 0.725 1.36 — 0.296 1.32 2.79

c = 5 exa 0.193 0.554 1.74 3.42 0.274 0.962 3.43 6.96
ρ = 0.8 app1 0.167 0.520 1.73 3.45 0.335 1.04 3.45 6.91

app2 0.192 0.556 1.73 3.42 0.284 0.967 3.44 6.98
asy 0.218 0.562 1.74 3.42 0.232 0.954 3.42 6.96

c = 25 exa 0.040 0.118 0.364 0.703 0.052 0.174 0.649 1.35
ρ = 0.8 app1 0.033 0.104 0.345 0.691 0.067 0.208 0.691 1.38

app2 0.040 0.119 0.365 0.701 0.055 0.179 0.651 1.36
asy 0.048 0.117 0.353 0.690 0.038 0.182 0.676 1.38

9.6.3 The MX/G/c Queue

In the MX/G/c queue the customers arrive in batches rather than singly. The

arrival process of batches is a Poisson process with rate λ. The batch size has a

probability distribution {βj , j = 1, 2, . . . } with finite mean β. The service times of

the customers are independent of each other and have a general distribution with

mean E(S). There are c identical servers. It is assumed that the server utilization

ρ, defined by

ρ =
λβE(S)

c
,

is smaller than 1. The customers from different batches are served in order of arrival

and customers from the same batch are served in the same order as their positions

in the batch. A computationally tractable analysis can only be given for the special

cases of exponential services and deterministic services. We first analyse these

two special cases. Next we discuss a two-moment approximation for the general

MX/G/c queue.

The MX/M/c queue

The process {L(t)} describing the number of customers present is a continuous-

time Markov chain. Equating the rate at which the process leaves the set of states

{i, i + 1, . . . } to the rate at which the process enters this set of states, we find for
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the state probabilities pj the recursion scheme

min(i, c)µpi =
i−1
∑

k=0

pkλ
∑

s≥i−k

βs, i = 1, 2, . . . , (9.6.32)

where µ = 1/E(S). Starting with p0 := 1, we successively compute p1, p2, . . .

and next obtain the desired pi by normalization. The normalization can be based

on Little’s relation

c−1
∑

j=0

jpj + c(1 −
c−1
∑

j=0

pj ) = cρ (9.6.33)

stating that the average number of busy servers equals cρ. The computational effort

of the recursion scheme can be reduced by using the asymptotic expansion

pj ∼ στ−j as j → ∞, (9.6.34)

where τ is the unique solution of the equation

λτ [1 − β(τ)] = cµ(1 − τ ) (9.6.35)

on the interval (1, R) and the constant σ is given by

σ =

(τ − 1)

c−1
∑

i=0

(c − i)piτ
i/c

1 − λτ 2β ′(τ )/(cµ)
. (9.6.36)

Here β(z) =
∑∞

j=1 βjz
j and R is the convergence radius of the power series β(z).

To establish the asymptotic expansion, it is assumed that R > 1. In other words,

the batch-size distribution is not heavy-tailed. The derivation of the asymptotic

expansion (9.6.34) is routine. Define the generating function P (z) =
∑∞

j=0 pjz
j ,

|z| ≤ 1. It is a matter of simple algebra to derive from (9.6.32) that

P (z) =

(1/c)

c−1
∑

i=0

(c − i)piz
i

1 − λz{1 − β(z)}/{cµ(1 − z)}
.

Next, by applying TheoremC.1 in Appendix C, we obtain (9.6.34).

From the generating function we also derive after considerable algebra that the

long-run average queue size is given by

Lq =
1

c(1 − ρ)

c−1
∑

j=1

j (c − j)pj +
ρ

2(1 − ρ)

{

E(X2)

E(X)
− 1

}

+
ρ

1 − ρ
− cρ,

where the random variable X denotes the batch size.
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Next we discuss the computation of the steady-state probability distribution func-

tion Wq(x) of the waiting time of a customer. The function Wq(x) is defined in

the same way as in Section 9.3.2. To find Wq(x), we need the probabilities

zj = the long-run fraction of customers who have j other customers in

front of them just after arrival, j = 0, 1, . . . .

The delay in queue of a customer who has j ≥ c other customers in front of him just

after arrival is the sum of j − c + 1 independent exponentials with common mean

1/(cµ). Hence this conditional waiting time has an Ej−c+1 distribution and so

1 − Wq(x) =
∞
∑

j=c

zj

j−c
∑

k=0

e−cµx (cµx)k

k!
, x ≥ 0.

A computationally better representation for Wq(x) is

1 − Wq(x) =
∞
∑

k=0

e−cµx (cµx)k

k!



1 −
k+c−1
∑

j=0

zj



 , x ≥ 0. (9.6.37)

The probabilities zj are easily expressed in terms of the pj . To do so, let

ηk =
1

β

∞
∑

j=k

βj , k = 1, 2, . . . .

Then, as shown in Section 9.3.2, the probability ηk gives the long-run fraction of

customers who take the kth position in their batch. Since the long-run fraction of

batches finding m other customers present upon arrival equals pm, we find

zj =
j
∑

m=0

pmηj−m+1, j = 0, 1, . . . .

For the case of exponential services this formula can be considerably simplified.

Using the recursion relation (9.6.32), we have

zj =
µ

λβ
min(j + 1, c)pj+1, j = 0, 1, . . . . (9.6.38)

This completes the specification of the exact algorithm (9.6.37) for the computation

of the waiting-time probabilities Wq(x). The computational effort can further be

reduced by using an asymptotic expansion for 1 − Wq(x). Inserting (9.6.34) and

(9.6.38) into (9.6.37), we find after some algebra that

1 − Wq(x) ∼
στ−c

τ − 1
e−cµ(1−1/τ)x as x → ∞, (9.6.39)

where τ and σ are given by (9.6.35) and (9.6.36).
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The MX/D/c queue

Suppose that the service time of each customer is a constant D. Denoting by

pj (t) the probability that j customers are present at time t, we find by the same

arguments as used in Section 9.6.2 that

pj (t + D) =
c
∑

k=0

pk(t)rj (D) +
c+j
∑

k=c+1

pk(t)rj−k+c(D), j = 0, 1, . . . ,

where the compound Poisson probability rj (D) is defined by

rj (D) = the probability that exactly j customers arrive during

a given time interval of length D, j = 0, 1, . . . .

Letting t → ∞, we find the system of linear equations

pj = rj (D)

c
∑

k=0

pk +
c+j
∑

k=c+1

rj−k+c(D)pk, j = 0, 1, . . . (9.6.40)

together with the normalizing equation
∑∞

j=0 pj = 1. Just as in the M/D/c case,

this infinite system of equations can be reduced to a finite system of linear equations

by using the geometric tail behaviour of the pj . It holds that

pj ∼ στ−j as j → ∞, (9.6.41)

where τ is the unique root of the equation

τ ceλD{1−β(τ)} = 1 (9.6.42)

on the interval (1, R) and the constant σ is given by

σ = [c − λDτβ ′(τ )]−1
c−1
∑

j=0

pj (τ
j − τ c). (9.6.43)

As before, β(z) =
∑∞

j=1 βjz
j and the number R denotes the convergence radius

of the power series β(z). It is assumed that R > 1.

In general, however, it is computationally simpler to compute the state proba-

bilities pj by applying the discrete FFT method to the generating function P (z) =
∑∞

j=0 pj z
j . In the same way as (9.6.6) was derived, we obtain

P (z) =

c−1
∑

j=0

pj (z
j − zc)

1 − zceλD{1−β(z)} , (9.6.44)
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since the generating function of the compound Poisson probabilities rj (D) is given

by e−λD{1−β(z)}; see Theorem 1.2.1. Before the discrete FFT method can be applied,

the unknown probabilities p0, . . . , pc−1 must be removed from (9.6.44). To do so,

we proceed in the same way as in Section 9.6.1 and rewrite P (z) in the explicit form

P (z) =
c(1 − ρ)(1 − z)

1 − zceλD{1−β(z)}

c−1
∏

k=1

(

z − zk

1 − zk

)

, (9.6.45)

where z0 = 1, z1, . . . , zc−1 are the c distinct roots of zceλD{1−β(z)} = 1 inside

or on the unit circle. The computation of the (complex) roots z1, . . . , zc−1 is

discussed in Appendix G. The asymptotic expansion (9.6.41) follows from the

generating function (9.6.44) and Theorem C.1 in Appendix C. Also, we obtain

after considerable algebra from (9.6.44) that the long-run average queue size is

given by

Lq =
1

2c(1 − ρ)



(cρ)2 − c(c − 1) +
c−2
∑

j=2

{c(c − 1)

− j (j − 1)}pj + cρ

(

E(X2)

E(X)
− 1

)]

,

where the random variable X denotes the batch size. This relation can be used as

an accuracy check on the calculated values of the probabilities pj .

Waiting-time probabilities in the MX/D/c queue

In the batch-arrival MX/D/c queue, the waiting-time probability Wq(x) is defined

as the long-run fraction of customers whose waiting time in queue is no more than

x, x ≥ 0. The expression (9.6.9) for Wq(x) in the M/D/c queue can be extended

to the MX/G/c queue. For any x with (k − 1)D ≤ x < kD and k = 1, 2, . . . , it

holds that

Wq(x) =
kc−1
∑

m=0

ηm+1

kc−1−m
∑

j=0

Qkc−1−m−j rj (kD − x) (9.6.46)

where Qj =
∑c+j

i=0 pi for j = 0, 1, . . . and the probability ηr is defined by

ηr =
1

β

∞
∑

j=r

βj , r = 1, 2, . . . .

This result is due to Franx (2002). Its proof will be omitted. The asymptotic

expansion

1 − Wq(x) ∼ γ e−λ[β(τ)−1]x as x → ∞ (9.6.47)
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holds with

γ =
σ [β(τ) − 1]

(τ − 1)2τ c−1β
,

where τ and σ are given by (9.6.42) and (9.6.43). This result can be derived in a

similar way as expansion (9.6.11) for the M/D/c queue was obtained.

The MX/G/c queue

An exact and tractable solution for the MX/G/c queue is in general not possible

except for the special cases of deterministic services and exponential services.

Using the solutions for these special cases, we can give useful approximations for

the general MX/G/c queue. A practically useful approximation to the average

delay in queue per customer is

W
app
q = (1 − c2

S)Wq(det) + c2
SWq(exp),

provided that c2
S is not too large (say, 0 ≤ c2

S ≤ 2) and the traffic load is not

very small. It was pointed out in Section 9.3 that the first-order approximation
1
2
(1 + c2

S)Wq(exp) is not applicable in the batch-arrival queue. A two-moment

Table 9.6.3 The percentiles η(p) for the MX/E2/c queue

Constant batch size Geometric batch size

c ρ p 0.80 0.90 0.95 0.99 0.80 0.90 0.95 0.99

1 0.2 exa 2.927 3.945 4.995 7.458 5.756 8.122 10.49 15.98
app 2.836 3.901 4.967 7.440 5.745 8.116 10.49 15.99

1 0.5 exa 5.107 7.170 9.231 14.02 9.044 12.84 16.64 25.45
app 5.089 7.154 9.219 14.01 9.040 12.84 16.64 25.47

2 0.2 exa 1.369 1.897 2.431 3.661 2.989 4.172 5.355 8.101
app 1.354 1.887 2.419 3.656 2.982 4.167 5.353 8.106

2 0.5 exa 2.531 3.561 4.592 6.985 4.600 6.498 8.395 12.80
app 2.535 3.567 4.599 6.996 4.601 6.501 8.401 12.81

5 0.2 exa 0.621 0.845 1.063 1.560 1.298 1.773 2.246 3.345
app 0.640 0.853 1.066 1.560 1.305 1.779 2.253 3.354

5 0.5 exa 1.063 1.476 1.889 2.846 1.898 2.657 3.417 5.179
app 1.069 1.482 1.895 2.853 1.905 2.665 3.425 5.190

10 0.5 exa 0.553 0.764 0.971 1.451 0.980 1.360 1.740 2.622
app 0.566 0.772 0.979 1.458 0.991 1.371 1.751 2.634

10 0.7 exa 0.923 1.295 1.667 2.530 1.547 2.181 2.815 4.287
app 0.930 1.302 1.673 2.536 1.556 2.190 2.824 4.297
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approximation to the percentiles η(p) of the waiting-time distribution of the delayed

customers is provided by

ηapp(p) = (1 − c2
S)ηdet(p) + c2

Sηexp(p), 0 < p < 1.

However, it turns out that in the batch-arrival case the two-moment approximation

to η(p) works only for the higher percentiles. Fortunately, higher percentiles are

usually the percentiles of interest in practice. Table 9.6.3 gives for the MX/E2/c

queue the exact and approximate values of the conditional waiting-time percentiles

η(p) both for the case of a constant batch size and the case of a geometrically

distributed batch size. In both cases the mean batch size E(X) = 3. The normal-

ization E(S) = 1 is used for the service time. The percentiles ηexp(p) for exponen-

tial services and ηdet(p) for deterministic services have been computed from the

asymptotic expansions (9.6.39) and (9.6.47). These asymptotic expansions already

apply for moderate values of x provided the traffic load on the system is not very

small. An appropriate measure for the traffic load is the probability that all servers

are simultaneously busy. This probability is given by PB = 1 −
∑c−1

j=0 pj . As a

rule of thumb, the asymptotic expansions can be used for practical purposes for

x ≥ E(X)E(S)/
√

c when PB ≥ 0.2.

9.7 THE GI/G/c QUEUE

It seems obvious that the general GI/G/c queue offers enormous difficulties in

getting practically useful results. Nevertheless, using specialized techniques for

solving large-scale systems of linear equations for structured Markov chains, the

continuous-time Markov chain approach has proved to be quite useful for an exact

analysis of the GI/G/c queue when the interarrival time and service time both have

phase-type distributions; see also Van Hoorn and Seelen (1986) for an approxima-

tive analysis. By a detailed state description involving sufficient information about

the number of customers present and the status of both the arrival in progress

and the services in progress, it is possible to set up the equilibrium equations for

the microstate probabilities. The resulting large-scale system of linear equations

possesses a structure enabling the application of specialized algorithms to solve

numerically the equations, provided the number of servers is not too large; see

Seelen et al. (1985) and Takahashi and Takami (1976). However, this numerical

approach is not suited to routine calculations. The specialized algorithms involve

a clever use of asymptotic expansions for the GI/G/c queue. It is assumed that

the server utilization ρ = λE(S)/c is smaller than 1, where λ denotes the average

arrival rate and E(S) is the mean service time.

Asymptotic expansions

Under Assumption 9.2.1 with B(t) replaced by B(ct), asymptotic expansions can

be given for the state probabilities pj and the waiting-time probabilities Wq(x). It
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holds that

pj ∼ στ−j as j → ∞ (9.7.1)

and

1 − Wq(x) ∼
σδ

λ(τ − 1)2τ c−1
e−δx as x → ∞. (9.7.2)

Assuming that the interarrival time and the service time have probability densities

a(x) and b(x), the constant δ is the unique solution to the characteristic equation

∫ ∞

0

e−δxa(x) dx

∫ ∞

0

eδy/cb(y) dy = 1 (9.7.3)

on the interval (0, B) with B = sup{s |
∫∞

0 est {1 − B(ct)} dt < ∞}. The constant

τ (> 1) is given by

τ =
[∫ ∞

0

e−δxa(x) dx

]−1

. (9.7.4)

An explicit expression for the constant σ cannot be given in general. A proof of

the above asymptotic expansions is beyond the scope of this book. The asymp-

totic expansions were established by Takahashi (1981) for the case of a phase-

type interarrival-time distribution and a phase-type service-time distribution. How-

ever, the class of phase-type distributions is dense in the class of all probabil-

ity distributions on the non-negative axis. Thus, one might conjecture that the

asymptotic expansions hold for a general interarrival-time distribution and a gen-

eral service-time distribution provided that the service-time distribution is not

heavy-tailed.

Two-moment approximations

In this section we restrict ourselves to the particular models of the GI/M/c queue

with exponential services and the GI/D/c queue with deterministic services. These

models allow for a relatively simple algorithmic analysis. The results for these

models may serve as a basis for approximations to the complex GI/G/c queue.

Several performance measures P , such as the average queue length, the average

waiting time per customer and the (conditional) waiting-time percentiles, can be

approximated by using the familiar interpolation formula

Papp = (1 − c2
S)PGI/D/c + c2

SPGI/M/c (9.7.5)

provided c2
S is not too large and the traffic load on the system is not very light.

In this formula PGI/D/c and PGI/M/c denote the exact values of the specific per-

formance measure for the special cases of the GI/D/c queue and the GI/M/c

queue with the same mean service time E(S). Table 9.7.1 gives for several values
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Table 9.7.1 Some numerical results for the E10/E2/c queue

ρ = 0.5 ρ = 0.8 ρ = 0.9

c Lq η(0.8) η(0.95) Lq η(0.8) η(0.95) Lq η(0.8) η(0.95)

1 exa 0.066 1.21 2.21 0.780 2.59 4.78 2.21 4.99 9.25
app 0.082 1.19 2.17 0.813 2.57 4.76 2.25 5.14 9.25

5 exa 0.006 0.277 0.499 0.452 0.551 0.993 1.75 1.02 1.87
app 0.009 0.243 0.452 0.466 0.530 0.968 1.76 1.02 1.86

of c and ρ the exact and approximate values of the average queue size Lq and the

conditional waiting-time percentiles η(0.8) and η(0.95) for the E10/E2/c queue.

In all examples the normalization E(S) = 1 is used. The above linear interpolation

formula is in general not to be recommended for the delay probability, particularly

not when c2
S is close to zero. For example, the delay probability has the respective

values 0.0776, 0.3285 and 0.3896 for the E10/D/5 queue, the E10/E2/5 queue and

the E10/M/5 queue, each with ρ = 0.8. Interpolation formulas like the one above

should always be accompanied by a caveat against their blind application. The

above interpolation formula reflects the empirical finding that measures of system

performance are in general much more sensitive to the interarrival-time distribution

than to the service-time distribution, in particular when the traffic load is light.

9.7.1 The GI/M/c Queue

In the GI/M/c queue the service times of the customers are exponentially dis-

tributed with mean 1/µ. In addition to the time-average probabilities pj , let

πj = the long-run fraction of customers who find

j other customers present upon arrival.

There is a simple relation between the pj and the πj . We have

min(j, c)µpj = λπj−1, j = 1, 2, . . . . (9.7.6)

This relation equates the average number of downcrossings from state j to state

j − 1 per time unit to the average number of upcrossings from state j − 1 to state

j per time unit; see also Section 2.7.

The probabilities πj determine the waiting-time distribution function Wq(x).

Note that the conditional waiting-time of a customer finding j ≥ c other customers

present upon arrival is the sum of j − c + 1 independent exponentials with mean

1/(cµ) and thus has an Erlang distribution. Hence, by conditioning,

1 − Wq(x) =
∞
∑

j=c

πj

j−c
∑

k=0

e−cµx (cµx)k

k!
, x ≥ 0. (9.7.7)
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This expression can be further simplified. To show this, we use that

πj+1

πj

= η, j ≥ c − 1 (9.7.8)

for some constant 0 < η < 1. The proof of this result is a replica of the proof of

the corresponding result for the GI/M/1 queue; see (3.5.15). Hence

πj = ηj−c+1πc−1, j ≥ c − 1. (9.7.9)

As a by-product of (9.7.6) and (9.7.7) we have

pj = ηj−cpc, j ≥ c. (9.7.10)

Substituting (9.7.9) into (9.7.8) yields

1 − Wq(x) =
η

1 − η
πc−1e−cµ(1−η)x, x ≥ 0. (9.7.11)

The constant η is the unique solution of the equation

η =
∫ ∞

0

e−cµ(1−η)ta(t) dt (9.7.12)

on the interval (0,1). To see this, note that {πj } is the equilibrium distribution of the

embedded Markov chain describing the number of customers present just before

an arrival epoch. Substituting (9.7.9) into the balance equations

πj =
∞
∑

k=j−1

πk

∫ ∞

0

e−cµt (cµt)k+1−j

(k + 1 − j)!
a(t) dt, j ≥ c

easily yields the result (9.7.12).

By the relations (9.7.6), (9.7.9) and (9.7.10), the probability distributions {pj }
and {πj } are completely determined once we have computed π0, . . . , πc−1 or

p0, . . . , pc. These c unknowns can be rather easily computed for the special cases

of deterministic, Coxian-2 and Erlangian interarrival times. If one is only inter-

ested in the waiting-time probabilities (9.7.11), these computations can be avoided.

An explicit expression for the delay probability ηπc−1/(1 − η) is given in Takács

(1962). For the case of c = 1 (GI/M/1 queue), ηπc−1/(1 − η) = η.

Deterministic arrivals

Suppose there is a constant time D between two consecutive arrivals. Define the

embedded Markov chain {Xn} by

Xn = the number of customers present just before the nth arrival.
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Denoting the one-step transition probabilities of this Markov chain by pij , the πj

are the unique solution to the equations

πj =
∞
∑

k=j−1

πkpkj , j = 1, 2, . . .

together with the normalizing equation
∑∞

j=0 πj = 1. Substituting (9.7.9) into these

equations yields that π0, . . . , πc−1 are the unique solution to the finite system of

linear equations

πj =
c−2
∑

k=j−1

πkpkj + πc−1p
∗
c−1, j , 1 ≤ j ≤ c − 1,

c−2
∑

j=0

πj +
πc−1

1 − η
= 1, (9.7.13)

where

p∗
c−1,j =

∞
∑

k=c−1

ηk−c+1pkj , 1 ≤ j ≤ c − 1.

The constant η is the unique solution to the equation η = exp [−cµD(1−η)] on the

interval (0,1). It remains to specify the pkj for 1≤ j ≤ c − 1. Since the probability

that an exponentially distributed service time is completed within a time D equals

1 − exp (−µD), we have

pkj =
(

k + 1

j

)

e−µDj (1 − e−µD)k+1−j , 0 ≤ k ≤ c − 1 and 0 ≤ j ≤ k + 1.

The probabilities pkj for k > c − 1 require a little bit more explanation. We first

note that the times between service completions are independent exponentials with

common mean 1/(cµ) as long as c or more customers are present. Thus, starting

with k+1 ≥ c customers present, the time until the (k+1−c)th service completion

has an Ek+1−c distribution. By conditioning on the epoch of this (k+1−c)th service

completion, we find for any k ≥ c that

pkj =
∫ D

0

(

c

j

)

e−µ(D−x)j {1 − e−µ(D−x)}c−j (cµ)k+1−c xk−c

(k − c)!
e−cµx dx

=
(

c

j

)

e−jµDcµ

∫ D

0

(cµx)k−c

(k − c)!
(e−µx − e−µD)c−j dx, 0 ≤ j ≤ c.

This expression is needed to evaluate p∗
c−1,j . We find

p∗
c−1,j = pc−1,j + cµη

(

c

j

)

e−jµD

∫ D

0

ecµηx(e−µx − e−µD)c−j dx
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for 1 ≤ j ≤ c − 1. Numerical integration must be used to calculate p∗
c−1,j for

1 ≤ j ≤ c − 1. A convenient method is Gauss–Legendre integration. The other

coefficients pkj of the linear equations (9.7.13) are simply computed as binomial

coefficients. Once the linear equations (9.7.13) have been solved, we can compute

the various performance measures.

The analysis for the D/M/c queue can straightforwardly be generalized to the

GI/M/c queue. However, in general, the expression for pkj with k ≥ c is quite

complicated and leads to a cumbersome and time-consuming calculation of p∗
c−1,j .

