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ABSTRACT

Cellular network based Machine-to-Machine (M2M) commu-
nication is fast becoming a market-changing force for a wide
spectrum of businesses and applications such as telematics,
smart metering, point-of-sale terminals, and home security
and automation systems. In this paper, we aim to answer
the following important question: Does traffic generated by
M2M devices impose new requirements and challenges for
cellular network design and management? To answer this
question, we take a first look at the characteristics of M2M
traffic and compare it with traditional smartphone traffic.
We have conducted our measurement analysis using a week-
long traffic trace collected from a tier-1 cellular network in
the United States. We characterize M2M traffic from a wide
range of perspectives, including temporal dynamics, device
mobility, application usage, and network performance. Our
experimental results show that M2M traffic exhibits signifi-
cantly different patterns than smartphone traffic in multiple
aspects. For instance, M2M devices have a much larger ratio
of uplink to downlink traffic volume, their traffic typically
exhibits different diurnal patterns, they are more likely to
generate synchronized traffic resulting in bursty aggregate
traffic volumes, and are less mobile compared to smart-
phones. On the other hand, we also find that M2M devices
are generally competing with smartphones for network re-
sources in co-located geographical regions. These and other
findings suggest that better protocol design, more careful
spectrum allocation, and modified pricing schemes may be
needed to accommodate the rise of M2M devices.
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1. INTRODUCTION

Smart devices that function without direct human inter-
vention are rapidly becoming an integral part of our lives.
Such devices are increasingly used in applications such as
telehealth, shipping and logistics, utility and environmen-
tal monitoring, industrial automation, and asset tracking.
Compared to traditional automation technologies, one ma-
jor difference for this new generation of smart devices is how
tightly they are coupled into larger scale service infrastruc-
tures. For example, in logistic operations, the locations of
fleet vehicles can be tracked with Automatic Vehicle Loca-
tion (AVL) devices such as the CalAmp LMU-2600 [7] and
uploaded into back-end automatic dispatching and planning
systems for real-time global fleet management. More and
more emerging technologies also heavily depend on these
smart devices. For instance, a corner stone for the Smart
Grid Initiative is the capability of receiving and control-
ling individual customer’s power usage on a real-time and
wide-area basis through devices such as the electric meters
equipped with Trilliant CellReader [21] modules.

This kind of leap in technology would not be possible with-
out the support of wide area wireless communication infras-
tructure, in particular cellular data networks. It is estimated
that there are already tens of millions of such smart devices
connected to cellular networks world wide and within the
next 3-5 years this number will grow to hundreds of mil-
lions [3,4]. This represents a substantial growth opportu-
nity for cellular operators as mobile phone penetration rate
increase is flattening in the developed world [10,23].

M2M devices and smartphones share the same network
infrastructure, but current cellular data networks are pri-
marily designed, engineered, and managed for smartphone
usage. Given that the population of cellular M2M devices
may soon eclipse that of smartphones, a logical question to
ask is: What are the challenges cellular network operators
may face in trying to accommodate traffic from both smart-
phones and M2M devices? Existing configurations may not
be optimized to support M2M devices. In addition, M2M
devices may compete with smartphones and impose new de-
mand on shared resources. Hence, to answer this question,
it is crucial to understand the M2M traffic patterns and how
they are different from traditional smartphone traffic. The
knowledge of traffic patterns can reveal insights for better
management of shared network resources and ensuring best
service quality for both types of devices.

In this paper, we take a first look at M2M traffic on a
commercial cellular network. Our goal is to understand the
characteristics of M2M traffic, in particular, whether and



how they differ from those of smartphones. To the best of
our knowledge, our study is the first to investigate the char-
acteristics of traffic generated by M2M devices. We summa-
rize our key contributions below.

e Large Scale Measurement: We conduct the first large
scale measurement study of cellular M2M traffic. For our
study, we have collected anonymized IP-level traffic traces
from the core network of a tier-1 cellular network in the
United States. This trace covers all states in the United
States during one week in August 2010. This trace contains
M2M traffic from millions of devices belonging to more than
150 hardware models. In addition, we have also collected
anonymized traffic traces from millions of smartphones from
the same cellular network. Overall, we find that M2M de-
vices generate significantly less traffic compared to smart-
phones. Furthermore, in our trace, we observe that the
number of M2M devices is also significantly smaller than the
number of smartphones. However, the number of new M2M
devices and their total traffic volume is increasing at a very
rapid pace. In fact, a longitudinal comparison of M2M traffic
in this cellular network showed that total M2M traffic vol-
ume has increased more than 250% in 2011. In comparison,
Cisco reported that mobile data traffic grew only 132% in
2011, which is almost half of the increase observed for M2M
traffic [5]. Consequently, it is important to understand the
peculiarities of M2M traffic, especially its contrast to the tra-
ditional smartphone traffic, for future network engineering.
In this study, we compare M2M and smartphone traffic in
the following aspects: aggregate volume, volume time series,
sessions, mobility, applications, and network performance.
e Aggregate Traffic Volume: We jointly study the distri-
bution of aggregate uplink and downlink traffic volume. Our
major finding is that, though M2M devices do not generate
as much traffic as smartphones, they have a much larger ra-
tio of uplink to downlink traffic volume compared to smart-
phones. Since existing cellular data protocols support higher
capacity in the downlink than the uplink, our finding sug-
gests that network operators need careful spectrum allocation
and management to avoid contention between low volume,
uplink-heavy M2M traffic and high volume, downlink-heavy
smartphone traffic.

e Traffic Volume Time Series: We analyze the traffic
volume time series of M2M devices and smartphones. Our
analysis shows that different M2M device models exhibit dif-
ferent diurnal behaviors than smartphones. However, some
M2M device models do share similar peak hours as smart-
phones. Hence, M2M traffic imposes new requirements on
the shared network resources that need to be considered in
capacity planning, where network is usually provisioned ac-
cording to peak usage. Another finding from time series anal-
ysis is that some M2M device models generate traffic in a
synchronized fashion (like a botnet [20]), which can result
in denial of service due to limited radio spectrum. There-
fore, M2M protocols should randomize such network usage
to avoid congesting the radio network.

