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Abstract. We present a global multiyear height-resolved data set of aerosol-type-specific cloud condensation nuclei concentra-

tions (nCCN) estimated from the spaceborne lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

(CALIPSO) satellite. For estimating nCCN, we apply the recently introduced Optical Modelling of the CALIPSO Aerosol Mi-

crophysics (OMCAM) algorithm to the CALIPSO level 2 aerosol profile product. The estimated nCCN are then gridded into

a uniform latitude-longitude grid of 2◦× 5◦, a vertical grid of resolution 60 m from the surface to an altitude of 8 km, and a5

temporal resolution of one month. The data spans a total of 186 months, from June 2006 to December 2021. In addition, we

provide a 3D aerosol-type-specific climatology of nCCN produced using the complete time series. We further highlight some

potential applications of the data set in the context of aerosol-cloud interactions. The complete data set can be accessed at

https://doi.pangaea.de/10.1594/PANGAEA.956215 (Choudhury and Tesche, 2023).

1 Introduction10

Airborne aerosols can serve as cloud condensation nuclei (CCN) to form liquid cloud droplets and influence the properties

of warm clouds. For instance, an increase in the number of aerosols that can act as CCN may result in more but smaller

cloud droplets at a constant cloud liquid water content. As a result, the effective surface area of the cloud available to interact

with incoming solar radiation increases, enhancing the cloud albedo and cooling the Earth (Twomey, 1974). Furthermore, it

may take longer for these smaller droplets to grow large enough to form precipitation leading to an increase in cloud lifetime15

and cloud cover, imposing an additional cooling effect (Albrecht, 1989). Understanding and quantifying such aerosol-cloud

interactions (ACIs) is necessary for predicting and mitigating their potential impacts on the Earth’s radiation budget (Forster

et al., 2021).

Only a fraction of aerosols, depending primarily on their size and, to a lesser extent, chemical composition, can act as CCN

(Dusek et al., 2006). This dependency is further regulated by atmospheric water vapour supersaturation, which is a function of20

meteorological parameters like updraft velocity, humidity, temperature, and pressure. The supersaturation near the cloud base

of boundary layer clouds is usually about 0.15-0.20 %. At such conditions, continental and marine aerosols with a dry radius

greater than 50 nm (n50,dry) and dust aerosols with a dry radius greater than 100 nm (n100,dry) form the reservoir of most

favourable CCN (Mamouri and Ansmann, 2016; Choudhury and Tesche, 2022b). The concentration of such particles varies

1

https://doi.org/10.5194/essd-2023-91
Preprint. Discussion started: 24 March 2023
c© Author(s) 2023. CC BY 4.0 License.



with geographical location and as per the findings from surface in-situ measurements, can range from about 10 cm−3 in pristine25

conditions to as much as 105 cm−3 in polluted urban air masses (Schmale et al., 2018). Similar orders of magnitude variation

of CCN concentrations is also seen along the vertical dimension with the highest concentrations close to surface and only a

few particles in the upper troposphere (Brock et al., 2021; Zhang et al., 2022). Given the wide range of CCN concentrations,

global information on the horizontal and vertical distribution of CCN is necessary to accurately quantify the impact of ACIs

on climate (Bellouin et al., 2020; Quaas et al., 2020).30

Today, there is a lack of observation-based global CCN data. While climate model outputs can be used to study the global

distribution of CCN, they have been identified to underestimate CCN at surface by a normalized mean error of about 40 % to

80 % depending on the geographical location (Fanourgakis et al., 2019). In-situ measurements, despite being performed contin-

uously with a high temporal resolution, are localized to specific land sites and do not cover oceans. Also, such measurements

are usually limited to the surface, as it is not feasible to operate airborne measurements over longer periods. Here, satellite35

remote sensing, specifically based on spaceborne lidar, emerges as the best way for obtaining a height-resolved, long-term, and

observation-based global picture of atmospheric CCN concentrations.

