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Abstract

These notes are based on the lectures that I gave (virtually) at the Bruneck
Summer School in 2021 on first-passage processes and some applications of the
basic theory. I begin by defining a first-passage process and presenting the
connection between the first-passage probability and the familiar occupation
probability. Some basic features of first passage on the semi-infinite line and
a finite interval are then discussed, such as splitting probabilities and first-
passage times. I also treat the fundamental connection between first passage
and electrostatics. A number of applications of first-passage processes are then
presented, including the hitting probability for a sphere in greater than two
dimensions, reaction rate theory and its extension to receptors on a cell surface,
first-passage inside an infinite absorbing wedge in two dimensions, stochastic
hunting processes in one dimension, the survival of a diffusing particle in an
expanding interval, and finally the dynamics of the classic birth-death process.

1. What is a First-Passage Process?

The first-passage probability is defined as the probability that a diffusing
particle or a random walk first reaches a given site (or set of sites) at a specified
time. Typical examples of first-passage processes include: fluorescence quench-
ing, in which light emission by a fluorescent molecule stops when it reacts with a
quencher; integrate-and-fire neurons, in which a neuron fires when a fluctuating
voltage level first reaches a specified level; and the execution of buy/sell orders
when a stock price first reaches a threshold. To appreciate why first-passage
phenomena might be relevant practically, consider the following example. You
are an investor who buys stock in a company at a price of $100. Suppose that
this price fluctuates daily by ±$1. You will sell if the stock price reaches $200
and if the stock price reaches $0, the company has gone bankrupt and you’ve
lost all your investment. What it the probability of doubling your investment
or losing your entire investment? How long will it take before one of these two
events occurs? These are the types of questions that are the purview of first-
passage phenomena. Much of the material covered here is discussed more detail
in this monograph [1], and in other general reviews and texts on probability
theory and stochastic processes [2–5].
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2. First-Passage and Occupation Probabilities

Let’s start by deriving the formal relation between the first-passage prob-
ability and the familiar occupation probability. For concreteness, consider a
random walk in discrete space and discrete time. We define P (r, t) as the oc-
cupation probability; this is the probability that a random walk is at site r at
time t when it starts at the origin. Similarly, let F (r, t) be the first-passage
probability, namely, the probability that the random walk first visits r at time
t with the same initial condition. Clearly F (r, t) decays more rapidly in time
than P (r, t) because once a random walk reaches r, there can be no further
contribution to F (r, t), although the same walk may still contribute to P (r, t).
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Figure 1: Schematic diagrammatic relation between the occupation probability of a random
walk (whose propagation is represented by a wavy line) and the first-passage probability
(straight line).

It is convenient to write P (r, t) in terms of F (r, t) and then invert this
relation to find F (r, t). For a random walk to be located at r at time t, the walk
must first reach r at some earlier time step t′ and then return to r after t − t′

additional steps (Fig. 1). This connection between F (r, t) and P (r, t) may be
expressed as the convolution

P (r, t) = δr,0δt,0 +
∑
t′≤t

F (r, t′)P (0, t− t′) , (2.1)

where δt,0 is the Kronecker delta function. This equation expresses the fact that
if a random walk is at r at time t, it must have first reached r at some earlier
time t′ (which could even be t). If the walk reached r at a time earlier than
t, then it must return to r (and any number of such returns could occur) in
the remaining time t− t′. The probability for this set of events is expressed by
P (0, t− t′). The delta function term accounts for the initial condition that the
walk starts at r = 0.

The above convolution is most conveniently solved by introducing the gen-
erating functions,

P (r, z) =

∞∑
t=0

P (r, t)zt , F (r, z) =

∞∑
t=0

F (r, t)zt .

For a random walk in continuous time, we would merely replace the sum over
discrete time in Eq. (2.1) by an integral and then use the Laplace transform.
However, the asymptotic results would be identical. To solve for the first-passage
probability, we multiply Eq. (2.1) by zt and sum over all t. We thereby find
that the generating functions for P and F are related by

P (r, z) = δr,0 + F (r, z)P (0, z) . (2.2)
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Thus we obtain the fundamental connection between the generating functions

F (r, z) =


P (r, z)

P (0, z)
r ̸= 0 ,

1− 1

P (0, z)
, r = 0 .

(2.3)

The important point is that the first-passage probability can be determined
solely from the occupation probability. Many profound results about random
walks in infinite space can be obtained from the fundamental relation (2.3) (see,
e.g., [6–9]). Our focus here will be on random walks or diffusion in confined
geometries that reflect important physical constraints.

3. The Half Line

Suppose that a diffusing particle starts at x0 > 0 on the infinite half line
[0,∞] and is absorbed when it reaches the origin. Does the particle ever reach
the origin? If so, when does this particle first reach the origin? To answer
these questions, we have to solve the diffusion equation for the concentration
c(x, t), subject to the initial condition c(x, t=0) = δ(x−x0), and the boundary
condition c(x= 0, t > 0) = 0; the latter enforces the absorption of the particle
when it reaches the origin.

A standard approach to solve this problem is to first take the Laplace trans-
form of the diffusion equation and then solve for the Green’s function of this
transformed equation. Then one inverts the Laplace transform of the Green’s
function to obtain the concentration c(x, t) in the time domain. The diffusive
flux to the origin gives the probability that the particle reaches the origin at time
t. Because of the absorbing boundary condition, when the particle does reach
the origin, it is removed from the system. Thus the diffusive flux corresponds
to the probability for the particle to reach the origin for the first time—namely,
the first-passage probability to the origin.
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Figure 2: Concentration profile of a diffusing particle on the absorbing infinite half line (0,∞)
at Dt = 10, with x0 = 2 (solid curve). Also shown are the component Gaussian (blue dashed)
and image anti-Gaussian (red dot-dash) and their superposition in the physical region x > 0.
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A more fun way to solve this problem is by invoking the familiar image
method from electrostatics. In this method, a diffusing particle that starts at
x0 > 0 and is subject to an absorbing boundary condition at x = 0 is equivalent
to removing the boundary altogether and introducing an image “antiparticle”
that is initially at x = −x0. Because the concentration is clearly equal to
zero at the origin by symmetry, this image antiparticle effectively imposes the
absorbing boundary condition c(x = 0, t) = 0. The initial particle and the
image antiparticle both diffuse freely on [−∞,∞] and their superposition gives
a resultant concentration c(x, t) for x > 0 that solves the original problem.

Hence the concentration for a diffusing particle on the positive half-line is
the sum of a Gaussian centered at x0 and an anti-Gaussian centered at −x0:

c(x, t) =
1√
4πDt

[
e−(x−x0)

2/4Dt − e−(x+x0)
2/4Dt

]
. (3.1)

This concentration profile has a linear dependence on x near the origin and
a Gaussian tail for x/

√
Dt ≫ 1, as illustrated in Fig. 2. Because the initial

condition is normalized, the first-passage probability to the origin at time t is
just the diffusive flux to this point. From the above expression for c(x, t), we
find

F (0, t) = +D
∂c(x, t)

∂x

∣∣∣∣
x=0

=
x0√
4πDt3

e−x2
0/4Dt t → ∞ . (3.2)

This fundamental and simple formula has a number of striking implications:

1. The particle is sure to reach to the origin because
∫∞
0

F (0, t) dt = 1. That
is, eventual absorption is certain.

2. The average time for the particle to reach the origin is infinite! This fact
arises because the first-passage probability has the long-time algebraic tail
F (0, t) → x0/

√
4πDt3 for t ≫ x2

0/D. This dichotomy between hitting the
origin with certainty but taking an infinite average time to do so underlies
many of the intriguing features of one-dimensional diffusion.

3. The typical time to reach the origin is finite. We can define the term
typical time in a precise way as follows: As a preliminary, define the
typical position of the particle, xT , as∫ ∞

xT

c(x, t) dx = 1
2 . (3.3)

That is, one half of the total probability lies in the range beyond xT and
one half lies in the range [0, xT ]. Substituting the concentration profile
(3.1) into the above integral and performing the integral leads to the tran-
scendental equation

erfc

(
xT − x0√

4Dt

)
− erfc

(
xT + x0√

4Dt

)
= 1 . (3.4)

This equation can only be solved numerically and the salient feature is
that xT monotonically decreases with time and reaches zero at a time
that is roughly 1.1x2

0/D; this defines the typical hitting time.
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4. Even though the average time to reach the origin is infinite, the number
of times the origin is reached in a time t is proportional to

√
t. This

result follows directly from the probability distribution of a freely diffusing
particle. At large times, the bulk of Gaussian distribution for a particle
that starts at x0 will spread past the origin. Each site that is within the
Gaussian envelope will have been visited of the order of

√
t times. This

last fact will be relevant for our discussion of the reaction rate of the sphere
in Sec. 6.