e Traffic Sessions: To understand the usage behavior of
individual devices, we conduct session-level traffic analysis
in terms of active time, session length, and session inter-
arrival time. We find that high traffic volume does not al-
ways correlate with more active time. This finding calls
for new billing schemes, which go beyond per-byte charging
models. We also find that M2M devices have different ses-
sion length and inter-arrival time characteristics compared

to smartphones. This finding can be utilized by device man-
ufacturers to improve battery management and by network
operators to optimize radio network parameters for M2M de-
vices.
e Device Mobility: We compare the mobility character-
istics of M2M devices and smartphones from individual de-
vice and network perspectives. We find that M2M devices,
with a few exceptions, are less mobile than smartphones.
We also find that M2M and smartphone traffic competes for
network resources in co-located geographical regions. This
finding indicates that careful network resource allocation is
required to avoid contention between low-volume M2M traffic
and high-volume smartphone traffic.
e Application Usage: We also study the contribution of
different applications to the aggregate traffic volume of M2M
devices and smartphones. We find that M2M traffic mostly
uses non-standard and custom application protocols, which
is undesirable because it is difficult for network operators to
understand and mitigate adverse effects from these protocols
compared to standard protocols.
e Network Performance: The network performance re-
sults of M2M traffic, in terms of packet loss ratio and round
trip time, show strong dependency on device radio technol-
ogy (2G or 3G) and expected device environment (e.g. in-
doors vs. outdoors). This implies that network operators
must continue to support and improve legacy networks for
M2M devices even as smartphones move to 4G technologies.
The rest of this paper proceeds as follows. We first pro-
vide details of our collected trace in Section 2. Sections 3-8
present measurement analysis of M2M traffic and compare
them to traditional smartphone traffic. Finally, we review
the related work in Section 9 and conclude in Section 10.

2. DATA
2.1 Data Set

The data used in this study is collected from a nation-wide
cellular operator in the United States that provides 2G and
3G cellular data services. It supports GPRS, EDGE, UMTS,
and HSPA technologies. Architecturally, the portion of its
network that supports cellular data service is organized in
two tiers. The lower tier, the radio access network, provides
wireless connectivity to user devices, and the upper tier, the
core network, interfaces the cellular data network with the
Internet. More details about cellular data network architec-
ture can be found in prior literature such as [2].

The data collection apparatus that produced the trace
used in our study is deployed at all links between Serving
Gateway Support Nodes (SGSN) and Gateway GRPS Sup-
port Nodes (GGSN) in the core network. This apparatus
is capable of anonymously logging session level traffic in-
formation at 5 minute intervals for all IP data traffic be-
tween cellular devices and the Internet. In other words,
each record in the trace is a 5-minute traffic volume sum-
mary aggregated by unique device identifier and application
category. Each record also contains the cell location of the
device at the start of the session. Each record is originally
timestamped according to the standard coordinated univer-
sal time (UTC), which is then converted to the local time
at the device for our analysis. This trace was collected dur-
ing one complete week in August 2010. Geographically, the
trace covers the whole United States. Applications are iden-
tified using a combination of port information, HT'TP host
and user-agent information, and other heuristics [9]. More



information about the data collection system can be found
in [9,18].

2.2 M2M Device Categorization

The data set contains traffic records for all cellular de-
vices, so we first need to separate M2M devices from the
rest. Furthermore, because M2M devices are usually devel-
oped for specific applications, significant behavioral differ-
ences are expected between M2M devices for different target
applications. Thus, it is reasonable to sub-divide M2M de-
vices into categories based on their intended application to
better understand the unique traffic characteristics of dif-
ferent M2M categories. We start this process by identifying
the hardware model of each cellular device using the device’s
Type Allocation Code (TAC), which is part of the unique
identifier of each cellular device. Although the records in
our data set are anonymized, the TAC portion of the unique
ID is retained. Thus, the hardware model of each cellular
device is obtained by consulting the TAC database of the
GSM Association.

Because there is no rigorous definition for M2M devices or
standard ways for determining their application categories,
and many devices have multiple uses, knowing the device
model is not sufficient for identifying a device with certainty
as M2M device nor for identifying its M2M category. To-
wards this end, we adopt the device classification scheme of
a major cellular service provider as a base template for cat-
egorizing M2M devices [1]. To supplement and verify this
template, we also use public information such as production
brochures and specification sheets. In total, we have clas-
sified more than 150 device models as M2M devices, and
further divide them into the following 6 categories.

1) Asset Tracking: These M2M devices are used to re-
motely track objects like cargo containers and other ship-
ments. These devices are often coupled with other sensors
for tasks like temperature and pressure measurement. In
our trace, about 18% devices belong to this category.

2) Building Security: These M2M devices are typically
used to manage door access and security cameras. In our
trace, about 14% devices belong to this category.

3) Fleet: These M2M devices are used to monitor vehicle
locations, arrivals, and departures and provide real-time ac-
cess to critical operational data for logistic service providers.
In our trace, about 51% devices belong to this category.

4) Modem: These M2M devices are used as generic cellular
communication modems with embedded system data input
and output ports such as serial, I12C, analog, and digital.
They provide network connectivity for customized solutions.
In our trace, about 9% devices belong to this category.

5) Metering: These M2M devices are mostly used for re-
mote measurement and monitoring in agricultural, environ-
mental, and energy applications. In our trace, about 6%
devices belong to this category.

6) Telehealth: These M2M devices are mostly used for
remote measurement and monitoring in healthcare applica-
tions. In our trace, about 2% devices belong to this category.

We acknowledge that due to lack of more detailed usage
information and ambiguity in device registry databases, our
classification may contain some errors. To limit such er-
rors, we try to be as conservative as possible when deciding
whether to include a M2M device model in our study. For
example, cellular routers are generally excluded from this
study because the actual end devices behind these routers
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cannot be identified. For cellular modems and modules, we
exclude models with data interfaces likely used by modern
day computers such as USB, PCI Express, and miniPCI but
keep those with UART, SPI, and I2C interfaces. For the
sake of comparing M2M and typical human-generated traf-
fic characteristics, we have also included in our study traffic
records from a uniformly sampled set of smartphone models,
covering millions of smartphone devices.