The polar orbiting Cloud-Aerosol Lidar and Infra-Red Pathfinder Satellite Observation (CALIPSO) satellite includes Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP), which provides height-resolved information on aerosol optical prop-

erties for different aerosol types (Winker et al., 2009). Choudhury and Tesche (2022a) present an algorithm that uses the40

spaceborne lidar measurements and the aerosol microphysics included in the CALIPSO aerosol model (Omar et al., 2009) to

estimate height-resolved cloud-relevant aerosol number concentrations (n50,dry and n100,dry) and CCN concentrations. The

results are found to be consistent with in-situ measurements at various geographic locations over land and ocean covering dif-

ferent aerosol environments (Choudhury et al., 2022; Choudhury and Tesche, 2022b). This highlights the potential of CALIOP

measurements for producing an unprecedented global CCN data set from satellite observations.45

In this paper, we present a global monthly 3D data set of number concentration of CCN (nCCN) for different aerosol types

that has been constructed by applying the CCN retrieval algorithm of Choudhury and Tesche (2022a) to more than 15 years

(June 2006 to December 2021) of CALIPSO level 2 aerosol profile data. We also provide seasonal and annual climatologies

of nCCN that is estimated from the monthly data. All data sets are produced at a uniform latitude–longitude grid of 2◦× 5◦

resolution and a vertical resolution of 60 m, consistent with the grid of the CALIPSO level 3 monthly product (Tackett et al.,50

2018). The data records are given in Network Common Data Form (NetCDF) format separately for each year and can be

accessed at https://doi.pangaea.de/10.1594/PANGAEA.956215. Details regarding the input data and algorithm used to produce

the CCN data set are discussed in Section 2. Section 3 provides the description of the pre- and post-processing steps involved

in the production of the gridded data and elaborates on the physical meaning and application of all the variables stored in the

data. The estimated seasonal and annual nCCN climatologies and a comparison of the annual averaged nCCN with the global55

climate model outputs from Fanourgakis et al. (2019) for the year 2011 are presented in Section 4. We conclude the paper with

potential applications of the global CCN data set in Section 5.
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2 Data and CCN retrieval

2.1 CALIPSO aerosol profile product

The CALIPSO polar orbiting satellite has been operational since June 2006. CALIOP, a nadir-viewing elastic backscatter lidar,60

is the principal payload on CALIPSO. It measures vertical profiles of aerosol and cloud properties at two wavelengths: 532

and 1064 nm. In this work, we use aerosol optical properties at 532 nm from the CALIPSO level 2 version 4.20 (4.21 since

January 2021) aerosol profile product (NASA/LARC/SD/ASDC, 2018) such as aerosol extinction coefficient (α), backscatter

coefficient (β), and depolarization ratio (δ). All parameters are provided at an along-track horizontal resolution of 5 km with

a vertical resolution of 60 m for tropospheric aerosols. We further use the Atmospheric Volume Description flag to access65

the information on aerosol type, which contains seven categories: marine, desert dust, polluted continental, clean continental,

elevated smoke, polluted dust, and dusty marine (Kim et al., 2018). Additionally, quality control flags are utilized to screen

the data for the most reliable retrievals (further details given in the Methodology section). We also use the auxilliary profiles

of ambient relative humidity (RH) and pressure in the level 2 data product. These are derived from the Global Modelling and

Assimilation Office (GMAO) data assimilation system (GDAS; Molod et al., 2015). The level 2 aerosol profile data considered70

in this study cover a total of 186 months in the time period from June 2006 to December 2021 (data for February 2016 are not

available).

2.2 Model data

We use the modelled nCCN from Fanourgakis et al. (2019) for comparison to CALIPSO estimates. The data comprises of

annual average surface nCCN at different supersaturations for the year 2011 with a latitude-longitude resolution of 1◦× 1◦75

and was obtained from the output of 15 global models. Details on the model configurations and aerosol emission inventories

used for modelling nCCN are described comprehensively in Fanourgakis et al. (2019). The data can be downloaded from

https://doi.org/10.5281/zenodo.3265866 (last access on March 14, 2023).

2.3 CCN retrieval algorithm

The CCN retrieval algorithm used in this work is based on the optical modelling of CALIPSO aerosol microphysics (OMCAM).80

The algorithm is described comprehensively in Choudhury and Tesche (2022a) and Choudhury et al. (2022). In this section,

we briefly review the main steps involved in OMCAM.