4. The Finite Interval

We now turn to the first-passage properties in a finite interval. The reason
for focusing on the finite interval is that the basic first-passage questions in this
geometry have many profound implications. Moreover, the interval geometry
is sufficiently simple that many results can be readily derived. Let us begin
by outlining the basic questions that we will address. We consider a diffusing
particle that starts at some point x0 within the interval [0, L], with absorbing
boundary conditions at both ends of the interval. Eventually the particle is
absorbed, and our goal is to characterize the time dependence of this absorption.
Basic first-passage questions include:

1. What is the time dependence of the survival probability S(t)? This is
the probability that a diffusing particle does not touch either absorbing
boundary before time t.

2. What is the time dependence of the first-passage, or exit probabilities, to
either 0 or to L as a function of x0? Integrating these probabilities over
all time gives the eventual hitting, or splitting probability to a specified
boundary. What is the dependence of the splitting probability to 0 or to
L as a function of the starting position?

3. What is the average exit time, that is, the average time until the particle
hits either of the absorbing boundaries as a function of starting position?
What are the conditional exit times, that is, the average time to hit a spec-
ified boundary (without ever touching the other boundary) as a function
of the starting position?

To answer the first question, we need to solve the diffusion equation in the
interval, subject to the initial condition that a particle starts at x0, and with
absorbing boundary conditions at both ends. This is a standard exercise and
the result for the concentration is

c(x, t) =

∞∑
n≥1

2

L
sin

nπx0

L
sin

nπx

L
e−n2π2 Dt/L2

. (4.1)

Since the large-n eigenmodes decay more rapidly in time, the most slowly de-
caying eigenmode dominates in the long-time limit. As a result, the survival
probability, which is the spatial integral of the concentration over the interval,
asymptotically decays as

S(t) ∼ e−Dπ2t/L2

. (4.2)

For answering the second question, it is mathematically simpler to work in
the Laplace transform domain. Applying the Laplace transform to the diffusion
equation recasts it as

sc(x, s)− c(x, t = 0) = Dc′′(x, s) , (4.3)
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where the prime denotes differentiation with respect to x. The argument s indi-
cates that c(x, s) is the Laplace transform. Within the standard Green’s function
approach, the homogeneous equation in each subdomain (0, x0) and (x0, L) has
elementary solutions of the form c(x, s) = A exp(x

√
s/D) + B exp(−x

√
s/D),

with the constants A and B determined by the boundary conditions. Because
the absorbing boundary condition at x = 0 mandates an antisymmetric combi-
nation of exponentials and because the form of the Green’s function as x → L
must be identical to that as x → 0, we can be immediately write

c<(x, s) = A sinh

(√
s

D
x

)
x < x0 ,

c>(x, s) = B sinh

(√
s

D
(L− x)

)
x > x0 ,

(4.4)

for the subdomain Green’s functions c< and c>, where A and B are constants.
We now impose the continuity condition c<(x0, s) = c>(x0, s) and the jump

condition that is obtained by integrating Eq. (4.3) over an infinitesimal interval
that includes x0:

c′(x, s)
∣∣
x=x+

0
− c′(x, s)

∣∣
x=x−

0
= −1/D ,

to finally obtain

c(x, s) =

sinh

(√
s

D
x<

)
sinh

(√
s

D
(L− x>)

)
√
sD sinh

(√
s

D
L

) . (4.5)

From this Green’s function, the Laplace transform of the fluxes at x = 0 and
at x = L are

j−(s|x0) ≡ +D
∂c(x, s)

∂x

∣∣∣∣∣
x=0

= sinh

(√
s

D
(L− x0)

)/
sinh

(√
s

D
L

)
. (4.6a)

j+(s|x0) ≡ −D
∂c(x, s)

∂x

∣∣∣∣∣
x=L

= sinh

(√
s

D
x0

)/
sinh

(√
s

D
L

)
. (4.6b)

The subsidiary argument x0 in j emphasizes that the flux depends on the initial
particle position. Since the initial condition is normalized, the magnitude of the
flux to each boundary is identical to the respective first-passage probabilities.

For s = 0, these Laplace transforms are just the time-integrated first-passage
probabilities to 0 and at L. These quantities therefore coincide with the respec-
tive splitting probabilities, E−(x0) and E+(x0), namely, the probabilities to
eventually hit the left and the right ends of the interval as a function of the
initial position x0:

E−(x0) = j−(s=0|x0) = 1− x0

L
,

E+(x0) = j+(s=0|x0) =
x0

L
.

(4.7)

Thus the splitting probabilities are given by an amazingly simple formula—the
probability of reaching one endpoint is just the fractional distance to the other
endpoint!
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It is instructive to also derive these splitting probabilities by the backward
Kolmogorov approach [1, 2]. The word backward reflects the feature that the
initial condition becomes the dependent variable, rather than the current posi-
tion of the particle. As we shall see, this method provides a powerful tool for
determining first-passage properties. Physically, we obtain the eventual hitting
probability E+(x0) to the right boundary by summing the probabilities for all
paths that start at x0 and reach L without touching 0. Thus

E+(x0) =
∑
paths

Πx0→L , (4.8)

where Πx0→L denotes the probability of a path from x0 to L that avoids 0.
As illustrated in Fig. 3, the sum over all such paths can be decomposed into
the outcome after one step and the sum over all path remainders from the
intermediate point x′ to L. This gives

E+(x0) =
1
2

∑
paths′

Πx0+δx→L + 1
2

∑
paths′′

Πx0−δx→L = 1
2 [E+(x0+δx) + E+(x0−δx)] .

(4.9)

Here δx is the length of a single random-walk step and paths′ and paths′′ indi-
cate, respectively, all paths that start at x0 ± δx and reach L without touching
0.

0 0 0

tim
e

x

= +

xx x
0 L 0 L 0 L

x

1

22

1

Figure 3: Schematic decomposition of a random walk path from x0 to L into the outcome after
one step (red) and the remainder from x′ to L. The factors 1/2 account for the probabilities
associated with the first step of the decomposed paths.

Equation (4.9) reduces to ∆(2)E±(x0) = 0, where ∆(2) is the discrete second-
difference operator, ∆(2)f(x) ≡ f(x− δx)− 2f(x) + f(x+ δx). This difference
equation is subject to the boundary conditions E+(0) = 0, E+(L) = 1. The
solution is simply

E+(x0) =
x

L
, (4.10)

and correspondingly E−(x) = 1− x
L .

It is worth mentioning that there is an even simpler way to determine the
exit probabilities by the martingale method [10]. This solution relies on the
fact that the motion of the random walk in the interval is a “fair game” at any
time. Thus the average position of the walk is time independent. Formally, a
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martingale is a process in which the average value of a random variable at time
t+ δt equals the average value of this variable at time t.

For the present example, at t = 0, the average position of the particle is
⟨x⟩ = x0. At infinite time, the walk is either at the left end or the right end of
the interval, with respective probabilities E+(x0) or E−(x0). Thus the average
position at infinite time is ⟨x⟩ = 0×E−(x0)+L×E+(x0). Since the initial average
position equals the final average position, we immediately recover (4.10).

For a biased random walk with a probability p of hopping to the right and
probability q of hopping to the left, the analog of Eq. (4.9) for the splitting
probability is

E(x0) = pE+(x0+δx) + qE+(x0−δx) , (4.11)

with solution

E+(x0) =
1− e−vx0/D

1− e−vL/D
≡ 1− e−u0Pe

1− e−Pe
, (4.12)

where v = (p − q)δx, D = δx2/2, u0 = x0/L, and Pe = vL/D is the Péclet
number, which is a dimensionless measure of the influence of the bias relative
to diffusive fluctuations. When the Péclet number is large, the exit probability
clearly reflects the strong influence of the bias (Fig. 4).

0.0 0.2 0.4 0.6 0.8 1.0

x
0
/L

0.0

0.2

0.4

0.6

0.8

1.0

E
+
(x

0
)

Pe=10

4

1
0

−1
−4

−10

Figure 4: Dependence of the exit probability to x = L on u0 = x0/L in the interval [0, L] for
various Péclet numbers Pe.

We now extend the backward Kolmogorov approach to determine the average
exit time from the finite interval. We distinguish between the unconditional
average exit time, namely, the average time for a particle to reach either end
of the interval, and the conditional average exit time, namely, the average time
for a particle to reach, say, the right end of the interval without ever touching
the other end.

In close analogy with (4.8), the unconditional exit time satisfies

t(x0) =
∑
paths

(Πt)x0→±L . (4.13)
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That is, to compute the average unconditional exit time, we take the time for
a path to go from x0 to ±L times the probability of this path and sum over
all possible paths. Using the same decomposition that which led to (4.9), the
unconditional exit time satisfies

t(x0) =
1
2

∑
paths′

Πx0+δx→±L(tx0+dx→±L+dt) + 1
2

∑
paths′′

Πx0−δx→±L(tx0−dx→±L+dt) .