In the following sections, based on this collected trace, we
conduct a detailed analysis of M2M traffic characteristics
and compare them with those of the smartphones found in
the same trace. The traffic characteristics analyzed in this
paper include aggregate data volume, volume time series,
session analysis, mobility, application usage, and network
performance.

3. AGGREGATE TRAFFIC VOLUME

When a new technology emerges and it has to share re-
sources with existing parties, a natural first question is the
level of competition and how different parties can better co-
exist. This is why we first study and compare the distribu-
tion of aggregate traffic volume for M2M devices and smart-
phones. Moreover, we also investigate whether the long es-
tablished perception of traffic volume being downlink heavy
remains true for M2M devices [15].

Figure 1 shows the cumulative distribution functions
(CDFs) of downlink and uplink normalized traffic volume
for M2M devices and smartphones separately. To normalize
traffic volume, we divided the maximum observed volume by
an arbitrary constant. For M2M, we show both the distribu-
tions for all M2M devices together and for each M2M cate-
gory. We first notice that different device categories exhibit



strong diversity in aggregate downlink and uplink traffic vol-
ume distributions. However, we do observe a consistent rel-
ative ordering of CDFs for different device categories. We
note that the average aggregate downlink and uplink traffic
volume for smartphones is several orders of magnitude larger
compared to all M2M device categories. Within M2M device
categories, modem category has the largest downlink traffic
volume, followed by asset category; whereas, building secu-
rity and fleet categories have the smallest downlink traffic
volume. A similar ordering is also observed for uplink traffic
volume.

We now study the distribution of ratios of uplink traffic

volume to downlink traffic volume. For the sake of clar-
ity, we plot the ratios after taking their logarithm, denoted
by Z. The positive values of Z represent more uplink traf-
fic volume than downlink traffic volume and its negative
values represent more downlink traffic volume than uplink
traffic volume. It is not surprising that approximately 80%
of smartphone devices have Z < 0; thereby, indicating larger
downlink traffic volumes. However, this trend is reversed by
large margin for all M2M device categories, which all have
Z > 0 for more than 80% of devices indicating larger uplink
traffic volumes. This finding provides another evidence that
M2M traffic has significantly different characteristics com-
pared to traditional smartphone traffic. Comparing different
M2M device categories, we observe that building and me-
tering categories have the lowest average Z values; whereas,
asset and telehealth have the highest average Z values. Such
differences provide insight into the functionality of M2M de-
vice categories.
Summary: Overall, the average per-device traffic volume
of M2M devices is much smaller than that of smartphones.
However, the strength of M2M devices is really in the size
of their population. As M2M population continues to in-
crease, how network operators efficiently support a large
number of low volume devices will become an important is-
sue. Our finding that M2M traffic has a much larger ratio of
uplink to downlink traffic volume compared to smartphone
traffic shows that M2M devices act more as “content pro-
ducers” than “content consumers”, unlike traditional smart-
phone devices. Interestingly, this difference coincides with
the paradigm shift in web and mobile computing towards
user-centric content generation. The momentum of such a
shift may eventually question the assumptions for optimiza-
tion approaches exploiting downlink asymmetry of network
traffic [14].

4. TRAFFIC VOLUME TIME SERIES

Having gained an understanding of aggregated M2M traf-
fic volume, the next step is to study the temporal dynamics
of M2M traffic volume. It would be interesting to know
whether M2M devices exhibit similar daily diurnal pattern
as smartphones. One particular use of such information is
to evaluate the potential benefits of incentive programs such
as billing discounts encouraging non-peak time usage. Time
series analysis is also helpful for gaining insights into the
operations of M2M devices.

As mentioned in Section 2, the logged traffic records con-
tain timestamps at 5-minute time resolution. Therefore, we
can separately construct averaged traffic volume time series
for smartphones and all M2M device categories. We plot
these averaged uplink and downlink traffic volume time se-
ries in Figure 2. While the daily diurnal pattern is evident

N
=}

N
T ]
fos] /|
B 30F -4 \ T
z - '
=
< 20r °
8 [—Smartphone
= 101---M2M
Q
2 * Modem
g 0 o Metering !
24 12 6 3 2
Time period (hours)
(a) Downlink
40

w
=

—Smartphone
---M2M

* Modem

o s Metering

Power/frequency (dB/Hz)
s 8

12 3 2

Time period (hours)

(b) Uplink
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density estimate of traffic volume time series.

for both aggregate M2M and smartphone traffic, the com-
parison of Figures 2(a) and (b) reveals the following two
interesting differences. First, the volume of downlink traffic
dominates that of uplink traffic for smartphones, whereas
these are fairly equal in M2M traffic time series. This find-
ing follows our earlier observations in Section 3. Second,
we also observe that peaks in smartphone traffic time se-
ries are wider, starting in the morning and prolonging up to
mid-night, whereas peaks in M2M traffic time series are nar-
rower, ending by the evening time; and M2M traffic volume
exhibits significant reduction during weekend compared to
weekdays while smartphone traffic volume remains virtually
unchanged. It appears that smartphone traffic time series
is coupled with human “waking” hours while M2M traffic
time series is coupled with human “working” hours. This is
a strong indication that currently a majority of M2M de-
vices are employed for business use. They are not yet in
the mainstream for residential users, or as tightly integrated
into people’s daily life as smartphones.

We have also separately plotted averaged uplink and
downlink traffic volume time series for all M2M device cate-
gories in Figures 2(c)—(h). We observe strong diurnal varia-
tions for all M2M device categories. However, the weekday-
weekend pattern comparison reveals different results for
most M2M categories, illustrating that M2M categories in-
deed behave vastly differently from each other due to the
different applications they serve. The previously mentioned
association of M2M traffic time series with daily business
activity cycle is highlighted the most by Figure 2(d) (Build-
ing), where each working day pattern displays not only ele-
vated volume during working hours but also two peaks which
in time coincide with the beginning and the end of typical
business hours. Contrastingly, we see that there is virtually
no difference in traffic volume for the metering category for
different days.