OMCAM algorithm first estimates the aerosol size distribution by using: (i) CALIPSO-derived aerosol type-specific extinc-

tion coefficients, (ii) their corresponding microphysical properties (normalized volume size distributions and refractive indices),

and (iii) an optical modelling package called Modelled Optical Properties of enseMbles of Aerosol Particles (MOPSMAP;85

Gasteiger and Wiegner, 2018) for light-scattering calculations. The microphysical properties of continental, dust, and smoke

aerosols are taken from CALIPSO’s aerosol model (Omar et al., 2009). For marine aerosols, the microphysical properties are

derived from Sayer et al. (2012) because it yields aerosol number concentrations that agree better with airborne in-situ mea-
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surements (Choudhury et al., 2022). OMCAM first selects a normalized volume size distribution and refractive index based on

the aerosol type identified by CALIPSO. The algorithm then scales the normalized size distribution linearly to reproduce the90

CALIPSO-estimated extinction coefficient as:

dV (r)
d lnr

= SV ·
2∑

i=1

νi√
2π lnσi

exp(
−(lnr− lnµi)2

2lnσi
2

) (1)

and SV =
α

αn
,

where SV is called the volume scaling factor estimated from the ratio of α, the CALIOP-derived extinction coefficient,

and αn, the extinction coefficient calculated from the normalized size distribution and refractive index using MOPSMAP.95

For modelling αn, we treat continental (clean continental, polluted continental, and smoke) and marine aerosols as spheres

and use Mie scattering theory. We consider desert dust aerosols as spheroids and use a combination of the T matrix and the

improved geometric optics method, depending on the value of aerosol size parameter, to model αn. The values of normalized

size distribution parameters such as standard deviation (σi), volume fraction (νi), and mean radius (µi) of ith (fine and coarse)

mode are listed in the Table A1. After the scaling step, the volume size distribution is converted to a number size distribution,100

which is then integrated starting at 50 nm to compute n50,dry for continental and marine aerosols and at 100 nm to compute

n100,dry for desert dust aerosols. This is because aerosols within these size ranges have been identified to act as CCN for a

supersaturation of 0.15-0.20 % in several studies through in-situ measurements (Koehler et al., 2009; Rose et al., 2010; Deng

et al., 2011; Kumar et al., 2011; Mamouri and Ansmann, 2016). Further, the CCN concentrations at higher supersaturation can

be estimated following the simple CCN parameterization given by Mamouri and Ansmann (2016) as follows:105

nCCN = fss ·nj,dry, (2)

where j represents the lower radius limit of the size-distribution integration and fss is the enhancement factor with values equal

to 1.0, 1.35, and 1.7 for supersaturations of 0.15-0.20%, 0.25%, and 0.40%, respectively. While the simple parameterization

based on aerosol size and type do not consider the aerosol chemistry stringently, they have been shown to yield reasonable

nCCN estimates, particularly when applied to spaceborne lidar measurements (Choudhury and Tesche, 2022a, b). Further110

information on the limitations and known issues of the algorithm are discussed in Section 3.3.

3 Methodology

In this section, we discuss the complete methodology used to apply the CCN retrieval algorithm to the CALIPSO profile data

to generate a global gridded monthly CCN data set. It includes a number of pre-processing stages that are implemented prior to

applying the CCN-retrieval algorithm, followed by a set of post-processing steps to convert the nCCN profiles to global gridded115

data.
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3.1 Pre-processing

3.1.1 Quality screening

The CALIPSO level 2 aerosol profile product includes a number of quality control flags that are intended to filter out unreliable

retrievals that may result from clouds misclassified as aerosols and errors pertaining to the extinction coefficient retrieval120

(Tackett et al., 2018). The Cloud Aerosol Discrimination (CAD) score specifies the confidence in the classification of aerosol

and cloud for each data bin (Liu et al., 2009). We only select data which have a CAD score in the range [−100, −20] as

they correspond to a high confidence in the aerosol classification (Liu et al., 2009). To screen retrievals with extinction-

coefficient-related retrieval issues, we use the "extinction uncertainty" and the "extinction QC" (extQC) metrics. Data bins

with an extinction uncertainty of −99.99 km are not considered including the bins present below them as the extinction-125

retrieval uncertainty may propagate to solutions at lower altitudes. The extQC flag describes how the extinction coefficient

is generated for each level 2 sample. Following Tackett et al. (2018), we only consider bins with extQC values of 0, 1, 16,

and 18, because they represent high confidence in the retrieved extinction coefficient. We also use the minimum laser energy

(MLE) parameter at 532 nm, which was recently introduced in version 4.20 update, to identify and screen columns affected by

low laser energy shots (MLE < 0.08) that results in higher noise and degraded retrieval quality. Additionally, we filter out the130

profiles or columns with cloudy pixels because clouds can impede aerosol-retrievals underneath them due to signal attenuation.

All the quality screening criteria used in this work are listed in Table 1. Readers are advised to refer to Tackett et al. (2018) for

further information on the production and functions of the quality screening flags.