(4.14)

Notice that the term

1
2

∑
paths′

Πx0+δx→±L tx0+dx→±L

has exactly the same form as (4.13), so that the above expression is merely
1
2 t(x0 + δx). A similar identification holds for the analogous term

1
2

∑
paths′′

Πx0−δx→±L tx0−dx→±L .

Finally, the terms multiplying the factor dt in (4.14) just gives the probability
of all possible paths from x0 to either end of the interval; this probability is
clearly equal to 1. Thus we have

t(x0) =
1
2 [t(x0+δx) + t(x0−δx)] + dt . (4.15)

In the continuum limit, we expand (4.15) in a Taylor series to second order in
δx to give

δx2

2
t′′ = −dt .

Now identifying δx2/(2dt) as the diffusion coefficient D, the equation for the un-
conditional exit time reduces to D t′′ = −1, subject to the boundary conditions
t(0) = t(L) = 0. The solution is (see Fig. 5)

t(x0) =
x0(L− x0)

2D
. (4.16)

Notice that this exit time is of the order of L for a particle that starts a distance
of the order of one from an absorbing boundary and of the order of L2 for a
particle that starts near the middle of the interval.

Now let’s calculate the conditional exit time to the right boundary when
starting from x0, t+(x0). By definition this conditional time is

t+(x0) =

∑
paths+

(Πt)x0→L∑
paths+

Πx0→L
=

∑
paths+

(Πt)x0→L

E+(x0)
. (4.17)

That is, the conditional exit time is the time for a path to start at x0 and reach
L without touching 0 multiplies by the probability of this path, summed over
all such allowable paths. Here the subscript + on the word paths indicates that
only paths that go from x0 to L without touching 0 are included. Since the
total probability of all these restricted paths is less than 1, we need to divide

9
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Figure 5: Unconditional and conditional average exit times from the finite interval [0, L],
normalized by L2/2D, as a function of the dimensionless initial position x0/L.

by this total probability, E+(x0), to obtain the properly normalized conditional
exit time. Thus, for the quantity E+(x0)t+(x0), we have

E+(x0)t+(x0) =
∑

paths+

(Πt)x0→L

= 1
2

∑
paths′+

Π(tx0+dx→L + dt) + 1
2

∑
paths′′+

Π(tx0−dx→L + dt)

= 1
2 [E+(x0+dx)t+(x0+dx)] + 1

2 [E+(x0−dx)t+(x0−dx)]

+ E+(x0) dt . (4.18)

In the continuum limit, the above equation reduces to D(E+t+)
′′ = −E+, with

solution

t+(x0) =
L2 − x2

0

6D
. (4.19)

From this result, we also immediately find t−(x0) = t+(L − x0). The depen-
dences of all the exit times on the starting position are illustrated in Fig. 5.

5. Connection with Electrostatics

One of the alluring features of first-passage processes is its intimate con-
nection to electrostatics. By this connection, one can recast an electrostatic
problem in a given geometry as a first-passage problem in the same geometry.
With this perspective, it is possible to solve seemingly difficult first-passage
problems in a simple way by this electrostatic connection.

To illustrate the basic principle, consider the following general problem. Sup-
pose that a diffusing particle starts at some point r0 inside an arbitrary bounded
domain. At the boundary of this domain, the particle is absorbed. Eventually,
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all of the initial probability is absorbed on the boundary and we ask: what
is the exit probability at some arbitrary point rB on the domain boundary?
Formally, we have to solve the diffusion equation in this domain, subject to the
appropriate initial and boundary conditions:

∂c(r, t)

∂t
= D∇2c(r, t)

c(r, t = 0) = δ(r− r0)

c(r, t)
∣∣
rB

= 0

(5.1)

Then the exit probability at the boundary point rB is given by

E(rB) = −D

∫ ∞

0

∂c(r, t)

∂n̂

∣∣∣∣
rB

dt , (5.2)

where n̂ is the outward normal to the surface of the domain at rB .
Let’s look critically at this calculation. We are attempting to solve a partial

differential equation in some domain (which may well be difficult), then take
the result of this calculation and integrate over all time. That is, we really don’t
need that exit probability at all times, but merely the time integral of the exit
probability. This observation suggests that it will be useful to take the original
problem (5.1) and integrate it over all time. To simplify what emerges, we also
define the time integrated concentration, C(r) ≡

∫∞
0

c(r, t) dt. Performing this
time integration on Eq. (5.1) leads to{

−δ(r− r0) = D∇2C(r)

C(r)
∣∣
rB

= 0

The delta function on the left-hand side is what remains when we integrate the
time derivative in (5.1) over all time. At t = ∞ the concentration is zero, while
at t = 0, we merely have the initial condition. But notice that in terms of the
time-integrated concentration, the exit probability may be written as

E(rB) = −D
∂C(r, t)

∂n̂

∣∣∣∣
rB

. (5.3)

Thus we arrive at the fundamental result:

E(rB) = the electric field at rB on the surface of a grounded conductor,

when a point charge of magnitude 1/(DΩd) is placed at r0 .

Here Ωd is the surface area of a d-dimensional sphere; this factor is needed to
convert the prefactor D in the diffusion equation to the correct prefactor in the
Laplace equation. Thus a given first-passage problem can be expressed as an
equivalent electrostatic problem in the same geometry.

6. Hitting a Sphere and Reaction Rate Theory

What is the probabilityH(r) that a diffusing particle eventually hits a sphere
of radius a, when the particle starts at a distance r > a from the origin? One
can determine this hitting probability in the standard way by solving the diffu-
sion equation exterior to the sphere, computing the flux to the sphere, and then
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integrating over all time. However, it is much simpler to use the connection be-
tween first passage and electrostatics. Indeed, by a direct extension of Eq. (4.9)
to three dimensions, the hitting probability satisfies (here for a discrete random
walk in Cartesian coordinates for simplicity)

H(x, y) = 1
6

[
H(x+ 1, y, z) +H(x− 1, y, z) +H(x, y + 1, z)

+H(x, y − 1, z) +H(x, y, z + 1) +H(x, y, z − 1)
]
. (6.1)

Let us now take the continuum limit so that we can work in spherical coordi-
nates. Then the above discrete difference equation becomes ∇2H = 0, subject
to the boundary conditions H(r=a) = 1 and H(∞) = 0. The solution is

H(r) =
a

r
. (6.2)

Amazingly simple!
Now let’s treat a related problem that is fundamental in chemical kinetics.

Suppose that there is an initially uniform concentration of particles exterior to
an absorbing sphere of radius a. A fundamental kinetic characteristic of the ab-
sorbing sphere is its reaction rate k, namely, the efficiency at which this sphere
captures particles. Formally, k is defined as the number of particles absorbed
per unit time divided by the initial concentration. This normalization ensures
that the reaction rate is a quantity that is intrinsic to the system. By dimen-
sional analysis, the reaction rate as defined above has units of (length)d/time.
Moreover the reaction rate can only be a function of intrinsic parameters of
the system, namely, the diffusion coefficient D and the sphere radius a. Since
the units of D are length2/time, we infer that k must have units of Dad−2.
Thus the reaction rate k = ADad−2, where A is a constant of the order of 1.
This example shows the power of dimensional analysis in obtaining a non-trivial
physical property of multi-particle system.

This simple result has some surprising implications. First, in three dimen-
sions, the reaction rate is linear in a; it is not proportional to the cross-sectional
area of the sphere. Second for d < 2, the reaction rate increases when the ra-
dius of the absorbing sphere is decreased! This nonsensical result indicates that
there is a basic problem with classic chemical kinetics for d < 2. This pathology
arises because the concentration field exterior to the absorber never reaches a
steady state for d < 2. Instead, the absorption rate of the sphere is time depen-
dent. In contrast, for d > 2, a steady state concentration field does arise. Once
this steady state is reached, it is a trivial exercise to compute the steady-state
density by solving the Laplace equation rather than the diffusion equation, and
thereby obtain the steady-state flux to the sphere. From these steps, one finds
the exact reaction rate

k = 4πDa . (6.3)

Armed with the basic result for the reaction rate, we now turn to a much
more profound problem that is fundamental to living systems, namely, how
many receptors should there be on the surface of a cell? One might expect that
much of the cell surface should be covered by receptors so that its detection
efficiency is high. On the other hand, one can imagine that receptors are complex
and evolutionarily expensive machines. Based on cost considerations only, it
would be advantageous for a cell to minimize the number of receptors. What is
the appropriate balance between these two competing attributes? As a first step
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to address this question, we want to compute the reaction rate of a cell that is
sensitive to its environment only at the locations of the receptors. We model the
cell as a sphere of radius a in which most of the surface is reflecting. However,
on the sphere surface there are also N circular domains of radius s that are
absorbing (Fig. 6). We view these N absorbing circles as the receptors on the
cell surface. What is the reaction rate of this toy model of a cell? If most of the
sphere surface is reflecting, one might anticipate that the reaction efficiency of
the cell will be poor. Surprisingly, the reaction efficiency of the sphere with N
absorbing receptors is almost as good as a perfectly absorbing sphere, even when
the area fraction covered by the receptors is vanishingly small! This realization
is the brilliant insight of the article by Berg and Purcell that was far ahead of
its time [11]. Here I outline their argument.

s

s

Figure 6: Cartoon of a cell surface with 4 receptors (gray ovals). A diffusing particle first hits
the cell (green trajectory) and then makes 3 non-independent hits of the surface (blue), before
an independent hit (red). The particle lands on a receptor after one more non-independent
hit.

