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Abstract

Explainable deep learning models are advanta-

geous in many situations. Prior work mostly

provide unimodal explanations through post-

hoc approaches not part of the original system

design. Explanation mechanisms also ignore

useful textual information present in images.

In this paper, we propose MTXNet, an end-to-

end trainable multimodal architecture to gen-

erate multimodal explanations, which focuses

on the text in the image. We curate a novel

dataset TextVQA-X, containing ground truth

visual and multi-reference textual explanations

that can be leveraged during both training and

evaluation. We then quantitatively show that

training with multimodal explanations com-

plements model performance and surpasses

unimodal baselines by up to 7% in CIDEr

scores and 2% in IoU. More importantly, we

demonstrate that the multimodal explanations

are consistent with human interpretations, help

justify the models’ decision, and provide use-

ful insights to help diagnose an incorrect pre-

diction. Finally, we describe a real-world e-

commerce application for using the generated

multimodal explanations.

1 Introduction

The ability to explain decisions through voice, text

and visual pointing, is inherently human. Deep

learning models on the other hand, are rather

opaque black boxes that don’t reveal very much

about how they arrived at a specific prediction. Re-

cent research effort, aided by regulatory provisions

such as GDPRs “right to explanation” (Goodman

and Flaxman, 2017), have focused on peeking be-

neath the hood of these black boxes and designing

systems that inherently enable explanation. Ex-

plainable multimodal architectures can also be used

to reduce the effort required for manual compliance
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Figure 1: Sample Ground Truth Labels

checks of products sold by online retailers. Further,

explanations can be provided as evidence to jus-

tify decisions and help improve customer and seller

partner experiences.

We choose the TextVQA task proposed by Singh

et al. (2019) for realizing the system, motivated by

two reasons. First, the task is multimodal and is

naturally suited for generating multimodal expla-

nations. Second, the task specifically focuses on

the text in the image, known to encode essential

information for scene understanding and reasoning

(Hu et al., 2020), and allows for better quality of

explanations including the text recognized. Several

approaches have been proposed for the TextVQA

task (Singh et al., 2019; Hu et al., 2020; Mishra

et al., 2019; Biten et al., 2019; Kant et al., 2020),

but they do not include a means for explaining the

model decision. In addition to allowing humans

to interpret the model’s decision, we believe the

explanations can also provide valuable insight into

what component could be improved.

Most prior explanation approaches (Hendricks

et al., 2016, 2018; Li et al., 2018) have been uni-

modal and do not focus on the text in the image.

Only recently, Huk Park et al. (2018) and Wu and

Mooney (2019) generated multimodal explanations

for the VQA and Activity Recognition tasks. They

curated datasets (VQA-X, ACT-X) consisting of

single reference ground truth textual explanations

and relied on implicit attention-based visual expla-
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nations without any access to labeled visual ground

truth. However, their models cannot read and in-

corporate text in the image into the explanations.

In addition, it is debatable whether attention mech-

anisms are indeed explanations (Wiegreffe and Pin-

ter, 2019; Jain and Wallace, 2019). Moreover, other

works (Das et al., 2017) have shown that current

VQA attention models do not seem to look at the

same regions as humans, resulting in inconsistent

explanations.

The goal of our work is two-fold. First, to collect

a multimodal explanations dataset (TextVQA-X)

thereby highlighting the need to curate datasets

where explanations are not post-hoc but part of

the initial interpretable model design. Non post-

hoc explanations which may not be faithful to the

model decision but are in line with human expla-

nations are still beneficial to end users. Figure

1 provides a representative example. Second, to

implement a multimodal explanation system that

has the ability to not only read and reason about

the text in the image, but more importantly jus-

tify its decision with natural language and visually

highlight the evidence, useful to even non-experts

(Miller et al., 2017). The explanations and model

decision must be tightly coupled and mutually in-

fluence each other through an end-to-end trainable

architecture. In summary, our contributions are as

follows:

• We present TextVQA-X, a novel dataset of

human-annotated multimodal explanations

that includes ground truth segmentation maps

and multi-reference textual explanations con-

taining text in the image. The raw dataset is

available publicly 1. (Section 3)

• We propose the first end-to-end trainable

MTXNet architecture that produces high qual-

ity textual and visual explanations, focusing

on the text in the image. (Section 4)

• Qualitative and quantitative results show that

textual and visual explanations help justify a

model’s decision and help diagnose the rea-

sons for an incorrect prediction. (Section 5)

• We describe a real-world e-commerce system

that can leverage the multimodal explanations

and also highlight its challenges. (Section 6)

2 Related Work

VQA / TextVQA. The VQA task (Antol et al.,

2015) has received a lot of research attention in

1https://github.com/amzn/

explainable-text-vqa

terms of both datasets (Antol et al., 2015; Johnson

et al., 2017; Hudson and Manning, 2019) and meth-

ods (Anderson et al., 2018; Ben-Younes et al., 2017;

Lu et al., 2019). Oftentimes however, these models

predict an answer without completely understand-

ing the question and do not change answers across

images (Agrawal et al., 2016). Further, they ignore

the text in the image and tend to focus on visual

components such as objects. To address this limi-

tation, the TextVQA task was proposed by Singh

et al. (2019) and has received recent research at-

tention (Kant et al., 2020; Hu et al., 2020; Biten

et al., 2019; Mishra et al., 2019). However, not

having reliable explanation mechanisms that fo-

cus on the text in the image, as part of the system

design makes it difficult to diagnose prediction fail-

ures. Our work, thus allows for better diagnosis

of model failures through explanations in line with

human interpretations and focus on the text in the

image.

Explanations. Prior explanation approaches

(Shortliffe and Buchanan, 1975; Van Lent et al.,

2004; Zeiler and Fergus, 2014; Goyal et al., 2016;

Ribeiro et al., 2016; Selvaraju et al., 2017; Das

et al., 2017) focus on parts of the input that is rele-

vant to the model’s decision, but not on explicitly

generating explanations as model predictions. Hen-

dricks et al. (2016, 2018) were the first to generate

natural language justifications for image classifiers.

Unlike our model however, explanations are uni-

modal and there are no reference human explana-

tions. Closer to our objective Huk Park et al. (2018)

generate multimodal explanations and curate a new

VQA-X dataset. Wu and Mooney (2019) extend

their work to ensure explanations can be traced

back to an object ensuring local faithfulness. How-

ever, their explanations do not contain the text in

the image. They use implicit attention for visual

explanations and have no access to visual ground

truth during training. Further, they use a single

textual explanation reference during training. In

contrast, our work incorporates multimodal expla-

nations which focuses on the text in the image.

3 TextVQA-X Dataset

To train and evaluate multimodal explanation mod-

els that focus on the text in the image, we collect the

TextVQA-X dataset by human annotation of a sub-

set of samples from the TextVQA dataset (Singh

et al., 2019).

https://github.com/amzn/explainable-text-vqa
https://github.com/amzn/explainable-text-vqa


Figure 2: TextVQA-X Dataset Statistics

3.1 Ground Truth Label Collection

We used the Sagemaker Ground Truth (Amazon-

AWS, 2018) platform to create a labeling task for

gathering visual and textual explanations. Human

annotators were asked to provide a single textual

explanation that answers the question "Why do you

think <answer> is the correct answer for the given

question and image pair?". Specific instructions

added that annotators should try to incorporate the

answer and/or the text in the image as part of their

explanation. The annotators were also asked to

make use of a brush to segment image regions rel-

evant to both the answer and written explanation.

Sample annotations are shown in Figure 1. Each

image and question pair can have up to 5 distinct hu-

man annotators allowing for multi-reference train-

ing and evaluation (Zheng et al., 2018). A single

segmentation map is obtained by using a threshold

of 0.5 obtained as an average over all annotations.

Bad actors were identified and most were removed

through a combination of heuristics and manual

checks. Overall, we collected more than 67K ex-

planations among over 800 unique workers.