3.1.2 Dust separation

Before applying the CCN retrieval algorithm to the quality screened level 2 data, the extinction coefficients of dust mixtures135

(polluted dust and dusty marine) needs to be separated into dust and non-dust components. This is done by using the particle

depolarization ratio and first separating the backscatter coefficient into dust and non-dust components following the methodol-

ogy described in Tesche et al. (2009). This is a rather straightforward technique that assumes aerosols to be externally mixed. It

has been implemented and tested in several studies based on ground-based and spaceborne lidar retrievals (Mamouri and Ans-

mann, 2015, 2016; Choudhury et al., 2022; Choudhury and Tesche, 2022b). The extinction coefficients of dust and non-dust140

aerosol components are then estimated by multiplying the respective separated backscatter coefficients with the lidar ratios

corresponding to the aerosol type. Following this methodology, the polluted dust aerosol mixture is separated into polluted

continental and desert dust components, and the dusty marine is separated into desert dust and marine components. The lidar

ratio for these aerosol types are taken from Kim et al. (2018).

3.1.3 Hygroscopicity correction145

Hydrophilic aerosols may grow in size under moist conditions and thus may result in a higher extinction coefficient relative

to dry conditions, even if the aerosol number concentrations remains the same. Further, the normalized size distributions used
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in OMCAM have been derived mostly under dry conditions (Omar et al., 2009) and the CCN parameterization requires dry

aerosol number concentration. Therefore, the extinction coefficient is first corrected for aerosol hygroscopicity before applying

the OMCAM algorithm. This is done by using the aerosol-type-specific growth factors (ratio of ambient and dry extinction150

coefficients) given in Choudhury et al. (2022) at different RH. The growth factors are estimated at different RH by using

the kappa paramaterization (Petters and Kreidenweis, 2007). A globally averaged kappa value of 0.3 is used for polluted

continental, clean continental, and smoke aerosols, and 0.7 is used for marine aerosols (Andreae and Rosenfeld, 2008). We

treat desert dust as non-hygroscopic and do not modify the extinction coefficients for dust samples. This approach of has

been shown to yield dry extinction coefficients and dry number concentrations that are consistent with in-situ measurements155

(Choudhury et al., 2022; Choudhury and Tesche, 2022a).

3.2 Post-processing

We use the quality screened CALIPSO level 2 data obtained by following the steps outlined in Section 3.1.1 in the OMCAM

algorithm to estimate nCCN profiles at a supersaturation of 0.20 %. We further limit the nCCN in the output data to a supersatu-

ration of 0.20 % as it can be easily converted to higher supersaturations by using the enhancement factors as shown in Equation160

(2). In this section, we discuss the spatial and temporal grid configuration used to covert the nCCN profiles to 3D gridded data.

We further describe all the parameters stored in the output data files.

3.2.1 Gridding, sampling, and averaging

The CALIPSO level 2 aerosol profile data have a very high vertical resolution of 60 m and an along-swath resolution of

5 km. However, because of the negligible divergence of lasers, CALIPSO has a narrow cross-track coverage. Further, the165

distance between two consecutive overpasses is inversely proportional to the latitude because of CALIPSO’s polar orbit with

an inclination of 98.36◦. Therefore, a grid box of a certain dimension close to the equator will include fewer overpasses

compared to one close to the poles. Due to this factor and to produce a regionally representative global gridded data with

enough aerosol sampling frequency in each grid cell, we choose a monthly temporal resolution and a horizontal grid resolution

of 2◦×5◦ to process the nCCN profiles. The vertical resolution is, however, kept unchanged at 60 m. We further consider both170

the daytime and nighttime CALIPSO overpasses to compute the average nCCN to increase the sampling frequency. This grid

configuration is also opted in monthly CALIPSO level 3 products (Tackett et al., 2018) and is suggested by Choudhury and

Tesche (2022b) to compile a global nCCN data set. Using this grid, we estimated the number of days observed with valid nCCN

(value ≥ 0; hereafter abbreviated as NDO) samples in each grid box for each month and found them to be as high as 17 days

in the tropics and 31 days at the poles. Note that the NDO estimated here is different from the "Days_Of_Month_Observed"175

parameter in CALIPSO level 3 product as the latter also considers valid cloud retrievals.