Frequency Analysis: On a finer scale, we observe repet-
itive spikes in time series of most M2M device categories.
To investigate these high frequency spikes in more detail,
we plot the periodograms of some downlink and uplink traf-
fic volume time series in Figures 3(a) and (b), respectively.
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Figure 2: Downlink and uplink traffic volume time series.

The periodogram is an estimate of power spectral density,
or frequency spectrum, of a given signal and is defined as:

1 e~ ian
S(f):m|zxke J(2 f/Fs)k|2’
ST k=1

where f is the frequency in Hertz, N is the total number of
signal samples, and F is the sampling frequency [19]. In this
study, we have Fs = 5 minutes and N = 2,016. The x-axis
in Figure 3 represents time period on logarithm scale and
y-axis represents power in decibels (dB) for each frequency.
We observe distinct spikes in the periodograms correspond-
ing to multiple time periods, e.g. 1 hour, 30 minutes, and
15 minutes, strongly suggesting the timer-driven nature of
many M2M operations. The perfect alignment of the spikes
in Figure 2(f) and (g) to one, half, and quarter hour marks
in time also suggests that these timers are highly synchro-
nized.! Such synchronized communication by large number

'For a causal analysis of the spikes in Figure 2, we have
manually analyzed the traffic logs for potential patterns.
Our analysis showed that all spikes are caused by coordi-
nated activities from thousands of devices belonging to the
same device models, not by a small number of “outliers”.
For instance, spikes for modem category are caused by traf-
fic belonging to thousands of modem devices of a particular
model exactly at hour marks.

of devices is highly undesirable both for the M2M applica-
tion service providers and cellular network operators because
it may create disruptive congestion at various locations in
the infrastructure. It is noteworthy that such sub-hour fre-
quency components are absent for smartphone traffic time
series, highlighting peculiar nature of M2M traffic.
Time Series Clustering: Until now we have only exam-
ined the averaged time series for M2M device categories. To
gain more fine-grained insights, we construct more than 150
M2M device model traffic time series from our trace, each
representing averaged time series of individual devices of
respective device models at 5-minute time resolution. Like-
wise, we construct individual device traffic time series at the
same time resolution. However, the time series of individ-
ual devices at 5-minute time resolution over the duration
of one week are less useful because they are highly sparse.
To reduce their sparsity, we change the time resolution to 1
hour and also average them across all days. Therefore, the
time series of individual devices each contain 24 data points
representing hourly time series averaged over all days of the
week.

With these two sets of time series (device models and indi-
vidual devices) at hand, we now aim to find some structure
across them by clustering together similar traffic time se-
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Figure 4: Dendrograms for hierarchical clustering.

ries. The notion of similarity is not obvious for time series
because a pair of time series may exhibit different levels of
similarity at different time scales. Therefore, we are required
to examine each pair of traffic time series at multiple time
scales. In this paper, we utilize discrete wavelet transform
to analyze and compute similarity score between time se-
ries at multiple time scales [8]. We then utilize hierarchical
clustering to group time series into distinct clusters [13].

Figure 4(a) shows the dendrogram for hierarchical clus-
tering of M2M device model traffic volume time series. The
x-axis represents the indices of time series and y-axis rep-
resents the [? norm distance metric. In the dendrogram,
we visually observe an obvious grouping of device models
into well-separated clusters. Using the Davies-Bouldin in-
dex [13], the optimal number of clusters is selected to be four
for M2M device model dendrogram. The Davies-Bouldin in-
dex is known to result in compact and well-separated clus-
ters. Similarly, Figure 4(b) shows the dendrogram for hier-
archical clustering of individual device traffic volume time
series. We observe a different structure in this dendrogram
as compared to the one in Figure 4(a). Here we note that
the bottom-right of the tree contains several clusters, each
containing one or a small number of individual device time
series. Intuitively, these small clusters potentially represent
outliers whose distance to other clusters is fairly large. We
visually observe two clusters on the bottom-left of Figure
4(b), each containing a major chunk of time series. After
separating out the sparse outlying clusters, these two clus-
ters are selected as optimal by the Davies-Bouldin index.
To further study the clusters identified using the above-
mentioned methodology, we plot their centroids with point-
wise standard deviations in Figures 5 and 6. In these figures,
the dark red lines represent the centroids, the blue lines rep-
resent point-wise standard deviations, and the light red lines
in the background represent the member time series for each
cluster.

Figure 5 shows device model clusters where we label the
identified centroids based on two of their temporal character-
istics: traffic volume and diurnal variations. We label a clus-
ter centroid as high volume if its average normalized daily
peak volume for weekdays is more than =~ 0.5. Otherwise,
the cluster centroid is labeled as low volume. Similarly, we
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Figure 5: Cluster centroids identified using device

models traffic time series.

label the cluster centroids based on the diurnal variations in
the following way. Let DI denote the diurnality coefficient,
and Viaz(d), Vinin(d), and Viuge(d) denote the maximum,
minimum, and average traffic volumes, respectively, on day
d of a traffic time series spanning |D| days. The diurnality
coefficient is quantified as:

1 Vmaz(d) - szn(d)
DI = — .
D12 Ve

If the diurnality coefficient of a cluster centroid is more than
1.0 then it is labeled as high diurnality. Otherwise, it is la-
beled as low diurnality. Using this labeling methodology,
we label the identified clusters as low volume-low diurnality
(LV-LD), low volume-high diurnality (LV-HD), high volume-
low diurnality (HV-LD), and high volume-high diurnality
(HV-HD). We now study the composition of these labeled
clusters with respect to the categories defined in Section
2. Table 1 shows the composition of the identified clus-
ters across all categories and the largest value in every row
is marked as bold. We note that asset tracking and fleet
device models mostly belong to HV-HD cluster. Further-
more, we note that building security and telehealth device



Table 1: Composition of device model clusters.