Fortunately, a much simpler alternative is available when the interarrival time has

a phase-type distribution.

Coxian-2 arrivals

Suppose that the interarrival time has a Coxian-2 distribution with parameters

(b, λ1, λ2). In other words, the interarrival time first goes through phase 1 and

next it is finished with probability 1 − b or goes through a second phase 2 with

probability b, where the phases are independent exponentials with respective means

1/λ1 and 1/λ2.

The state probabilities pj for 0 ≤ j ≤ c can be calculated by using the

continuous-time Markov chain approach. Define X(t) as the number of customers

present at time t and let Y(t) be the phase of the interarrival time in progress at

time t . The process {(X(t), Y (t))} is a continuous-time Markov chain with state

space I = {(n, i) | n = 0, 1, . . . ; i = 1, 2}. Denoting the equilibrium probabilities

of this Markov chain by pni , we have pn = pn1 + pn2. By equating the rate at

which the system leaves the set of states having at least n customers present to the

rate at which the system enters this set, we obtain

min(n, c)µ(pn1 + pn2) = λ1(1 − b)pn−1,1 + λ2pn−1,2, n ≥ 1. (9.7.14)

This system of equations is augmented by the equations

[min(n, c)µ + λ2]pn2 = min(n + 1, c)µpn+1,2 + λ1bpn1, n ≥ 0. (9.7.15)

These equations follow by equating the rate out of state (n, 2) to the rate into

this state. A closer examination of equations (9.7.14) and (9.7.15) reveals that

they cannot be solved recursively starting with p0 := 1. Nevertheless, a recursive

computation of p0, . . . , pc is possible since

pn+1,i

pni

= η, n ≥ c and i = 1, 2. (9.7.16)

The relation (9.7.16) extends the relation pn+1/pn = η for n ≥ c. A proof of the

relation (9.7.16) is not given here. It can be deduced from Lemma 3.5.10 and gen-

eral results in Takahashi (1981). The constant η can be computed beforehand from

equation (9.7.12). Using the expression for Coxian-2 density given in Appendix B,
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this equation becomes

r1λ1

cµ(1 − η) + λ1

+
r2λ2

cµ(1 − η) + λ2

= η, (9.7.17)

where r1 = 1 − bλ1/(λ1 − λ2) and r2 = 1 − r1. Here it is assumed that λ1 �= λ2.

Once η is known, we can express pc2 into pc1. Substituting pc+1,2 = ηpc2 into

(9.7.15) with n = c yields

(cµ + λ2)pc2 = cµηpc2 + λ1bpc1.

The following algorithm can now be given.

Algorithm

Step 0. Calculate first η as the unique root of equation (9.7.17) on (0,1). Let pc1 := 1

and pc2 := λ1b{cµ(1 − η) + λ2}−1pc1.

Step 1. For k = c − 1, . . . , 0, use equation (9.7.14) with n = k + 1 and equation

(9.7.15) with n = k to solve for pk1 and pk2.

Step 2. Calculate pn := pn1+pn2 for n = 0, 1, . . . , c and next use relation (9.7.10)

to normalize the pn as

pn :=





c−1
∑

j=0

pj +
pc

1 − η





−1

pn, n = 0, 1, . . . , c.

Generalized Erlangian arrivals

Suppose that the interarrival time has density

a(t) =
m
∑

i=1

qiα
i t i−1

(i − 1)!
e−αt , t ≥ 0,

where qm > 0. In other words, with probability qi an interarrival time is the

sum of i independent phases each having an exponential distribution with mean

1/α. We again use the continuous-time Markov chain approach to compute the

probabilities pj . Define X(t) as the number of customers present at time t and let

Y(t) be the number of remaining phases of the interarrival time in progress at time

t . The process {(X(t), Y (t))} is a continuous-time Markov chain with state space

I = {(n, i) | n ≥ 0; 1 ≤ i ≤ m}. By equating the rate at which the system leaves

the set of states having at least n customers present to the rate at which the system

enters this set, we find

min(n, c)µpn = αpn−1,1, n ≥ 1. (9.7.18)
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Moreover, by rate out of state (n, i) = rate into state (n, i),

[min(n, c)µ + α]pni = αpn,i+1 + min(n + 1, c)µpn+1,i + αqipn−1,1

for n ≥ 0 and 1 ≤ i ≤ m, where pn,m+1 = p−1,1 = 0 by convention. Again a

rather simple solution procedure can be given in view of

pn+1,i

pn,i

= η, n ≥ c and 1 ≤ i ≤ m.

A proof of this result will not be given here. The decay factor η is the unique

solution to the equation

η =
m
∑

i=1

qi

αi

[cµ(1 − η) + α]i

on the interval (0, 1). By substitution of (9.7.18) into the balance equation for pni ,

we obtain for each n ≥ 0 that

[min(n, c)µ + α]pni = αpn,i+1 + min(n + 1, c)µpn+1,i

+ qi min(n, c)µ

m
∑

j=1

pnj , 1 ≤ i ≤ m. (9.7.19)

In particular, since pc+1,i = ηpci for 1 ≤ i ≤ m,

(cµ + α)pci = αpc,i+1 + cµηpci + qicµ

m
∑

j=1

pcj , 1 ≤ i ≤ m. (9.7.20)

The probabilities p0, . . . , pc can now be computed as follows.

Algorithm

Step 0. Calculate the decay factor η. Let pc1 := 1.

Step 1. Solve the linear equations (9.7.20) with 2 ≤ i ≤ m to obtain pci for

2 ≤ i ≤ m.

Step 2. For k = c − 1, . . . , 0, solve the linear equations (9.7.19) with n = k to

obtain pki for 1 ≤ i ≤ m.

Step 3. Calculate pn :=
∑m

j=1 pnj for n = 0, 1, . . . , c and normalize the pn as

pn :=





c−1
∑

j=0

pj +
pc

1 − η





−1

pn, n = 0, 1, . . . , c.

The algorithm requires that a system of linear equations of order m is solved c

times. This is computationally feasible provided m is not too large.
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9.7.2 The GI/D/c Queue

In the GI/D/c queue the arrival process of customers is a renewal process and

the service time of each customer is equal to the constant D. Let us consider the

situation that the interarrival-time distribution has a probability density a(t) with

Laplace transform

a∗(s) =
∫ ∞

0

e−sta(t) dt.

We first discuss the computation of the state probabilities

pj = lim
t→∞

pj (t), j = 0, 1, . . . ,

where pj (t) = P {j customers will be present at time t}. In a similar way as in

the M/D/c queue, the probabilities pj can be computed from a system of linear

equations. Let

an(D) = lim
t→∞

an(t, D), n = 0, 1, . . . ,

where an(t, D) = P {n customers will arrive in (t, t + D]}, t > 0. Mimicking the

derivation of (9.6.1), we obtain the equilibrium equations

pj = aj (D)

c
∑

k=0

pk +
c+j
∑

k=c+1

pkaj−k+c(D), j = 0, 1, . . . . (9.7.21)

These linear equations are obtained by letting t → ∞ in

pj (t + D) =
c
∑

k=0

pk(t)aj (t, D) +
c+j
∑

k=c+1

pk(t)aj−k+c(t, D).

To solve the linear equations (9.7.21) together with
∑∞

j=0 pj = 1, we need first to

compute the probabilities an(D). These probabilities can be numerically obtained

by Laplace inversion. In Section 8.1 it was shown that

∫ ∞

0

e−sxa0(x) dx =
1

s
−

λ(1 − a∗(s))

s2
(9.7.22)

and

∫ ∞

0

e−sxan(x) dx =
λ[(1 − a∗(s)]2[a∗(s)]n−1

s2
, n ≥ 1. (9.7.23)

The infinite system of linear equations for the pj can be reduced to a finite system

by using the geometric tail approach discussed in Section 3.4.2. By (9.7.1),

pj

pj−1

∼ τ−1 as j → ∞,
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where τ = eδD/c and δ is the unique solution of the equation

eδD/c

∫ ∞

0

e−δxa(x) dx = 1 (9.7.24)

on the interval (0, ∞). Hence a finite system of linear equations is obtained for the

pj by replacing pj by pMτ−(j−M) for j ≥ M with M a sufficiently large integer.

Waiting-time probabilities

In general it is not possible to give a tractable algorithm for the waiting-time proba-

bilities in the GI/D/c queue. An exception is the Ek/D/c queue. The waiting-time

probabilities in the Ek/D/c queue are the same as the waiting-time probabilities

in the M/D/kc queue with the same server utilization as in the Ek/D/c queue.

Theorem 9.7.1 The waiting-time distribution function Wq(x) in the multi-server

GI/D/c queue is the same as in the single-server GI (c∗)/D/1 queue in which the

interarrival time is distributed as the sum of c interarrival times in the GI/D/c queue.

Proof Since the service times are deterministic, it is no restriction to cyclically

assign the customers to the c servers. Then server k gets the customers numbered as

k, k + c, k + 2c, . . . for k = 1, . . . , c. This simple observation proves the theorem.

The theorem has the following important corollary.

Corollary 9.7.2 The waiting-time distribution function Wq(x) in the Ek/D/c

queue is identical to the waiting-time distribution in the M/D/kc queue with the

same server utilization.

Proof An Erlang (k, α) distributed random variable has the same distribution as

the sum of k independent random variables each having an exponential distribution

with mean 1/α. Consider now the Ek/D/c system with mean interarrival time

k/α and the M/D/kc system with mean interarival time 1/α. By Theorem 9.7.1,

both the waiting-time distribution in the Ek/D/c system and the waiting-time

distribution in the M/D/kc system are the same as the waiting-time distribution

in the Eck/D/1 queue with mean interarrival time ck/α. This gives the desired

result.

What can be done for the case of a general interarrival-time distribution? Then

an approximation to the waiting-time probabilities can be computed by using Theo-

rem 9.7.1. The idea is to approximate the GI (c∗)/D/1 queue by an Ph/D/1 queue

by replacing the interarrival-time distribution by a tractable phase-type distribution

that matches the first two or three moments. Section 9.5.4 discusses algorithms to

compute the waiting-time probabilities in the Ph/D/1 queue.
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9.8 FINITE-CAPACITY QUEUES

This section considers queueing systems having room for only a finite number

of customers. Each customer finding no waiting place available upon arrival is

rejected. A rejected customer is assumed to have no further influence on the system.

In finite-capacity systems the finite waiting room acts as a regulator on the queue

size and so no a priori assumption on the offered load is needed. A practical

problem of considerable interest is the calculation of the rejection probability. A

basic problem in telecommunication and production is the design of finite buffers

such that the rejection probability is below a prespecified value. In this section it

will be shown that the rejection probability for the finite-buffer model can often

be expressed in terms of the state probabilities for the corresponding infinite-buffer

model. This result greatly simplifies the calculation of the smallest buffer size such

that the rejection probability is below a prespecified value. Before discussing this

result in Section 9.8.2, we first discuss in Section 9.8.1 an approximation to the

state probabilities in the M/G/c/c + N queue.

9.8.1 The M/G/c/c + N Queue

The M/G/c/c queueing model has a Poisson input with rate λ, a general service-

time distribution, c identical servers and N waiting positions for customers to await

service. An arriving customer who finds all c servers busy and all N waiting places

occupied is rejected. A tractable exact solution of this model is only possible for

the case of a single server (M/G/1/N queue), the case of exponential services

(M/M/c/c + N queue) and the case of no waiting room (M/G/c/c queue). The

M/G/c/c queue (Erlang loss model) was discussed in detail in Section 5.2 and

the M/M/c/c + N queue was dealt with in Exercise 5.1.

In the M/G/c/c + N queue the service time S of a customer has a general

probability distribution function B(x) with B(0) = 0. No restriction is imposed on

the load factor ρ defined by ρ = λE(S)/c. Let {pj , 0 ≤ j ≤ N + c} denote the

limiting distribution of the number of customers present. The next theorem extends

the approximation that was given in Theorem 9.6.1 for the state probabilities in the

infinite-capacity M/G/c queue. An approximation to the waiting-time probabilities

(percentiles) in the M/G/c/c+N is outlined in Exercise 9.14. This approximation

is based on the approximation to the state probabilities.

Theorem 9.8.1 Under Assumption 9.6.1, the state probabilities pj are approxi-

mated by

p
app

j =
(cρ)j

j !
p

app

0 , 0 ≤ j ≤ c − 1,

p
app

j = λp
app

c−1aj−c + λ

j
∑

k=c

p
app

k bj−k, c ≤ j ≤ N + c − 1,
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Table 9.8.1 Numerical results for Prej in the M/G/c/c + N queue (c = 5).

ρ = 0.5 ρ = 0.8 ρ = 1.5

c2
S

N = 1 N = 5 N = 1 N = 5 N = 1 N = 5

0 app 0.0286 0.00036 0.1221 0.0179 0.3858 0.3348
exa [0.0281– [0.00032– [0.1212– [0.0168– [0.3854– [0.3332–

0.0293] 0.00038] 0.1236] 0.0182] 0.3886] 0.3372]

1
2

app 0.0311 0.0010 0.1306 0.0308 0.3975 0.3395

exa 0.0314 0.0010 0.1318 0.0314 0.4000 0.3400

2 app 0.0370 0.0046 0.1450 0.0603 0.4114 0.3555
exa 0.0366 0.0044 0.1435 0.0587 0.4092 0.3537

p
app

j = ρp
app

c−1 − (1 − ρ)

N+c−1
∑

k=c

p
app

k , j = N + c,

where ρ = λE(S)/c and the constants an and bn are the same as in Theorem 9.6.1.

Proof The proof of the theorem is a minor modification of the proof of Theo-

rem 9.6.1. The details are left to the reader.

The result of Theorem 9.8.1 is exact for both the case of multiple servers with

exponential service times and the case of a single server with general service

times, since for these two special cases the approximation assumption holds exactly.

Further support for the approximate result of the theorem is provided by the fact

that the approximation is exact for the case of no waiting room (N = 0).

Numerical investigations indicate that the approximation for the state proba-

bilities is accurate enough for practical purposes. Table 9.8.1 gives the exact and

approximate values of the rejection probability Prej for several examples. The prob-

ability Prej denotes the long-run fraction of customers who are rejected. By the

PASTA property,

Prej = pN+c.

In all examples we take c = 5 servers. Deterministic services (c2
S = 0), E2 services

(c2
S = 1

2
) and H2 services with gamma normalization (c2

S = 2) are considered. For

the latter two services, the exact values of Prej are taken from the tabulations of

Seelen et al. (1985). For deterministic services, computer simulation was used to

find Prej . In the table we give the 95% confidence intervals. It is interesting to

point out that the results in Table 9.8.1 support the long-standing conjecture for the

GI/G/c/c + N queue that Prej → 1 − 1/ρ as N → ∞ when ρ > 1.

A proportionality relation

For the case of ρ < 1 the computational work can be considerably reduced when

the approximation to Prej must be computed for several values of N . Denote by
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p
(∞)
j (app) the approximation given in Theorem 9.6.1 to the state probability p

(∞)
j

in the infinite-capacity M/G/c queue. This approximation requires that ρ < 1. An

inspection of the recursion schemes in Theorems 9.6.1 and 9.8.1 reveals that, for

some constant γ ,

p
app

j = γp
(∞)
j (app), j = 0, 1, . . . , N + c − 1. (9.8.1)

The constant γ is given by γ = [1 − ρ
∑∞

j=N+c p
(∞)
j (app)]−1. In the next section

it will be seen that this proportionality relation implies

P
app

rej =

(1 − ρ)

∞
∑

j=N+c

p
(∞)
j (app)

1 − ρ

∞
∑

j=N+c

p
(∞)
j (app)

, (9.8.2)

where P
app

rej = p
app

N+c denotes the approximation to Prej . The computation of the

probabilities p
(∞)
j (app) was discussed in Section 9.6.2.

The approximations p
app

j and p
(∞)
j (app) are exact both for the case of multiple

servers with exponential service times and for the case of a single server with

general service times. Therefore relations (9.8.1) and (9.8.2) hold exactly for the

M/M/c/c+N queue and the M/G/1/N + 1 queue. For these particular queueing

models the proportionality relation (9.8.1) can be directly explained by a simple

probabilistic argument. This will be done in the next subsection. It is noted that for

the general M/G/c/c + N queue the proportionality relation is not satisfied when

the exact values of pj and p
(∞)
j are taken instead of the approximate values.

9.8.2 A Basic Relation for the Rejection Probability

In this section a structural form will be revealed for the rejection probability. In

many situations the rejection probability can be expressed in terms of the state

probabilities in the infinite-capacity model. In the following, pj and p
(∞)
j denote

the time-average state probabilities for the finite-capacity model and the infinite-

capacity model. To ensure the existence of the probabilities p
(∞)
j , it is assumed

that the server utilization ρ is smaller than 1.

Theorem 9.8.2 Both for the M/M/c/c + N queue and the M/G/1/N + 1 queue

it holds that

pj = γp
(∞)
j , j = 0, 1, . . . , N + c − 1 (9.8.3)

for some constant γ > 0. The constant γ is given by γ = [1 − ρ
∑∞

j=N+c p
(∞)
j ]−1

and the rejection probability is given by



FINITE-CAPACITY QUEUES 411

Prej =

(1 − ρ)

∞
∑

j=N+c

p
(∞)
j

1 − ρ

∞
∑

j=N+c

p
(∞)
j

. (9.8.4)

Proof The proof of (9.8.3) is based on the theory of regenerative processes.

The process describing the number of customers present is a regenerative stochas-

tic process in both the finite-capacity model and the infinite-capacity model. For

both models, let a cycle be defined as the time elapsed between two consecutive

arrivals that find the system empty. For the finite-capacity model, we define the

random variables

T = the length of one cycle,

Tj = the amount of time that j customers are present during one cycle.

The corresponding quantities for the infinite-capacity model are denoted by T (∞)

and T
(∞)

j . By the theory of regenerative processes,

pj =
E(Tj )

E(T )
and p

(∞)
j =

E(T
(∞)

j )

E(T (∞))
, j = 0, 1, . . . , N + c. (9.8.5)

The crucial observation is that the random variable Tj has the same distribution

as T
(∞)

j for any 0 ≤ j ≤ N + c − 1 both in the M/M/c/c + N queue and

in the M/G/1/N + 1 queue. This result can be roughly explained as follows.

Suppose that at epoch 0 a cycle starts and let the processes {L(t)} and {L(∞)(t)}
describe the number of customers present in the finite-capacity system and in the

infinite-capacity system. During the first cycle the behaviour of the process {L(t)} is

identical to that of the process {L(∞)(t)} as long as the processes have not reached

the level N + c. Once the level N + c has been reached, the process {L(∞)(t)}
may temporarily make an excursion above the level N + c. However, after having

reached the level N + c, both the process {L(t)} and the process {L(∞)(t)} will

return to the level N + c − 1. This return to the level N + c − 1 occurs at a

service completion epoch. At a service completion epoch the elapsed service times

of the other services in progress are not relevant. In the M/G/1/N + 1 queue

the reason is simply that no other services are in progress at a service completion

epoch and in the M/M/c/c + N queue the explanation lies in the memoryless

property of the exponential service-time distribution. Also, it should be noted that

at a service completion epoch the elapsed time since the last arrival is not relevant

since the arrival process is a Poisson process. Thus we can conclude that after a

downcrossing to the level N + c − 1 the behaviour of the process {L(∞)(t)} is

again probabilistically the same as the behaviour of the process {L(t)} as long as

the number of customers present stays below the level N + c. These arguments

make it plausible that the distribution of Tj is the same as that of T
(∞)

j for any
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0≤ j ≤ N + c − 1. Next it follows from (9.8.5) that (9.8.3) holds with

γ =
E(T (∞))

E(T )
.

The proportionality relation (9.8.3) is the key to the proof of (9.8.4). We first

note that in the finite-capacity model the average number of busy servers equals

λ(1 − Prej )E(S) by Little’s formula. Writing λ(1 − Prej )E(S) as cρ(1 − Prej ), it

follows that

cρ(1 − Prej ) =
N+c
∑

j=0

min(j, c)pj =
c−1
∑

j=0

jpj + c(1 −
c−1
∑

j=0

pj ).

Substituting (9.8.3) in this equation gives

cρ(1 − Prej ) = γ

c−1
∑

j=0

jp
(∞)
j + c(1 − γ

c−1
∑

j=0

p
(∞)
j )

= γ

c−1
∑

j=0

jp
(∞)
j + c[1 − γ (1 −

∞
∑

j=c

p
(∞)
j )]

= γ

∞
∑

j=0

min(j, c)p
(∞)
j + c − cγ.

By Little’s formula, the average number of busy servers equals cρ in the infinite-

buffer model and so
∑∞

j=0 min(j, c)p
(∞)
j = cρ. This leads to

cρ(1 − Prej ) = γ cρ + c − cγ.

Solving for γ gives

Prej =
(1 − ρ)(γ − 1)

ρ
. (9.8.6)

Also, using the PASTA property,

Prej = pN+c = 1 −
N+c−1
∑

j=0

pj = 1 − γ

N+c−1
∑

j=0

p
(∞)
j

= 1 − γ [1 −
∞
∑

j=N+c

p
(∞)
j ]. (9.8.7)

By (9.8.6) and (9.8.7), γ = [1−ρ
∑∞

j=N+c p
(∞)
j ]−1. Next the result (9.8.4) follows.

It is important to point out that the assumption of a single server with general

service times or multiple servers with exponential service times was only used for

the proof of (9.8.3). The proof of (9.8.4) does not use this assumption, but is solely

based on the proportionality relation (9.8.3).
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Table 9.8.2 Numerical results for the D/M/c/c + N queue

ρ = 0.8 ρ = 0.95

N = 0 N = 10 N = 25 N = 0 N = 50 N = 75

c = 5 app 1.02E-2 6.99E-4 6.59E-7 1.48E-1 1.39E-6 6.83E-9
exa 1.11E-2 7.49E-4 7.06E-7 1.59E-1 1.44E-6 6.74E-9

c = 25 app 1.59E-3 1.44E-4 1.37E-7 4.98E-2 7.54E-7 3.53E-9
exa 1.71E-3 1.55E-4 1.46E-7 5.23E-2 7.80E-7 3.65E-9

c = 100 app 2.16E-4 2.08E-6 1.97E-9 9.60E-3 1.94E-7 9.07E-10
exa 2.32E-4 2.23E-6 2.11E-9 9.96E-3 2.00E-7 9.39E-10

Interpretation of formula (9.8.4)

Define for the infinite-capacity M/G/c queue the tail probability

�
(∞)
N+c = the long-run fraction of customers who find N + c or

more other customers present upon arrival.

By the PASTA property �
(∞)
N+c =

∑∞
j=N+c p

(∞)
j , and so formula (9.8.4) can be

written in the more insightful form

Prej =
(1 − ρ)�

(∞)
N+c

1 − ρ�
(∞)
N+c

. (9.8.8)

Practitioners often use the tail probability �
(∞)
N+c from the infinite-capacity model as

an approximation to the rejection probability in the finite-capacity model. The for-

mula (9.8.8) shows that this is a poor approximation when ρ is not very small. The

approximation �
(∞)
N+c differs by a factor (1−ρ)−1 from the right-hand side of (9.8.8)

when N gets large. The improved approximation (9.8.8) is just as easy to use as

the approximation �
(∞)
N+c. In queueing systems in which the proportionality relation

(9.8.3) does not necessarily holds, the structural form (1 − ρ)�
(∞)
N+c/(1 − ρ�

(∞)
N+c)

can nevertheless be used as an approximation to Prej . In Exercise 9.14 this will

be illustrated for the single-server queue with a Markov modulated arrival process.