We further produced a climatological nCCN data set using the same horizontal and vertical grid configuration. An alternative

approach would be to consider a higher horizontal resolution of 1◦× 1◦ as used in Amiridis et al. (2015) to construct a

climatology of aerosol and cloud properties using the CALIPSO level 2 data. However, using such a grid results in low aerosol

sampling, especially in the tropics. This is shown in Figure 1 based on more than 15 years of CALIPSO measurements. While180
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the former gives a maximum of 2340 days observed in the tropics, the latter results in a significantly lower maximum of 591

days. Therefore, we use the coarser grid to produce the nCCN climatology that ensures ample aerosol sampling required for a

realistic and regionally representative data set.

For averaging the nCCN for each latitude, longitude, and altitude grid cell, we follow the methodology used in Tackett et al.

(2018) for producing the CALIPSO level 3 aerosol products. We assign the clear-air level 2 bins with an extinction coefficient185

of 0 km−1, which leads to an nCCN) of 0 cm−3, and compute the average nCCN (nCCN) for each grid cell as:

nCCN =
∑Na

i=1 nCCN,i

Na + Nca
, (3)

Here, Na is the number of level 2 samples with aerosol extinction coefficient > 0 km−1 and Nca is the number of clear-air

samples. This averaging scheme is used in generating the global monthly gridded data set as well as the nCCN climatology.

3.2.2 Output data records190

Following the gridding and averaging scheme discussed in the previous section, we produce the global nCCN data sets at a

monthly temporal resolution. Table 2 provides a list of all the parameters included in the output data and their description.

Along with the averaged nCCN, we further provide the total number of level 2 samples with aerosol extinction coefficient ≥ 0

km−1 (N = Na + Nca) and with extinction coefficient > 0 (Na). The nCCN, N , and Na are also provided separately for each

aerosol type. Note that both N and Na may not be equal to the sum of the contributions from all the aerosol types, specifically195

when aerosol mixtures are present. They are useful in computing annual and seasonal averages of nCCN using Eq. (3). We

further provide the NDO for each month and suggest to use the data only when NDO > 10 (coverage of a minimum 30 %

days of a month). Average pressure and temperature are also provided for each latitude, longitude, and altitude grid cell. The

pressure values can be used to convert the data from height coordinates to pressure coordinates. To reduce the data size, all

parameters are limited to a maximum altitude of 8 km. For ease of accessibility across different platforms, we provide the data200

in Network Common Data Form (NetCDF) format with a medium level of data compression (deflate level of 5). These NetCDF

files are accessible at https://doi.pangaea.de/10.1594/PANGAEA.956215 and are tested to work with tools and software like

Climate Data Operators (CDO), netCDF Operators (NCO), and ncdump. The netCDF files with monthly gridded data are

provided separately for each year from 2006 to 2021. The nCCN climatology is provided in a separate netCDF file, with data

structure and nomenclature similar to the monthly data. The file also includes nCCN climatologies for boreal winter (December,205

January, and February), spring (March, April, and May), summer (June, July, and August), and autumn (September, October,

and November) seasons.

3.3 Uncertainty, known issues, and validation

The uncertainty in the estimated nCCN can arise from the uncertainties in the input parameters such as the aerosol extinction

coefficient, type-specific normalized size distribution, and the ambient RH as well as from the dust-separation technique and210

the CCN parameterizations used in the algorithm. Choudhury and Tesche (2022a) studied the sensitivity of the cloud-relevant

aerosol number concentrations (nj,dry) to the variations in the size distributions for each aerosol type at different RH. They
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reported a variation of a factor of 1-1.5 depending on the aerosol type. Combining this with the uncertainties associated with

other previously mentioned sources, the overall uncertainty associated with the output nCCN is found to be between a factor of

2 and 3. Such a range is reasonable for spaceborne retrieval of nCCN (Shinozuka et al., 2015; Mamouri and Ansmann, 2016)215

as atmospheric CCN concentrations can potentially vary by orders of magnitude in space and time (Schmale et al., 2018).

There are some known issues associated with CALIOP’s retrieval algorithm and the CCN parameterizations used to produce

the global data set. First, faint aerosol layers with extinction coefficient < 0.001 km−1 (optical depth < 0.01) may not exceed

the signal-to-noise ratio required to be detected by CALIOP (Tackett et al., 2018). The background noise due to solar radia-

tion further impacts the feature detection, especially for the daytime retrievals (Winker et al., 2009, 2013). Such layers may220

therefore be classified as clear air by CALIOP’s feature classification algorithm and assigned with a zero extinction coefficient.