3.2 TextVQA Explanation Dataset

(TextVQA-X).

Dataset Statistic Value

Num. Unique Images 11681
Num. Questions 18096
Num. Unique Questions 15374
Num. Visual Explanations 67055
Num. Textual Explanations 67055
Num. Unique Textual Explanations 61999
Avg. Num Textual Explanations per Question 3.71
Avg. Words per Textual Explanation 7.36
Avg. Characters per Textual Explanation 36.92
Textual Explanation Vocab Size 17910

Table 1: TextVQA-X Dataset Summary

In order to obtain a measure of the quality of

explanations and to help filter out bad actors, we

make use of the Self-BLEU-4 metric (Zhu et al.,

2018). The Self-BLEU score is used to measure

how one sentence resembles the rest in a gener-

ated collection by regarding one sentence as the

hypothesis and the rest as references. A higher

Self-BLEU score implies higher similarity of the

hypothesis with all the references. A lower Self-

BLEU implies higher diversity and lesser overlap.

Although we would like to have several diverse

textual explanations, we noticed that most good

textual explanation annotations have overlap with

others. The average Self-BLEU-4 across all anno-

tations was 0.21 indicating consistent overlap and

quality.

Comparison with VQA-X and VQA-HAT

datasets. With respect to textual explanations, the

TextVQA-X includes multi-references with an av-

erage of 3.71 explanations for each QA pair that

can be utilized for both training and testing. In

contrast, VQA-X (Huk Park et al., 2018) contains

an average of 1.27 explanations with a single tex-

tual explanation for QA pairs in the training set

and three textual explanations for test/val QA pairs.

VQA-HAT (Das et al., 2017) does not include tex-

tual explanations. As far as visual explanations

are concerned, there are a number of distinctions

among these datasets. First, both VQA-X and

VQA-HAT are defined on the VQA task, which

does not require reading text in the. In contrast,

the TextVQA-X is specifically designed to focus

on the text in the image. Second, TextVQA-X in-

cludes one ground truth visual explanation for both

training and testing (total 67K), whereas VQA-X

includes explanations only as part of testing for a

small random subset (total 6K). And third, similar

to VQA-X, TextVQA-X annotators were asked to

directly segment the relevant image region. On the

contrary, VQA-HAT annotations were collected by

having humans unblur the images and are more

likely to introduce noise when irrelevant regions

are uncovered.



4 Multimodal Text-in-Image

Explanation Network (MTXNet)

We design our Multimodal Text-in-Image Explana-

tion Network (MTXNet) to allow for end-to-end

multitask training of answer prediction, text gen-

eration and semantic segmentation extending the

M4C model proposed in (Hu et al., 2020). In the

subsequent subsections we describe each of the

individual components in more detail.

4.1 Graph Attention Network (GAT)

Figure 4: An example of how to build the graph

Many questions in the TextVQA dataset require

the model to acknowledge the spatial relationship

between objects and OCR tokens. To better encode

the relationship between objects and OCR tokens

and subsequently generate better quality explana-

tions, we leverage graph neural networks. The

ideal way to build the graph is to link together rel-

evant components such as question words, OCR

tokens and object labels. However, there are two

limitations in the existing TextVQA dataset that

prevent us from adopting this approach. First, the

OCR tokens may be misspelled due to an inaccu-

rate OCR system. And second, the object labels

are not included and only the bounding box coor-

dinates are present. Thus, for our model we build

the graph using only the visual inputs (object and

OCR region bounding boxes). Each object location

and OCR token is treated as a node in the graph.

Whenever the bounding box associated with node i

is contained in node j, we add an edge from node

j to node i. An example is presented in Figure 4.

We then make use of the Graph Attention Network

(GAT) (Veličković et al., 2017) to operate on the

structured data. Unlike Graph Convolutional Net-

works (GCN) (Kipf and Welling, 2016) that treat

each adjacent node equally, GATs incorporate at-

tention into the layer-wise propagation rule and

allows the model to variably weigh adjacent nodes

based on relevancy.