Here we illustrate the performance of the approximation (1−ρ)�
(∞)
N+c/(1−ρ�

(∞)
N+c)

to the rejection probability in the D/M/c/c +N queue with deterministic arrivals.

Table 9.8.2 gives the approximate and exact values of Prej for several examples.

The numerical result shows an excellent performance of the approximation. In

all examples the approximate value of Prej is of the same order of magnitude

as the exact value. This is what is typically needed when a heuristic is used for

dimensioning purposes.

9.8.3 The MX/G/c/c + N Queue with Batch Arrivals

Theorem 9.8.2 can be extended to the batch-arrival MX/G/c/c+N queue. In this

model batches of customers arrive according to a Poisson process with rate λ and
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the batch size X has a discrete probability distribution {βj , j ≥ 1} with mean β.

Denoting by µ the mean service time of a customer, it is assumed that the load

factor ρ = λβµ/c is smaller than 1. As before {pj , 0 ≤ j ≤ N + c} denotes the

limiting distribution of the number of customers present. For finite-buffer queues

with batch arrivals we must distinguish between these two cases:

(a) Partial rejection: an arriving batch whose size exceeds the remaining capacity

of the buffer is partially rejected by turning away only those customers in

excess of the remaining capacity.

(b) Complete rejection: an arriving batch whose size exceeds the remaining capac-

ity of the buffer is rejected in its entirety.

The emphasis of the discussion will be on the case of partial rejection. We first

derive an expression for the tail probability �
(∞)
N+c in the infinite-capacity MX/G/c

queue. Let {p(∞)
j } denote the time-average probabilities in the infinite-capacity

MX/G/c queue. Then, by the PASTA property,

the long-run fraction of batches finding k other customers present upon arrival

= p
(∞)
k , k = 0, 1, . . . . (9.8.9)

Suppose that the customers are numbered as 1, 2, . . . in accordance with the order in

which the batches arrive and in accordance with the relative positions the customers

take within the same batch. Define for j = 0, 1, . . . ,

π
(∞)
j = the long-run fraction of customers who have j other customers in front

of them just after arrival (including customers from the same batch).

In Section 9.3.2 we have already shown that

the long-run fraction of customers taking the rth position in their batch

=
1

β

∞
∑

j=r

βj , r = 1, 2, . . . .

This result in conjunction with (9.8.9) gives

π
(∞)
j =

1

β

j
∑

k=0

p
(∞)
k

∞
∑

s=j−k+1

βs, j = 0, 1, . . . . (9.8.10)

Hence, in the infinite-capacity model, the long-run fraction of customers having

N + c or more customers in front of them just after arrival is given by

�
(∞)
N+c =

∞
∑

j=N+c

1

β

j
∑

k=0

p
(∞)
k

∞
∑

s=j−k+1

βs . (9.8.11)
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As before, let Prej denote the long-run fraction of customers who are rejected in

the finite-capacity model. For the MX/G/c/c + N queue with partial rejection,

we approximate Prej by

Prej ≈
(1 − ρ)�

(∞)
N+c

1 − ρ�
(∞)
N+c

. (9.8.12)

The approximation (9.8.12) to Prej holds exactly for the MX/G/1/N queue with

partial rejection and the MX/M/c/c + N queue with partial rejection. It is left to

the reader to verify that the proportionality relation (9.8.3) remains valid for these

special cases. In the proof of Theorem 9.8.2 one needs only to modify formula

(9.8.7). In the MX/G/c/c + N model with partial rejection,

Prej =
1

β

N+c
∑

k=0

pk

∞
∑

s=N+c−k+1

(k + s − N − c)βs .

This result follows by noting that the fraction of customers rejected is the ratio of

the average number of customers rejected per batch and the average batch size.

Complete rejection

In the MX/G/c/c + N queue with complete rejection it is no longer true that the

proportionality relation (9.8.3) holds for the case of a single server with general

service times and for the case of multiple servers with exponential service times.

However, one might make the heuristic assumption that pj ≈ γp
(∞)
j for 0 ≤ j ≤

N + c − 1. Exercise 9.19 is to verify that this heuristic assumption leads to the

approximation

Prej ≈

(1 − ρ)



1 −
N+c−1
∑

j=0

u
(∞)
j





1 − ρ



1 −
N+c−1
∑

j=0

u
(∞)
j





, (9.8.13)

where

u
(∞)
j =

1

β

j
∑

k=0

p
(∞)
k

N+c−k
∑

s=j−k+1

βs .

A remarkable result is that for the case of a constant batch size Q with Q ≤
N + 1 the approximation (9.8.13) is exact for both the MX/G/1/N + 1 queue

with complete rejection and the MX/M/c/c + N queue with complete rejection;

see Exercises 9.20 and 9.21. In these cases with a constant batch size Q it holds

that pj ≈ γp
(∞)
j for any 0 ≤ j ≤ N + c − Q.
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Table 9.8.3 The MX/G/1/N + 1 queue with complete rejection

Geometric Two-point

c2
S

N = 0 N = 50 N = 250 N = 0 N = 50 N = 250

0.1 app 8.99E-1 1.40E-2 1.62E-7 8.86E-1 8.88E-3 1.29E-8
exa 9.40E-1 1.59E-2 1.82E-7 8.86E-1 9.01E-3 1.31E-8

10 app 8.99E-1 6.09E-2 2.64E-4 8.86E-1 5.58E-2 1.79E-4
exa 9.40E-1 6.21E-2 2.68E-4 8.86E-1 5.55E-2 1.79E-4

Table 9.8.3 gives some numerical results for Prej in the MX/G/1/N + 1 queue

with complete rejection. For the batch size we consider both the two-point distri-

bution P {X = 1} = P {X = 7} = 0.5 and the geometric distribution P {X = j} =
(1/4)(3/4)j−1 for j ≥ 1. In both cases the mean batch size β = 4. The service-

time distributions are the E10 distribution (c2
S = 0.1) and the H2 distribution with

the gamma normalization (c2
S = 10). The offered load ρ is taken equal to 0.8. The

results in Table 9.8.3 indicate that the approximation (9.8.13) performs quite well

for practical purposes.

Asymptotic expansion for Prej

For larger values of the buffer capacity N , the calculation of Prej can further be

simplified when an asymptotic expansion for the tail probabilities in the infinite-

buffer model is known. If Prej = (1−ρ)
∑∞

j=N+c π
(∞)
j /[1−ρ

∑∞
j=N+c π

(∞)
j ] and

an asymptotic expansion π
(∞)
j ∼ σηj as j → ∞ is known, then

Prej ≈
(1 − ρ)σηN+c/(1 − η)

1 − ρσηN+c/(1 − η)
≈ (1 − ρ)σηN+c/(1 − η) for large N.

To illustrate this, consider the single-server MX/G/1/N + 1 queue with partial

rejection. For the MX/G/1 queue the asymptotic expansion π
(∞)
j ∼ σηj as j →

∞ holds when the service time is not heavy-tailed, where the constants σ and

η = 1/τ are determined by the relations (9.3.5) and (9.3.6). When using the

asymptotic expansion one needs only to calculate the root of a non-linear equation

in a single variable.

Two-moment approximation

The practical applicability of the formulas for Prej stands or falls with the computa-

tion of the state probabilities π
(∞)
j . In some queueing models it is computationally

feasible to calculate these probabilities using embedded Markov chain analysis or

continuous-time Markov chain analysis. However, in many queueing models the

exact computation of the state probabilities π
(∞)
j is not practically feasible. This
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is for instance the case in the MX/G/c queue with general service times. In such

situations one might try to approximate the exact solution of the complex model

through the exact solutions of simpler related models. In this chapter we have

already seen several examples of such two-moment approximations. The rejection

probability itself is not directly amenable to a two-moment approximation, but

indirectly a two-moment approximation is possible through the ‘percentile’ N(α)

defined by

N(α) = the minimal buffer size for which the rejection probability Prej

does not exceed the value α.

This will be illustrated for the MX/G/c/c +N queue. Denoting by c2
S the squared

coefficient of the service time of a customer, the two-moment approximation to

N(α) is given by

Napp(α) = (1 − c2
S)Ndet (α) + c2

SNexp(α), (9.8.14)

where Ndet (α) and Nexp(α) are the (approximate) values of the minimal buffer

size N(α) for the MX/D/c/c + N queue and the MX/M/c/c + N queue. The

buffer sizes Ndet (α) and Nexp(α) are computed by using the (approximate) formula

for Prej in the particular cases of deterministic services and exponential services.

Relatively simple algorithms are available to compute the state probabilities π
(∞)
j in

the MX/M/c queue and the MX/D/c queue; see Section 9.6.3. The two-moment

approximation (9.8.14) is only recommended when c2
S is not too large (say, 0 ≤

c2
S ≤ 2).

Table 9.8.4 illustrates the performance of the two-moment approximation (9.8.14)

for the M/G/c/c+N queue, where the number of servers has the two values c = 1

and c = 10. For both Erlang-2 services (c2
S = 0.5) and H2 services with gamma

normalization (c2
S = 2), the approximate and exact values of N(α) are given for

several values of α. Any fractional value resulting from the interpolation formula

(9.8.14) has been rounded up. The results in the table show an excellent perfor-

mance of the two-moment approximation and also nicely demonstrate that N(α)

increases logarithmically in α as α increases.

9.8.4 Discrete-Time Queueing Systems

Many practical queueing systems operate on a discrete-time basis. A discrete-time

queueing system is characterized by time-slotted service. A new service can only

start at the beginning of a time slot, and the service time is a multiple of time slots.

In applications the discrete-time queueing systems typically have finite buffers

to store incoming packets. Packets are the entities to be served. Let us assume

that there are c service channels and a buffer of capacity N to store incoming

packets. The buffer excludes any packet in service. Each service channel can handle

only one packet at a time. A new service can only start at the beginning of a

time slot. The service times of the packets are independent of each other. It is
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Table 9.8.4 The minimal buffer size in the M/G/c/c + N queue

ρ = 0.5 ρ = 0.8

α 10−2 10−4 10−6 10−8 10−10 10−2 10−4 10−6 10−8 10−10

c=1

c2
S

= 1
2

exa 4 9 15 20 25 10 26 41 57 73

app 4 10 15 20 25 10 26 41 57 73

c2
S

= 2 exa 7 16 26 35 45 19 49 80 110 141

app 7 17 25 36 46 19 50 80 111 140

c=10

c2
S

= 1
2

exa 1 7 12 17 23 8 24 39 55 71

app 1 7 13 17 23 8 24 39 55 71

c2
S

= 2 exa 1 10 20 29 39 14 44 74 105 135

app 1 10 20 29 39 14 45 75 106 135

assumed that the number of time slots needed to serve a packet has a geometric

distribution {(1 − r)n−1r, n ≥ 1}. The case of deterministic services is included as

a special case (r = 1). In many telecommunication applications the service time

of a packet is deterministic and equals one time slot. A served packet leaves the

system at the end of the time slot in which the service is completed. The numbers of

packets arriving in the system during consecutive time slots are independent non-

negative random variables with the common probability distribution {an, n ≥ 0}.
It is assumed that the packets arrive individually during the time slots and that

an arriving packet is rejected when it finds the buffer full upon arrival. It is no

restriction to use the convention of individual arrivals provided that the partial

rejection strategy applies when arrivals actually occur in batches. The load factor

ρ is defined as

ρ =
λµ

c
,

where λ =
∑∞

n=1 nan is the arrival rate of new packets and µ = 1/r is the mean

service time of a packet. Let

Prej = the long-run fraction of packets that are rejected.

Under the assumption of ρ < 1 an approximation to Prej can be given in terms

of the state probabilities in the corresponding infinite-buffer model. Assuming that

ρ < 1, define for the infinite-buffer model the probability u
(∞)
j by

u
(∞)
j = the long-run fraction of time slots at whose beginnings there are

j packets in the system

for j = 0, 1, . . . . By the assumption of geometrically distributed service times, the

process describing the number of packets present at the beginning of a time slot is
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a discrete-time Markov chain. This Markov chain was analysed in Example 3.4.1

for the particular case of deterministic services. Letting

U(z) =
∞
∑

j=0

u
(∞)
j zj , |z| ≤ 1,

a minor modification of the Markov-chain analysis in Example 3.4.1 yields

U(z) =

A(z)

c−1
∑

k=0

u
(∞)
k [zc(r + (1 − r)z)k − zk(r + (1 − r)z)c]

zc − (r + (1 − r)z)cA(z)
, (9.8.15)

where A(z) =
∑∞

n=0 anz
n. This expression is well suited for numerical purposes.

First the c unknowns u
(∞)
0 , . . . , u

(∞)
c−1 are determined by computing the complex

roots of the denominator of (9.8.15); see Appendix G. Next the discrete FFT method

can be applied to obtain the numerical values of the state probabilities u
(∞)
j . In

order to obtain the approximation to Prej in the finite-buffer model, we need the

tail probability
∑∞

j=N+c π
(∞)
j for the infinite-buffer model. In the infinite-buffer

model the probability π
(∞)
j is defined as

π
(∞)
j = the long-run fraction of packets who find j other packets

present upon arrival.

By the same arguments as used to obtain (9.8.10), we find

π
(∞)
j =

1

λ

j
∑

k=0

u
(∞)
k

∞
∑

s=j−k+1

as, j = 0, 1, . . . . (9.8.16)

The proposed approximation to Prej in the finite-buffer model is

Prej ≈

(1 − ρ)

∞
∑

j=N+c

π
(∞)
j

1 − ρ

∞
∑

j=N+c

π
(∞)
j

. (9.8.17)

It has been shown in Gouweleeuw and Tijms (1998) that for the single-server

case this approximation is asymptotically exact for large N (more precisely, the

approximation (9.8.17) is exact for the single-server case when the probability of

more than N arrivals during one time slot equals zero). In general it turns out

that (9.8.17) provides an excellent approximation to the rejection probability. To

illustrate this, Table 9.8.5 gives some numerical results for the case of determin-

istic service times. The number of servers is c = 1 and c = 2, while the Poisson
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Table 9.8.5 Numerical results for the discrete-time queue

c = 1 c = 2

N Poisson Geometric N Poisson Geometric

1 exa 3.406×10−1 4.737×10−1 2 exa 2.379×10−1 4.133×10−1

app 3.024×10−1 4.119×10−1 app 1.879×10−1 3.481×10−1

5 exa 5.505×10−2 1.260×10−1 5 exa 6.595×10−2 1.970×10−1

app 5.504×10−2 1.254×10−1 app 6.044×10−2 1.859×10−1

10 exa 1.481×10−2 5.081×10−2 10 exa 1.693×10−2 9.054×10−2

app 1.481×10−2 5.081×10−2 app 1.592×10−2 8.849×10−2

50 exa 3.294×10−6 5.178×10−4 50 exa 3.702×10−6 3.036×10−3

app 3.294×10−6 5.178×10−4 app 3.511×10−6 3.001×10−3

100 exa 1.046×10−10 2.656×10−6 100 exa 6.626×10−13 1.476×10−5

app 1.046×10−10 2.656×10−6 app 6.283×10−13 1.460×10−5

distribution and the geometric distribution are considered for the distribution {an}
of the number of arrivals during one time slot. In all examples we take the load

factor ρ = 0.9.

To conclude this section, it is noted that the approximation to Prej can be

extended to discrete-time queueing systems with correlated input. In many applica-

tions the input is not renewal but correlated. The switched-batch Bernoulli process

is often used for modelling correlated input processes. In this model there is an

underlying phase process that is alternately in the states 1 and 2, where the sojourn

times in the successive states are independent random variables that have a discrete

geometric distribution. The mean of the geometric sojourn time and the distribution

of the number of arrivals in a time slot depend on the state of the phase process.

Exercise 9.16 is to work out the approximation to Prej in this useful model with

correlated input.

EXERCISES

9.1 Consider the M/G/1 queue with exceptional first service. This model differs from the
standard M/G/1 queue only in the service times of the customers reactivating the server
after an idle period. Those customers have special service times with distribution function
B0(t), while the other customers have ordinary service times with distribution function B(t).
Use the regenerative approach to verify that the state probabilities can be computed from the
recursion scheme (9.2.1) in which λp0aj−1 is replaced by λp0aj−1, where an is obtained
by replacing B(t) by B0(t) in the integral representation for an. Also, argue that p0 satisfies
1−p0 = λ[p0µ0 + (1−p0)µ1], where µ1 and µ0 denote the means of the ordinary service
times and the special service times.

9.2 Consider the M/G/1 queue with server vacations. In this variant of the M/G/1 queue
a server vacation begins when the server becomes idle. During a server vacation the server
performs other work and is not available for providing service. The length V of a server
vacation has a general probability distribution function V (x) with density v(x). If upon return
from a vacation the server finds the system empty, a new vacation period begins, otherwise
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the server starts servicing. Denote by p0j (p1j ) the time-average probability that j customers
are present and the server is on vacation (available for service). Use the regenerative approach
to verify the recursion scheme:

p0j =
1 − ρ

E(V )

∫ ∞

0
e−λt (λt)j

j !
{1 − V (t)} dt, j ≥ 0,

p1j =
1 − ρ

E(V )

j
∑

k=1

νkaj−k + λ

j
∑

k=1

(p0k + p1k)aj−k, j ≥ 1,

where an is given in Theorem 9.2.1 and νk is the probability of k arrivals during a single
vacation period. (Hint : take as cycle the time elapsed between two consecutive epochs at
which either the server becomes idle or finds an empty system upon return from vacation.)

9.3 Consider an M/G/1 queueing system in which the service time of a customer depends on
the queue size at the moment the customer enters service. The service time has a probability
distribution function B1(x) when R or fewer customers are present at the moment the
customer enters service; otherwise, the service time has probability distribution function
B2(x). Denote by p1j (p2j ) the time-average probability that j customers are in the system
and service according to B1(B2) is provided. Use the regenerative approach to verify the
recursion scheme

p1j = λp0a
(1)
j−1

+ λ

min(j,R)
∑

k=1

p1ka
(1)
j−k

, j = 1, 2, . . . .

p2j = λ

j
∑

k=R+1

(p1k + p2k)a
(2)
j−k

, j > R,

where a
(i)
n is the same as the constant an in Theorem 9.2.1 except that B(t) is replaced by

Bi(t), i = 1, 2. Also, argue that 1 − p0 = λ{µ1

∑R
j=0 p1j + µ2(1 −

∑R
j=0 p1j )}, where µi

is the mean of the distribution function Bi . (Hint : note that the long-run fraction of service
completions at which j customers are left behind equals the long-run fraction of customers
finding j other customers present upon arrival.)

9.4 Consider the M/G/1 retrial queue from Exercise 2.33 again. Let p0j (p1j ) denote the
long-run fraction of time that the server is idle (busy) and j customers are in orbit for
j = 0, 1, . . . .

(a) Use the regenerative aproach to establish the recursions

jνp0j = λp1,j−1, j = 1, 2, . . . ,

p1j =
λaj

1 − λa0
p00 +

1

1 − λa0

j
∑

k=1

(

λaj−k+1 +
λ2

kν
aj−k

)

p1,k−1, j = 1, 2, . . . ,

where ak =
∫∞

0 e−λt (λt)k(1/k!){1−B(t)} dt with B(t) denoting the probability distribution
function of the service time of a customer. (Hint : let T0j (T1j ) denote the amount of time
during one cycle that the server is idle (busy) and j customers are in orbit and let N0j
denote the number of service completions in one cycle at which j customers are left behind
in orbit. Argue that λE(T1,j−1) = E(N0j ) for j ≥ 0, λE(T1,j−1) = jνE(T0j ) for j ≥ 1

and E(T1j ) =
∑j+1

k=0
E(N0k)Akj for j ≥ 0, where Akj is defined as the expected amount
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of time that j customers are in orbit during a given service time when k customers were
left behind in orbit at the completion of the previous service time.)

(b) Use generating functions to verify that

p00 = (1 − ρ) exp

(

−
λ2

ν

∫ 1

0

α(z)

1 − λα(z)
dz

)

,

where α(z) =
∫∞

0 e−λt (1−z){1 − B(t)} dt .
(c) Instead of the M/G/1 queue with a linear retrial rate, consider the M/G/1 queue

with a constant retrial rate. That is, retrials occur according to a Poisson process with rate
ν when the orbit is not empty. Modify the above results. This problem is based on De Kok
(1984).

9.5 Consider the M/G/1 queue with exponential first service from Exercise 9.1 again.
Assume that service is in order of arrival. Let Wq (x) denote the limiting distribution function
of the delay in queue of a customer.

(a) Verify that the generating function P(z) =
∑∞

j=0 pj zj is given by

P(z) =
p0[1 − λ(α(z) − zα0(z))]

1 − λα(z)
,

where α(z) =
∫∞

0 e−λ(1−z)t {1 − B(t)} dt and α0(z) =
∫∞

0 e−λ(1−z)t {1 − B0(t)} dt .
(b) Verify that the relation (2.5.14) also applies to the M/G/1 queue with server vacations,

where E(zL
(∞)
q ) = p0 + 1

z [P(z) − p0]. Next prove that

∫ ∞

0
e−sx {1 − Wq(x)} dx =

1

s

[

1 − p0 −
λp0(1 − b∗

0
(s))

s − λ + λb∗(s)

]

,

where b∗
0
(s) =

∫∞
0 e−sxb0(x) dx is the Laplace transform of the density of the exceptional

first service and b∗(s) =
∫∞

0 e−sxb(x) dx is the Laplace transform of the density of the
ordinary service.

9.6 Consider again the M/G/1 queue with server vacations from Exercise 9.2. Assuming
that service is in order of arrival, let Wq (x) denote the limiting distribution function of the
delay in queue of a customer.

(a) Letting P0(z) =
∑∞

j=0 p0j zj and P1(z) =
∑∞

j=1 p1j zj , verify from the recursion

scheme in Exercise 9.2 that

P0(z) =
1 − ρ

E(V )
ν(z) and P1(z) = zP0(z)

λα(z)

1 − λα(z)
,

where ν(z) =
∫∞

0 e−λ(1−z)t {1 − V (t)} dt and α(z) =
∫∞

0 e−λ(1−z)t {1 − B(t)} dt . Argue

that relation (2.5.14) also applies to the M/G/1 queue with server vacations where E(zL
(∞)
q )

is given by P0(z) + P1(z)/z.
(b) Verify that the Laplace transform of 1 − Wq (x) is given by

∫ ∞

0
e−sx {1 − Wq (x)} dx =

1 − η∗(s)ξ∗(s)

s

where ξ∗(s) = (1 − ρ)s/[s − λ + λb∗(s)] and η∗(s) is the Laplace transform of the density
[1 − V (x)]/E(V ). Here b∗(s) is the Laplace transform of the service-time density, ξ∗(s)

corresponds to E(e−sD∞ ) in the standard M/G/1 queue without vacations and η∗(s) is the
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Laplace transform of the equilibrium excess density of the vacation time. Decomposition
results of this type are discussed more generally in Fuhrmann and Cooper (1985).

9.7 Consider the (R, S) inventory model with limited order sizes. In this model the inventory
position is reviewed every R periods. At each review the inventory position is ordered up
to the level S provided that the order size does not exceed the constant Q; otherwise, the
replenishment order is of size Q. It is assumed that Q > µR, where µR is the mean demand
between two reviews. The lead time of a replenishment order is negligible. The cumulative
demands between successive reviews are independent random variables. Demand in excess
of on-hand inventory is back ordered.

(a) Let the random variable ξk denote the cumulative demand between the kth and (k+1)th
review and let �i denote the difference between S, the order-up-to level, and the inventory
position just after the ith review. Verify the Lindley equation

�i = max(0,�i−1 + ξi−1 − Q).