The first step in their argument relies on the feature that if a diffusing
particle hits the surface of a sphere, it will hit again many times before diffusing
away; this point was discussed above in Sec. 3. There are two types of subsequent
hitting events: (i) the particle rises a distance less than s above the surface before
hitting it again, and (ii) the particle rises a distance greater than s above the
surface before hitting it again (Fig. 6). In the former case, if the particle initially
misses a receptor, it will likely miss upon the second encounter. In the latter
case, if the particle misses a receptor initially, we have no information about
whether the second encounter will hit or miss a receptor. Thus the rise distance s
demarcates the regime of dependent subsequent hits and independent subsequent
hits. It is the latter events that are relevant for estimating the reaction rate.
We thus use the height s as the criterion for determining the number of times
that a particle independently hits the cell surface before diffusing away.

When a particle is a distance s above the cell surface, the probability that
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it eventually hits the cell again is, using Eq. (6.2),

ps =
a

a+ s
. (6.4a)

Thus the probability that the diffusing particle independently hits the cell n
times before diffusing away is pns (1− ps). Correspondingly, the average number
of independent hits to the surface is

⟨n⟩ =
∑
n>0

npns (1− ps) = (1− ps)
−1 =

a+ s

s
∼ a

s
. (6.4b)

The probability for a diffusing particle to not land on a receptor in a single
independent hitting event is

β = 1− Nπs2

4πa2
, (6.4c)

namely, the area fraction of the surface that is not covered by receptors. Thus
the probability pescape that a diffusing particle that reaches the cell but never
lands on a receptor is the probability that the particle always misses a receptor
in each of its independent hitting attempts. This is

pescape =
∑
n>0

(βps)
n(1− ps) =

1− ps
1− βps

=
4a

4a+Ns
. (6.4d)

The probability that a diffusing particle ultimately hits a receptor thus is

phit = 1− pescape =
Ns

4a+Ns
. (6.4e)

The final result for the reaction rate of a cell of radius a that is covered by
N receptors, each of radius s, is

k = 4πDa× Ns

4a+Ns
≡ 4πDa× efficiency . (6.5)

To understand the implication of this result, let’s use some numbers that typify a
cell: a = 1 micron, s = 10 nanometers, and N = 104. The area fraction covered
by the receptors is roughly 10−3, but the absorption efficiency of the cell is
roughly 2/3! Evidently, Mother Nature is very smart to not waste resources on
endowing a cell with too many receptors.

7. Wedge Domains

We now turn to the first-passage properties of diffusion in a two-dimensional
wedge domain with absorption when the particle hits the wedge boundary. One
of our motivations for studying this system is that first passage in the wedge can
be mapped onto a simple diffusive capture problem in one dimension that we’ll
treat in the next section. We will obtain first-passage properties in the wedge
geometry both by direct solution of the diffusion equation and also, for two
dimensions, in a more aesthetically pleasing fashion by conformal transformation
techniques, in conjunction with the electrostatic formulation. We also present
a heuristic extension of the electrostatic approach that allows us to infer, with
little additional computational effort, time-dependent first-passage properties in
the wedge from corresponding time-integrated properties.

14



Solution to the Diffusion Equation

We first solve the diffusion equation in the wedge to determine the survival
probability of a diffusing particle. While the exact Green’s function for this
system is well known [12, 13], we adopt the strategy of choosing an initial
condition that allows us to eliminate angular variables and deal with an effective
radial problem. This simplification is appropriate if we are interested only in
asymptotic first-passage properties.

The diffusion equation for the two-dimensional wedge geometry in plane
polar co-ordinates is

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r
+

1

r2
∂2c

∂θ2

)
, (7.1)

where c = c(r, θ, t) is the particle concentration at (r, θ) at time t, D is the
diffusion coefficient, and the boundary conditions are c = 0 at θ = 0,Θ, where
Θ is the wedge opening angle. To reduce this two-dimensional problem to an
effective one-dimensional radial problem, note that the exact Green’s function
can be written as an eigenfunction expansion in which the angular dependence
is a sum of sine waves of the form sin(nπθ/Θ), such that an integral number
of half-wavelengths fit within (0,Θ) to satisfy the absorbing boundary condi-
tions [13]. In this series, each sine wave is multiplied by a conjugate decaying
function of time, in which the decay rate increases with n. In the long time
limit, only the lowest term in this expansion dominates the survival probability.
Consequently, we obtain the long-time behavior by choosing an initial condition
whose angular dependence is a half sine-wave in the wedge. This ensures that
the time-dependent problem will contain only this single term in the Fourier
series.

We therefore define c(r, θ, t = 0) = πδ(r − r0)/(2Θr0) × sin(πθ/Θ). With
this initial distribution function and after the Laplace transform is applied, the
diffusion equation (7.1) becomes

sc(r, θ, s)− π

2Θr0
δ(r − r0) sin(πθ/Θ) = D

(
∂c2

∂r2
+

1

r

∂c

∂r
+

1

r2
∂2c

∂θ2

)
,

where c = c(r, θ, s). Substituting in the ansatz c(r, θ, s) = R(r, s) sin(πθ/Θ),
the angular dependence may now be separated and reduces the system to an
effective one-dimensional radial problem. By introducing the dimensionless co-
ordinate x = r

√
s/D, we find the modified Bessel equation for the remaining

radial co-ordinate,

R′′(x, s) +
1

x
R′(x, s)−

(
1 +

ν2

x2

)
R(x, s) = − ν

2Dx0
δ(x− x0), (7.2)

where ν = π/Θ and the prime now denotes differentiation with respect to x.
The general solution for x ̸= x0 is a superposition of modified Bessel func-

tions of order ν. Since the domain is unbounded, the interior Green’s function
(x < x0) involves only Iν , since Kν diverges as x → 0, while the exterior Green’s
function (x > x0) involves only Kν , since Iν diverges as x → ∞. By imposing
continuity at x = x0, we find that the Green’s function has the symmetric form
R(x, s) = AIν(x<)Kν(x>), with the constant A determined by the joining con-
dition that arises from integrating Eq. (7.2) over an infinitesimal radial range
that includes r0. This gives

R′
> |x=x0 −R′

< |x=x0= − ν

2Dx0
,
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from which A = ν/2D. Therefore the radial Green’s function in the wedge is

R(x, s) =
ν

2D
Iν(x<)Kν(x>), (7.3)

and its Laplace inverse has the relatively simple closed form [12, 13]

R(r, t) =
ν

4Dt
e−(r2+r20)/4Dt Iν

( rr0
2Dt

)
. (7.4)

With this radial Green’s function, the asymptotic survival probability is

S(t) ∼
∫ Θ

0

sin(νθ) dθ

∫ ∞

0

r R(r, t) dr. (7.5)

We can estimate this integral by noting that the radial distance over which the
concentration is appreciable extends to the order of

√
Dt. This provides a cutoff

r ≈
√
Dt in the radial integral in Eq. (7.5), within which the Gaussian factors

in R(r, t) can be replaced by one. Using the small-argument expansion of the
Bessel function, we then obtain

S(t) =

∫ Θ

0

sin(νθ) dθ

∫ ∞

0

r R(r, t) dr ∝
∫ √

Dt

0

1

Dt

(rr0
Dt

)ν

r dr ∼
(

r0√
Dt

)π/Θ

.

(7.6)

The basic result is that the survival probability of a diffusing particle in a wedge
of opening angle Θ decays with time as

S(t) ∼ t−π/2Θ ≡ t−α. (7.7)

The striking feature of this formula is that the exponent α depends on the wedge
opening angle in a non-trivial way, with α → ∞ as Θ → 0 and α → 1/4 for
Θ → 2π.