LV-LD | LV-HD | HV-LD | HV-HD

% % % %

Asset 13.1 16.1 23.5 33.3
Building 13.1 19.3 11.7 0.0

Fleet 26.2 29.2 5.9 61.2
Modem 34.5 25.8 47.1 5.5
Metering 13.1 3.2 5.9 0.0
Telehealth 0.0 6.4 5.9 0.0

models mostly belong to LV-HD cluster. These observa-
tions follow our intuition that the activity of these device
models is tightly coupled with human activities. They also
indicate that building security and telehealth device models
tend to generate low traffic volume. Similarly, we observe
that metering device models mostly belong to LV-LD clus-
ter. This observation follows our earlier finding from Figure
3 that metering devices tend to download or upload data
after periodic time intervals throughout the day. Finally, we
observe that modem device models mostly belong to HV-LD
clusters. Similar to metering device models, modem device
models also tend to generate traffic after periodic time in-
tervals throughout the day resulting in low diurnality.

For individual device traffic volume time series clustering,
we identified a handful number of outlier clusters and two
main clusters containing a majority of devices. We plot the
centroids of two main clusters and one of the outlier clusters
in Figure 6. The cluster centroid in Figure 6(a) shows strong
diurnal behavior with higher traffic volume during day time
as compared to night time; therefore, we label this cluster as
diurnal. On the other hand, the cluster centroid in Figure
6(b) does not show any diurnal characteristics and is la-
beled as flat. We also show an outlier cluster in Figure 6(c),
which consists of devices generating traffic volume spikes at
late night. To gain insights from the clustering results of
individual device traffic volume time series, we study their
composition across various M2M device categories. Table 2
shows the cluster composition results with the largest value
in every row marked as bold. We have similar observations
for device level clustering as we previously had for device
model traffic volume time series clustering. For instance,
asset tracking and fleet devices mostly belong to the diur-
nal cluster. Modem, metering, and telehealth devices, with
spiky traffic volume time series, mostly belong to the outlier
cluster. Finally, building security devices mostly belong to
the flat cluster. The individual device level clustering results
further improve the confidence of our understanding about
the behavior of M2M devices.

Summary: In this section, we have presented time series
analysis for M2M traffic volume. Just like that of smart-
phones, M2M traffic volume also exhibits strong daily diur-
nal pattern. However, M2M traffic volume peaks correspond
to people’s working hours while smartphone traffic volume
peaks correspond to waking hours, which indicates that a
majority of M2M devices are employed for business use.
The overlap between M2M peaks and smartphone peaks
suggests that incentive based leverage mechanism such as
off-peak time pricing for encouraging better sharing of net-
work capacity can be beneficial. We have also investigated
fine-grained features in traffic volume time series for different
categories and uncovered the differences in behaviors among
different M2M categories. For example unlike other M2M
categories, metering devices show only weak diurnal pattern,
suggesting that the traditional approach of scheduling ser-
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Figure 6: Cluster centroids identified using individ-
ual device traffic time series.

Table 2: Composition of individual device time se-
ries clusters.

Diurnal | Flat | Outlier

% % %

Asset 16.9 15.7 4.8
Building 11.8 19.1 15.7
Fleet 57.1 47.5 44.6
Modem 8.3 11.1 12.0
Metering 2.3 3.8 9.6
Telehealth 3.6 2.8 13.3

vice down time in early morning hours may not be the best
for them. Finally, the surprising discovery of synchronized
communication among M2M devices highlights the impor-
tance of developing and imposing standard traffic protocols
and randomization methods.

5. SESSION ANALYSIS

We now analyze and compare session-level traffic charac-
teristics of M2M devices and smartphones. Understanding
session duration and inter-arrival distribution is a time hon-
ored tradition for the telecommunication industry because
they are important inputs for network resource planning and
management. Such information is valuable for cellular net-
work operators too because device active time corresponds
more closely to radio resource usage than aggregate traffic
volume [17]. Moreover, being able to accurately estimate
session timing parameters not only improves radio resource
use efficiency for cellular operators, it also helps M2M ser-
vice providers to better design their devices and protocols
for better battery management.

Towards this end, we first formally define a session and
then study different metrics based on session-level informa-
tion. A flow consists of all packets in a given transport layer



connection, including TCP and UDP. To study character-
istics of flows at a given time resolution, we need to define
equally-spaced time bins denoted by A; where ¢ = 1,2, ...
and |A| denotes the magnitude of time bin and 4 is the index
variable. Recall from Section 2 that the smallest available
time resolution in our traffic trace is 5 minutes; therefore,
we use |A| = 5 minutes for the rest of this section. We look
at flow arrivals in 5 minute time bins as a binary random
process, which is denoted by {F; : t € T, F € {0,1}} and
where 0 and 1 respectively denote absence or presence of
flow arrival, respectively. We now define a session as a run
of flow arrivals in consecutive time bins, where a flow span-
ning multiple time bins is marked for all time bins during its
span. A session is denoted by Sy, (i),t, (i)}, where £y (7) and
ty () are the times corresponding to the first flow arrival and
the last flow arrival of i-th session. In the following text, we
separately investigate several metrics that capture diverse
characteristics of the session arrival process.

Active Time: The first metric that we study is device
active time, denoted by Tgctive, which is the total amount
of time in our week-long trace when a device has traffic. In
our study, it is calculated by multiplying number of unique
time bins in which we have at least one flow arrival by the
bin duration. Using this metric, we are primarily interested
in studying the impact of devices on the network in terms of
radio channel occupation. Note that a given time bin may
have multiple flow arrivals but they are all mapped to 1.
Mathematically, active time is defined as:

Toctive = Z F; (counts) = Z Fy % |A] (time units).
vteT vteT

In Figure 7(a), we plot the CDFs of active time for smart-
phones and all M2M categories defined in Section 2. The
x-axis represents active time, which ranges from a minimum
of |A] = 5 minutes to a maximum of one week (i.e. the
duration of trace collection). We first observe significant di-
versity in active time of devices of smartphone and all M2M
categories. Our second observation is that smartphones tend
to have significantly more active time compared to all M2M
device categories. The median active time for smartphones
is approximately 2 days, which is approximately 30% of the
total trace time duration. It is important to note that active
time cannot be accurately related to the interaction time of
users with smartphones because of the following two rea-
sons. First, users can interact with smartphone without ac-
tually generating network traffic, e.g. playing offline games.
Second, some applications may generate background traf-
fic when the user may not be actually interacting with the
smartphone. We also observe diversity in the distributions
of active time across M2M device categories. Modem and
asset tracking categories, with high aggregate traffic volume
per device, have the largest active time values among all
categories. It is noteworthy that the fleet category, despite
small aggregate traffic volume per device, have above aver-
age active time values. This observation suggests that fleet
devices tend to generate well spread out traffic across dif-
ferent time bins. We have also verified this conjecture from
the data. Finally, telehealth and metering devices have the
smallest active time among all M2M device categories.
Average Session Length: Another important metric that
we study is called average session length Lg.g, which is de-
fined as the average count of consecutive time bins with flow
arrivals. Mathematically, for a device with n sessions Lavg
is defined as:
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ty(i) — tz(3) + 1
Lavg = AL A
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Note that session lengths are potentially inflated because
session timeouts may be missed due to the coarse measure-
ment granularity. Figure 7(b) shows the CDFs of average
session length for M2M devices and smartphones. We note
that a significant chunk of devices for all categories have
average session lengths smaller than or equal to 5 minutes
(left most points). However, remaining devices do have av-
erage session lengths significantly larger than the minimum
value. For instance, 10% devices of modem category have
average session lengths larger than one hour, which reflects
the way these devices operate. It is also interesting to note
that smartphones typically have significantly smaller aver-
age session lengths compared to asset tracking, fleet, and
modem categories. Among M2M categories, telehealth, me-
tering, and building security have the smallest average ses-
sion lengths.

Average Session Inter-arrival: We also study the av-
erage session inter-arrival metric, which is defined as the
average of inter-arrival times between consecutive sessions.
Using the earlier notion, we can mathematically define av-
erage session inter-arrival Tg.4 as follows:

n—1

te(t+ 1) —ty(7)
Tavg - ; n— 1 .
Figure 7(c) shows the CDF's of average session inter-arrival
for smartphone and M2M categories. We observe an ap-
proximately opposite trend as compared to active time and
average session length for M2M device categories. For in-
stance, metering and telehealth categories, with relatively



small active time and average session lengths, have relatively
large average session inter-arrival time with median values
of approximately 9 hours. On the other hand, asset tracking
and fleet categories have relatively relatively small average
session inter-arrival time with median values of less than 3
hours. Smartphones tend to have even smaller average ses-
sion inter-arrival time, where approximately 80% of devices
have less than one hour average session inter-arrival time.
Summary: Once again, M2M traffic sessions exhibit rather
different characteristics from smartphone traffic sessions.
Overall M2M devices are active for traffic for much less time
than smartphones. M2M traffic sessions occur much less fre-
quently. It is especially worth noting that 3 out of 6 M2M
categories have about 80% of the devices with average ses-
sion time lasting less than 5 minutes. This indicates that
byte volume of data traffic for these devices is likely not an
accurate reflection of their network resource use due to dis-
proportional amount of control plane overhead for establish-
ing and tearing down short sessions. The large differences
between different M2M categories also advocate for differ-
entiated radio resource control configurations for different
categories.

6. MOBILITY

In this section, we study and compare the mobility charac-
teristics and geographical distribution of M2M devices and
smartphones. Mobility patterns for different devices, con-
structed from our nation-wide trace, helps establishing an
understanding for how much they move. Understanding mo-
bility patterns for different devices has a direct impact on
network resource planning. More importantly, we are in-
terested in investigating how the locations of M2M device
population are distributed relative to those of smartphones.
Previously in Section 4, we have discovered that M2M traf-
fic volume peaks overlap with those of smartphones in time.
Here we investigate whether they also overlap in space.

It is important to note that cell identifiers derived from

information collected within the core network are not consid-
ered an accurate approximation for device location. This is
because many low-level radio access network operations such
as handoffs of mobile devices between cells are not exposed
to the core network. However, we consider such inaccuracy
acceptable for three reasons. First, Xu et al. reported that
although cell-sector information collected from the core net-
work is not exact for the purpose of being used as device
location, the median error is < 1 kilometer [25]. Second,
we do not use the locations of the cell tower to proximate
user device locations. We simply count the number of unique
cells a device is involved with. Finally, the scope of our study
covers the whole United States, compared to which cell-level
errors at kilometer scale are rather minor.
Device Mobility: Figure 8 shows the CDF's of unique cells
for different M2M device categories and smartphones. We
observe that devices of M2M categories appear across less
unique cells compared to smartphone devices, with the ex-
ception of asset tracking category. This is expected because
asset tracking devices are typically connected to automotive
vehicles for transportation of goods. We also note that while
we might intuitively believe that asset tracking and fleet de-
vices are more mobile than the average smartphone, our re-
sults show that the difference is insubstantial. Furthermore,
as expected, we observe that building security and metering
devices appear across the least number of unique cells.
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Figure 8: CDF's of unique cells for smartphone and
M2M categories.

Geographical Distribution: We now investigate the geo-
graphical distribution of M2M traffic. Towards this end, we
first plot the Voronoi diagrams for traffic volume of cell-level
aggregated M2M and smartphone traffic in Figure 9. The
geographical region shown in this figure covers more than
1 million square kilometers, spanning multiple states in the
United States. Note that the cells in the Voronoi diagram
cover varying geographical areas and their colors represent
the traffic volume. The clusters of cells covering small ge-
ographical areas appear around major population centers.
From the perspective of network operators, we are inter-
ested in identifying locations with highest traffic volume for
smartphones and M2M devices and how closely located they
are. Furthermore, we want to identify geographical depen-
dencies among the locations with highest traffic volume for
M2M devices and smartphones. The three possible types
of geographical dependencies between two sets of locations
are: attraction, repulsion, and independence. Attraction or
repulsion between two sets of location respectively indicate
correlation or anti-correlation, whereas independence indi-
cates no correlation at all.