(b) Use the results (9.5.5) and (9.5.17) for the D/G/1 queue to derive an explicit expres-
sion for the long-run fraction of demand that is back ordered when the demand variables ξk
have a Coxian-2 distribution.

9.8 A certain product is produced at a constant rate of r > 0. The product is temporarily
stored in a finite buffer with capacity K . The production is stopped when the buffer is full.
A stopped production is resumed as soon as the stock level falls below K by a customer
demand. Customers asking for the product arrive according to a Poisson process with rate
λ. The demand of each customer is for a constant amount of D. The customer is satisfied
with the amount in the buffer when the stock level is below D. It is assumed that λD < r .
One wishes to choose the buffer size K such that the long-run fraction of customers with
partially unsatisfied demand is below a prespecified level α with α small. Use results from
Section 9.4.1 to show that the required buffer K(α) is approximately given by

K(α) ≈
1

δ
ln

(

γ δ

λα

)

,

where δ > 0 is the unique solution of eδD = 1 + rδ/λ and the constant γ is given by
γ = (1 − ρ)/(δD − (1 − ρ)) with ρ = λD/r .

9.9 A finite buffer storing a liquid material is emptied at a constant rate of r > 0. Customers
bringing in the liquid material arrive according to a Poisson process with rate λ. The buffer
has a finite capacity of K > 0. If a customer brings in an amount of work that is larger than
the remaining room in the buffer, the whole amount of work of the customer is rejected. The
amounts of work brought in by the customers are independent and identically distributed
positive random variables. This queueing model is known as the M/G/1 queue with bounded
sojourn time. Let πrej (K) be defined as the long-run fraction of customers who are rejected.

(a) For the case that the amount of work brought in by a customer is a constant D, argue
that πrej (K) equals the loss probability in the M/G/1 queue with impatient customers
from Section 9.4.2, where the service time equals D/r and the impatience time τ equals
(K − D)/r . In particular, conclude that

πrej (K) ∼
(1 − ρ)2eδD

δD − (1 − ρ)
e−δK as K → ∞

where ρ = λD/r < 1 and δ > 0 is the unique solution of eδD = 1 + rδ/λ. If the amount of
work brought in by a customer has an exponential distribution with mean α, then it follows
from results in Gavish and Schweitzer (1977) that

πrej (K) ∼ (1 − ρ)e−ρe−(1−ρ)K/α as K → ∞
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provided that ρ = λα/r is smaller than 1. It is an open problem whether the asymptotically
exponential expansion for πrej (K) holds when the amount of work brought in by a customer
has a general distribution with a non-heavy tail.

(b) Let K(α) be the smallest value of K for which πrej (K) ≤ α. Use the discretization
method from Example 5.5.2 to investigate the performance of the two-moment approxima-

tion K(α) ≈ (1 − c2
S
)Kdet (α) + c2

S
Kexp(α) for α small and 0 ≤ c2

S
≤ 2, where Kdet (α)

and Kexp(α) are determined by the asymptotic expansions in (a). Here c2
S

is the squared
coefficient of variation of the amount of work brought in by a customer. This problem is
based on De Kok and Tijms (1985).

9.10 Consider the M/G/c queue with service in order of arrival. Prove that relation (2.5.14)
remains valid. Derive from this relation that

E[L
(∞)
q (L

(∞)
q − 1) · · · (L(∞)

q − k + 1)] = λkE(Dk
∞), k = 1, 2, . . . .

9.11 Consider the M/G/c queue with service in order of arrival. Let V (x) denote the
conditional waiting-time distribution function of a delayed customer. That means V (x) =
[Wq (x) − Wq (0)]/Pdelay . Denote by v(x) the derivative of V (x) for x > 0.

(a) Use relation (2.5.14) to verify that

∞
∑

j=0

pc+j zj = Pdelay

∫ ∞

0
e−λ(1−z)xv(x) dx.

(b) Let p
app
j

denote the approximation to pj from Theorem 9.6.1 and let vapp(x) be the

corresponding approximation to v(x). Use (9.6.21) and (9.6.23) to verify that the Laplace
transform of vapp (x) is given by

∫ ∞

0
e−stvapp(t) dt =

(1 − ρ)α∗(s)

1 − ρβ∗(s)
,

where the Laplace transforms α∗(s) and β∗(s) are given by

α∗(s) =
c

µ

∫ ∞

0
e−st {1 − Be(t)}c−1{1 − B(t)} dt, β∗(s) =

c

µ

∫ ∞

0
e−st {1 − B(t)} dt.

Here Be(t) is the excess equilibrium distribution function of the service time.
(c) Verify by inversion of the Laplace transform of vapp(x) that

Vapp (x) = (1 − ρ){1 − (1 − Be(x))c} + λ

∫ x

0
Vapp (x − y){1 − B(cy)} dy, x ≥ 0.

Assuming that the service-time distribution is not heavy-tailed, use the same arguments as
in Section 8.4 to verify that

1 − Vapp (x) ∼
e−δx

∫∞
0 eδy [1 − ρBe(cy) − (1 − ρ){1 − (1 − Be(y))c}] dy

λ
∫∞

0 yeδy{1 − B(cy)} dy

as x → ∞, where δ > 0 is the solution to λ
∫∞

0 eδt {1 − B(ct)} dt = 1. This problem is
based on Van Hoorn and Tijms (1982).
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9.12 Use exact results from Section 9.5.3 to verify numerically that

P
app

delay
=

1 − B(D)
∫∞
D eδ(t−D)b(t) dt

and W
app
q =

∫∞
D (t − D)b(t) dt

B(D) − 1 +
∫∞
D eδ(t−D)b(t) dt

are excellent approximations to Pdelay and Wq in the D/G/1 queue. Here B(t) and b(t)

are the probability distribution function and the probability density of the service time. The

constant δ is the unique positive solution to e−δD
∫∞

0 eδyb(y) dy = 1. These approximations
for the D/G/1 queue are due to Fredericks (1982).

9.13 Consider the machine-repair model from Exercise 5.2. Assume now that the service time
S of a request has a general probability distribution function B(x). Extend the approximate
analysis of the M/G/c queue in Section 9.6.2 to the machine-repair model. Verify that the
resulting approximation to the limiting distribution {pj } of the number of service requests
in the system is given by

p
app
j

= (Nj )[νE(S)]jp
app
0

, 0 ≤ j ≤ c − 1

p
app
j

= (N − c + 1)ναcj p
app
c−1

+
j
∑

k=c

(N − k)νβkj p
app
k

, c ≤ j ≤ N

with

αcj =
∫ ∞

0
{1 − Be(t)}c−1{1 − B(t)}φcj (t) dt, βkj =

∫ ∞

0
{1 − B(ct)}φkj (t) dt,

where Be(t) denotes the equilibrium excess distribution of B(t) and φkj (t) is given by

φkj (t) =
(

N−k
j−k

)

(1 − e−νt )j−ke−νt (N−j), t > 0 and k ≥ j ≥ c.

9.14 Consider the finite-capacity M/D/c/c + N queue with deterministic services. It is
assumed that the server utilization is less than 1. Let Wq (x) be the limiting distribution of
the delay in queue of an accepted customer. For k = 1, . . . , c, let

Uk(x) =
c
∑

j=k

(

c

j

)

( x

D

)j (

1 −
x

D

)c−j
, 0 ≤ x ≤ D

be the probability distribution function of the kth order statistic of c independent random vari-
ables that are uniformly distributed on (0,D). An approximation to Wq (x) can be calculated
by the following algorithm:

Step 0. Use the results of Theorem 9.8.1 to compute approximations p
app
j

to the state

probabilities pj in the M/D/c/c + N queue.

Step 1. Approximate 1 − Wq (x) by
∑N+c−1

j=c
[p

app
j

/(1 − p
app
N+c

)]Vj (x), where Vkc+r (x) is

given by 1 − Ur+1(x − kD) for k ≥ 0 and 0 ≤ r ≤ c − 1.
Use computer simulation to find out how well this approximation to Wq (x) performs.

Investigate the quality of the approximation to Wq (x) which results by approximating pj

through γp∞
j

for 0 ≤ j ≤ N + c − 1 in accordance with (9.8.3), where p
(∞)
j

is the state

probability in the M/D/c queue. Further, investigate how well the two-moment approxima-
tion (9.6.31) works for the conditional waiting-time percentiles in the M/G/c/c +N queue
(the computation of Wq(x) in the M/M/c/c + N queue is discussed in Exercise 5.1).

9.15 Consider a single-server queueing system in which the arrival process is the result of
the superposition of m homogeneous on-off sources. Each source is alternately on and off,
where the on-time has an exponential distribution with mean 1/νon and the off-time has
an exponential distribution with mean 1/νoff . The sources act independently of each other.
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Whenever a source is on, it generates service requests according to a Poisson process with
rate δ. There is a buffer of capacity N for temporarily storing service requests which find the
server busy upon arrival; an arriving service request finding the buffer full is rejected. The
service time of a request is distributed as a mixture of Erlangian distributions with the same
scale parameters. This queueing system is a special case of the so-called MAP/G/1/N + 1
queue with a Markov modulated Poisson arrival process.

Develop a computer program to test the performance of formula (9.8.8) as an approximate
formula for the rejection probabilities Prej . Use the results from Exercise 5.27 to compute

the customer-average probabilities π
(∞)
j

in the infinite-buffer model. Check your computer

program with the results that are given below for the case of E2 services, m = 25 sources,
νon = νoff = 0.1 and the two values 0.2 and 0.8 for the system load ρ.

ρ = 0.2 exa app ρ = 0.8 exa app

N = 0 1.708 × 10−1 1.723 × 10−1 N = 0 4.496 × 10−1 4.616 × 10−1

N = 5 1.766 × 10−5 1.817 × 10−5 N = 5 5.455 × 10−2 5.825 × 10−2

N = 10 1.972 × 10−9 2.042 × 10−9 N = 50 9.453 × 10−7 1.002 × 10−6

N = 15 2.437 × 10−13 2.530 × 10−13 N = 100 6.139 × 10−12 6.511 × 10−12

9.16 Consider the discrete-time SBBP/D/c/c + N queueing system. In this model there is
an underlying phase process that is alternately in the states 1 and 2. The sojourn times in the
successive states are independent positive random variables that have a geometric distribution
with mean 1/ωi in state i for i = 1, 2. If the phase process is in state i at the beginning
of a time slot, then the number of packets arriving during that time slot has the discrete

probability distribution {a(i)
k

, k ≥ 0} for i = 1, 2. This phase process is called a switched-
batch Bernoulli process (SBBP). There is a buffer of capacity N to store incoming packets.
Any arriving packet finding the buffer full is rejected. The transmission of a packet can only
start at the beginning of a time slot. The transmission time of a packet is deterministic and

equals any time slot. There are c service channels. Letting αi =
∑∞

k=1 ka
(i)
k

for i = 1, 2, the

system load ρ is defined by ρ = λ/c with λ = (α1/ω1 + α2/ω2)/(1/ω1 + 1/ω2) denoting
the average arrival rate of packets. It is assumed that ρ < 1. For the infinite-buffer model,

define u
(∞)
n,i

as the long-run fraction of time slots at whose beginning n packets are present

and the phase process is in state i. Let U (i)(z) =
∑∞

n=0 u
(∞)
n,i

zn for i = 1, 2.

(a) Use discrete-time Markov chain analysis to verify that

U (1)(z) =

c−1
∑

k=0

[A(1)(z){γ1zc − γA(2)(z)}u(∞)
k,1

+ A(2)(z)ω2z
cu

(∞)
k,2

] × (zc − zk)

z2c − [γ1A(1)(z) + γ2A(2)(z)]zc + γA(1)(z)A(2)(z)
,

where A(i)(z) =
∑∞

n=0 a
(i)
n zn and γi = 1 − ωi for i = 1, 2 and γ = 1 − ω1 − ω2. The

expression for U (2)(z) is obtained by interchanging the roles of 1 and 2 in the expression

for U (1)(z). Argue that

2
∑

i=1

c−1
∑

n=1

nu
(∞)
n,i

+ c



1 −
2
∑

i=1

c−1
∑

n=0

u
(∞)
n,i



 = cρ

and argue that an additional 2c−1 relations between the 2c unknowns u
(∞)
n,i

for 0 ≤ n ≤ c−1

and i = 1, 2 are obtained by noting that U (1)(z) and U (2)(z) are analytic for |z| ≤ 1.
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(b) For the infinite-buffer model, let π
(∞)
j

be the long-run fraction of packets that find j

other packets in the system upon arrival. Argue that

π
(∞)
j

=
1

λ

j
∑

k=0

2
∑

i=1

u
(∞)
k,i

∞
∑

s=j−k+1

a
(i)
s , j = 0, 1, . . . .

(c) Develop a computer program for the discrete-time SBBP/D/c/c + N queue. Check
your computer program with the results below for the parameter values c = 3, ω1 =
0.4, ω2 = 0.2, α1 = 1.4 and α2 = 2.0. In case 1 a Poisson distribution is taken for each of

the distributions {a(1)
n } and {a(2)

n }; in case 2 a geometric distribution is taken for {a(1)
n } and

a Poisson distribution for {a(2)
n }.

N = 5 N = 10 N = 20 N = 30

Case 1 exa 1.683 × 10−2 2.194 × 10−4 3.908 × 10−8 6.965 × 10−12

app 1.085 × 10−2 1.689 × 10−4 3.024 × 10−8 5.390 × 10−12

Case 2 exa 3.781 × 10−2 2.927 × 10−3 3.101 × 10−5 3.413 × 10−7

app 2.603 × 10−2 2.245 × 10−3 2.506 × 10−5 2.816 × 10−7

9.17 Consider the D/M/c/c+N queue and the M/M/c/c+N queue with the same average
arrival rate and the same mean service time. For these two models, denote by Ndet (α) and
Nexp (α) the smallest value of N for which the rejection probability is below a prespecified

level α. Verify experimentally that Ndet (α) ≈ 1
2
Nexp(α).

9.18 Consider the finite-capacity variants of the M/G/1 queue with exceptional first ser-
vice from Exercise 9.1, the M/G/1 queue with server vacations from Exercise 9.2 and the
M/G/1 queue with variable service rate from Exercise 9.3. Verify that the structural form
(9.8.4) for Prej remains valid for these queueing models. Do the same for the finite-capacity
variant of the M/M/c queue with impatient customers from Exercise 5.3.

9.19 Consider the batch-arrival MX/G/c/N + c queue with complete rejection of a batch
when an arriving batch of customers does not find enough room in the buffer for the whole
batch. Let Prej denote the long-run fraction of customers who are rejected.

(a) Argue that

Prej =
1

β

N+c
∑

k=0

pk

∑

s>N+c−k

sβs .

(b) Using the approximation assumption pj ≈ γp
(∞)
j

for j = 0, 1, . . . , N+c−1, modify

the proof of part (b) of Theorem 9.8.2 to obtain the approximation (9.8.13) to Prej .

9.20 Consider the batch-arrival MX/G/c/c+N queue with complete rejection. Suppose that

the batch-size distribution {βj } has the property that
∑Q

s=1
βs = 1 for some 1 ≤ Q ≤ N +1.

Prove that pj = γp
(∞)
j

for 0 ≤ j ≤ N + c − Q for both the MX/G/1/N + 1 queue and

the MX/M/c/c + N queue. (Hint: define T , Tj , T (∞), T
(∞)
j

as in the proof of part

(a) of Theorem 9.8.2 and let Nk and N
(∞)
k

denote the number of service completions in

one cycle at which k customers are left behind. Argue first that E(Nk) = E(N
(∞)
k

) for

0 ≤ k ≤ N + c − Q. Next conclude that E(Tj ) = E(T
(∞)
j

) for 0 ≤ j ≤ N + c − Q, since

E(Nj ) = λE[Tj + . . . + Tj+1−Q] for 0 ≤ j ≤ N + c − Q.)
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9.21 Consider the batch-arrival MX/G/c/c + N queue with complete rejection. Suppose
that the batch size is a constant Q with 1 ≤ Q ≤ N + 1. Prove that the approximation

(9.8.13) to Prej is exact for both the MX/G/1/N + 1 queue and the MX/M/c/c + N
queue.

BIBLIOGRAPHIC NOTES

The queueing theory literature is voluminous. A good account of the basic theory is

provided by the books of Cooper (1991), Kleinrock (1975,1976) and Takács (1962).

A book emphasizing the analysis of the transient behaviour of queues is Newell

(1971). A thorough treatment of most of the background material in Section 9.1

can be found in the book of Wolff (1989). The regenerative approach used in

Sections 9.2 and 9.3 to analyse single-server queues with Poisson input has its

origin in the paper of Hordijk and Tijms (1976). This versatile approach was used

in Tijms et al. (1981) and Tijms and Van Hoorn (1982) to give an approximate

analysis of multi-server queues with state-dependent Poisson input; see also Van

Hoorn (1984). For finite-capacity queues of the M/G/1 type the structural form

for the rejection probability was noticed in the papers of Keilson and Servi (1989)

and Tijms and Van Ommeren (1989). The papers of Sakasegawa et al. (1993)

and Tijms (1992) provide theoretical and empirical support to this formula as an

approximation to a broad class of queueing systems; see also Gouweleeuw (1996).

The material on two-moment approximations for the minimal buffer size is based

on De Kok and Tijms (1985) and Gouweleeuw and Tijms (1996).
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Appendices

APPENDIX A. USEFUL TOOLS IN APPLIED PROBABILITY

This appendix summarizes some basic tools that can be found in most introductory

texts on probability.

Law of total expectation

In many applied probability problems it is only possible to compute certain prob-

abilities and expectations by using appropriate conditioning arguments. Since con-

ditional expectations are based on additional information, they are often easier to

compute than unconditional expectations. The law of total expectation states that,

for any two random variables X and Y defined on the same probability space,

E(X) =
∑

y

E(X | Y = y)P {Y = y} (A.1)

when Y has a discrete distribution and

E(X) =
∫ ∞

−∞
E(X | Y = y)f (y) dy (A.2)

when Y has a continuous distribution with probability density f (y). It is assumed

that the relevant expectations exist. The law of total probability is a special case

of the law of total expectation:

P {X ≤ x} =
∑

y

P {X ≤ x | Y = y}P {Y = y} (A.3)

when Y has a discrete distribution and

P {X ≤ x} =
∫ ∞

−∞
P {X ≤ x | Y = y}f (y) dy (A.4)

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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when Y has a continuous distribution with probability density f (y). The law of

total expectation and the law of total probability will be frequently used in this

book. We illustrate these laws by two examples.

Example A.1 Service with interruptions

A single unloader is available to unload ships. The unloading time U of a ship

has a given probability density f (t) with finite mean γ . The unloading process,

however, is subject to interruptions. Those interruptions have exogenous causes and

occur according to a Poisson process with rate λ. The durations of the interruptions

are independent and identically distributed random variables with mean δ. After

an interruption the unloading of the ship is resumed at the point it was stopped

by the interruption. What is the expected amount of time needed to complete the

unloading of the ship?

Letting the completion time C denote the total amount of time needed to complete

the unloading of the ship, the answer to the above question is

E(C) = γ (1 + λδ). (A.5)

To verify this, let N denote the number of interruptions during the unloading of

the ship. By conditioning upon the unloading time U of the ship, it follows from

the law of total probability that

P {N = n} =
∫ ∞

0

P {N = n | U = t}f (t) dt

=
∫ ∞

0

e−λt (λt)n

n!
f (t) dt , n = 0, 1, . . . .

By conditioning on N and letting Ri denote the duration of the ith interruption, it

follows from the law of total expectation that

E(C) =
∞∑

n=0

E(C | N = n)P {N = n}

=
∞∑

n=0

E(U + R1 + · · · + Rn | N = n)P {N = n}

=
∞∑

n=0

E(U | N = n)P {N = n} +
∞∑

n=1

E(R1 + · · · + Rn)P {N = n}

and so

E(C) = E(U) +
∞∑

n=1

nE(R1)P {N = n} = E(U) + E(R1)E(N).

Since E(N | U = t) = λt , we have E(N) =
∫∞

0 λtf (t) dt = λγ and thus (A.5)

follows.
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Example A.2 The double-up strategy in roulette

In European roulette the wheel is divided in 37 sections, numbered as 1, . . . , 36

and 0. Of the sections numbered from 1 to 36, 18 are red and 18 are black. The

section marked 0 is assumed to be winning for the house. You have decided to bet

on 10 spins of the wheel and to use the double-up strategy. You bet each time on

red. Your initial bet is ¤1. You double your bet each time red does not come up.

If red appears, you start again with a bet of ¤1. You get paid twice your bet when

red comes up and you lose your bet otherwise. What is the expected value of your

loss after a playing round of 10 bets and what is the expected value of the total

amount you bet during the playing round?

To answer these questions, note that the betting process starts anew each time red

comes up except that fewer bets are left. Instead of considering 10 bets, consider

a playing round of n bets under the double-up strategy and define the random

variables Ln and An by

Ln = the player’s loss after a playing round of n bets,

An = the total amount the player bets in a playing round of n bets.

To compute the expected values of Ln and An, it is natural to condition on the

random variable Y denoting the number of spins of the wheel until red comes up

for the first time. Obviously, Y is geometrically distributed with parameter p = 18
37

.

By conditioning on Y and noting that the player’s profit is ¤1 each time red comes

up, it follows that

E (Ln) =
[
−1 + E (Ln−1)

]
p +

[
−1 + E (Ln−2)

]
(1 − p) p + · · ·

+ [−1 + E (L1)] (1 − p)n−2 p +
[
1 + 2 + · · · + 2n−1

]
(1 − p)n ,

E (An) =
[
1 + E (An−1)

]
p +

[
1 + 2 + E (An−2)

]
(1 − p) p + · · · + [1 + 2

+ · · · + 2n−2+ E (A1)] (1 − p)n−2p +
[
1 + 2 +· · ·+ 2n−1

]
(1 −p)n−1 .

Since 1 + 2 + · · · + 2k−1 = 2k − 1, we thus have the recursions

E (Ln) =
n−1∑

k=0

[
−1 + E (Ln−k−1)

]
(1 − p)k p +

(
2n − 1

)
(1 − p)n ,

E (An) =
n−2∑

k=0

[
2k+1 − 1 + E (An−k−1)

]
(1 − p)k p +

(
2n − 1

)
(1 − p)n−1

for n ≥ 1 with the boundary condition E (L0) = E(A0) = 0. These relations

enable us to compute recursively the values of E(Ln) and E(An). In particular,

E(L10) = 0.9421 and E(A10) = 34.858. To conclude, we remark that explicit

expressions for E(Ln) and E(An) can be derived from the recursive relations by
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using the generating-function technique to be discussed in Appendix C. Omitting

the details, we state

E(Ln) = −pn +
1 − p

1 − 2p

[
(2 (1 − p))n − 1

]
, n ≥ 1,

E(An) =
1

1 − 2p
E(Ln), n ≥ 1.

Indeed E(Ln)/E(An) = 1 − 2p = 1
37

in accordance with the fact that the house

percentage in European roulette is 2.702%.

Convolution formula

Let X1 and X2 be two independent, non-negative random variables with respective

probability distribution functions F1(x) and F2(x). For ease assume that F2(x)

has a probability density f2(x). Then, by a direct application of the law of total

probability, we have the convolution formula

P {X1 + X2 ≤ x} =
∫ x

0

F1(x − y)f2(y) dy, x ≥ 0.