This may result in an underestimation of the average extinction and thus the nCCN, particularly in grid cells comprising of

clean environment (rural continental sites and higher altitudes). Second, the simple aerosol-type-specific parameterizations

implemented in this study assumes all particles over a certain minimum radius to be CCN active. This may lead to an overesti-

mation of nCCN that may also compensate for the underestimation due to the undetected aerosol layers. Third, CALIOP cannot225

distinguish between polluted continental and smoke aerosol layers that occur below a layer top height of 2.5 km (Kim et al.,

2018). Therefore, isolated smoke layers that do not extend above a height of 2.5 km may get classified as polluted continental

aerosols, leading to an overestimation of nCCN by about 13.6 %. As a result, we anticipate that the CCN-retrieval algorithm

will overestimate the CCN in areas often influenced by smoke aerosols below 2.5 km.

The nCCN estimated using OMCAM algorithm have been validated using independent ground-based and airborne in-situ230

measurements for different aerosol environments (Choudhury et al., 2022; Choudhury and Tesche, 2022b). Even though the

uncertainty associated with the CCN-retrieval from CALIOP can be as high as a factor of 3, the validation results indicate a

very good agreement with in-situ measurements with a normalized mean bias of ≈ 22 % and a correlation coefficient of ≈ 0.7.

Such consensus has not yet been achieved for spaceborne estimations of aerosol and CCN number concentrations, accentuating

the potential of the spaceborne-lidar derived global nCCN data set.235

4 Results

4.1 Comparison with global model outputs

A comparison of the CALIOP-estimated average global nCCN with the model outputs for the year 2011 is shown in Figure 2.

Excluding the data within the Antarctic circle (latitudes <−66.5◦N), CALIOP-estimated CCN concentrations are, on average,

larger than the models, with a normalized difference of (100× (MODEL−CALIOP)/CALIOP) of −65.6 %, 89.4 %, and240

4.5 % for the median, minimum, and maximum of all the models, respectively. The larger values are expected as the models

have been identified to underestimate the nCCN when compared to in-situ measurements at continental surface stations with

a mean error of 60 % (Fanourgakis et al., 2019). Best agreement with CALIOP is found for the maximum of all the models,

particularly in the Northern Hemisphere. For retrievals over the Southern Ocean with latitudes < 45◦S, the modelled nCCN are

significantly lower than that of CALIOP with a maximum of 171.9 cm−3. Recent in-situ measurements show that the nCCN245
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in such regions can even exceed 500 cm−3 (Humphries et al., 2021), which is not observed in the model outputs, though well

captured by CALIOP. This highlights the potential of the CALIOP-derived global nCCN data set in validating model outputs at

locations where in-situ observations are sparse or even non-existent. Please note that the comparison presented here is intended

to highlight the data set’s unique potential for application and that validation studies have already been published (Choudhury

et al., 2022; Choudhury and Tesche, 2022b; Fanourgakis et al., 2019). Readers are encouraged to use the full potential of the250

open-source data set to conduct further comprehensive model evaluation studies.

4.2 CCN climatology

Figure 3 shows the global nCCN climatology computed from the monthly data set averaged for altitudes below 2 km using

Eq. 3. The global average nCCN is estimated to be 365.12 cm−3, with 683.25 cm−3 over land and 303.2 cm−3 over ocean.

Highest concentrations are found over regions influenced by pollution and dust aerosols such as the South and East Asia.255

Polluted continental aerosols with an average nCCN of 124.3 cm−3 have the maximum contribution to the total CCN below

2 km, followed by marine (110.8 cm−3), dust (108.9 cm−3), and elevated smoke (21 cm−3) aerosols. Clean continental

aerosols with a global average of 0.12 cm−3 contribute the least to the total CCN (not shown). Over land, the average CCN

is estimated to be 683.25 cm−3, with maximum contributions coming from polluted continental (419.4 cm−3), dust (203.67

cm−3), and smoke (43.6 cm−3) aerosols. The concentrations over oceans are less than half of those over land with an average of260

303.2 cm−3, with marine (181.93 cm−3), dust (84.68 cm−3), and polluted continental (27.33 cm−3) aerosols being the major

contributors. Though pollution aerosols contribute the most to the total CCN, it is evident that dust has the most widespread

coverage, encompassing nearly the entire globe, indicating its significance in ACI even in pristine aerosol environments far

away from the continents.