Conformal Transformations and Electrostatic Methods

Let’s now solve the same wedge problem by exploiting conformal transfor-
mations, together with the connection between first passage and electrostatics.
To set the stage for the wedge geometry, consider the first-passage probability
for a diffusing particle in two dimensions to an absorbing infinite line. This
problem may also be solved elegantly by the electrostatic formulation. In this
approach, the time-integrated concentration C(x, y) =

∫∞
0

c(x, y, t) dt obeys the
Laplace equation

∇2C(z) = − 1

2πD
δ(z − z0) ,

where z = (x, y) is the complex co-ordinate and the factor 1/(2πD) ensures the
correct normalization. Using the image method for two-dimensional electrostat-
ics, we find that the complex potential is

C(z) =
1

2πD
ln

z − z0
z − z∗0

=
1

2πD
ln

x− x0 + i(y − y0)

x− x0 + i(y + y0)
, (7.8)
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where the asterisk denotes complex conjugation. Finally, the time-integrated
flux that is absorbed at x coincides with the electric field at this point. This is

E(x|x0, y0) = −D
∂C(x, y)

∂y

∣∣∣∣
y=0

=
1

2π

(
1

y0 + i(x− x0)
+

1

y0 − i(x− x0)

)
=

1

π

y0
(x− x0)2 + y20

. (7.9)

We now use a conformal transformation to extend the result for the hitting
probability to the infinite line to the hitting probability in the wedge. Consider
the transformation w = f(z) = zπ/Θ that maps the interior of the wedge of
opening angle Θ to the upper half plane. In complex co-ordinates, the electro-
static potential in the wedge is

C(z) =
1

2πD
ln

zπ/Θ − z
π/Θ
0

zπ/Θ − (z∗0)
π/Θ

. (7.10)

From this expression and using the analogy between electrostatics and first
passage, we can extract time-integrated first-passage properties in the wedge.
For example, the probability of being absorbed at a distance x from the wedge
apex, when a particle begins at a unit distance from the apex along the wedge
bisector, is just the electric field at this point

E(x|x0, y0) =
1

Θ

xπ/Θ−1

1 + x2π/Θ
→ x−(1+π/Θ) for x → ∞ . (7.11)

Although the electrostatic formulation ostensibly gives only time-integrated
first-passage properties, we can adapt it to also give time-dependent features.
This adaptation is based on the following re-interpretation of the equivalence
between electrostatics and diffusion: an electrostatic system with a point charge
and specified boundary conditions is identical to a diffusive system in the same
geometry and boundary conditions, in which a continuous source of particles is
fed in at the location of the charge starting at time t = −∞. Suppose now that
the particle source is “turned on” at t = 0. Then, in a near zone that extends
out to a distance of the order of

√
Dt from the source, the concentration has

sufficient time to reach its steady-state value. Within this zone, the diffusive
solution converges to the Laplacian solution. Outside this zone, however, the
concentration is close to zero. This almost-Laplacian solution provides the time
integral of the survival probability up to time t. We can then deduce the survival
probability by differentiating the concentration that is due to this finite-duration
source.

Thus suppose that a constant source of diffusing particles at z0 inside the
absorbing wedge is turned on at t = 0. Within the region where the concen-
tration has had time to reach the steady state, |z0| < |z| <

√
Dt, the density

profile is approximately equal to the Laplacian solution, C(z) ∼ |z|−π/Θ. We
can neglect the angular dependence of C(z) in this zone, as this dependence is
immaterial for the survival probability. Conversely, for |z| >

√
Dt, the particle

concentration is vanishingly small because a particle is unlikely to diffuse such
a large distance. From the analogy between electrostatics and first passage, the
near-zone density profile is just the same as the time integral of the diffusive
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concentration. Thus, by using the equivalence between the spatial integral of
this near-zone concentration in the wedge and the time integral of the survival
probability, we have∫ t

0

S(t′) dt′ ≈
∫ √

Dt

0

r−π/Θ r dr ∼ t1−π/2Θ. (7.12)

Since the total density injected into the system equals t, the survival probability
in the wedge is roughly

∫ t

0
S(t′) dt′/t ∼ t1−π/2Θ/t, which gives S(t) ∼ t−π/2Θ.

8. Stochastic Hunting in One Dimension

What is the time dependence of the survival probability of a diffusing lamb
that is hunted by N diffusing lions? We define this survival probability as SN (t).
This toy problem is most interesting in a one-dimensional geometry where all
the lions are located to one side of the lamb. It is known [14] that this survival
probability asymptotically decays algebraically with time,

SN (t) ∼ t−βN , (8.1)

and the goal is to compute the decay exponent βN . As we shall discuss, the
decay exponent is known for N = 1 and N = 2 only: β1 = 1

2 , and β2 = 3
4 .

For N ≥ 3, βN grows slowly with N , and numerical simulations give β3 ≈ 0.91,
β4 ≈ 1.03, and β10 ≈ 1.4. The focus of this section is to derive β2 = 3

4 by a
simple geometric approach and to develop some analytical understanding of the
dependence of βN on N for N → ∞.

Let us begin by treating a lamb that starts at x0 > 0 and a single lion
that starts at x = 0. For simplicity, the diffusivities of the lamb and the lion
are assumed to both equal D. The separation between the lamb and the lion
thus diffuses with diffusion coefficient 2D. When this separation reaches zero,
the lamb has been eaten. This problem is just the classic first-passage problem
on the positive infinite line, except that the diffusion coefficient is 2D. The
probability that the lamb survives until time t is the same as the first-passage
time being greater than t. This probability therefore is

S1(t) =

∫ ∞

t

x0√
8πDt′3

e−x2
0/8Dt′ dt′ = erf

(
x0√
8Dt

)
∼ x0√

8πDt
. (8.2)

Thus the survival probability of the lamb asymptotically decays as t−1/2. While
the lamb is sure to die, its average lifetime is infinite. Thus a single diffusing
lion is not a particularly good hunter and it might starve before eating the lamb.

What happens when there are N = 2 lions? We again assume that the lions
start from the origin while the lamb starts at x0 > 0, and that the diffusivities
of all particles are the same. Let us label the positions of the lions as x1 and
x2, and the position of the lamb as x3 The lamb survives up to time t if the
conditions x3 > x2 and x3 > x1 always hold. We can give an insightful geometric
interpretation of this problem by viewing the motion of the three particles on the
line as equivalent to the motion of a single effective particle in three dimensions
with coordinates (x1, x2, x3). The constraints x3 > x2 and x3 > x1 mean that
the effective particle in three-space remains to the left of the plane x2 = x3 and
behind the plane x1 = x3 (Fig. 7(a)). This allowed region is a wedge of opening
angle Θ that is defined by the intersection of these two planes. If the particle
hits one of the planes, then one of the lions has eaten the lamb.
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Figure 7: (a) The allowed region for the effective particle that corresponds to the motion of
the lamb and two lions. (b) A view of the constraint planes perpendicular to the (1,1,1) axis.
The constraint plane x1 = x2 is also shown

This mapping therefore provides the lamb survival probability, since the
survival probability of a diffusing particle within this absorbing wedge asymp-
totically decays as Swedge(t) ∼ t−π/2Θ. What is the opening angle of this wedge?
We can determine this angle in a simple way by also including the plane x1 = x2

and then viewing the system along the (1, 1, 1) axis (Fig. 7(b)). It is then clear
that the wedge angle is 2π/3. Substituting this result in Eq. (7.7), we find that
β2 = 3

4 . Notice that S2(t) > S1(t)
2. This inequality reflects the fact that the

incremental threat to the lamb from the second lion is less than the first.
In general, we can map the motion of the lamb and N lions in one dimension

to a single effective particle in N + 1 dimensions, with absorption when the
effective particle hits any of the N constraint planes. However, the calculation
of the survival probability of the effective particle within the domain where
the effective particle is confined—known as a Weyl chamber—appears to be
intractable.

time

x

lions

lamb

Figure 8: Space-time trajectories of 6 lions and 1 lamb. Although the motion of each lion is
isotropic, the trajectory of the lion (whose identity may change) that happens to be closest
to the lamb (solid red curve) tends to move towards the lamb.
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While the problem for N = 3, 4, . . . lions is difficult, the problem becomes
much simpler for large N . To determine the lamb survival probability for large
N , we only need to focus on the lion closest to the lamb, because this last lion
ultimately kills the lamb. As shown in Fig. 8, the individual identity of this
last lion can change with time due to the crossing of different lion trajectories.
For large N , there is a systematic bias of the motion of the last lion, xlast(t).
This bias becomes stronger for increasing N , so that xlast(t) becomes smoother
as N increases (Fig. 9). This gradual approach of the last lion to the lamb is
the mechanism which leads to the survival probability of the lamb decaying as
t−βN , with βN a slowly increasing function of N .

4
64
1024

100 101 102 103 104 105

time

100

101

102

103

x l
as
t(t
)

Figure 9: Position of the last lion versus time for 4, 64, and 1024 lions.