Moments of a non-negative random variable

Let N be a non-negative, integer-valued random variable. A useful formula is

E(N) =
∞∑

k=0

P {N > k}. (A.6)

To verify this result, write
∑∞

k=0 P {N > k} =
∑∞

k=0

∑∞
j=k+1 P {N = j} and

interchange the order of summation. The relation (A.6) can be generalized. For

any non-negative random variable X with probability distribution function F(x),

E(X) =
∫ ∞

0

[1 − F(x)] dx. (A.7)

A probabilistic proof of (A.7) is as follows. Imagine that X is the lifetime of a

machine. Define the indicator variable I (t) by I (t) = 1 if the machine is still

working at time t and by I (t) = 0 otherwise. Then, by E[I (t)] = P {I (t) = 1}
and P {I (t) = 1} = P {X > t}, it follows that

E(X) = E

[∫ ∞

0

I (t) dt

]
=
∫ ∞

0

E [I (t)] dt =
∫ ∞

0

P {X > t} dt,

which proves (A.7). The interchange of the order of expectation and integration is

justified by the non-negativity of I (t). The result (A.7) can be extended to

E(Xk) = k

∫ ∞

0

xk−1 [1 − F(x)] dx, k = 1, 2, . . . . (A.8)
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To see this, note that (A.7) implies

E(Xk) =
∫ ∞

0

P {Xk > t} dt =
∫ ∞

0

P {X > t1/k} dt

and next use the change of variable t = xk .

Mean and variance of a random sum of random variables

Let X1, X2, . . . be a sequence of independent and identically distributed random

variables whose first two moments are finite. Also, let N be a non-negative and

integer-valued random variable having finite first two moments. If the random

variable N is independent of the random variables X1, X2, . . . , then

E

(
N∑

k=1

Xk

)
= E(N)E(X1), (A.9)

var

(
N∑

k=1

Xk

)
= E(N)var(X1) + var(N)E2(X1), (A.10)

where E2(X1) is the shorthand notation for [E(X1)]
2. The proof uses the law of

total expectation. By conditioning on N , we find

E

(
N∑

k=1

Xk

)
=

∞∑

n=0

E

(
N∑

k=1

Xk | N = n

)
P {N = n}

=
∞∑

n=0

E

(
n∑

k=1

Xk

)
P {N = n} =

∞∑

n=0

nE(X1)P {N = n},

which verifies (A.9). Note that the second equality uses that the random variables

X1, . . . , Xn are independent of the event {N = n}. Similarly,

E



(

N∑

k=1

Xk

)2

 =

∞∑

n=0

E



(

N∑

k=1

Xk

)2

| N = n


P {N = n}

=
∞∑

n=0

[nE(X2
1) + n(n − 1)E2(X1)]P {N = n}

= E(N)E(X2
1) + E[N(N − 1)]E2(X1). (A.11)

Using σ 2(S) = E(S2) − E2(S), we obtain (A.10) from (A.9) and (A.11).
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Wald’s equation

The result (A.9) remains valid when the assumption that the random variable N is

independent of the sequence X1, X2, . . . is somewhat weakened. Suppose that the

following conditions are satisfied:

(i) X1, X2, . . . is a sequence of independent and identically distributed random

variables with finite mean,

(ii) N is a non-negative, integer-valued random variable with E(N) < ∞,

(iii) the event {N = n} is independent of Xn+1, Xn+2, . . . for each n ≥ 1.

Then it holds that

E

(
N∑

k=1

Xk

)
= E(X1)E(N). (A.12)

This equation is known as Wald’s equation. It is a very useful result in applied

probability. To prove (A.12), let us first assume that the Xi are non-negative. The

following trick is used. For n = 1, 2, . . . , define the random variable Ik by

Ik =

{
1 if N ≥ k,

0 if N < k.

Then
∑N

k=1 Xk =
∑∞

k=1 XkIk and so

E

(
N∑

k=1

Xk

)
= E

( ∞∑

k=1

XkIk

)
=

∞∑

k=1

E(XkIk),

where the interchange of the order of expectation and summation is justified by the

non-negativity of the random variables involved. The random variable Ik can take

on only the two values 0 and 1. The outcome of Ik is completely determined by the

event {N ≤ k−1}. This event depends on X1, . . . , Xk−1, but not on Xk, Xk+1, . . . .

This implies that Ik is independent of Xk . Consequently, E(XkIk) = E(Xk)E(Ik)

for all k ≥ 1. Since E(Ik) = P {Ik = 1} and P {Ik = 1} = P {N ≥ k}, we obtain

(A.9) from (A.6) and

E

(
N∑

k=1

Xk

)
=

∞∑

k=1

E(X1)P {N ≥ k}.

For the general case, treat separately the positive and negative parts of the Xi .

The assumption E(N) < ∞ is essential in Wald’s equation. To illustrate this,

consider the symmetric random walk {Sn, n ≥ 0} with S0 = 0 and Sn = X1 +
· · · + Xn, where X1, X2, . . . is a sequence of independent random variables with

P {Xi = 1} = P {Xi = −1} = 1
2

for all i. Define the random variable N as

N = min{n ≥ 1 | Sn = −1}, that is, N is the epoch of the first visit of the random

walk to the level −1. Then E(X1 + · · · + XN ) = −1. Noting that E(Xi) = 0, we
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have, however, that E(X1 + · · · + XN ) is not equal to E(N)E(X1). The reason is

that E(N) = ∞.

Example A.3 A reliability problem

To illustrate Wald’s equation, consider the following reliability problem. An elec-

tronic system has a built-in redundancy in the form of a standby unit to support an

operating unit. The two units are identical. When the operating unit fails, its tasks

are immediately taken over by the standby unit if available. A failed unit immedi-

ately enters repair. The system goes down when the operating unit fails while the

other unit is still in repair. The lifetime L of an operating unit is assumed to have

a continuous probability distribution F(x) with finite mean µ. The repair time of

a failed unit is a constant α > 0. The successive lifetimes of the operating unit are

independent of each other. A repaired unit is as good as new. Both units are in

perfect condition at time 0. What is the expected time until the system goes down

for the first time?

To solve this problem, denote by L0 the lifetime of the operating unit installed

at time 0 and denote by L1, L2, . . . the lifetimes of the subsequent operating units.

Then the time until the first system failure is distributed as L0 + L1 + · · · + LN ,

where the random variable N denotes the first n ≥ 1 for which Ln is less than

the nth repair time. The random variables L1, . . . , Ln and the event {N = n} are

mutually dependent, but the event {N = n} is independent of Ln+1, Ln+2, . . . for

each n ≥ 1. Hence we can apply Wald’s equation. This gives

E(time until the first system failure) = E(L0) + E(L1)E(N)

= µ [1 + E(N)] .

To find E(N), note that N has a geometric distribution with parameter p = P {L <

α}. Hence E(N) = 1/F (α) and so

E(time until the first system failure) = µ

[
1 +

1

F(α)

]
.

In practical applications the mean lifetime will be much larger than the mean

repair time. In other words, the occurrence of a system failure is a rare event. For

those situations there is a deep but extremely useful result stating that the time

until the first system failure is approximately exponentially distributed ; see also

Example 2.2.4.

Coefficient of variation

Let X be a positive random variable with finite mean E(X) and finite standard

deviation σ(X). The coefficient of variation of X is defined by

cX =
σ(X)

E(X)
.
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Since this quantity is dimensionless, it is a very useful measure for the variability of

the random variable X. Usually one works with the squared coefficient of variation

c2
X rather than with cX. For example, the deterministic distribution has c2

X = 0,

the exponential distribution has c2
X = 1 and the Erlang distribution with shape

parameter k has the intermediate value c2
X = 1/k.

Failure rate function

Let X be a positive random variable with a probability distribution function F(t)

and a continuous probability density f (t). For example, the random variable X

represents the lifetime of some item. The failure, or hazard, rate function of the

random variable X is defined by

r(t) =
f (t)

1 − F(t)

for those values of t with F(t) < 1. The failure rate has a useful probabilistic

interpretation. Think of the random variable X as the lifetime of an item. The

probability that an item of age t will fail in the next �t time units is given by

P {t < X ≤ t + �t | X > t} =
P {t < X ≤ t + �t}

P {X > t}

=
f (t)�t

1 − F(t)
+ o(�t) as �t → 0.

Hence r(t)�t gives approximately the probability that an item of age t will fail in

the next �t time units when �t is small. Hence the name ‘failure rate’. Noting that

−r(t) is the derivative of the function ln[1 − F(t)], it follows that the failure rate

function r(t) determines uniquely the corresponding lifetime distribution function

F(t) by

1 − F(t) = exp

{
−
∫ t

0

r(x) dx

}
, t ≥ 0.

As a consequence, the case of a constant failure rate r(x) = λ for all x corresponds

to the exponential distribution function F(x) = 1−e−λx , x ≥ 0. In other words, an

item in use is as good as new when its lifetime is exponentially distributed. Other

important cases are the case of an increasing failure rate (the older, the worse) and

the case of a decreasing failure rate (the older, the better). A random variable with

an increasing (decreasing) failure rate can be shown to have the property that its

coefficient of variation is smaller (larger) than 1. The failure rate is a concept that

enables us to discriminate between distributions on physical considerations.

Convergence theorems

To conclude this appendix, we state a number of basic convergence theorems that

will be used in this book. These theorems can be found in any textbook on real

analysis, e.g. Rudin (1964).
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Theorem A.1 Let anm, n, m = 0, 1, . . . be real numbers. If all the numbers anm

are non-negative or if
∑∞

n=0

∑∞
m=0 |anm| < ∞, then

∞∑

n=0

∞∑

m=0

anm =
∞∑

m=0

∞∑

n=0

anm.

This theorem is a special case of what is known as Fubini’s theorem in analysis.

Theorem A.2 Let {pm, m = 0, 1, . . . } be a sequence of non-negative numbers.

Suppose that the numbers anm, n, m = 0, 1, . . . are such that

lim
n→∞

anm = am

exists for all m = 0, 1, . . . .

(a) If all numbers anm are non-negative, then

lim
n→∞

inf

∞∑

n=0

anmpm ≥
∞∑

m=0

ampm.

(b) If there is a finite constant M > 0 such that |anm| ≤ M for all n, m and if∑∞
m=0 pm < ∞, then

lim
n→∞

∞∑

m=0

anmpm =
∞∑

m=0

ampm.

The first part of the theorem is a special case of Fatou’s lemma and the second

part of the theorem is a special case of the bounded convergence theorem.

The above theorems can be stated in greater generality. For example, a more

general version of the bounded convergence theorem is as follows. Let {Xn} be a

sequence of random variables that converge with probability 1 to a random variable

X. Then

lim
n→∞

E(Xn) = E(X)

provided that |Xn| ≤ Y , n ≥ 1, for some random variable Y with E(Y) < ∞.

Recall that convergence with probability 1 means that

P {ω ∈ �: lim
n→∞

Xn(ω) = X(ω)} = 1,

where � is the common sample space of the random variables Xn, n ≥ 1, and the

random variable X. Often one uses the term ‘almost sure convergence’ instead of

the term ‘convergence with probability 1’.

Finally, we mention the important concept of the Cesaro limit. A sequence

{an, n ≥ 1} of real numbers is said to have a Cesaro limit if limn→∞(1/n)
∑n

k=1 ak

exists. A sequence {an} may have a Cesaro limit while the ordinary limit does
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not exist. For example, suppose that an = 1 for n even and an = 0 for n odd.

Then limn→∞an does not exist, while limn→∞(1/n)
∑n

k=1 ak = 1/2. However, if

the ordinary limit exists then the Cesaro limit exists as well and is equal to the

ordinary limit.

APPENDIX B. USEFUL PROBABILITY DISTRIBUTIONS

This appendix discusses a number of important distributions which have been

found useful for describing random variables in inventory, reliability and queueing

applications. In particular, attention is paid to the practical problem of fitting a

tractable distribution to the first two moments of a positive random variable.

The exponential distribution

A positive random variable X is said to be exponentially distributed with parameter

λ > 0 when it has the probability density

f (t) = λe−λt , t ≥ 0.

The corresponding probability distribution function F(t) is given by

F(t) = 1 − e−λt , t ≥ 0.

Its mean and squared coefficient of variation are given by

E(X) =
1

λ
and c2

X = 1.

The exponential distribution is of extreme importance in applied probability. The

main reason for this is its memoryless property and its intimate relation with the

Poisson process. The memoryless property states that

P {X > t + x | X > t} = e−λx, x ≥ 0,

independently of t . In other words, imagining that X represents the lifetime of

an item, the residual life of the item has the same exponential distribution as the

original lifetime, regardless of how long the item has already been in use. The

memoryless property is in agreement with the constant failure rate property of the

exponential distribution.

The following well-known results for the exponential distribution are very use-

ful. If X1 and X2 are two independent random variables that are exponentially

distributed with respective means 1/λ1 and 1/λ2, then, for any t ≥ 0,

P {min(X1, X2) ≤ t} = 1 − e−(λ1+λ2)t and P {X1 < X2} =
λ1

λ1 + λ2

. (B.1)
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In other words, the minimum of the two exponentially distributed lifetimes X1 and

X2 is exponentially distributed with mean 1/(λ1 + λ2) and the probability that the

lifetime X1 expires earlier than the lifetime X2 is λ1/(λ1 + λ2).

Example B.1 A first-passage time problem

An electronic system has two crucial components, 1 and 2, that operate indepen-

dently of each other. The lifetime of component i has an exponential distribution

with mean 1/αi for i = 1, 2. If a component breaks down, it is replaced by a

new one. The time needed to replace component i by a new one is exponentially

distributed with mean 1/βi for i = 1, 2. The system continues to operate as long as

one of the components is functioning, but it fails when none of the two components

works. Both components are in perfect condition at time 0. What is the expected

time until the first system failure?

Let us say that the system is in state 1 (2) if only component 1 (2) is functioning

and it is in state 3 when both components are functioning. In view of the memory-

less property of the exponential distribution, we can define the random variable Ti

as the time until the first system failure when the current state of the system is state

i. We wish to compute E(T3). To do so, we derive a system of linear equations

in E(Ti) for i = 1, 2, 3. By conditioning on the next state and using the results in

(B.1), it follows that

E(T1) =
1

α1 + β2

+
β2

α1 + β2

E(T3), E(T2) =
1

α2 + β1

+
β1

α2 + β1

E(T3),

E(T3) =
1

α1 + α2

+
α2

α1 + α2

E(T1) +
α1

α1 + α2

E(T2).

These equations are easily solved for E(T3).

The gamma distribution

A positive random variable X is said to be gamma (α, λ) distributed when it has

the probability density

f (t) =
λαtα−1

Ŵ(α)
e−λt , t ≥ 0,

where α > 0 is the shape parameter and λ > 0 is the scale parameter. The symbol

Ŵ(α) denotes the complete gamma function which is defined by

Ŵ(α) =
∫ ∞

0

e−t tα−1 dt, α > 0.

This function has the property that Ŵ(α + 1) = αŴ(α) for α > 0. In particular,

Ŵ(α) = (α − 1)! if α is a positive integer. The probability distribution function
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F(t) of a gamma (α, λ) distributed random variable X is given by

F(t) =
1

Ŵ(α)

∫ λt

0

e−uuα−1 du, t ≥ 0.

The latter integral is known as the incomplete gamma function. The class of gamma

distributions is closed in the following sense. If X1 and X2 are two independent ran-

dom variables that are gamma (α1, λ) and gamma (α2, λ) distributed, then X1 +X2

has a gamma (α1 +α2, λ) distribution (an easy way to prove this is to use Laplace

transforms; see Appendix E). In particular, the sum of n independent random vari-

ables each having the same gamma (α, λ) distribution is gamma (nα, λ) distributed.

In queueing applications the gamma distribution is often used to model service-

time distributions and in inventory applications to model demand distributions. The

numerical evaluation of the gamma distribution function is hardly more difficult

than that of the standard normal distribution function. Fast numerical procedures

for the computation of the incomplete gamma function are widely available; see

for example Press et al. (1992).

The mean and the squared coefficient of variation of a gamma (α, λ) distributed

random variable X are given by

E(X) =
α

λ
and c2

X =
1

α
.

This result shows that a unique gamma distribution can be fitted to each positive

random variable with given first two moments. To characterize the shape and the

failure rate of the gamma density, we distinguish between the cases c2
X < 1 (α > 1)

and c2
X ≥ 1 (α ≤ 1). The gamma density is always unimodal ; that is, the density

has only one maximum. For the case c2
X < 1 the density first increases to the

maximum at t = (α − 1)/λ > 0 and next decreases to zero as t → ∞, whereas

for the case c2
X ≥ 1 the density has its maximum at t = 0 and thus decreases from

t = 0 onwards. The failure rate function is increasing from zero to λ if c2
X < 1 and

is decreasing from infinity to zero if c2
X > 1. The exponential distribution (c2

X = 1)

has a constant failure rate λ and is a natural boundary between the cases c2
X < 1

and c2
X > 1.

The Erlang distribution

The Erlang (Ek) distribution is a special case of the gamma distribution. For a pos-

itive integer k, the Erlang (k, λ) distribution is nothing else than the gamma (α, λ)

distribution with α = k. The probability density and the probability distribution

function of an Erlang (k, λ) distributed random variable X are

f (t) =
λktk−1

(k − 1)!
e−λt and F(t) = 1 −

k−1∑

j=0

e−λt (λt)j

j !
, t ≥ 0.

The Erlang (k, λ) distribution has a very useful interpretation. An Erlang (k, λ)

distributed random variable X can be decomposed as the sum of k independent
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random variables each having an exponential distribution with the same mean 1/λ;

see also Appendix E. The Erlang probability distribution function can be numeri-

cally evaluated without using a general code for the incomplete gamma integral. For

fixed t , the Poisson probabilities pj (t) = e−λt (λt)j/j ! can be recursively calculated

from p0(t) = e−λt and pj (t) = (λt/j)pj−1(t) for j = 1, 2, . . . . However, expo-

nent underflow may occur in the calculation of p0(t) when λt is very large. There

is a simple trick to avoid the exponent underflow. Define qj (t) = ln
[
pj (t)

]
. The

recursion scheme q0(t) = −λt and qj (t) = ln(λt/j) + qj−1(t) for j ≥ 1 offers no

numerical difficulties at all. Any desired pj (t) is calculated from pj (t) = exp[qj (t)]

if qj (t) ≥ −100 (say) and pj (t) = 0 otherwise. The trick of working with loga-

rithms is one of the most useful tricks to avoid underflow in numerical analysis.

Logarithms enable us to reduce the manipulation with extremely large (small)

numbers to the manipulation with moderately sized numbers.

The lognormal distribution

A positive random variable X is said to be lognormally distributed when it has the

probability density

f (t) =
1

αt
√

2π
exp

[
−

1

2
[ln(t) − λ]2/α2

]
, t > 0,

where the shape parameter α is positive and the scale parameter λ may assume

each real value. The probability density function F(t) equals

F(t) = �

(
ln(t) − λ

α

)
, t > 0,

where �(x) = (1/
√

2π)
∫ x

−∞ exp(−u2/2) du is the standard normal probability

distribution function. The mean and the squared coefficient of variation of the

lognormal distribution are given by

E(X) = exp

(
λ +

1

2
α2

)
and c2

X = exp(α2) − 1.

Thus a unique lognormal distribution can be fitted to each positive random variable

with given first two moments. The lognormal density is always unimodal with a

maximum at t = exp(λ − α2). The failure rate function first increases and next

decreases to zero as t → ∞ and thus the failure rate is only decreasing in the

long-life range.

The Weibull distribution

A positive random variable X is said to be Weibull distributed when it has the

probability density

f (t) = αλ(λt)α−1exp[−(λt)α], t > 0,
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with the shape parameter α > 0 and scale parameter λ > 0. The corresponding

probability distribution function F(t) is given by

F(t) = 1 − exp[−(λt)α], t ≥ 0.

The mean and the squared coefficient of variation of the Weibull random variable

X are

E(X) =
1

λ
Ŵ

(
1 +

1

α

)
and c2

X =
Ŵ(1 + 2/α)

[Ŵ(1 + 1/α)]2
− 1.

A unique Weibull distribution can be fitted to each positive random variable with

given first two moments. For that purpose a non-linear equation in α must be

numerically solved. The Weibull density is always unimodal with a maximum at

t = λ−1(1 − 1/α)1/α if c2
X < 1 (α > 1), and at t = 0 if c2

X ≥ 1 (α ≤ 1). The

failure rate function is increasing from 0 to infinity if c2
X < 1 and is decreasing

from infinity to zero if c2
X > 1.

The gamma and Weibull densities are similar in shape, and for c2
X < 1 the log-

normal density takes on shapes similar to the gamma and Weibull densities. For

the case c2
X ≥ 1 the gamma and Weibull densities have their maximum value at

t = 0; most outcomes tend to be small and very large outcomes occur only occa-

sionally. The lognormal density goes to zero as t → 0 faster than any power of

t , and thus the lognormal distribution will typically produce fewer small outcomes

than the other two distributions. This explains the popular use of the lognormal

distribution in actuarial studies. The differences between the gamma, Weibull and

lognormal densities become most significant in their tail behaviour. The densi-

ties for large t go down like exp[−λt], exp[−(λt)α] and exp[− 1
2
[ln(t) − λ]2/α2].

Thus, for given values of the mean and the coefficient of variation, the lognormal

density always has the longest tail. The gamma density has the second longest

tail only if α > 1; that is, only if its coefficient of variation is less than one.

In Figure B.1 we illustrate these facts by drawing the gamma, Weibull and log-

normal densities for c2
X = 0.25, where E(X) is taken to be 1. To conclude this

appendix, we discuss several useful generalizations of exponential and Erlangian

distributions. In many queueing and inventory applications there is a very substan-

tial (numerical) advantage in using the generalized distributions rather than other

distributions.

Generalized Erlangian distributions

An Erlang-k (Ek) distributed random variable can be represented as the sum of

k independent exponentially distributed random variables with the same means. A

generalized Erlangian distribution is one built out of a random sum of exponen-

tially distributed components. A particularly convenient distribution arises when

these components have the same means. In fact, such a distribution can be used

to approximate arbitrarily closely any distribution having its mass on the positive
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Figure B.1 The gamma, lognormal and Weibull densities

half-axis; see also Section 5.5. We discuss two special cases of mixtures of Erlan-

gian distributions with the same scale parameters. First, we consider the Ek−1,k

distribution which is defined as a mixture of Ek−1 and Ek distributions with the

same scale parameters. The probability density of an Ek−1,k distribution has the

following form:

f (t) = pµk−1 tk−2

(k − 2)!
e−µt + (1 − p)µk tk−1

(k − 1)!
e−µt , t ≥ 0,

where 0 ≤ p ≤ 1. In other words, a random variable having this density is with

respective probabilities p and 1−p distributed as the sum of k−1 and k independent

exponentials with common mean 1/µ. By choosing the parameters p and µ as

p =
1

1 + c2
X

[
kc2

X −
√

k(1 + c2
X) − k2c2

X

]
and µ =

k − p

E(X)
,
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the associated Ek−1,k distribution fits the first two moments of a positive random

variable X provided that
1

k
≤ c2

X ≤
1

k − 1
.

We note that only coefficients of variation between 0 and 1 can be achieved by

mixtures of the Ek−1,k type. Also, it is noteworthy that the Ek−1,k density can be

shown to have an increasing failure rate.

Next we consider the E1,k distribution, which is defined as a mixture of E1 and

Ek distributions with the same scale parameters. The density of the E1,k distribution

has the form

f (t) = pµe−µt + (1 − p)µk tk−1

(k − 1)!
e−µt , t ≥ 0,

where 0 ≤ p ≤ 1. By choosing

p =
2kc2

X + k − 2 −
√

k2 + 4 − 4kc2
X

2(k − 1)(1 + c2
X)

and µ =
p + k(1 − p)

E(X)
,

the associated E1,k distribution fits the first two moments of a positive random

variable X provided that

1

k
≤ c2

X ≤
k2 + 4

4k
.