4.2 Multimodal Transformer (MMT)

The multimodal transformer operates on three

modalities - question words, visual objects and

OCR tokens. The feature definitions are identical

to that proposed in M4C (Hu et al., 2020) with the

addition of textual explanation embeddings whose

embedding process resembles that of the question

words. The object embedding is obtained as a com-

bination of the 2048-dim Faster R-CNN detector

output and 4-dimensional relative location feature

[xmin/Wim, ymin/Him, xmax/Wim, ymax/Him].
The OCR token embedding is obtained as a com-

bination of 300-dim FastText vector (Bojanowski

et al., 2017), 2048-dim output from fc6 features/

fc7 weights from Faster R-CNN detector for

the bounding box region, 604-dim Pyramidal

Histogram of Characters (PHOC) vector (Almazán

et al., 2014), and 4-dim relative location feature

[xmin/Wim, ymin/Him, xmax/Wim, ymax/Him].
Features are projected to a common d-dimensional

semantic space used for decoding and prediction.

The prediction takes place through a dynamic

pointer network (Vinyals et al., 2015) that allows

to either predict from a fixed vocabulary or from

OCR tokens extracted from the image.

4.3 Multireferences for Textual Explanations

Neural text generation tasks such as machine trans-

lation, image captioning and summarization typi-

cally only consider a single reference for each ex-

ample during training (Zheng et al., 2018). In our

case however, considering just a single reference

for training is insufficient because of the inherently

subjective nature of textual explanations. Thus we

leverage the multi-references we have collected in

the TextVQA-X dataset during both training and

evaluation. We use the sample one technique for

incorporating multi-references during training. We

randomly pick one of the available references in

each training epoch.

4.4 Visual Explanations through Semantic

Segmentation

Visual explanations are obtained through a seman-

tic segmentation module (Feature Pyramid Net-

work - FPN (Kirillov et al., 2017)). They are made

an explicit and natural component of end-to-end

training by leveraging ground truth label supervi-

sion. Incorporating explicit visual explanations

is known to achieve state-of-the-art results on se-

mantic segmentation benchmarks (Li et al., 2018).



Figure 3: Our Multimodal Text-in-Image Explanation Model (MTXNet) architecture generates multimodal expla-

nations. Explanations and Answers are utilized as a part of the iterative autoregressive decoding procedure.

Moreover, this allows the model to explain the im-

age region in focus, while also providing a means

for feedback. On another note, in the complimen-

tary domain of NLP, the use of attention as a means

of model explanation has been a topic of consider-

able debate (Wiegreffe and Pinter, 2019; Jain and

Wallace, 2019). We thus leverage ground truth

label supervision and explicitly ensure the visual

explanation to be part of the training objective. To

incorporate the multimodal embedding from the

MMT into the segmentation module, we reshape,

pad and concatenate the output with the raw input

image along the channel. Thus, the overall input

channels for the segmentation module increases

to five, with 3 color channels and 2 multimodal

channels. The output of the segmentation model

is a continuous mask with a higher value implying

greater relevancy to the inputs. The mask may be

binarized through thresholding.

4.5 Training

The MTXNet architecture is end-to-end trainable

with three distinct tasks (1) answer prediction (2)

textual explanation generation and (3) visual expla-

nation through semantic segmentation. We ensure

cross-modal feedback between the textual explana-

tions and predicted answers by leveraging a phased

training process where we randomly choose be-

tween one of three choices (1) predict answer then

textual explanation (2) predict textual explanation

then answer and (3) predict both answer and textual

explanation independently. Each task corresponds

to an individual part of the training objective. For

the losses of answer prediction (Lans) and textual

explanation generation (Ltext) we use the binary

cross entropy with logits 2. For semantic segmen-

tation (Lvis) we use the dice loss (Sudre et al.,

2017). The naive approach to combine multiple

losses is to use a predetermined weighted linear

sum of the individual losses. However, the model

performance is sensitive to the weights which are

hyperparameters and expensive to tune. We thus

use a multitask learning loss with homoscedastic

uncertainty as proposed by Kendall et al. (2018).