A well-known method to characterize geographical depen-
dency between two sets of points is based on the nearest
neighbor statistics [6]. Specifically, for two sets of points @
and j, we can define Gy;(h) as the probability that the dis-
tance from a randomly selected point i to the nearest event
j is less then or equal to h. Likewise, we can define F;(h) as
the probability that the nearest point j to a random point
is less then or equal to h. If the two sets of points are geo-
graphically independent then G;;(h) = Fj(h). Given i and
j respectively point to the top-10% locations for M2M and
smartphone traffic in terms of traffic volume, Figure 10(a)
plots G;; (Smartphone-M2M) and F}; (Point-M2M) for vary-
ing values of h. A theoretical Poisson line is also plotted
for reference, which indicates the expected pattern if both
sets of points are independently distributed as homogeneous
Poisson processes. We observe that both G;; and F} signifi-
cantly depart from the theoretical Poisson line and they are
also not close to each other. This observation indicates that
the point sets ¢ and j do not follow homogeneous Poisson dis-
tribution and are also not independently distributed of each
other. The question remains if the point sets show attraction
or repulsion to each other. This question is also addressed by
the relative positioning of G;; and F) lines, where G;; line
rises above Fj. This pattern shows that we have more than
expected high volume M2M locations nearest to high vol-
ume smartphone locations. This indicates that these point
sets are attracted to each other.

Another well-known method to study the geographical de-
pendency of two point sets ¢ and j, called cross-L, is based
on Ripley’s cross-K function [6]. It is denoted by L;;(h) —h
and is defined as:
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Figure 9: Geographical distribution of aggregate M2M and Smartphone traffic volume.
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Figure 10: Point pattern interaction analysis for high
volume M2M and Smartphone cell locations.

5 Kij(h)

Lij(h) —h = —h,

T
where Kij is the empirical Ripley’s cross-K function and h
denotes the distance. The empirical Ripley’s cross-K func-
tion is defined as:
Kij = E(# type j points < h from an arbitrary i point)/\;.
Here )\; is the average intensity of point set j and F(.) is
the expectation operator. Positive and negative values of
L;;(h) — h respectively indicate attraction and repulsion be-
tween two point sets. The co-independence is indicated if
the L;j(h) — h remains between the estimated confidence
envelope lines for co-independent homogeneous Poisson pro-
cesses. This method overcomes one limitation of the nearest
neighbor analysis that it is not restricted to only consider-
ing the closest points. However, it is also limited because
it gives us the average impression of all points in the data
set and may overlook small-scale local dependencies. Figure
10(b) shows the plot of L;;(h)—h for varying values of h. We
again observe a significant attraction pattern between high
volume M2M and smartphone traffic locations. The above-
mentioned two sets of experiments jointly provide a strong
evidence that high volume M2M and smartphone traffic lo-
cations are attracted to each other.
Summary: Most M2M devices are more likely to remain
within a smaller geographical area compared to smart-
phones, with the exception of asset tracking devices. On
the other hand, the geographical distribution of M2M de-
vice population, especially those with high traffic volume,
exhibits “attraction” to high volume smartphone devices. In
other words, the information provided by the analysis of mo-
bility characteristics of M2M devices is mixed for network
operators. While M2M devices are less mobile, which sug-
gests that service optimization is easier to conduct because
it only involves a small area, the co-location of high volume
M2M devices with smartphone devices brings more chance
for congestion in such areas.
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Figure 11: Traffic application distributions of M2M
device categories and smartphone. The application
indices along x-axis are: (1) appstore, (2) jabber, (3)
mms, (4) navigation, (5) email, (6) ftp, (7) gaming,
(8) im, (9) miscellaneous, (10) optimization, (11) p2p,
(12) apps, (13) streaming, (14) unknown, (15) voip, (16)
vpn, and (17) web.

7. APPLICATION USAGE

So far in this study we have treated all data bits equally,
simply all as “traffic volume”. However, the truth is that not
all bits are equal. For example, a bit that is part of an 8-bit
encoding of a temperature reading has higher information
density than a bit in an image of a thermometer that displays
the temperature. In this section, we make an attempt for
looking into how M2M devices use data traffic by finding
out the applications that M2M data traffic belong to.

Recall from Section 2 that traffic records in our data
set are tagged with application identifiers. These identifiers
cover traffic of 17 different application realms, including
HTTP, email (POP, IMAP, etc.), and all common video
streaming protocols (HTTP streaming, flash, etc.), all of
which make up the majority of smartphone traffic volume.



Using this application classification, we can compute appli-
cation distribution of traffic volume for M2M device cate-
gories. We observe that most of the flows, up to 95%, in our
logged trace use TCP. This observation is in accordance with
the findings reported in prior literature [12,16]. We provide
the averaged uplink and downlink application distribution
of traffic volume for M2M device categories in Figure 11. To
first average a device category, we take the ratio of the sum of
traffic volume of all devices and the total number of devices.
We then normalize the averaged traffic application volumes
by their maximum value. Figures 11(a) and (b) show that
the traffic of all device categories mostly belongs to unknown
or miscellaneous realms. This indicates that M2M devices
typically use custom protocols that are either not identified
by our application classification methodology, mentioned in
Section 2, or they use atypical protocols.

It is interesting to compare application distribution of
M2M traffic with that of smartphone traffic shown in Fig-
ure 11(c). As expected, smartphone traffic mostly belongs
to web browsing, audio and video streaming, and email ap-
plications. This is in sharp contrast to what we have ob-
served for M2M traffic. Another interesting aspect for Fig-
ure 11 is that M2M traffic has approximately similar uplink
and downlink traffic volume for most categories and applica-
tions while smartphones have more downlink traffic volume
than uplink traffic volume across all applications. This re-
sult echoes what we discovered in Sections 3 and 4, yet with
details along one more dimension — applications.
Summary: M2M devices mostly use non-standard applica-
tion protocols. This makes it more difficult for network op-
erators to mitigate adverse effects from these protocols com-
pared to the standard ones such as HI'TP. Towards this end,
better standardization of M2M protocols would certainly be
a mutually beneficial solution for both M2M application ser-
vice providers and cellular network operators.