Hence the E1,k distribution can also achieve values of c2
X with c2

X > 1.

For use in applications the Ek−1,k density is generally better suited than the E1,k

density since the Ek−1,k density is always unimodal and has a shape similar to the

frequently occurring gamma density. The E1,k density may be useful in sensitivity

analysis. For both theoretical and practical purposes it is often easier to work with

mixtures of Erlangian distributions than with gamma distributions, since mixtures

of Erlangian distributions with the same scale parameters allow for the probabilistic

interpretation that they represent a random sum of independent exponentials with

the same means.

Hyperexponential distribution

A commonly used representation of a positive random variable with a coefficient of

variation greater than 1 is a mixture of two exponentials with different means. The

distribution of such a mixture is called a hyperexponential distribution of order 2,

an H2 distribution. The density of the H2 distribution has the form

f (t) = p1µ1e
−µ1t + p2µ2e

−µ2t , t ≥ 0,

where 0 ≤ p1, p2 ≤ 1. Note that always p1 + p2 = 1, since the density f (t)

represents a probability mass of 1. In words, a random variable having the H2 den-

sity is distributed with probability p1 (p2) as an exponential variable with mean
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1/µ1 (1/µ2). The hyperexponential density always has a coefficient of variation

of at least 1 and is unimodal with a maximum at t = 0. The failure rate func-

tion of the hyperexponential distribution is decreasing. The H2 density has three

parameters and is therefore not uniquely determined by its first two moments. For

a two-moment fit, the H2 density with balanced means is often used; that is, the

normalization p1/µ1 = p2/µ2 is used. The parameters of the H2 density having

balanced means and fitting the first two moments of a positive random variable X

with c2
X ≥ 1 are

p1 =
1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, p2 = 1 − p1, µ1 =

2p1

E(X)
, µ2 =

2p2

E(X)
.

In the context of a Coxian-2 distribution we give below another normalization we

believe to be a more natural one. A three-moment fit by an H2 density is not

always possible, but it is unique whenever it exists. An H2 density can only be

fitted to the first three moments m1, m2 and m3 of a positive random variable X

with c2
X > 1 when the requirement m1m3 ≥ 3

2
m2

2 is satisfied; see Whitt (1982). If

m1m3 = 3
2
m2

2 then the H2 fit is the exponential density, otherwise the parameters

of the three-moment fit are given by

µ1,2 =
1

2

{
a1+

√
a2

1 − 4a2

}
, p1 =

µ1(1 − µ2m1)

µ1 − µ2

, p2 = 1 − p1,

where a2 = (6m2
1 − 3m2)/(

3
2
m2

2 −m1m3) and a1 = (1 + 1
2
m2a2)/m1. The require-

ment m1m3 ≥ 3
2
m2

2 holds for both a gamma distributed and a lognormal distributed

random variable X with c2
X > 1.

Coxian-2 distribution

The hyperexponential density requires that the weights p1 and p2 are non-negative.

However, in order that p1µ1exp(−µ1t)+p2µ2exp(−µ2t) represents a probability

density, it is not necessary to require that p1 and p2 are both non-negative. The

class of H2 distributions can be shown to be a subclass of the class of so-called

Coxian-2 (C2) distributions. A random variable X is said to be Coxian-2 distributed

if X can be represented as

X =
{

X1 + X2 with probability b,

X1 with probability 1 − b,

where X1 and X2 are independent random variables having exponential distribu-

tions with respective means 1/µ1 and 1/µ2. In words, the lifetime X first goes

through an exponential phase X1 and then through a second exponential phase X2

with probability b or it goes out with probability 1 − b; see Figure B.2. It can be

assumed without loss of generality that µ1 ≥ µ2.
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exp(m1) exp(m2)

1 − b

b

Figure B.2 The Coxian distribution with two phases

A Coxian-2 distribution having parameters (b, µ1, µ2) with µ1 < µ2 can be shown

to have the same probability density as the Coxian-2 distribution having parameters

(b∗, µ∗
1, µ∗

2) with µ∗
1 = µ2, µ∗

2 = µ1 and b∗ = 1 − (1 − b)µ1/µ2. Assuming that

µ1 ≥ µ2, the Coxian-2 distributed random variable X has the density

f (t) =
{

p1µ1e
−µ1t + (1 − p1)µ2e

−µ2t if µ1 	= µ2,

p1µ1e
−µ1t + (1 − p1)µ

2
1te

−µ1t if µ1 = µ2,

where p1 = 1 − bµ1/(µ1 − µ2) if µ1 	= µ2 and p1 = 1 − b if µ1 = µ2. Thus the

class of H2 densities is contained in the class of Coxian-2 densities. Note that the

H2 distribution allows for two different but equivalent probabilistic interpretations.

The H2 distribution can be interpreted in terms of exponential phases in parallel

and in terms of exponential phases in series.

The density of a Coxian-2 distributed random variable X always has a unimodal

shape. Moreover, it holds that

c2
X ≥

1

2
,

where c2
X ≥ 1 only if the density has the form p1µ1exp(−µ1t) + p2µ2exp(−µ2t)

for non-negative p1 and p2. The Coxian-2 density has three parameters (b, µ1, µ2).

Hence an infinite number of Coxian-2 densities can in principle be used for a two-

moment fit to a random variable X with c2
X > 1

2
(the E2 density is the only possible

choice when c2
X = 1

2
). A particularly useful choice for a two-moment match is the

Coxian-2 density with parameters

µ1 =
2

E(X)


1 +

√√√√c2
X − 1

2

c2
X + 1


 , µ2 =

4

E(X)
− µ1, b =

µ2

µ1

{µ1E(X) − 1}.

This particular Coxian-2 density has the remarkable property that its third moment

is the same as that of the gamma density with mean E(X) and squared coefficient

of variation c2
X. The unique Coxian-2 density having this property will therefore

be called the Coxian-2 density with gamma normalization. This normalization is a

natural one in many applications.
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A two-stage process with negative probabilities

For c2
X < 1

2
it is not possible to fit a Coxian-2 distribution to the first two moments

of the positive random variable X. A fit using an Ek,k−1 distribution requires many

stages when c2
X is close to zero and thus might be unattractive in (queueing) appli-

cations. A remarkable alternative involving two exponential stages was proposed

in Nojo and Watanabe (1987). The positive random variable X is approximated

through a two-stage process. The process starts in stage 1. It stays in stage 1 for

an exponentially distributed time with mean 1/γ . Upon completion of the sojourn

time in stage 1, the process expires with probability p1 and moves to stage 2 with

probability 1 − p1. The sojourn time in stage 2 is also exponentially distributed

with the same mean 1/γ . Upon completion of the sojourn time in stage 2, the

process expires with probability p2 and returns to stage 1 with probability 1 − p2.

In stage 1 the process starts anew. The idea is to approximate the random variable

X by the time until the process expires. Using results from Appendix E, it is not

difficult to verify that the Laplace transform of this lifetime is given by

f ∗(s) =
γp1s + γ 2 (p1 + p2 − p1p2)

s2 + 2γ s + γ 2 (p1 + p2 − p1p2)
.

The moments of the lifetime are directly obtained from the Laplace transform

f ∗(s); see (E.2) in AppendixE. If c2
X < 1

2
and the first three moments m1, m2

and m3 satisfy m1m3 < 3
2
m2

2, it is nearly always possible to match the first three

moments of f ∗(s) with the first three moments of X by allowing for negative values

of p1 and p2 but requiring that γ > 0. This is particularly true when c2
X = 0. A

surprising finding is that in many (queueing) applications excellent approximations

are obtained by replacing the random variable X through the two-stage process and

treating p1 and p2 as if they were probabilities.

APPENDIX C. GENERATING FUNCTIONS

The generating function (or z-transform) of a discrete probability distribution {pk ,

k = 0, 1, . . . } is defined by

P (z) =
∞∑

k=0

pkz
k, |z| ≤ 1.

The variable z is usually taken as a real-valued variable, but in certain applications

it may be convenient to treat z as a complex-valued variable. It is easily verified

that the probability distribution {pk , k = 0, 1, . . . } can be recovered analytically

from the compressed function P (z) by

pk =
1

k!

dkP (z)

dzk

∣∣∣∣
z=0

, k = 0, 1, . . . . (C.1)

The result (C.1) shows that a discrete probability distribution is uniquely determined

by its generating function. Also, the moments of the probability distribution {pk}
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are readily obtained from P (z). For example, the first two moments are obtained

from the relations

∞∑

k=0

kpk = P ′(1) and

∞∑

k=1

k(k − 1)pk = P ′′(1).

In general the relation (C.1) is only of theoretical value. It is often possible to

obtain an explicit expression for P (z) when the probabilities pk are unknown (e.g.

from a difference equation for the pk). In Appendix D we discuss the discrete

Fast Fourier Transform algorithm to recover the pk numerically when an explicit

expression for P (z) is available. Usually it is not possible to analytically recover

the pk from (C.1).

A useful probabilistic interpretation can be given to P (z). If the random variable

N is distributed according to {pk}, then

P (z) = E(zN ). (C.2)

A direct consequence of this relation is that the generating function of the con-

volution of two discrete probability distributions is the product of the generating

functions of these two probability distributions. More specifically, suppose that the

random variable N = X + Y , where X and Y are two independent discrete ran-

dom variables with respective probability distributions {ak , k = 0, 1, . . . } and {bk ,

k = 0, 1, . . . } . Let pk = P {N = k}, k = 0, 1, . . . . Then the generating function

P (z) of the distribution {pk} is given by

P (z) = A(z)B(z), (C.3)

where A(z) and B(z) are the generating functions of the probability distributions

{ak} and {bk}. This follows from E(zX+Y ) = E(zX)E(zY ). In practice it is usually

faster to compute the pj by applying the discrete Fast Fourier Transform method

rather than using the convolution formula pj =
∑j

k=0 aj−kbk for j ≥ 0.

Example C.1 The coupon-collecting problem

Suppose there are r different types of coupons and each time we obtain a coupon it

is equally likely to be any one of the r types. How do we compute the probability

distribution of the number of coupons we need to collect for a complete set of

coupons? Denote this number by the random variable X. The random variable X

can be written as

X = Y1 + · · · + Yr ,

where Yi is the number of additional coupons that need to be collected to increase

the number of different coupons in the collection from i −1 to i. The random vari-

ables Y1, . . . , Yr are independent of each other and Yi has a geometric distribution
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with parameter αi = 1 − (i − 1)/r . The generating function of Yi is

Pi(z) =
∞∑

k=1

αi(1 − αi)
k−1zk =

αiz

1 − (1 − αi)z
.

Noting that α1 = 1 and letting βi = 1 − αi = (i − 1)/r , it follows from (C.3) that

the generating function P (z) =
∑∞

k=1 P {X = k}zk is given by

P (z) = P1(z) · · · Pr(z) =
α2 · · ·αrz

r

(1 − β2z) · · · (1 − βrz)
.

Using partial-fraction expansion, we next find

P (z) = α2 · · ·αrz
r

[
γ2

1 − β2z
+ · · · +

γr

1 − βrz

]
,

where the residue γi is given by

γi =
r∏

ℓ=2
ℓ	=i

(
1

1 − βℓ/βi

)
, i = 2, . . . , r.

Noting that
∑∞

j=1(1−p)pj−1zj = (1−p)z/(1− (1−p)z), we can invert the final

expression for P (z) to obtain

P {X = k} = α2 · · · αr

[
γ2β

k−r
2 + · · · + γrβ

k−r
r

]
, k ≥ r. (C.4)

Example C.2 Success runs

Another illustration of the usefulness of the generating function approach is the

analysis of success runs in independent Bernoulli trials. How do we compute the

probability that in n independent Bernoulli trials with success probability p there is

some sequence of s consecutive successes? For fixed s, denote this probability by

Pn for n ≥ 0. The probability Pn can be written as Pn =
∑n

j=0 pj for n = 0, 1, . . . ,

where the probability pj is defined as

pj = the probability that for the first time a sequence of s

consecutive successes occurs at the j th trial.

Note that {pj , j = 0, 1, . . . } is a probability distribution with
∑∞

j=0 pj = 1.

Obviously pj = 0 for j < s and ps = ps . For j > s, we have the recursion

pj =
s∑

k=1

pk−1(1 − p)pj−k, j = s + 1, s + 2, . . . .

To prove this, fix j > s and denote by A the event that a sequence of s consecu-

tive successes occurs for the first time at the j th trial. The event A can only occur
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if one of the mutually exclusive events B1, . . . , Bs occurs, where Bk is the event

that each of the first k − 1 trials have success as outcome but the kth trial does

not. Noting that P (A) = pj , P (Bk) = pk−1(1 − p) and P (A | Bk) = pj−k , the

recursion follows by applying the law of conditional probabilities. As an alternative

to the recursion scheme, the probabilities pj can also be numerically obtained by

numerical inversion of the generating function. Multiplying both sides of the above

recursion for pj by zj and summing over j , it follows that the generating function

P (z) =
∑∞

j=0 pj z
j satisfies

P (z) = psz
s +

∞∑

j=s+1

zj

s∑

k=1

pk−1(1 − p)pj−k

= psz
s +

s∑

k=1

zkpk−1(1 − p)

∞∑

j=s+1

pj−kz
j−k

= psz
s + P (z)

s∑

k=1

zkpk−1(1 − p).

This gives

P (z) =
pszs

1 −
s∑

k=1

pk−1(1 − p)zk

. (C.5)

Hence an explicit expression has been obtained for the generating function P (z) of

the unknown probabilities {pj }. Using this expression the unknown probabilities pj

can also be numerically obtained by applying the discrete Fast Fourier Transform

method from Appendix D. A simple but extremely useful method to compute pj for

large j is to use an asymptotic expansion. This approach will be discussed below in

a general setting. To do so, some basic concepts from complex function theory are

needed such as the concept of an analytic function. In a nutshell, a function on a

domain in the complex plane is called analytic when the function is differentiable

infinitely often on that domain. A fundamental theorem from complex function

theory states that a function f (z) is analytic in the complex region |z| < R if

and only if f (z) allows for the power series representation f (z) =
∑∞

n=0 fnz
n for

|z| < R.

Asymptotic expansion

Suppose that the generating function P (z) =
∑∞

j=0 pj z
j of an (unknown) proba-

bility distribution {pj , j = 0, 1, . . . } has the form

P (z) =
N(z)

D(z)
. (C.6)

The generating function P (z) is defined for |z| ≤ 1, but assume that N(z) and

D(z) are analytic functions whose domains of definition can be extended to a
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region |z| < R in the complex plane for some R > 1. It is essential that the radius

R is larger than 1. Note that the generating function (C.5) is indeed of the form

(C.6), where the numerator and denominator are analytic functions on the whole

complex plane (R = ∞). It is no restriction to assume that N(z) and D(z) have

no common zeros; otherwise, cancel out common zeros. Let us further assume that

the following regularity conditions are satisfied:

C1 The equation D(z) = 0 has a real root z0 on the interval (1,R).

C2 The function D(z) has no zeros in the domain 1 < |z| < z0 of the complex

plane.

C3 The zero z = z0 of D(z) is of multiplicity 1 and is the only zero of D(z) on

the circle |z| = z0.

The following theorem is of utmost importance. The insightful proof of the

theorem is included for completeness. Recall that f (x) ∼ g(x) as x → ∞ means

that f (x)/g(x) → 1 as x → ∞.

Theorem C.1 Under the conditions C1 to C3,

pj ∼ γ0z
−j

0 as j → ∞, (C.7)

where the constant γ0 is given by

γ0 = −
1

z0

N(z0)

D′(z0)
. (C.8)

Here D′(z0) denotes the derivative of D(x) at x = z0.

Proof We first mention the following basic facts from complex function theory.

The most important fact is that a function f (z) is analytic at a point z = a if

and only if f (z) can be expanded in a power series f (z) =
∑∞

n=0 an(z − a)n in

|z − a| < ρ for some ρ > 0. The coefficient an of the Taylor series is the nth

derivative of f (z) at z = a divided by n!. The analytic function f (z) is said to

have a zero of multiplicity k in z = a if a0 = · · · = ak−1 = 0 and ak 	= 0. Another

basic result is the following. The Taylor series
∑∞

n=0 an(z−a)n of a function f (z)

at the point z = a coincides with the function f (z) in the interior of the largest

circle whose interior lies wholly within the domain on which f (z) is analytic.

The proof of (C.7) now proceeds as follows. The conditions C1 to C3 imply

that there is a circle around z = 0 with radius R0 larger than z0 such that P (z) is

analytic in |z| < R0 except for the isolated point z = z0. Since D(z) has a zero of

multiplicity 1 at z = z0, it follows from the Taylor series that D(z) = (z− z0)φ(z)

in |z| < R0, where φ(z) is an analytic function with φ(z0) 	= 0. Thus we can write

P (z) as P (z) = H(z)/(z − z0) for some analytic function H(z) in |z| < R0 with

H(z0) 	= 0. Using a Taylor expansion H(z) = H(z0) + (z − z0)U(z), we next find
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that P (z) can be represented as

P (z) =
r0

z − z0

+ U(z) (C.9)

in |z| < R0, z 	= z0. Here U(z) is an analytic function in the domain |z| < R0 and

the residue r0 = H(z0) is given by

r0 = lim
z→z0

(z − z0)P (z) = N(z0)/D
′(z0).

The remainder of the proof is simple. Since U(z) is analytic for |z| < R0 we have

the power series representation U(z) =
∑∞

j=0 uj z
j for |z| < R0. Let R1 be any

number with z0 < R1 < R0. Then, for some constant b,
∣∣uj

∣∣ ≤ bR
−j

1 for all j ≥ 0.

This follows from the fact that the series
∑∞

j=0 ujz
j is convergent for z = R1.

Using the power series representation of U(z) and the fact that the power series

representation P (z) =
∑∞

j=0 pj z
j extends to |z| < z0, it follows from (C.9) that

∞∑

j=0

pj z
j =

−r0

z0

∞∑

j=0

(z/z0)
j +

∞∑

j=0

ujzj , |z| < z0.

Equating coefficients yields

pj = −r0z
−j−1
0 + uj , j ≥ 0.

Since
∣∣uj

∣∣ ≤ bR
−j

1 for some constant b and R1 > z0, the coefficient uj tends to

zero faster than z
−j

0 . Hence we can conclude the asymptotic expansion (C.7).

It is noted that Theorem C.1 does not require that {pj } is a probability distri-

bution. The theorem applies to any sequence {pj , j = 0, 1, . . . } with pj ≥ 0 for

all j and
∑∞

j=0 pj < ∞. The asymptotic expansion (C.7) is very useful for both

theoretical and computational purposes. It appears that in many applications the

asymptotic expansion for pj can be used for relatively small values of j . To illus-

trate this, consider the generating function (C.5) for the problem of success runs.

This generating function P (z) is the ratio of the two analytic functions N(z) = pszs

and D(z) = 1−
∑s

k=1 pk−1(1−p)zk whose domains of definition can be extended

to the whole complex plane (R = ∞). It is readily verified that the equation

1 −
s∑

k=1

pk−1(1 − p)xk = 0

has a unique root z0 on the interval (1, ∞). Hence condition C1 is satisfied. The

verification of the technical conditions C2 and C3 is omitted and is left to the

interested reader. The unique root z0 of the above equation must be numerically
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Table C.1 The exact and approximate values for Qn

s = 2 s = 5

n exact approximate n exact approximate

5 0.50000 0.50156 15 0.831543 0.831541
10 0.173828 0.173824 50 0.4558865475 0.4558865475
15 0.06024170 0.06024171 100 0.1931794513 0.1931794513
25 0.0072355866 0.0072355866 200 0.0346871989 0.0346871989

calculated. A safe and fast method to compute z0 is the bisection method. Once z0

is computed, we can approximately calculate pj from

pj ≈
p(pz0)

s

(1 − p)

s∑

k=1

k(pz0)
k

z
−j

0 for j large enough.

Denoting by Qn =
∑∞

j=n pj the probability that it takes n or more Bernoulli trials

to obtain a sequence of s consecutive successes, we give in Table C.1 the exact and

approximate values of Qn for several values of n. We take p = 0.5 and s = 2 and

s = 5. The numerical results in Table C.1 confirm the finding that the asymptotic

expansion (C.7) is remarkably accurate and already applies for relatively small

values of j . This finding is very important for practical purposes.

APPENDIX D. THE DISCRETE FAST FOURIER TRANSFORM

The discrete Fast Fourier Transform (FFT) method is a very powerful method to

recover numerically the values of unknown probabilities pk , k = 0, 1, . . . when

an explicit expression is available for the generating function P (z) =
∑∞

k=0 pkz
k .

The FFT method has many other applications. Another applied probability problem

for which the discrete FFT method may be very useful is the calculation of the

convolution of two or more discrete probability distributions. The discrete FFT

method represents a breakthrough in numerical analysis.

Before stating the discrete FFT method for the numerical inversion of a generat-

ing function, here are some basic facts from discrete Fourier analysis. The discrete

Fourier transform takes n numbers f0, . . . , fn−1 into n coefficients c0, . . . , cn−1

such that there is a one-to-one correspondence between {fk} and {ck}. The fk are

real or complex numbers and the ck are complex numbers. A finite Fourier series

n−1∑

k=0

ck eikx
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is sought that agrees with f at n equally spaced points xl = 2πℓ/n between 0 and

2π . More specifically, we look for complex numbers c0, . . . , cn−1 such that

n−1∑

k=0

ck eik(2πℓ/n) = fℓ, ℓ = 0, . . . , n − 1. (D.1)

It is convenient to write these linear equations in matrix notation as

Fc = f.

Here F is a complex-valued matrix whose (ℓ, k)th element (F )ℓk is given by

(F )ℓk = wkℓ, ℓ, k = 0, . . . , n − 1,

where the complex number w is defined by

w = e2πi/n.

Let F be the matrix whose elements are the complex conjugates of the elements

of the matrix F . The matrix F has the nice property that

FF = FF = nI, (D.2)

where I is the identity matrix (the column vectors of the symmetric matrix F

form an orthogonal system). To verify this, let w = e−2πi/n denote the complex

conjugate of w. The inproduct of the rth row of F and the sth column of F is

given by

γrs = w0w0 + wrws + w2rw2s + · · · + w(n−1)rw(n−1)s .

For r = s each term equals e0 = 1 and so the sum γrs is n. For r 	= s the sum γrs

can be written as 1 + α + · · · + αn−1 = (1 − αn)/(1 − α) with α = wrws( 	= 1).

Since wn = e2πi = 1 and wn = e−2πi = 1, we have αn = 1 and so γrs = 0 for

r 	= s. This gives (D.2). By (D.2), we have F−1 = (1/n)F . It now follows that

the vector c of Fourier coefficients is given by c = (1/n)Ff . Componentwise, we

have

ck =
1

n

n−1∑

ℓ=0

fℓ e−2πiℓk/n, k = 0, . . . , n − 1. (D.3)

This inversion formula parallels the formula ck = (2π)−1
∫ π

−π
f (x) e−ikx dx in

continuous Fourier analysis. Notice that (D.3) inherits the structure of (D.1).