The seasonal climatologies of the total nCCN for altitudes below 2 km is shown in Figure 4. The global average nCCN is265

found to be maximum during winter with a value of 376 cm−3. Similar to the global climatology in Figure 4, the average

nCCN is significantly higher over land (725.53 cm−3) compared to ocean (321.61 cm−3). Strong seasonality in nCCN is seen

over the regions influenced by Northern Hemisphere summer monsoon such as Asia and West Africa, with minimum values

during summer. This is perhaps due to the wet scavenging of aerosol particles related to the formation of cloud droplets and

precipitation during the monsoon. The nCCN seasonality in regions like Eastern and Central Africa is also evident and is270

perhaps a result of the changes in the local biomass burning patterns (Myhre et al., 2003; van der Werf et al., 2017), which

peaks during dry summer (Southern Hemisphere winter) season. It is worthwhile to note that in Figures 3 and 4, we have

limited our calculations to low-level aerosols (altitude < 2 km). The climatology data is provided up to an altitude of 8 km also

for different aerosol types, which provides a unique opportunity to investigate the altitudinal variations of type-specific nCCN

over different seasons and regions across the globe. Such studies, however, are outside the scope of this paper, which is aimed275

at introducing a new global CCN data set, and will be the focus of a future publication.
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5 Conclusion and usage notes

We present a first aerosol type-specific global CCN data set derived from spaceborne lidar measurements at a horizontal

latitude-longitude resolution of 2◦× 5◦, a vertical resolution of 60 m, and a temporal resolution of one month. The data set

spans more than 15 years, from June 2006 to December 2021, or a total of 186 months. We further use the complete time series280

to construct a global nCCN climatology for different aerosol types. The climatologies are also reported at a seasonal time scale.

These data sets are aimed at replacing the currently used satellite-derived optical proxies for CCN. Readers are encouraged to

utilize the full potential of the global data set for the following purposes:

– The data can be used to investigate the horizontal and vertical distributions of CCN for various aerosol types, as well as

to study their trends and variations across monthly, seasonal, and annual timescales. In the Section 4.2 of this paper, we285

briefly discuss the spatial distribution of nCCN for different aerosol types for altitudes limited below 2 km, where we

find the global average nCCN to be 365.12 cm−3 and identify various CCN hotspots. This approach can be expanded

to include the variations along the height and time dimensions. In addition, the type-specific CCN concentrations can

be used to identify the sources and sinks of CCN as well as to investigate the contributions of long-range transport of

aerosols with high residence time (for example dust and smoke) to CCN in the atmosphere.290

– Recent studies have demonstrated that spaceborne aerosol, cloud, and radiation measurements at monthly temporal

resolution can be used to estimate the radiative forcing associated with ACIs (Wall et al., 2022; Chen et al., 2022). The

monthly data presented in this paper can be similarly coupled with cloud and radiation measurements to quantify ACIs.

Furthermore, the type-specific CCN data can be used to accurately quantify the anthropogenic component of present-day

CCN (sum of polluted continental and smoke components), which was previously estimated from model simulations of295

past climate (Bellouin et al., 2020; Quaas et al., 2020). This creates a unique opportunity to quantify ACI by solely using

satellite observations independent from model simulations.

– Due to the lack of any observation-based global CCN data, model evaluation studies usually rely on in-situ measure-

ments, which are only available for a limited time period at certain point locations. Further, the observations over oceans

are sparse and so are the height-resolved measurements restricting the model evaluation to specific land sites. However,300

validating global model outputs in estimating height-resolved CCN concentrations over both land and ocean is necessary,

as they form the key components of ACIs and thus the future climate predictions. With the height-resolved CCN data

available for more than 15 years, a comprehensive model evaluation can be performed at different height levels even for

regions over oceans far from continents. In Section 4.1 of the paper, we compare the annual average nCCN estimated

from the monthly data with the simulations from 15 global climate models at surface for the year 2011, highlighting305

the data’s usefulness in assessing model outputs. The idea can be further expanded to other models by incorporating the

temporal and altitudinal distribution of CCN for different aerosol types encompassing a longer time span.

The above list is by no means exhaustive. Users can also use this data set and check for closure with other spaceborne

retrievals of cloud-relevant CCN or aerosol number concentrations, for instance from the polarimetric observations (Hasekamp
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et al., 2019), the spaceborne lidar using AERONET derived extinction-to-number concentration conversions (Mamouri and310

Ansmann, 2016), by treating clouds as CCN chambers (Rosenfeld et al., 2016), or any future algorithms or data.