To estimate the location of this last lion when N ≫ 1 lions are initially at
the origin, we use the extreme statistics condition [15]∫ ∞

xlast

N√
4πDt

e−x2/4Dt dx = 1. (8.3)

Equation (8.3) states that one lion out of an initial group of N is in the range
[xlast,∞]. Although the integral in Eq. (8.3) can be expressed in terms of the
complementary error function, it is instructive to evaluate it approximately in
a self consistent way by writing x = xlast + ϵ and re-expressing the integrand in
terms of ϵ. We thus find∫ ∞

0

N√
4πDt

e−x2
last/4Dt e−xlastϵ/2Dt e−ϵ2/4Dt dϵ = 1.

Now the second term in the integrand,

e−xlastϵ/2Dt ,

is non-negligible for ϵ < 2Dt/xlast. Over this range of ϵ, the third exponential
factor is of the order of

e−Dt/x2
last .
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If we use the result for xlast in Eq. (8.5), the above exponential factor becomes

e−1/(4 lnN) ,

which is very close to 1 for large N. If we thus ignore this term, the integral
above reduces to simple exponential decay, with the result

N√
4πDt

e−x2
last/4Dt 2Dt

xlast
= 1. (8.4)

We now define y = xlast/
√
4Dt andM = N/

√
4π, so that the above condition

can be simplified to y exp(ey
2

) = M , whose asymptotic solution is

y =
√
lnM

(
1− 1

4

ln(lnM)

lnM
+ . . .

)
.

To lowest order, this gives

xlast(t) ∼
√
4D lnN t ≡

√
AN t, (8.5)

for N finite. For N = ∞, xlast(t) would always equal t if an infinite number of
discrete random walking lions were initially at the origin. A more suitable initial
condition therefore is a concentration c0 of lions that are uniformly distributed
from −∞ to 0. In this case, only N ∝

√
c20Dt of the lions are “dangerous,”

that is, within a diffusion distance from the edge of the pack and thus potential
candidates for eating the lamb. Consequently, for N → ∞, the leading behavior
of xlast(t) becomes

xlast(t) ∼
√
2D ln(c20Dt) t . (8.6)

An important feature of the time dependence of xlast is that fluctuations in
this quantity decrease for large N (Fig. 9). Therefore the lamb and N diffusing
lions can be recast as a two-body system of a lamb and an absorbing boundary
which deterministically advances toward the lamb according to xlast(t) =

√
AN t.

This determinism is what makes the problem for large N tractable.
To solve this effective two-body problem, it is convenient to change coor-

dinates from (x, t) to (′= x − xlast(t), t) to fix the absorbing boundary at the
origin. By this construction, the diffusion equation for the lamb probability
distribution is transformed to the convection-diffusion equation

∂p(x′, t)

∂t
− xlast

2t

∂p(x′, t)

∂x′ = D
∂2p(x′, t)

∂x′2 , (0 ≤ x′ < ∞) (8.7)

with the absorbing boundary condition p(x′ = 0, t) = 0. In this reference
frame that is fixed on the average position of the last lion, the second term
in Eq. (8.7) accounts for the bias of the lamb towards the absorber with an
effective speed −xlast/2t. Because xlast ∼

√
AN t and x′ ∼

√
Dt have the same

time dependence, the lamb survival probability acquires a nontrivial dependence
on the dimensionless parameter AN/D. This behavior arises whenever there is
a coincidence of fundamental length scales in the system (see, e.g., [16] for other
such examples).

Equation (8.7) can be transformed into the parabolic cylinder equation by
first introducing the dimensionless length ξ = x′/xlast and making the following
scaling ansatz for the lamb probability density,

p(x′, t) ∼ t−βN−1/2C(ξ). (8.8)
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The power law prefactor in Eq. (8.8) ensures that the integral of p(x′, t) over all
space, namely the survival probability, decays as t−βN , and C(ξ) expresses the
spatial dependence of the lamb probability distribution in scaled length units.
This ansatz codifies the fact that the probability density is not a function of x′

and t separately, but is a function only of the dimensionless ratio x′/xlast(t).
Substituting Eq. (8.8) into Eq. (8.7), we obtain

D

AN

d2C

dξ2
+

1

2
(ξ + 1)

dC

dξ
+

(
βN +

1

2

)
C = 0. (8.9)

By introducing η = (ξ + 1)
√

AN/2D and C(ξ) = e−η2/4 D(η) in Eq. (8.9), we
are led to the parabolic cylinder equation of order 2βN [17]

d2D2βN

dη2
+

[
2βN +

1

2
− η2

4

]
D2βN

= 0, (8.10)

subject to the boundary condition, D2βN
(η) = 0 for both η =

√
AN/2D and

η = ∞. Equation (8.10) has the form of a Schrödinger equation for a quantum
particle of energy 2βN + 1

2 in a harmonic oscillator potential η2/4 for η >√
AN/2D, but with an infinite barrier at η =

√
AN/D [18]. For the long-time

behavior, we need to find the ground state energy in this potential. For N ≫ 1,
we may approximate this energy as the potential at the classical turning point,
that is, 2βN + 1

2 ≃ η2/4. We therefore obtain βN ∼ AN/16D. Using the value
of AN given in Eqs. (8.5) and (8.6) the decay exponent is

βN ∼


1
4 lnN N finite

1
8 ln t N = ∞ .

(8.11)

The latter dependence of βN implies that for N → ∞, the survival probability
has the log-normal form

S∞(t) ∼ exp
(
− 1

8 ln2 t
)
. (8.12)

The important feature of the exponent βN is its very slow increase with N . That
is, each successive lion that is added to the hunt has a decreasing influence on
the survival of the lamb. Indeed, only a small subset of the lions for large N
actually have a chance to catch the lamb.

9. The Expanding Interval

We have seen that the survival probability S(t) of a diffusing particle in a

fixed-length absorbing interval of length L asymptotically decays as e−π2Dt/L2

.
What happens if the interval length grows with time, L(t) ∼ tα? This sim-
ple question illustrates the relative effects of diffusion and the motion of the
boundary on first-passage properties. This interplay is a classic problem in the
first-passage literature, especially when the boundary motion matches that of
diffusion. Solutions to this problem have been obtained by a variety of methods
(see, e.g., [19–22]). Here we give a physics-based approach that is based on [23].

It is easy to infer the survival probability for a slowly expanding interval.
Here, slowly expanding means that the interval length grows slower than dif-
fusion. Consequently, the probability distribution of the particle spreads faster
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than the interval grows and so that the survival probability should decay rapidly
with time. Using an adiabatic approximation that one typically encounters in
basic quantum mechanics, we will show that S(t) ∼ exp

[
−At(1−2α)

]
, where A is

a constant. Conversely, for the rapidly expanding interval, α > 1/2, the particle
is unlikely reach the either end of the interval and the probability distribution is
close to that for free diffusion. This is the basis of the free approximation that
leads to a non-zero limiting value for S(t) as t → ∞.

In the marginal case where the interval expands at the same rate as diffusion,
L(t) =

√
At, a new dimensionless parameter arises—the ratio of the diffusion

length to the interval length. As we shall show, this leads to S(t) decaying as
a non-universal power-law in time, S(t) ∼ t−β , with β = (

¯
A,D) diverging for

A/D ≪ 1 and approaching zero for A/D ≫ 1.

Slowly Expanding Interval

For L(t) ≪
√
Dt, we invoke the adiabatic approximation [18], in which the

spatial dependence of the concentration for an interval of length L(t) is assumed
to be identical to that of the static diffusion equation at the instantaneous value
of L. This assumption is based on the expectation that the concentration in a
slowly expanding interval is always close to that of a fixed-size interval. Thus
we write

c(x, t) ≃ f(t) cos

(
πx

2L(t)

)
≡ cad(x, t), (9.1)

with f(t) to be determined. The corresponding survival probability is

S(t) ≈
∫ L(t)

−L(t)

cad(x, t) dx =
4

π
f(t)L(t). (9.2)

For convenience, we now define the interval boundaries as [−L(t), L(t)]. To
obtain f(t), we substitute approximation (9.1) into the diffusion equation, as in
separation of variables, to give

df

dt
= −

(
Dπ2

4L2

)
f −

( πx

2L2

) dL

dt
tan

(πx
2L

)
f. (9.3)

Notice that variable separation does not strictly hold, since the equation for f(t)
also involves x. However, when L(t) increases as (At)α with α < 1/2, the second
term on the right-hand side is negligible. Thus we drop this second term and
solve the simplified form of (9.3). We thereby find that the controlling factor of
f(t) is given by

f(t) ∼ exp

[
−Dπ2

4

∫ t

0

dt′

L2(t′)

]
= exp

[
− Dπ2

4(1− 2α)A2α
t1−2α

]
. (9.4)

Notice that f(t) reduces to a pure exponential decay for a fixed-length interval,
while for α → 1/2, Eq. (9.4) suggests a more slowly decaying functional form
for S(t).