In many applications, however, we proceed in reverse order: we know the

Fourier coefficients ck and wish to calculate the original coefficients fj . By the

formula (D.1) we can transform c back into f . The matrix multiplications in (D.1)

would normally require n2 multiplications. However, the discrete FFT method per-

forms the multiplications in an extremely fast and ingenious way that requires

only n log2(n) multiplications instead of n2. The key to the method is the simple

observation that the discrete Fourier transform of length n (n even) can be written
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as the sum of two discrete Fourier transforms, each of length n/2. Suppose we

know the ck and wish to compute the fℓ from (D.1). It holds that

n−1∑

k=0

ck e2πikℓ/n =

1
2 n−1∑

k=0

c2k e2πiℓ(2k)/n +

1
2 n−1∑

k=0

c2k+1 e2πiℓ(2k+1)/n

=

1
2 n−1∑

k=0

c2k e2πikℓ/(n/2) + wℓ

1
2 n−1∑

k=0

c2k+1 e2πikℓ/(n/2). (D.4)

The discrete Fourier transform of length n can thus be written as the sum of two

discrete Fourier transforms each of length n/2. This beautiful trick can be applied

recursively. For the implementation of the recursive discrete FFT procedure it is

convenient to choose

n = 2m

for some positive m (if necessary, zeros can be added to the sequence f0, . . . , fn−1

in order to achieve that n = 2m for some m). The discrete FFT method is numer-

ically very stable (it is a fast and accurate method even for values of n with an

order of magnitude of a hundred thousand). The discrete FFT method that calcu-

lates the original coefficients fj from the Fourier coefficients ck is usually called

the inverse discrete FFT method. Ready-to-use codes for the discrete FFT method

are widely available. The discrete FFT method is a basic tool that should be part

of the toolbox of any applied probabilist. It is noted that the discrete FFT method

can be extended to a complex function defined over a multidimensional grid.

Numerical inversion of the generating function

Suppose an explicit expression is available for the generating function

P (z) =
∞∑

ℓ=0

pℓz
ℓ, |z| ≤ 1.

How do we obtain the unknown probabilities pℓ? Choose an integer n = 2m

such that

∞∑

j=n

pj ≤ ε

for some prespecified accuracy number ε, say ε = 10−12 (often one can find a

known distribution {aj } such that
∑∞

j=k pj ≤
∑∞

j=k aj for all k; otherwise, the

truncation integer n has to be found by trial and error). Then calculate the complex
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numbers

ck =
1

n
P (e−2πik/n), k = 0, . . . , n − 1 (D.5)

from the explicit expression for P (z). Note that each of the points zk = e−2πik/n,

k = 0, . . . , n − 1 satisfies zn = 1 and thus lies on the unit circle |z| = 1. By the

power series representation of P (z) and the choice of the integer n, we have

ck ≈
1

n

n−1∑

ℓ=0

pℓ e−2πiℓk/n, k = 0, . . . , n − 1.

This relation is of the same form as (D.3). Thus the unknown probabilities pℓ can

be calculated by applying the inverse discrete FFT method to the known vector

(c0, . . . , cn−1).

Example D.1 The M/D/1 queue

Consider the M/D/1 queue with deterministic services. In Section 2.5 it was shown

that the generating function of the limiting distribution {pk} of the number of

customers present is given by

P (z) =
(1 − λD)(1 − z)

1 − zeλD(1−z)
, |z| ≤ 1,

where λ is the arrival rate of customers and D is the fixed service time of a

customer with λD < 1. Hence the state probabilities {pk} can be calculated by

applying the discrete FFT method. In the specific problem of the M/D/1 queue,

the explicit expression for the generating function P (z) is of the form Q(z)/R(z).

In such a situation one should verify whether or not R(z) has zeros on the unit

circle |z| = 1 (each zero of R(z) on the unit circle must also be a zero of Q(z)

since P (z) =
∑∞

k=0 pkz
k is analytic for |z| ≤ 1). If a point zk = e−2πik/n is a

zero of R(z), the corresponding Fourier coefficient ck cannot be calculated directly

from (D.5) but can be found by applying L’Hospital’s rule to Q(z)/R(z) at the

point z = zk (often z0 = 1 is a zero as is the case in the M/D/1 problem).

APPENDIX E. LAPLACE TRANSFORM THEORY

This appendix gives a brief outline of some results from Laplace transform theory

that are useful in applied probability problems. Suppose that f (x) is a continuous

real-valued function in x ≥ 0 such that |f (x)| ≤ AeBx , x ≥ 0, for some constants

A and B. The Laplace transform of f (x) is defined by the integral

f ∗(s) =
∫ ∞

0

e−sxf (x) dx
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as a function of the complex variable s with Re(s) > B. The integral always

exists when Re(s) > B. If f (x) is the probability density of a random variable

X, the Laplace transform f ∗(s) is defined for all s with Re(s) > 0 and can be

interpreted as

f ∗(s) = E(e−sX). (E.1)

Moreover, we then have

E(Xk) = (−1)k lim
s→0

dkf ∗(s)

dsk
, k = 1, 2, . . . . (E.2)

The results (a) to (c) below can easily be verified from the definition of Laplace

transform. In the statements it is assumed that the various integrals exist.

(a) If the function f (x) = ag(x) + bh(x) is a linear combination of the functions

g(x) and h(x) with Laplace transforms g∗(s) and h∗(s), then

f ∗(s) = ag∗(s) + bh∗(s). (E.3)

(b) If F(x) =
∫ x

0 f (y) dy, then

∫ ∞

0

e−sxF(x) dx =
f ∗(s)

s
. (E.4)

If f (x) has a continuous derivative f ′(x) then

∫ ∞

0

e−sxf ′(x) dx = sf ∗(s) − f (0). (E.5)

(c) If the function f (x) is given by the convolution

f (x) =
∫ x

0

g(x − y)h(y) dy

of two functions g(x) and h(x) with Laplace transforms g∗(s) and h∗(s), then

f ∗(s) = g∗(s)h∗(s). (E.6)

In addition to these results, we mention without proof the following useful

Abelian theorem. If
∫∞

0 e−sxf (x) dx is convergent for Re(s) > 0 and limx→∞ f (x)

exists, then

lim
x→∞

f (x) = lim
s→0

s

∫ ∞

0

e−sxf (x) dx. (E.7)

In applied probability problems one often encounters the situation of a non-negative

random variable X that has a positive mass at x = 0 and a density on (0, ∞). Then

∫ ∞

0

e−sxP {X > x} dx =
1 − E(e−sX)

s
. (E.8)



460 APPENDICES

Using that E(e−sX) = P {X = 0}+
∫∞

0 e−sxπ(x) dx and P {X > x} = 1−P {X =
0} −

∫ x

0 π(y) dy with π(x) denoting the derivative of P {X ≤ x} for x > 0, the

relation (E.8) follows directly from (E.3) and (E.4). Of course the result (E.8) also

holds when X has a zero mass at x = 0.

In specific applications requiring the determination of some unknown function

f (x) it is often possible to obtain the Laplace transform f ∗(s) of f (x). A very use-

ful result is that a continuous function f (x) is uniquely determined by its Laplace

transform f ∗(s). In principle the function f (x) can be obtained by inversion of its

Laplace transform. Extensive tables are available for the inverse of basic forms of

f ∗(s); see for example Abramowitz and Stegun (1965). An inversion formula that

is sometimes helpful in applications is the Heaviside formula. Suppose that

f ∗(s) =
P (s)

Q(s)
,

where P (s) and Q(s) are polynomials in s such that the degree of P (s) is smaller

than that of Q(s). It is no restriction to assume that P (s) and Q(s) have no zeros

in common. Let s1, . . . , sk be the distinct zeros of Q(s) in the complex plane. For

ease of presentation, assume that each root sj is simple (i.e. has multiplicity 1).

Then it is known from algebra that P (s)/Q(s) admits the partial fraction expansion

P (s)

Q(s)
=

r1

s − s1

+
r2

s − s2

+ · · · +
rk

s − sk
,

where rj = lims→sj (s − sj )P (s)/Q(s) and so rj = P (sj )/Q
′(sj ), 1 ≤ j ≤ k. The

inverse of the Laplace transform f ∗(s) = P (s)/Q(s) is now given by

f (x) =
k∑

j=1

P (sj )

Q′(sj )
esj x, (E.9)

as can be verified by taking the Laplace transform of both sides of this equation.

This result is readily extended to the case in which some of the roots of Q(s) = 0

are not simple. For example, the inverse of the Laplace transform

f ∗(s) =
P (s)

(s − a)m
,

where P (s) is a polynomial of degree lower than m, is given by

f (x) = eax

m∑

j=1

P (m−j)(a)xj−1

(m − j)!(j − 1)!
. (E.10)

Here P (n)(a) denotes the nth derivative of P (x) at x = a with P (0)(a) = P (a).

It is usually not possible to give an explicit expression for the inverse of a

given Laplace transform. In those situations the unknown function f (x) may be
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obtained by numerical inversion of its Laplace transform f ∗(s). Numerical inver-

sion methods that perform well for probability functions f (x) are discussed in

Appendix F.

Example E.1 The Erlang distribution

Suppose that X1, . . . , Xn are independent random variables having a common

exponential distribution with mean 1/µ. Then X1 + · · · + Xn has the probability

density
µnxn−1e−µx

(n − 1)!
, x ≥ 0,

that is, X1 + · · · + Xn is Erlang (n, µ) distributed. To prove this, note that the

Laplace transform of the probability density fn(x) of X1 + · · · + Xn is given by

f ∗
n (s) = E[e−s(X1+···+Xn)]

= E(e−sX1) · · ·E(e−sXn).

Noting that E(e−sXi ) =
∫∞

0 e−sxµe−µx dx = µ/(s+µ) for all s with Re(s) > −µ,

it follows that

f ∗
n (s) =

µn

(s + µ)n
.

Using (E.10), the inversion of f ∗
n (s) shows that fn(x) is indeed given by the Erlang

(n, µ) density.

Example E.2 The renewal function

Consider a renewal process for which the probability distribution function B(x) of

the interoccurrence times of the events has a probability density b(x). The renewal

function M(x) is defined by

M(x) =
∞∑

n=1

Bn(x), (E.11)

where Bn(x) is the probability distribution function of X1+· · ·+Xn. That is, Bn(x)

is the n-fold convolution of B(x) with itself. The distribution function Bn(x) has

a probability density bn(x). Since bn(x) is the density of X1 + · · · + Xn,

∫ ∞

0

e−sxbn(x) dx = E
[
e−s(X1+ ··· +Xn)

]
=
[
b∗(s)

]n
,

where b∗(s) =
∫∞

0 e−sxb(x) dx. By (E.4),

∫ ∞

0

e−sxBn(x) dx =
[
b∗(s)

]n

s
. (E.12)
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Thus we find M∗(s) =
∑∞

n=1 s−1[b∗(s)]n, which yields the general formula

M∗(s) =
b∗(s)

s[1 − b∗(s)]
. (E.13)

This expression can be inverted for the Erlang density. As an illustration, consider

the case of b(x) = λ2xe−λx . Then b∗(s) = [λ/(λ + s)]2 and so

M∗(s) =
λ2

s2(s + 2λ)
.

Partial-fraction expansion gives

M∗(s) =
− 1

4
s + 1

2
λ

s2
+

1
4

s + 2λ
.

By applying (E.3), (E.9) and (E.10), we obtain

M(t) =
1

2
λt −

1

4
+

1

4
e−2λt , t ≥ 0.

APPENDIX F. NUMERICAL LAPLACE INVERSION

For a long time numerical Laplace inversion had the reputation of being difficult and

numerically unreliable. However, contrary to previous impressions, it is nowadays

not difficult to compute probabilities and other quantities of interest in probability

models by using reliable Laplace inversion methods. This appendix briefly discusses

two effective Laplace inversion algorithms. These algorithms involve complex cal-

culations. There is nothing magic about doing calculations with complex numbers.

These calculations can be reduced to operations with real numbers by dealing sep-

arately with the real part and the imaginary part of the complex numbers. Simple

facts such as the relation eix = cos(x) + i sin(x) for any real x and the represen-

tation z = reiθ for any complex number z are typically used in the calculations in

addition to the basic rules for adding and multiplying two complex numbers. Here

i denotes the complex number with i2 = −1. Certain computer languages such as

the language C++ have automatic provision for doing complex calculations. In

many applied probability problems it is possible to derive an expression for the

Laplace transform of some unknown function. Let the real-valued function f (t) be

an unknown function in the variable t ≥ 0. Suppose its Laplace transform

f ∗(s) =
∫ ∞

0

e−stf (t) dt

in the complex variable s is known. Assume that the function f (t) satisfies the

following conditions:

1. f (t) is of bounded variation on any finite interval.
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2. f (t) is continuous for t ≥ 0.

3. For any b > 0 the function e−btf (t) is monotone for t ≥ t0(b) for some number

t0(b).

4.
∫∞

0 e−bt |f (t)| dt < ∞ for any b > 0.

In probability applications the function f (t) is often the complementary cumula-

tive probability distribution function of a continuous random variable. In this case

the conditions 1 to 4 are automatically satisfied. A basic result from analysis is that

a real-valued function f (t) is of bounded variation if and only if it can be writ-

ten as the difference of two monotone functions. Under the above conditions the

following version of the Poisson summation formula from Fourier analysis holds:

∞∑

n=−∞
f

(
t +

2πn

h

)
e−b(t+2πn/h) =

h

2π

∞∑

n=−∞
f ∗(b + inh)einht

for any constants h, b > 0. This Poisson summation formula is the basis for the

following algorithm of Abate and Whitt (1992).

Inversion algorithm of Abate and Whitt

In Abate and Whitt (1992) it was shown that

f (t) =
e

1
2 a

2t
f ∗
( a

2t

)
+

e
1
2 a

t

∞∑

k=1

(−1)kRe

(
f ∗
(

a + 2kπi

2t

))
− ε(a, t) (F.1)

for any constant a > 0, where the error term ε(a, t) is given by

ε(a, t) =
∞∑

n=1

e−naf ((2n + 1)t).

To calculate f (t) from (F.1) for a given value of t , we need f ∗(s) for the sequence

{(a + 2kπ)/2t, k = 0, 1, . . . } of complex numbers. In calculating f (t) through the

representation (F.1) there are three possible sources of error. First the discretization

error associated with ε(a, t). Second, the truncation error associated with approxi-

mately calculating the infinite series in (F.1). Third, the round-off error associated

with subtracting positive numbers that are close to each other. The discretization

error can be controlled by choosing the constant a sufficiently large. Assuming that

the function f (t) is bounded by 1, as typically holds in probability applications, it

follows from the inequality

|ε(a, t)| ≤
e−a

1 − e−a
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that the discretization error can be limited to 10−8 by choosing a = 19.1 and to

10−13 by choosing a = 28.3. However, the constant a should not be chosen unnec-

essarily large. The risk of losing significant digits when calculating the infinite series

in (F.1) increases when the constant a gets too large. A useful method of summa-

tion for the infinite series in (F.1) is the classical Euler summation method. This

method proves to be quite effective in accelerating the convergence of the alternat-

ing infinite series in (F.1). Also, the method decreases the risk of losing significant

digits in the calculations. In Euler summation the infinite series
∑∞

k=0(−1)kak in

(F.1) is approximated by the Euler sum

E(m, n) =
m∑

k=0

(mk )2−mSn+k

for appropriately chosen values of m and n, where

Sj =
j∑

k=0

(−1)kak.

Numerical experience shows that the Euler sum E(m, n) computes the infinite

series
∑∞

k=0(−1)kak in (F.1) usually with an error of 10−13 or less when n = 38

and m = 11 are taken (this requires the computation of only 50 terms). For more

details the interested reader is referred to Abate and Whitt (1992). The Abate–Whitt

algorithm gives excellent results for functions f (t) that are sufficiently smooth

(say, twice continuously differentiable). However, the inversion algorithm performs

less satisfactorily for points at which the function f (t) or its derivative is not

differentiable.

Inversion algorithm of Den Iseger

Another simple algorithm to invert Laplace transforms was given in Den Iseger

(2002). In general this algorithm outperforms the Abate–Whitt algorithm in sta-

bility and accuracy. The strength of the Den Iseger algorithm is the fact that in

essence it boils down to an application of the discrete FFT algorithm. The Den

Iseger algorithm has the additional advantage of inverting the Laplace transform

simultaneously at several points. Suppose you wish to calculate f (t) for a number

of points in the interval [0, t0]. For appropriately chosen values of � > 0 and

M > 1 with (M − 1)� = t0, the algorithm calculates the function values f (ℓ�)

for ℓ = 0, 1, . . . , M − 1. The algorithm is based on the representation

f (ℓ�) ≈
ebℓ

�

n∑

j=1

αj

∫ 1

−1

Re

[
f ∗
(

b + iλj + iπt

�

)]
cos(πℓ(t + 1)) dt (F.2)

for appropriately chosen values of b and n, where the abscissae λj and the weights

αj for j = 1, . . . , n are given numbers that depend only on n. The error in (F.2)

converges very fast to zero as n gets larger. For practical purposes it suffices to
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Table F.1 The constants αj and λj for n = 8, 16

αj (n = 8) λj

2.00000000000000000000E+00 3.14159265358979323846E+00
2.00000000000009194165E+00 9.42477796076939341796E+00
2.00000030233693694331E+00 1.57079633498486685135E+01
2.00163683400961269435E+00 2.19918840702852034226E+01
2.19160665410378500033E+00 2.84288098692614839228E+01
4.01375304677448905244E+00 3.74385643171158002866E+01
1.18855502586988811981E+01 5.93141454252504427542E+01
1.09907452904076203170E+02 1.73674723843715552399E+02

αj (n = 16) λj

2.00000000000000000000E+00 3.14159265358979323846E+00
2.00000000000000000000E+00 9.42477796076937971539E+00
2.00000000000000000000E+00 1.57079632679489661923E+01
2.00000000000000000000E+00 2.19911485751285526692E+01
2.00000000000000025539E+00 2.82743338823081392079E+01
2.00000000001790585116E+00 3.45575191894933477513E+01
2.00000009630928117646E+00 4.08407045355964511919E+01
2.00006881371091937456E+00 4.71239261219868564304E+01
2.00840809734614010315E+00 5.34131955661131603664E+01
2.18638923693363504375E+00 5.99000285454941069650E+01
3.03057284932114460466E+00 6.78685456453781178352E+01
4.82641532934280440182E+00 7.99199036559694718061E+01
8.33376254184457094255E+00 9.99196221424608443952E+01
1.67554002625922470539E+01 1.37139145843604237972E+02
4.72109360166038325036E+01 2.25669154692295029965E+02
4.27648046755977518689E+02 6.72791727521303673697E+02

take n as large as 8 or 16 to achieve a very high precision. In Table F.1 we give

both for n = 8 and n = 16 the abscissae λj and the weights αj for j = 1, . . . , n.

It is convenient to rewrite (F.2) as

f (ℓ�) ≈
ebℓ

�

n∑

j=1

αj

∫ 2

0

Re

[
f ∗
(

b + iλj + iπ(t − 1)

�

)]
cos(πℓt) dt.

Put for abbreviation gℓ = 1
2

∑n
j=1 αj

∫ 2
0 Re

[
f ∗
(

b+iλj+iπ(t−1)

�

)]
cos(πℓt) dt . Then

f (ℓ�) ≈ (2ebℓ/�)gℓ. The integral in gℓ is calculated by using the trapezoidal rule

approximation with a division of the integration interval (0, 2) into 2m subintervals

of length 1/m for an appropriately chosen value of m. It is recommended to take

m = 4M . This gives

gℓ ≈
1

2m

2m−1∑

p=1

f ∗
p cos

(
πℓp

m

)
+

f ∗
0 + f ∗

2m

2
, (F.3)
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where f ∗
p is defined by

f ∗
p =

n∑

j=1

αj Re

[
f ∗
(

b + iλj + iπ(p/m − 1)

�

)]
, p = 0, 1, . . . , 2m.

The approximation of (2ebℓ/�)gℓ to f (ℓ�) is extraordinarily accurate. Rather

than calculating from (F.3) the constants gℓ for ℓ = 0, 1, . . . , M − 1 by direct

summation, it is much better to use the discrete Fast Fourier Transform method to

calculate the constants gℓ for ℓ = 0, 1, . . . , 2m − 1. More important than speeding

up the calculations, the discrete FFT method has the advantage of its numerical

stability. To see how to apply the discrete FFT method to (F.3), define ĝk by

ĝk =

{
1
2
(f ∗

0 + f ∗
2m), k = 0,

f ∗
k , k = 1, . . . , 2m − 1.

Then, we can rewrite the expression (F.3) for gℓ as

gℓ ≈
1

2m
Re

[
2m−1∑

k=0

ĝke2πiℓk/2m

]
(F.4)

for ℓ = 0, 1, . . . , 2m − 1. The discrete FFT method can be applied to this repre-

sentation. Applying the inverse discrete FFT method to the vector (ĝ0, . . . , ĝ2m−1)

yields the sought vector (g0, . . . , g2m−1). Here is a summary of the algorithm:

Input: M , �, b, n and m.

Output: f (k�) for k = 0, 1, . . . , M − 1.

Step 1: Calculate for p = 0, 1, . . . , 2m and 1 ≤ j ≤ n,

f ∗
jp = Re

[
f ∗
(

b + iλj + iπ(p/m − 1)

�

)]
.

Next calculate f ∗
p =

∑n
j=1 αjf

∗
jp for p = 0, 1, . . . , 2m. Let ĝ0 = 1

2
(f ∗

0 + f ∗
2m)

and ĝk = f ∗
k for k = 1, . . . , 2m − 1.

Step 2: Apply the inverse discrete FFT method to the vector (ĝ0, . . . , ĝ2m−1) in

order to obtain the desired vector (g0, . . . , g2m−1).

Step 3: Let f (ℓ�) = (2ebℓ/�)gℓ for 0 ≤ ℓ ≤ M − 1.

In step 3 of the algorithm gℓ is multiplied by ebℓ. In order to avoid numerical

instability, it is important to choose b not too large. Assuming that the ratio m/M

is large enough, say 4, numerical experiments indicate that b = 22/m gives results

that are almost of machine accuracy 2E − 16 (in general, it is best to choose

b somewhat larger than − ln(ξ)/(2m) where ξ is the machine precision). If f

is sufficiently smooth, it usually suffices to take n = 8, otherwise n = 16 is
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recommended. The parameter M is taken as a power of 2 (say, M = 32 or M = 64)

while the parameter m is chosen equal to 4M . The choices of M and � are not

particularly relevant when f is smooth enough (theoretically, the accuracy increases

when � gets smaller). In practice it is advisable to apply the algorithm for � and
1
2
� to see whether or not the results are affected by the choice of �.

Non-smooth functions

The Den Iseger algorithm may also perform unsatisfactorily when f or its derivative

has discontinuities. In such cases the numerical difficulties may be circumvented

by using a simple modification of the algorithm. To do this, assume that f ∗(s) can

be represented as

f ∗(s) = v(s, ex0s) (F.5)

for some real scalar x0 and some function v(s, u) with the property that for any

fixed u the function v(s, u) is the Laplace transform of a smooth function. As an

example, consider the complementary waiting-time distribution f (t) = P {Wq > t}
in the M/D/1 queue with deterministic service times D and service in order of

arrival; see Chapter 9. This function f (t) is continuous but is not differentiable at

the points t = D, 2D, . . . . The Laplace transform f ∗(s) of f (t) is given by

f ∗(s) =
ρs − λ + λe−sD

s[s − λ + λe−sD]
, (F.6)

where λ is the average arrival rate and ρ = λD < 1. Then (F.5) applies with

x0 = −D and v(s, u) =
ρs − λ + λu

s(s − λ + λu)
.

In this example we have indeed that for any fixed u the function v(s, u) is the

Laplace transform of an analytic (and hence smooth) function.