6 Code and data availability

The CALIPSO level 2 aerosol profile product can be downloaded from https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_

05KMAPRO-STANDARD-V4-20 (last access: March 14, 2023). The data produced in this work are available at https://doi.

pangaea.de/10.1594/PANGAEA.956215 (Choudhury and Tesche, 2023). The model data used for comparison can be found at315

https://zenodo.org/record/3265866 (last access: March 14, 2023). The codes used to generate the data were written in MATLAB

and will be provided by the corresponding author upon reasonable request. The MATLAB live script used to generate the plots

shown in the paper is provided in the supplementary files.
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Figure 1. Global map of the number of days with valid CCN observations (nCCN ≥ 0 cm−3) for horizontal grid configurations of 2◦× 5◦

(a) and 1◦× 1◦ (b) produced from 15+ years of CALIOP measurements.
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Figure 2. Comparison of global nCCN maps at a supersaturation of 0.20 % estimated from CALIOP (a) and from the outputs of 15 global

models (b-d) for the year 2011. Panels (b), (c), and (d) represent the median, maximum, and minimum modelled nCCN, respectively.
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Figure 3. Global climatology of nCCN at a supersaturation of 0.20 % estimated from the monthly CCN data set averaged for altitudes below

2 km for all aerosol types (a), and separated according to mineral dust (b), polluted continental (c), marine (d), and elevated smoke (e) aerosol

types, respectively.
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Figure 4. Seasonal climatology of nCCN at a supersaturation of 0.20 % and at altitudes below 2 km for winter (a), spring (b), summer (c)

and autumn (d).
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Table 1. Quality screening applied to the CALIPSO level 2 aerosol profile product.

Quality flags Valid range or values Comments

Cloud aerosol discrimination flag = [-100, -20] bins outside the bound have low confidence in aerosol classification

Extinction QC flag = 0, 1, 16, and 18 low confidence in extinction retrievals for other values

Extinction uncertainty flag ̸= -99.99 km−1 range bins below the affected one are also rejected

Feature type flag 1 reject if = 2 reject a profile if it has at least one cloudy bin

Feature type flag 2 reject if = 0 or >4 reject any samples if invalid, surface, subsurface, or attenuated

Feature type flag 3 if = 1, set α = 0 extinction coefficient of clear air is assumed to be 0 km−1

Minimum laser energy filter reject if <0.08 deteriorates data quality in the South Atlantic Anomaly region since mid-2017
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Table 2. Description of the NetCDF data records.

Parameter Unit Description

lon ◦E longitude mid point

lat ◦N latitude mid point

altitude km altitude mid point above mean sea level

Monthly files

time days days since 1 January 2000

CCN cm−3 cloud condensation nuclei (CCN) concentration at 0.2 % ss

CCN_j

j = m, d, pc, cc, es
cm−3

CCN at 0.2 % ss for different aerosol types. m: marine, d: dust,

pc: polluted continental, cc: clean continental, es: elevated smoke

N unitless level 2 bin counts with aerosol extinction coefficient >= 0

N_j

j = m, d, pc, cc, es
unitless N for different aerosol types

Na unitless level 2 bin counts with aerosol extinction coefficient >0

Na_j

j = m, d, pc, cc, es
unitless Na for different aerosol types

P hPa or mb pressure

T ◦ C temperature

DMO unitless number of days observed in a month with N >0

Climatology file

CCN_cl cm−3 climatology of CCN at 0.2 % ss

CCN_cl_j

j = m, d, pc, cc, es
cm−3 CCN climatology at 0.2 % ss for different aerosol types

CCN_cl_sn cm−3 seasonal climatology of CCN at 0.2 % ss

CCN_cl_sn_j

j = m, d, pc, cc, es
cm−3 seasonal CCN climatology at 0.2 % ss for different aerosol types

NDO unitless number of days observed with N >0
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Table A1. Log-normal bimodal volume size distribution parameters of different aerosol types. ν, µ, and σ represent the volume fraction,

mode radius, and standard deviation, respectively. Subscript "f" and "c" represent fine anc coarse modes of the size distribution, respectively.

Aerosol type
Size distribution parameters

νf νc µf µc σf σc

Marine 0.14 0.86 0.1137 1.8756 1.6487 2.0544

Dust 0.223 0.777 0.1165 2.8329 1.4813 1.9078

Polluted

continental
0.531 0.469 0.1577 3.547 1.5257 2.065

Clean

continental
0.050 0.950 0.20556 2.6334 1.61 1.8987

Smoke 0.329 0.671 0.1436 3.726 1.5624 2.1426
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