Rapidly Expanding Interval

For a rapidly expanding interval, the escape rate from the system is small
and the absorbing boundaries should eventually become irrelevant. We therefore
expect that the concentration profile should approach the Gaussian distribution
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of free diffusion at long times [23]. We may then account for the slow decay of
the survival probability by augmenting the Gaussian with an overall decaying
amplitude. This free approximation is a nice example in which the existence of
widely separated time scales,

√
Dt and L(t), suggests the nature of the approx-

imation itself.
According to the free approximation, we write

c(x, t) ≈ S(t)√
4πDt

e−x2/4Dt ≡ cfree(x, t) .

Although this concentration does not satisfy the absorbing boundary condition,
the inconsistency is negligible at large times, since the density is exponentially
small at the interval boundaries. We may now find the time dependence of the
survival probability by equating the probability flux to the interval boundaries,
2D| ∂c∂x |, to the loss of probability within the interval. For L(t) = (At)α, this
flux is

S(t)Aα

√
4πD

tα−3/2 exp

(
−A2α

4D
t2α−1

)
, (9.5)

which rapidly goes to zero for α > 1/2. Since this flux equals −dS
dt , it follows

that the survival probability approaches a non-zero limiting value for α > 1/2,
and that this limiting value goes to zero as α → 1/2. Explicitly,

dS(t)

dt
= − 1

S(t)
B tα−3/2 exp

(
−C t2α−1

)
, (9.6)

where B ≡ Aα/
√
4πD and C ≡ A2α/(4D). We now introduce y = Ct2α−1 and

change the integration variable from t to y. After some straightforward steps
we have

lnS(t=∞) = − B

2α− 1

∫ ∞

0

( y

C

)1/2

e−y dy

y

= − B

C1/2

1

2α− 1
Γ
(
1
2

)
, (9.7)

where Γ(·) is the Euler gamma function. Thus a diffusing particle has a non-
zero probability to survive forever when the interval grows fast enough. This
ultimate survival probability rapidly goes to zero as α → 1/2 from above.

Marginally Expanding Interval

For the marginal case of α = 1/2, the adiabatic and the free approximations
are ostensibly no longer appropriate, since L(t) =

√
At and

√
Dt have a fixed

ratio. However, for A/D ≪ 1 and A/D ≫ 1, we might hope that these methods
could still be useful. Thus we continue to apply these heuristic approximations
in their respective domains of validity, A/D ≪ 1 and A/D ≫ 1, and check their
accuracies a posteriori. We will see that the survival probability exponents
predicted by these two approximations are each quite close to the exact result
except for A/D ≈ 1.

When the adiabatic approximation is applied, the second term in Eq. (9.3)
is, in principle, non-negligible for α = 1/2. However, for A ≪ D, the interval
still expands more slowly (in amplitude) than free diffusion and the error made
by neglecting the second term in Eq. (9.3) may still be small. The solution to
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this crudely truncated equation immediately gives f(t), which, when substituted
into approximately (9.2) leads to Sad(t) ≈ t−βad , with

βad ≈ Dπ2

4A
− 1

2
. (9.8)

The trailing factor of −1/2 should not be taken very seriously, because the
neglected term in Eq. (9.3) leads to additional corrections to βad that are also
of the order of 1.

0 2 4 6 8

A/D
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free

Figure 10: The survival probability exponent β for the marginal case L(t) = (At)1/2. Shown
is the numerically exact value of β (red, solid) from solution of Eq. (9.13), together with the
predictions from the adiabatic and the free approximations, Eqs.(9.8) and (9.10) respectively
(dashed curves).

Similarly for A ≫ D, the free approximation gives

dS

dt
≈ −2D

∣∣∣∣∂c(x, t)∂x

∣∣∣∣
x=

√
At

= −S(t)

t

√
A

4πD
e−A/4D. (9.9)

This again leads to the non-universal power law for the survival probability,
Sfree ∼ t−βfree , with

βfree =

√
A

4πD
e−A/4D. (9.10)

As shown in Fig. 10, these approximations are surprisingly accurate over much
of the range of A/D.

To complete our discussion, we outline a first-principles analysis for the
survival probability of a diffusing particle in a marginally expanding interval [23].
When L(t) =

√
At, a natural scaling hypothesis is to write the density in terms

of the two dimensionless variables

ξ ≡ x

L(t)
and ρ =

√
A

D
.
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We now seek solutions for the concentration in the form,

c(x, t) = t−β−1/2 Cρ(ξ), (9.11)

where Cρ(ξ) is a two-variable scaling function that encodes the spatial depen-
dence. The power law prefactor ensures that the survival probability, namely,
the spatial integral of c(x, t), decays as t−β , as defined at the outset of this
section.

After substituting Eq. (9.11) into the diffusion equation, the scaling function
satisfies the ordinary differential equation

1

ρ2
d2C

dξ2
+

ξ

2

dC

dξ
+

(
β +

1

2

)
C = 0 .

Then by introducing η = ξ
√
ρ/2 and C(ξ) = e−η2/4 D(η), we transform this

into the parabolic cylinder equation [25]

dD

dη2
+

[
2β +

1

2
− η2

4

]
D = 0. (9.12)

When the range of η is unbounded, this equation has solutions for quantized
values of the energy eigenvalue E = 2β + 1

2 = 1
2 ,

3
2 ,

5
2 , . . . [18].

For our interval problem, the range of η is restricted to |η| ≤
√

A/2D. In
the equivalent quantum mechanical system, this corresponds to a particle in
a harmonic-oscillator potential for |η| <

√
A/2D and an infinite potential for

|η| >
√
A/2D. For this geometry, a spatially symmetric solution to Eq. (9.12),

appropriate for the long-time limit for an arbitrary starting point, is

D(η) ≡ 1
2

[
D2β(η) +D2β(−η)

]
,

where Dν(η) is the parabolic cylinder function of order ν. Finally, the rela-
tion between the decay exponent β and

√
A/D is determined implicitly by the

absorbing boundary condition, namely,

D2β(
√

A/2D) +D2β(−
√
A/2D) = 0. (9.13)

This condition for β = β(A/D) simplifies in the limiting cases A/D ≪ 1
and A/D ≫ 1. In the former, the exponent β is large and the second two
terms in the brackets in Eq. (9.12) can be neglected. Equivalently, the physical
range of η is small, so that the potential plays a negligible role. The solution to
this limiting free-particle equation is just the cosine function, and the boundary
condition immediately gives the limiting expression of Eq. (9.8), but without
the subdominant term of −1/2. In the latter case of A ≫ D, β → 0 and
Eq. (9.12) approaches the Schrödinger equation for the ground state of the
harmonic oscillator. In this case, a detailed analysis of the differential equation
reproduces the limiting exponent of Eq. (9.10) (see [23] for details). These
provide rigorous justification for the limiting values of the decay exponent β
which we obtained by heuristic means.

The Khintchine Iterated Logarithm Law

In the marginal situation of L(t) = (At)1/2, we have seen that the survival
probability S(t) decays as a power law t−β(A,D), with β → 0 as A/D → ∞. This
decay becomes progressively slower as A increases. On the other hand, when
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L(t) ∝ tα, with α strictly greater than 1/2, the survival probability at infinite
time is greater than zero. This leads to the following natural question: what is
the nature of the transition between certain death, defined as S(t → ∞) = 0,
and a non-zero survival survival probability, S(t → ∞) > 0?

The answer to this question is surprisingly rich. There is an infinite sequence
of transitions, where L(t) acquires additional iterated logarithmic time depen-
dences, which define regimes where S(t) assumes progressively slower functional
forms. The first term in this series is known as the Khintchine iterated logarithm
law ([3, 24]). While the Khintchine law has been obtained by rigorous meth-
ods, we can also obtain this intriguing result, as well as the infinite sequence of
transitions, with relatively little computation by the free approximation.

Because we anticipate that the transition between life and death occurs when
L(t) grows slightly faster than (At)1/2, we make the hypothesis that A ∝ u(t),
with u(t) growing slower than a power law in t. Now that L(t) increases more
rapidly than the diffusion length (Dt)1/2, the free approximation should be
asymptotically exact, since it already works extremely well when L(t) = (At)1/2

with A large. Within this approximation, we rewrite Eq. (9.9) as

lnS(t) ∼ −
∫ t dt′

t′

√
A

4πD
e−A/4D. (9.14)

Here we neglect the lower limit, since the free approximation is valid only as
t → ∞, where the short-time behavior is irrelevant. In this form, it is clear that
for L = (At)1/2, lnS decreases by an infinite amount for t → ∞ because of the
divergence of the integral. Thus S(t → ∞) → 0. To make the integral converge,
the other factors in the integral must somehow cancel the logarithmic divergence
that arises from the factor dt/t. Accordingly, let us substitute L(t) =

√
4Dtu(t)

into the approximation (9.14). This gives

lnS(t) ∼ − 1√
π

∫ t dt′

t′

√
u(t′) e−u(t′).