The overall objective is present in Equation 1. The

weights {wans, wtext, wvis} corresponding to the

loss terms of the three individual tasks are learned.

L =
∑

i

Liexp(−wi) + wi, i ∈ {ans, text, vis} (1)

5 Experiments

In this section, we detail the experimental setup,

present quantitative results with ablations and fi-

nally analyze qualitative results.

5.1 Experimental Setup

This subsection discusses the dataset splits, model

training, hyperparameter settings and evaluation

metrics.

Dataset Splits. We use the TextVQA-X dataset

described in Section 3. We choose a random 80/20

split for train and test. The dataset split statistics

are present in Table 2. Each question is associated

with a single image, one or more textual explana-

tions and a single visual explanation. The OCR

tokens and object regions are already present in the

original TextVQA dataset.

2https://pytorch.org/docs/stable/

generated/torch.nn.BCEWithLogitsLoss.

html

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html


Split #Img. #Ques. #Text Expl. #Vis. Expl.

train 10379 14475 53536 14475
test 3354 3619 13507 3619

Table 2: Train / Test Splits of TextVQA-X Dataset

Preprocessing. The dynamic pointer network is

allowed to choose between a fixed 5000 word vo-

cabulary and a maximum of 100 OCR tokens per

image. For each image, we use the top 36 possible

objects extracted by Faster R-CNN sorted in de-

scending order of confidence score attribute. The

average number of edges per image was 104. Each

image included an average of 13 OCR tokens. The

text explanations and answers are capped to a max-

imum length of 16 and 12 tokens respectively. For

the visual explanations, we use a FPN decoder with

ResNeXt50 encoder and 320 × 320 × 5 input fea-

ture size. The MMT consists of 4 layers and 12

attention heads. The dimension of the joint em-

bedding space is 184 × 768 which is padded and

resized to 320×320×2 and concatenated with the

3-channel image input.

Model training and hyperparameters. We train

the MTXNet model end-to-end in a supervised set-

ting using the Pythia 3 framework. We use a batch

size of 128 and train for a maximum of 8500 epochs

using Adam optimizer. The learning rate is set to

1e − 4 with no weight decay. The best model is

chosen corresponding to the lowest train loss at an

evaluation granularity of every 100 epochs. The

entire training task varies from 14-20 hours on 8

Nvidia K80 GPUs.

Evaluation Metrics. Each question in the

TextVQA dataset has 10 human-annotated answers,

and the predicted answer accuracy is measured via

a soft voting in accordance with the VQA task eval-

uation script 4. We evaluate the textual explanations

using the standard BLEU-4 (Papineni et al., 2002),

ROUGE (Lin, 2004), METEOR (Banerjee and

Lavie, 2005) and CIDEr (Vedantam et al., 2015)

metrics computed with the coco-caption 5

code . All the text generation metrics account for

multi-references by averaging the individual scores.

Finally, we evaluate the visual explanations using

IoU (Intersection over Union) score with a thresh-

old of 0.5.

3https://github.com/facebookresearch/

mmf
4https://visualqa.org/evaluation
5https://github.com/tylin/coco-caption

5.2 Ablation Study

We ablate MTXNet and compare quantitatively

with a related model on our TextVQA-X dataset

through automatic evaluations for answers and ex-

planations. The results are present in Table 3.

Comparison with existing baselines. We com-

pute the performance of the baseline model M4C

(Hu et al., 2020) on the TextVQA-X test set (with-

out explanations) and obtain an answer accuracy

of 35.23%. Using the MTXNet architecture and

evaluating on the TextVQA-X test set, we obtain

an answer accuracy of 36.27%. The addition of

explanations thus complements the MTXNet per-

formance.