8. NETWORK PERFORMANCE

We now characterize the network performance of M2M

traffic. We examine network performance in terms of round
trip time (RTT) and packet loss ratio, both of which provide
us unique perspectives of network performance.
Round Trip Time: RTT is an important metric for net-
work performance evaluation and is a key performance in-
dicator that quantifies delay in cellular networks. The RTT
metric is especially important for M2M applications that
are real-time critical. It is important to note that RTT
measurements can be potentially biased by differences in
the paths between different cellular devices and the exter-
nal servers they communicate with. For this study, we only
have RT'T measurements for TCP flows, which are estimated
by the time duration between the trace collecting appara-
tus seeing a SYN packet and its corresponding ACK packet
in the TCP handshake. Figure 12(a) shows the CDFs of
the median RTTs experienced by each device for smart-
phones and all M2M device categories. We observe that all
M2M device categories experience larger RTT compared to
smartphones. Furthermore, within M2M device categories,
telehealth devices have smaller RTT than all other cate-
gories. Our manual investigation of hardware specifications
showed that smartphones and telehealth devices are mostly
equipped with 3G modems, in contrast to other categories
that typically rely on 2G modems. 2G RT'Ts are larger due
to longer delays on the air interface, which explains these
observations.
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Figure 12: CDF's of round trip time and packet loss
ratio.

Packet Loss Ratio: Packet loss ratio is a key perfor-
mance indicator metric that quantifies reliability in cellu-
lar networks. We estimate the packet loss ratio as the ratio
of observed TCP payload bytes to the observed TCP se-
quence number range, summed over all TCP flows. Since
most packet loss occurs in the radio access network (RAN)
and our measurement point is in between the RAN and
the Internet, this metric effectively estimates the downlink
packet loss ratio. Figure 12(b) shows the CDFs of packet
loss ratio for smartphones and all M2M device categories.
Similar to the CDFs of RTT shown in Figure 12(a), we ob-
serve differences for packet loss ratio distribution in terms
of third and fourth quartile values, where smartphones and
telehealth devices experience at least an order of magnitude
lower loss ratios than other M2M device categories due to
a larger ratio of 3G to 2G modems. We also observe that
building security devices have much higher third and fourth
quartile loss ratios than other M2M devices, despite using
similar technologies. This may be due to the placement of
these devices indoors where the signal quality is poorer.
Summary: M2M traffic’s network performance also differs
from that of smartphones. The RTT of M2M traffic is sig-
nificantly larger than smartphone traffic. Careful inspection
of the hardware specifications of M2M devices reveals that
M2M devices generally fall behind smartphones in choice
of cellular technology. A majority of M2M devices still use
2G technologies such as GPRS and EDGE. Although 2G
technologies are often adequate for M2M communication in
terms of data rates, such lagging does present a challenge for
cellular operators because they would need to maintain older
generation services, instead of repurposing 2G spectrum for
newer technologies of higher spectral efficiency. M2M traffic
also generally has higher packet loss ratios. This is proba-
bly due to poor deployment location choices for which the
likely reasons are application specific location requirements
or the lack of user interface that clearly displays cellular
signal strength.

9. RELATED WORK

To our best knowledge, this paper presents the first study
on characterizing M2M traffic patterns. Prior related work
only focuses on characterizing general Internet traffic in cel-
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lular networks. Due to lack of space, we briefly describe only
prominent related work below.

General Smartphone Usage: Falaki et al. conducted a
measurement study of smartphone usage [11]. They collected
data from smartphones of 255 users with only Android and
Windows Mobile platforms. The results of their experimen-
tal studies indicate significant diversity among smartphone
usage of different users. In contrast to this work on smart-
phone activities, our work focuses on M2M data traffic anal-
ysis as seen by the cellular network. Furthermore, the scale
of our study, in terms of the number of unique device models,
is several orders of magnitude larger.

Smartphone Apps: In [24], Xu et al. characterized usage
patterns of smartphone apps in a 3G cellular network. They
observed that different types of apps had different diurnal
and mobility patterns. Similarly, we observe different diur-
nal and mobility patterns for different M2M device models.
In contrast to their study, we find that most M2M appli-
cations use custom protocols that are not identifiable using
the traffic classification technique used in [24]. Thus, M2M
traffic is a disjoint set of traffic from smartphone app traffic.

Cellular Devices: In [18], Shafiq et al. studied the tem-
poral dynamics and distribution of applications in Internet
traffic of cellular devices. The authors only studied charac-
teristics of 3 cellular device families in their measurement
analysis, whereas we study characteristics of more than 150
M2M device models. Furthermore, we additionally explore
Internet traffic dynamics of M2M devices along the dimen-
sions of mobility, network performance, and session-level
analysis.

Mobility and Network Performance: In another re-
cent related work, Tso et al. evaluated network performance
of users in different mobility scenarios in a cellular net-
work [22]. They collected network performance data for 4
laptops, 4 modems, and 4 smartphones. Similar to our anal-
ysis, they also studied the network performance metrics such
as round trip time and loss rate. In contrast to this work
on network performance in different mobility scenarios, our
work focuses on large scale characterization of traffic from
more than 150 M2M device models.

10. CONCLUSIONS

This paper presents the first attempt to characterize M2M
traffic in cellular data networks. Our study was based on a
week long traffic trace collected from a major cellular service
provider’s core network in the United States. In our analy-
sis, we compared M2M and smartphone traffic in several
aspects including temporal traffic patterns, device mobil-
ity, application usage, and network performance. We found
that although M2M devices have different traffic patterns
from smartphones, they are generally competing with smart-
phones for shared network resources. Our findings presented
in this paper have important implications on cellular net-
work design, management, and optimization. Through bet-
ter understanding of M2M traffic, cellular service providers
can improve resource allocation mechanisms and develop
better billing strategies for different categories of M2M de-
vices. The methodology developed in this paper for M2M
traffic analysis is generic and can also be deployed for more
general cellular traffic analyses.
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