To simplify this integral, it is helpful to define x = ln t so that

S(x) ∼ − 1√
π

∫ ln t

dx
√
u(x) e−u(x). (9.15)

To lowest order, it is clear that if we choose u(x) = λ lnx with λ > 1, the integral
converges as t → ∞. Thus the asymptotic survival probability is positive.
Conversely, for λ ≤ 1, the integral diverges and the particle surely dies. In this
latter case, evaluation of the integral to lowest order gives

S(t) ∼ exp

[
− (ln t)1−λ

√
λ ln ln t√

π(1− λ)

]
λ < 1. (9.16)

This decay is slower than any power law, but faster than any power of logarithm,
that is, t−β < S(t) < (ln t)−γ for β → 0 and γ → ∞.

What happens in the marginal case of λ = 1? Here we can refine the criterion
between life and death still further by incorporating into u(x) a correction that
effectively cancels the subdominant factor

√
u(x) in Eq. (9.15). We therefore

define u(x) such that e−u(x) = 1/x(lnx)µ. Then in terms of y = lnx, Eq. (9.15)
becomes

S(y) ∼ − 1√
π

∫ ln ln t dy

yµ−1/2

(
1 +

µ ln y

y

)
. (9.17)
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This integral now converges for µ > 3/2 and diverges for µ ≤ 3/2. In the latter
case, the survival probability now lies between the bounds (ln t)−γ < S(t) <
(ln ln t)−δ for γ → 0 and δ → ∞. At this level of approximation, we conclude
that when the cage length grows faster than

aL∗(t) =
√

4Dt
(
ln ln t+ 3

2 ln ln ln t+ . . .
)

(9.18a)

a diffusing particle has a non-zero asymptotic survival probability, while for a
interval that expands as L∗, there is an extremely slow decay of the survival
probability.

By incorporating successively finer corrections into u(x) and following the
same logic that led to Eq. (9.17), an infinite series of correction terms can
be generated in the expression for L∗(t). By this approach, the ultimate life-
death transition corresponds to an ultra-slow decay in which S(t) has the form
S(t) ∼ limn→∞ 1/ lnn t, where ln2 t ≡ ln ln t and lnn t ≡ ln lnn−1 t. It is remark-
able that the physically motivated and relatively naive free approximation can
generate such an intricate solution. As a final note, P. Erdös sharpened the
result of Eq. (9.18a) considerably and found that L∗(t) has the infinite series
representation

L∗(t) =
√

4Dt
(
ln2 t+

3
2 ln3 t+ ln4 t+ ln5 t+ . . .

)
, (9.18b)

in which only the coefficient of the term multiplying ln3 t is different than 1.

10. Birth-Death Dynamics

As our last topic, we determine the kinetics of the birth-death process. We
imagine a collection of identical particles, each of which gives birth to an iden-
tical offspring with rate λ, and each particle can independently die with rate µ.
The goal is to determine the time dependence of the population size. As one
can easily imagine, this is a classic model for a variety of biological processes
and there is vast literature on this general topic (see, e.g., [26, 27]).

The most interesting case physically is the symmetric situation of equal
birth and death rates for each particle, λ = µ, so that the average population
is static. For µ > λ, the population size decreases as e−(µ−λ)t, which quickly
goes to zero. In the opposite case, the population grows exponentially with
time and an additional mechanism is needed to cut off this growth. For λ = µ,
the average population is fixed, but the time dependence of the distribution of
the number of particle exhibits non-trivial kinetics on the positive infinite line.
We can alternatively view the birth-death process as a continuous-time random
walk on the line, but with birth and death rates for the entire population that
are linear functions of n. That is, the overall process is symmetric but moves
faster for a larger population.

Let n denote the number of particles in the population. The time dependence
of the average number of particles obeys the rate equation ⟨ṅ⟩ = (λ − µ)⟨n⟩ =
0, where the overdot denotes the time derivative. Thus the average number
of particles is conserved, as is clear from the condition λ = µ. That is, the
birth-death process for λ = µ is a martingale. More meaningful information
is obtained from the full population distribution. For simplicity in the ensuing
formulas, we now set λ = µ = 1 without loss of generality. Let Pn(t) denote the
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probability that the population consists of n particles at time t. This probability
distribution changes in time according to

Ṗn = (n− 1)Pn−1 − 2nPn + (n+ 1)Pn+1 , (10.1)

where we define P−1 = 0, so that this equation is valid for all n ≥ 0. For the
standard continuous-time random walk, the corresponding master equation is
Ṗn = Pn−1 − 2Pn + Pn+1. We know that this random walk eventually hits
the origin, but that the average time to do so is infinite. We want to find the
behavior of these two first-passage properties for the birth-death process.

A convenient and powerful way to solve the master equation (10.1) is by the
generating function method. We first define the generating function

g(z, t) =
∑
n≥0

Pn(t)z
n ,

then take each of the equations for Ṗn, multiply it by zn, and then sum over all
n. In doing so, we will encounter terms from the right-hand side of (10.1), for
example, the second term on the right, that looks like∑

n≥0

2nPn z
n,

which we can recast as

2z
∂

∂z

∑
n≥0

Pn z
n = 2z

∂g

∂z
.

By this device of converting multiplication by n to differentiation for all three
terms on the right-hand side of (10.1), we recast (10.1) as

gt = (z2 − 2z + 1)gz = (1− z)2gz , (10.2)

where the subscripts now denote partial differentiation and the arguments of g
are not written for compactness.

This first-order partial differential equation can be simplified further by
defining the variable y via dy = dz/(1− z)2, which implies that y = 1/(1− z),
or equivalently, z = 1 − y−1. In terms of the variable y, (10.2) is converted
to the classic wave equation gt = gy. This equation has the general solution
g = F (t+y), where the function F is, in principle, arbitrary, and whose explicit
form is fixed by the initial condition. Let us specialize to the simple case of
the single-particle initial condition, namely, Pn(t = 0) = δn,1. This immedi-
ately leads to g(z, t=0) = z. Then at t = 0 the function F is simply given by
F (y) = z. However, we must express the right-hand side in terms of the true
dependent variable y, which means that F (y) = 1 − y−1. Thus for any t ≥ 0
the generating function is

g(z, t) = F (y + t) = 1− 1

t+ y
. (10.3)

To extract the individual terms in the power-series representation of the
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generating function, we now need to re-express this function in terms of z:

g(z, t) = 1− 1

t+ 1/(1− z)
= 1− 1− z

(1 + t)(1− zx)

= 1− 1− z

1 + t

∑
n≥0

(xz)n

= 1− 1

1 + t

∑
n≥0

(xz)n +
z

1 + t

∑
n≥0

(xz)n , (10.4)

where, for notational simplicity, we introduce x ≡ t/(1+t). From the last line of
the above, we can immediately extract all the Pn(t) and obtain the well-known
formulas:

P0(t) =
t

1 + t
Pn(t) =

tn−1

(1 + t)n+1
n ≥ 1 . (10.5)

With these results, we now obtain the first-passage properties of the birth-
death process. The quantity P0(t) may be interpreted as the probability that
the population has gone extinct by time t, while S(t) = 1 − P0(t) = 1/(1 + t)
is the probability that the population survives up to to time t. Thus extinction
is sure to occur, but the average extinction time is infinite, just as for isotropic
diffusion. The main distinction with isotropic diffusion is that S(t) ∼ t−1/2 for
diffusion, while S(t) ∼ t−1 for the birth-death process. Thus survival is less
likely when the hopping rate is a linearly increasing function of n.

Concluding Comments

These lecture notes have given a whirlwind tour through some basic and some
not-so-basic aspects of first-passage processes. At the level of fundamentals, I
presented some classic results about first passage in the simplest geometries of
the infinite half line and the finite interval, including first-passage probabilities,
first-passage times, and splitting probabilities. I also discussed the intriguing
connection between first passage and electrostatics. I then presented a number
of applications. Some, like the reaction rate of a cell and the birth-death process
are classic and have many immediate applications. Some, like the survival of
a diffusing lamb that is hunted by N diffusing lions and survival of a diffusing
particle in a growing interval may seem somewhat idiosyncratic. However, the
solution methods are quite generic and may prove useful in many other settings.
I hope that the uninitiated reader will enjoy learning about some of these appli-
cations of first-passage processes and will be inspired to delve further into this
fascinating topic.

Much of the material in Secs. 8 and 9 stems from joint work with Paul
Krapivsky. I thank him for pleasant collaborations on these projects, as well
as pointing out Ref. [28] to me. I also thank the National Science Foundation
for financial support over many years that helped advance some of the topics
discussed in these notes, most recently through NSF grant DMR-1910736.
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