Unimodal vs. Multimodal explanations We no-

tice that each modality mutually influences the

other as the model learns to jointly optimize for

both modalities of explanations and the answer pre-

diction. Excluding visual explanations results in

the largest drop of up to 7% in CIDEr scores of the

textual explanations. Similarly, the absence of text

explanations results in a 2% drop in IoU of visual

explanations. More importantly, we notice that the

multimodal explanations provide visual and tex-

tual rationale into a models decision. This further

accentuates the value of designing multimodal ex-

planation systems.

GAT better captures structural dependencies.

The removal of GAT from the MTXNet architec-

ture adversely impacts the quality of explanations

and answers. The greatest drop of 7% is observed

for the CIDEr metric. We believe the GAT helps

better encode the relationship between objects and

OCR tokens enhancing the relationship reasoning

ability. The image region corresponding to the text

is also highlighted better as seen in the 2% increase

in IoU when GAT is included in MTXNet.

Multi-reference training improves text genera-

tion. Training with multi-references significantly

outperforms training with a single randomly chosen

sample fixed for all epochs. The largest increase

of up to 25% was noticed in CIDEr score, with the

increase being consistent across all text generation

metrics. This underscores the benefits of having

multi-references for both training and evaluation

and designing systems that utilize this effectively.

5.3 Qualitative Samples

As can be seen in Figure 5, the MTXNet is able

to accurately answer the given question while also

justifying its decision through textual and visual

https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/mmf
https://visualqa.org/evaluation
https://github.com/tylin/coco-caption


Ablation Approach
Visual Explanation Textual Explanation

IoU B R M C

No visual explanation (VE) MTXNet (GAT + MR + TE ) - 25.16 47.63 21.76 88.43
No textual explanation (TE) MTXNet (GAT + MR + VE ) 16.10 - - - -

No graph attention (GAT) MTXNet (MR + TE + VE ) 16.55 27.87 49.28 21.61 88.57

No multireferences (MR) MTXNet (GAT + TE + VE ) 17.52 5.92 28.05 11.65 70.60

Consolidated architecture MTXNet (GAT + MR + TE + VE ) 18.86 31.07 53.87 22.06 95.07

Table 3: Quantitative Evaluation of Answer and Explanations. All metrics are in %. VE: visual explanation, TE:

textual explanation, GAT: graph attention network, MR: multi-references. Evaluated automatic metrics: Intersec-

tion over Union (IoU), BLEU-4 (B), METEOR (M), ROUGE (R), CIDEr (C).

Figure 5: Examples where the MTXNet model pro-

duces high quality explanations.

Figure 6: Examples where the MTXNet model fails.

explanations. In certain cases, the OCR engine

could be inaccurate and lead to wrong tokens being

predicted, but the overall answer and explanations

are correct. Figure 6 depicts two failure cases. The

upper subimage indicates this could be due to incor-

rect visual localization while the lower subimage in-

dicates a potential OCR prediction error, although

the visual explanation is correct. Despite being

generic and dull the textual explanations are cor-

rect. In other cases, the model fails due to incorrect

visual localization as seen in Figure 7.

Explanations help explain incorrect decisions

of model. In Figure 7, we see that the right answer

to the question is “target”. However, the model

Figure 7: Example where the explanation is consistent

with an incorrect prediction.

predicts “dollar tree”. From the visual and textual

explanations we see that the image region local-

ized is incorrect and the model fails to grasp the

meaning of “fading”. This potentially results in it

focusing on the more prominent “dollar tree” text.

Such an analysis provides insights into the com-

ponent of the system that is failing and deserves

further attention.

6 Applications to E-Commerce

Businesses

E-commerce businesses need to comply with

industry-wide, and country-specific regulations, to

provide accurate and useful information of prod-

ucts to improve customer experience that leads to

more business. Our long-term goal with explain-

able multimodal architectures is to automate and

reduce manual effort required for compliance and

product detail checks. This will enable businesses

to scale compliance and customer experience im-

provement efficiently without linear increases in

cost. Further, these architectures help validate if

models are performing as intended and used for the

right purposes.