In the modified Den Iseger algorithm the basic relation (F.2) should be modi-

fied as

f (ℓ�) ≈
ebℓ

�

n∑

j=1

αj

∫ 1

−1

vj (t) cos(πℓ(t + 1)) dt (F.7)

with

vj (t) = Re

[
v

(
b + iλj + iπt

�
, exp

(
iπx0

�
−

b + iπt

�

))]
.

It is essential that in (F.7) the constant � > 0 is chosen such that |x0| is a multiple of

�, where x0 comes from (F.5). As before, the integral in (F.7) can be approximated



468 APPENDICES

Table F.2 The waiting-time probabilities

t P {Wq > t}

1 0.554891814301507
5 0.100497238246398

10 0.011657108265013
25 0.00001819302497
50 3.820E-10

by the composite trapezoidal rule. In (F.3) the quantity f ∗
p should now be read as

f ∗
p =

n∑

j=1

αj

×Re

[
v

(
b + iλj + iπ(p/m − 1)

�
, exp

(
iπx0

�
−

b + iπ(p/m − 1)

�

))]
.

The modification (F.7) gives excellent results (for continuous non-analytic functions

one usually has an accuracy two or three figures less than machine precision). To

illustrate this, we apply the modified approach to the Laplace transform (F.6) for

the M/D/1 queue with service time D = 1 and traffic intensity ρ = 0.8. In

Table F.2 the values of f (t) = P {Wq > t} are given for t = 1, 5, 10, 25 and 50.

The results in Table F.2 are accurate in all displayed decimals (13 to 15 decimals).

The calculations were done with M = 64, � = 1, m = 4M , b = 22/m and n = 8.

The inverse discrete FFT method was used to compute the gℓ from (F.4).

In sharp contrast with the accuracy of the modified approach (F.7), I found for the

M/D/1 example the values 0.55607 and 0.55527 for P {Wq > t} with t = 1 when

using the unmodified Den Iseger inversion algorithm and the Abate–Whitt algo-

rithm. These values give accuracy to only three decimal places. In the Abate–Whitt

algorithm I took a = 19.1, m = 11 and n = 38 (I had to increase n to 5500 to get

the value 0.5548948 accurate to five decimal places). The M/D/1 example shows

convincingly how useful is the modification (F.7).

A scaling procedure

In applied probability problems one is often interested in calculating very small

probabilities, e.g. probabilities in the range of 10−12 or smaller. In many cases

asymptotic expansions are very useful for this purpose, but it may also be possible

to use Laplace inversion with a scaling procedure. Such a scaling procedure was

proposed in Choudhury and Whitt (1997). The idea of the procedure is very simple.

Suppose that the function f (t) is non-negative and that the (very small) function

value f (t0) is required at the point t0 > 0. The idea is to transform f (t) into the

scaled function

fa0,a1
(t) = a0e−a1tf (t), t ≥ 0
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for appropriately chosen constants a0 and a1 such that fa0,a1
(t) is a probability

density with mean t0. The choice of the parameters a0 and a1 is intended to make

fa0,a1
(t) not too small. The unknown value fa0,a1

(t0) is computed by numerically

inverting its Laplace transform f ∗
a0,a1

(s), which is given by

f ∗
a0,a1

(s) = a0f
∗(s + a1).

Once fa0,a1
(t0) is computed the desired value f (t0) is easily obtained. The com-

putation of the constants a0 and a1 is as follows:

1. Determine the smallest real number s∗ such that
∫∞

0 e−sxf (x) dx is convergent

for all s with Re(s) > s∗ (possibly s∗ = −∞).

2. Try to find the real root a1 of the equation

df ∗(s)/ds

f ∗(s)
+ t0 = 0

on the interval (s∗, ∞). Since the function −[1/f ∗(s)] df ∗(s)/ds can be shown

to be decreasing on the interval (s∗, ∞), this equation has at most one root.

3. Determine a0 = 1/f ∗(a1).

In many applications this procedure works surprisingly well. We used the mod-

ified Den Iseger algorithm in combination with the scaling procedure to compute

P {Wq > t} for t = 75, 100 and 125 in the M/D/1 example discussed above.

The respective values 8.022E − 15, 1.685E − 19 and 3.537E − 24 were calculated.

Those values were exactly the same as the values obtained from the asymptotic

expansion for P {Wq > t} for t large.

Analytically intractable Laplace transforms

Sometimes the Laplace transform f ∗(s) of the unknown function f (t) is not given

in an explicit form, but contains an analytically intractable expression. To illustrate

this, consider the Laplace transform M∗(s) of the renewal function M(t) for a

renewal process. As shown by formula (E.12) in Appendix E, the Laplace transform

M∗(s) is given by

M∗(s) =
b∗(s)

s[1 − b∗(s)]
,

where b∗(s) is the Laplace transform of the interoccurrence-time density b(t).

Suppose now that this density is given by a lognormal density. In this particular

case it is not possible to give an explicit expression for b∗(s) and one has to handle

an analytically intractable integral. How do we handle this? Suppose we wish to

compute M(t) for a number of t-values in the interval [0, t0]. The key observation

is that, by the representation (E.11), the renewal function M(t) for 0 ≤ t ≤ t0
uses the interoccurrence-time density b(t) only for 0 ≤ t ≤ t0. The same is true
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for the waiting-time distribution function Wq(t) in the M/G/1 queue with service

in order of arrival. Then it follows from the representation (8.2.10) that Wq(t)

for 0 ≤ t ≤ t0 requires the service-time density b(t) only for 0 ≤ t ≤ t0. If the

Laplace transform b∗(s) of the density b(t) is analytically intractable, the idea is

to approximate the density b(t) by a polynomial P (t) on the interval [0, t0] and by

zero outside this interval. Consequently, the intractable Laplace transform b∗(s) is

approximated by a tractable expression

b∗
app(s) =

∫ t0

0

e−stP (t) dt.

A naive approach uses a single polynomial approximation P (t) for the whole inter-

val [0, t0]. A polynomial approximation that is easy to handle is the Chebyshev

approximating polynomial. Gauss–Legendre integration is then recommended to

evaluate the required function values of b∗
app(s). A code to compute the func-

tion values of the Chebyshev approximating polynomial at the points used in the

numerical integration procedure can be found in the sourcebook by Press et al.

(1992). One has a smooth function P (t) when using a single Chebyshev polyno-

mial approximation P (t) for the whole interval [0, t0]. However, a better accuracy

is obtained by a more refined approach in which the function b(t) on the interval

[0, t0] is replaced by a piecewise polynomial approximation on each of the subin-

tervals of length � with � as in (F.2). Den Iseger (2002) suggests approximating

b(t) on each of the subintervals [k�, (k + 1)�) by a linear combination of Leg-

endre polynomials of degrees 0, 1, . . . , 2n − 1 with n as in (F.2). This leads to an

approximating function with discontinuities at the points k�. However, this diffi-

culty can be resolved by the modification (F.7) for non-smooth functions. Details

can be found in Den Iseger (2002). A simpler approach seems possible when the

analytically intractable Laplace transform b∗(s) is given by b∗(s) = E(e−sX) for

a continuous random variable X with a strictly increasing probability distribution

function F(x). Then b∗(s) = E[g(U, s)] for a uniform (0, 1) random variable

U , where g(u, s) = exp(−sF−1(u)). The (complex) integral
∫ 1

0 g(u, s) du can be

evaluated by Gauss–Legendre integration. The required numerical values of the

inverse function F−1(u) may be obtained by using bisection.

APPENDIX G. THE ROOT-FINDING PROBLEM

The analysis of many queueing problems can be simplified by computing first the

roots of a certain function inside or on the unit circle in the complex plane. It is a

myth that the method of finding roots in the complex plane is difficult to use for

practical purposes. In this appendix we address the problem of finding the roots of

the equation

1 − zceλD{1−β(z)} = 0 (G.1)

inside or on the unit circle. Here c is a positive integer, β(z) =
∑∞

j=1 βj z
j is the

generating function of a discrete probability distribution {βj , j ≥ 1} and the real



G. THE ROOT-FINDING PROBLEM 471

numbers λ and D are positive constants such that λDβ/c < 1 with β =
∑∞

j=1 jβj .

This root-finding problem arises in the analysis of the multi-server MX/D/c queue

with batch arrivals. The equation (G.1) has c roots inside or on the unit circle. The

proof is not given here, but is standard in complex analysis and uses the so-called

Rouché theorem; see for example Chaudry and Templeton (1983). Moreover, all

the c roots of (G.1) are distinct. This follows from the following general result in

Dukhovny (1994): if K(z) is the generating function of a non-negative, integer-

valued random variable such that K ′(1) < c and
∣∣zK ′(z)

∣∣ ≤ K ′(1) |K(z)| for

|z| ≤ 1, then all the roots of the equation zc = K(z) in the region |z| ≤ 1 are

distinct. Apply this result with K(z) = e−λD{1−β(z)} and note that K(z) is the

generating function of the total number of arrivals in a compound Poisson arrival

process; see Section 1.2.

To obtain the roots of (G.1) it is not recommended to directly apply New-

ton–Raphson iteration to (G.1). In this procedure numerical difficulties arise when

roots are close together. This difficulty can be circumvented by a simple idea. The

key to the numerical solution of equation (G.1) is the observation that it can be

written as

zceλD{1−β(z)} = e2πik (G.2)

where k is any integer. The next step is to use logarithms. The general logarithmic

function of a complex variable is defined as the inverse of the exponential function

and is therefore a many-valued function (as a consequence of ez+2πi = ez). It

suffices to consider the principal branch of the logarithmic function. This principal

branch is denoted by ln(z) and adds to each complex number z 	= 0 the unique

complex number w in the infinite strip −π < Im(w) ≤ π such that ew = z. The

principal branch of the logarithmic function of a complex variable can be expressed

in terms of elementary functions by

ln(z) = ln(r) + iθ

using the representation z = reiθ with r = |z| and −π < θ ≤ π . Since eln(z) = z

for any z 	= 0, we can write (G.2) as

ec ln(z)+λD{1−β(z)} = e2πik

with k is any integer. This suggests we should consider the equation

c ln(z) + λD{1 − β(z)} = 2πik (G.3)

where k is any integer. If for fixed k the equation (G.3) has a solution zk , then

this solution also satisfies (G.2) and so zk is a solution of (G.1). The question is

to find the values of k for which the equation (G.3) has a solution in the region

|z| ≤ 1. It turns out that the c distinct solutions of (G.1) are obtained by solving

(G.3) for the c consecutive values of k satisfying −π < 2πk/c ≤ π . These values

of k are k = −⌊(c−1)/2⌋, . . . , ⌊c/2⌋, where ⌊a⌋ is the largest integer smaller than

or equal to a. In solving (G.3) for these values of k, we can halve the amount of

computational work by letting k run only from 0 to ⌊c/2⌋. To see this, note that the
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complex conjugates of ln(z) and β(z) are given by ln(z) and β(z) (use that β(z)

is a power series in z with real coefficients). Thus, if zℓ is a solution to (G.3) with

k = ℓ, then the complex conjugate zℓ is a solution to (G.3) with k = −ℓ. Hence it

suffices to let k run only from 0 to ⌊c/2⌋. Further, note that the solution of (G.3)

with k = 0 is given by z0 = 1. For each k with 1 ≤ k ≤ ⌊c/2⌋ the equation (G.3)

can be solved by using the well-known Newton–Raphson method. This powerful

method uses the iteration

z(n+1) = z(n) −
h(z(n))

h′(z(n))

when the equation h(z) = 0 has to be solved. Applied to the equation (G.3), the

iterative scheme becomes

z
(n+1)
k = z

(n)
k ×

1 − (λD/c)[1 + z
(n)
k β ′(z(n)

k ) − β(z
(n)
k )] − ln(z

(n)
k ) + 2πik/c

1 − (λD/c)z
(n)
k β ′(z(n)

k )
,

where β ′(z) is the derivative of β(z). The starting value z
(0)
k for the Newton–

Raphson iteration has to be chosen properly. To make an appropriate choice for

z
(0)
k , we have a closer look at the equation (G.3). Let us rewrite this equation as

ln(z) = (λD/c){β(z)− 1}+ 2πik/c and analyse it for the case of light traffic with

λ → 0. Then the solution of the equation tends to e2πik/c. Inserting z = e2πik/c

on the right-hand side of the equation for ln(z) yields

z
(0)
k = exp

[
(λD/c){β(e2πik/c) − 1} + 2πik/c

]
.

We empirically verified that this is an excellent choice for the starting value of the

Newton–Raphson scheme. In the above approach the roots of (G.1) are calculated

by solving (G.3) separately for each value of k. If some roots are close together,

Newton–Raphson iteration may converge each time to the same root when this pro-

cedure is directly applied to (G.1). However, this numerical difficulty is eliminated

when (G.3) is used as an intermediary.

The above approach for solving 1 − zceλD{1−β(z)} = 0 can be modified to find

the roots of the equation

zc − A(z) = 0

inside or on the unit circle when A(z) is the generating function of a non-negative,

integer-valued random variable. Assuming that A(0) 	= 0 (otherwise, z = 0 is a

root), the equation zc − A(z) = 0 can be transformed into the equation

c ln(z) − ln(A(z)) = 2πik

where k is any integer. In general it is recommended to solve this equation by the

modified Newton–Raphson method; see Stoer and Bulirsch (1980). In the modified

Newton–Raphson method the step size is adjusted at each iteration in order to

ensure convergence. In the special case that zc − A(z) is a polynomial in z, the
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equation zc − A(z) = 0 can be also solved as an eigenvalue problem. Solving the

nth degree polynomial equation zn − c1z
n−1 − · · · − cn−1z − cn = 0 with cn 	= 0

is equivalent to finding the eigenvalues of the matrix

A =




c1 c2 c3 . . . cn−1 cn

1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . . 1 0




.

Fast and reliable codes for computing eigenvalues are widely available.

Finally, we discuss the computation of the (complex) roots of the equation

(α − s)m − e−sDαm−1(α − ps) = 0 (G.4)

in the right half-plane {s | Re(s) > 0}, where m > 0 is a given integer and α >

0, D > 0 and 0 ≤ p < 1 are given numbers. This equation appears in the analysis

of the Ph/D/1 queue and the D/Ph/1 queue; see Section 9.5. The computation

of the roots of equation (G.4) is more subtle than the computation of the roots of

(G.1). The reason is that equation (G.4) has m − 1 roots when m − p > αD and

m roots when m − p < αD. To handle this subtlety, Newton–Raphson iteration

should be used in combination with Smale’s homotopy method. To explain this,

we first rewrite (G.4) as

um − e−αD(1−u)(1 − p + pu) = 0 (G.5)

by the change of variable u = 1− s/α. The roots of this equation have to be found

in the region {u | Re(u) < 1} of the complex plane. In this region the equation

(G.5) always has m − 1 (complex) roots. If m − p < αD then the equation has an

additional root on (0, 1). This real root is most easily found by repeated substitution:

uℓ+1 =
[
e−αD(1−uℓ)(1 − p + puℓ)

]1/m

, ℓ = 0, 1, . . . ,

starting with u0 = 1−1/m. Next we discuss the computation of the m−1 complex

roots of (G.5). Put for abbreviation γ = αD/m. In the same way as in the analysis

of (G.1), we transform (G.5) into

ln(u) = −(1 − u)γ +
1

m
ln(1 − p + pu) + 2πi

k

m
(G.6)

for k = 1, 2, . . . , m − 1. To solve (G.6) for fixed k, we use Smale’s continuation

process in which parameters γ and p are continued from γ = 0, p = 0 onwards

to γ = γ , p = p. For fixed k and given step size Nstep, the equation

ln(u) = −(1 − u)γj +
1

m
ln(1 − pj + pju) + 2πi

k

m
(G.7)
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is solved by Newton–Raphson iteration successively for j = 1, . . . , Nstep with

γj =
j

Nstep

γ and pj = j
p

Nstep

.

The Newton–Raphson iteration solving (G.7) for a given value of j starts with

u0 = u(j−1) with u(j−1) denoting the solution of (G.7) with j − 1 instead of

j . For j = 1 we take the starting value u0 = e2πik/m, being the solution of

ln(u) = 2πik/m. The procedure is very robust against the choice of Nstep.
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Defective renewal equation, 329
Detailed balance, 193
D/G/1 queue, 374, 376, 424
Directly Riemann integrable, 315
Discrete-time queues, 114, 417, 426
Doubly stochastic, 135

Ek distribution, see Erlang
distribution,

Elementary renewal theorem, 313
Embedded Markov chain, 86
Embedding technique, 291
Engset model, 196, 227
Equilibrium excess distribution, 318
Equilibrium distribution, 98, 155
Equilibrium equations, 99, 149
Equilibrium probabilities, 99, 149
Erlang delay model, 187
Erlang delay probability, 192, 388
Erlang distribution, 442, 461
Erlang loss formula, 196
Erlang loss model, 194, 226
Er/D/∞ queue, 72
Exceptional first services, 420
Excess life, 37, 71, 308, 317
Exponential distribution, 440

Failure rate, 438
Fast Fourier Transform method, 455
Fatou’s lemma, 439
FFT method, see Fast Fourier Transform

method
Fictitious decision epochs, 287
Finite-capacity queues, 408–420
Finite-source queues, 224, 425
First passage time, 48, 92, 170
Flow rate equation method, 150
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Fluid flow model, 369

Gamma distribution, 441
Gamma normalization, 448
Gauss-Seidel iteration, 109
Generalized Erlangian distribution, 444
Generating function, 449
Geometric tail approach, 111, 157
Gibbs sampler, 118
GI/D/c queue, 406

state probabilities, 406
waiting-time probabilities, 407

GI/D/∞ queue, 72, 313
GI/G/1 queue, 371, 424

approximations, 375, 424
state probabilities, 398
waiting-time probabilities, 371

GI/G/c queue, 398
approximations, 399

GI/M/1 queue, 69, 86, 102
state probabilities, 69, 102
waiting-time probabilities, 401

GI/M/c queue, 400
state probabilities, 400
waiting-time probabilities, 401

H2 distribution, see Hyperexponential
distribution,

Hazard rate, 438
Heavy-tailed, 332
Hyperexponential distribution, 446

Incomplete gamma function, 442
Independent increments, 5
Infinitesimal transition rates, 144
Insensitivity, 9, 196, 198, 202, 218,

226–228
Insurance, 18, 104, 274, 326
Inventory systems, 9, 13, 38, 195, 213,

275, 423
Irreducible, 119

Jackson networks, 215, 219

Kendall’s notation, 341
Key renewal theorem, 315
Kolmogoroff’s forward differential

equations, 163

Lack of memory, see Memoryless
property

Laplace inversion, 460, 462
Laplace transform, 458
Law of total expectation, 431
Law of total probability, 431
Leaky bucket control, 138
Lindly equation, 376
Little’s formula, 50, 345
Lognormal distribution, 443

Machine repair model, 224, 425
MAP/G/1 queue, 230, 426
Markov chains, 81–186

continuous-time, 141–186
discrete-time, 81–139

Markov decision processes, 233–305
discrete-time, 233–277
linear programs, 252, 286
policy iteration, 247, 284
probabilistic constraints, 255
semi-Markov, 279–305
value iteration, 259, 285

Markov modulated Poisson
process, 24

Markovian property, 82, 142
Matrix geometric method, 161
M/D/c queue, 378

state probabilities, 378, 380
waiting-time probabilities, 381

Mean recurrence time, 95
Mean-value algorithm, 224
Memoryless property, 2, 440
Metropolis-Hastings algorithm, 117
M/G/1 queue, 58, 211, 327, 345

bounded sojourn time, 213, 423
busy period, 353
exceptional first service, 420, 422
finite buffer, 366
impatient customers, 369
LCFS service, 356
mean queue size, 58
priorities, 76
processor sharing, 208
server vacation, 421, 422
state probabilities, 60, 65, 346,

348
waiting-time probabilities, 63, 65,

212, 327, 349
work in system, 358

M/G/1/1 + N queue, 408
rejection probability, 410
state probabilities, 408, 410
waiting-time probabilities, 425
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M/G/c queue, 384, 424
delay probability, 388
mean queue size, 389
state probabilities, 385
waiting-time probabilities, 391, 424

M/G/c/c + N queue, 224, 408
rejection probability, 410
state probabilities, 408, 410
waiting-time probabilities, 425

M/G/∞ queue, 9, 32, 72
M/M/1 queue, 188

state probabilities, 189
waiting-time probabilities, 190

M/M/c queue, 190, 198
state probabilities, 191
waiting-time probabilities, 192

M/M/c/c + N queue, 224, 408
Modified value iteration, 264
MX/D/c queue, 395

state probabilities, 395
waiting-time probabilities, 396

MX/G/1 queue, 360
state probabilities, 361
waiting-time probabilities, 363

MX/G/c queue, 392, 397

MX/G/c/c + N queue, 413
complete rejection, 415, 427
partial rejection, 414

MX/G/∞ queue, 30, 32
group service, 30, 228
individual service, 30

MX/M/c queue, 392
state probabilities, 393
waiting-time probabilities, 394

N-policy, 66
Network of queues, 214–224
Non-arithmetic, 314
Nonstationary queues, 32, 169
Null-recurrent, 95
Numerical Laplace inversion, 462

Offered load, 343
On-off sources, 162, 369, 425
Open networks of queues, 215
Optimization of queues, 290

Panjer’s algorithm, 20
Parrando’s paradox, 135
PASTA property, 57
Phase method, 36, 209

Phase-type distribution, 209, 342
Poisson process, 1–18

compound, 18
Markov modulated, 24
nonstationary, 22, 32
switched, 27

Policy-improvement step, 240
Policy-iteration algorithm, 247, 284
Pollaczek-Khintchine formula, 58, 68,

352
Positive recurrent, 95
Preemptive-resume discipline, 209,

219
Priority queues, 76
Probabilistic constraints, 255
Processor sharing, 208
Product-form solution, 216

Randomized policy, 256
Rare event, 48, 437
Recurrent state, 94
Recurrent subclass, 120, 124
Regenerative approach, 345
Regenerative process, 40
Relative value, 240, 246
Reliability models, 47, 49, 184, 323,

337, 437
Renewal equation, 308, 310
Renewal function, 35, 308, 461

asymptotic expansion, 36, 315, 334
computation, 36, 310, 334

Renewal process, 34, 308
central limit theorem, 46

Renewal-reward process, 41
central limit theorem, 46

Renewal-reward theorem, 41
Residual life, 37, 71, 308, 317
Retrial queue, 77, 421
Reversibility, 116, 194, 226
Root-finding methods, 470
Ruin probability, 326

(S − 1, S) inventory model, 9, 195
backordering, 9
lost sales, 195

(s, S) policy, 85, 275
Semi-Markov decision process, 279–305
Server utilization, 189, 343
Shortest-queue, 161, 295
Spectral expansion method, 161
Square-root formula, 12, 200
State classification, 119



478 INDEX

Stationary policy, 237
Subexponential distribution, 332
Successive overrelaxation, 108
Success runs, 89, 451

T-policy, 77
Time-average probabilities, 69
Traffic equations, 216, 220
Traffic load, 391
Transient analysis, 87, 162

expected rewards, 169
first-passage times, 92, 170
reward distribution, 176
sojourn time, 173
state probabilities, 163, 168,

182
Transient state, 94
Transition rate diagram, 146

Two-moment approximations, 351, 375,
391, 397, 399, 416

Unichain, 239
Unichain assumption, 247
Uniformization method, 166, 173
Up and downcrossing, 69

Vacation models, 66, 77, 318, 421
Value-determination step, 247
Value iteration algorithm, 259, 285

modified, 264

Waiting-time paradox, 39
Wald’s equation, 436
Weak unichain assumption, 252
Weibull distribution, 443
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