A potential customer experience issue arises

when the physical product in a warehouse is dif-

ferent from that uploaded by a seller on the prod-

uct details page. A possible reason could be that



the seller or manufacturer labeled the product er-

roneously when they packaged it. Many sellers

taking advantage of lower cost of manufacturing

in a global supply chain, may not be able to audit

every batch of product leaving the factory. Such

discrepancies will almost certainly lead to prod-

uct returns, because the customer didn’t get what

they wanted and increases costs. Such discrepan-

cies may also be due to more nefarious reasons,

such as opportunistic bad actors taking advantage

of sellers that have successful products by intro-

ducing poorer quality or mismatched offers at a

lower price to unsuspecting customers. Examples

of compliance issues include detecting products

that contain batteries and chemicals to comply with

transportation and logistics regulations, as well as

identifying products that require additional safety

documentation and checks, such as products that

may have unintended use by children (e.g. toys and

products that may end up as toys should not have

heavy metals or other poisons that cause illness or

death when accidentally ingested). While not all

answers can be obtained with product images alone,

manual investigation processes utilize these images

to identify potential risks that warrant additional

steps in the process (e.g. lab testing).

Rather than manually auditing products in a

warehouse, product images can be automatically

captured at scale, and passed through models that

detect such discrepancies. With the help of subject

matter experts, attributes such as quantity, color

and brand names, and other common misleading

attributes are identified apriori. Relevant questions

that target these attributes are formulated. The im-

age and question are then inputs to a multimodal

explainable system (such as MTXNet) that can pro-

vide an answer and justify its prediction through

multimodal explanations. Answers can then be

compared against the information extracted from

the product detail pages on the website. Any dis-

crepancies found can be noted and a selling partner

can be provided evidence through the multimodal

explanations to take corrective steps.

An example use-case is as follows. Given a large

container of cereal, with smaller boxes within, a

potential question is: “How many cereal boxes are

within the container?” . This information is usu-

ally written on the larger container present in the

warehouse and can be answered based on reading

the text in the image. If there is any discrepancy

encountered in the number of boxes of cereal in the

warehouse and that listed on the website, appropri-

ate action can be taken. Other similar questions

include: “How heavy is the product?”, “Is the chair

red?”, “Does the item contain allergens?”, and “Did

the product pass the lead test?”.

The challenges with the use of such explainable

systems are two-fold. First, since there can be

multiple stakeholders with diverse expertise and

expectations, we need to clearly define the level of

abstraction at which they interact with the system.

For instance, while a scientist can use the explana-

tions to improve the model, a business operations

associate may use the explanations to identify and

audit product discrepancies. Second, we need fine

grained evaluation methodologies and metrics that

take into account the stakeholders as well.

7 Conclusion

A central tenet of explainable AI is to create a suite

of tools and frameworks that result in explainable

models without sacrificing learning performance

and allow humans to understand and trust AI mod-

els. As Miller et al. (2017) argues, for explain-

able AI to succeed, we should draw upon exist-

ing principles and create strategies that are more

people-centric. Unfortunately most prior expla-

nation approaches have been post-hoc, unimodal,

ignore text present in the image and not always

in accordance with human interpretation. Further,

there is a paucity of labeled multimodal explana-

tion datasets. The research presented in this pa-

per shows that existing TextVQA systems can be

rather easily adapted to produce multimodal expla-

nations that focus on the text in the image when

given access to ground truth annotations. We cu-

rate the TextVQA-X dataset consisting of visual

and textual explanations. We then present a novel

end-to-end trainable architecture, MTXNet, that

generates multimodal explanations focusing on the

text in the image, in line with human interpretation

and surpasses unimodal baselines (7% in CIDEr

scores and 2% in IoU) while complimenting model

performance. We also show how the system may

be applicable in the e-commerce space to reduce

effort for manual audit of compliance checks and

improve customer experience. Results of this re-

search open the door to design of explanainable

models part of the original system design that ef-

fectively takes advantage of available ground truth

multimodal explanation annotations. Future work

involves incorporating visual features as part of the

transformer architecture.
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