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Abstract. A first order four-valued logic, called DDT, is presented in the paper as an
extension of Belnap’s logic using a weak negation and establishing an appropriate semantic
for the predicate calculus. The logic uses a simple algebraic structure, that is the smallest
non trivial interlaced bilattice on the four truth values, thus resulting in a boolean algebra on
the set of truth values. The logic is a language for reasoning under uncertainty, enabling to
capture hesitation due either to inconsistent or incomplete information, while keeping a clear
distinction between these epistemic states. The logic was originally developed for preference
modelling purposes (for which a brief account is given in the paper). The paper demonstrates
and discusses the equivalence between the semantics of this logic and of rough sets semantics.
On this basis, this papers presents the possibility of inducing rules from examples, that can
be integrated in systems whose inference is expressed in the above logic. Such an approach
enhances the potentialities of the use of rough sets in classification, reasoning and decision
support.

1 Introduction

Contradictory information is a common situation in real life and in everyday human reason-
ing. Moreover humans are normally able to act both under such “contradictory” situations
and in “absence” of information. From this perspective it is known that classical logic fails
to be a good representation of human reasoning since any inconsistency allows the deduction
of everything and absence of information simply is not considered. Classical logic enables to
deduce all the possible theorems from a given set of sentences automatically. The introduc-
tion of new information (in the form of a new sentence) will change nothing (if the sentence
is consistent with the already given set) or will destroy the conclusions (if it is inconsistent).
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The problem of reasoning under inconsistency was faced in paraconsistent logics (see da
Costa, 1974; Rescher and Brandom, 1980). The problem of inconsistent information is also
present in Pawlak’s (1982) seminal work on rough sets (see also Pawlak, 1991). Trying to de-
scribe objects under a set of attributes may result in ambiguous classification since identical
descriptions may correspond to objects belonging to different categories.

The paper aims to present a first order extension of Belnap’s four- valued logic (see Bel-
nap 1976 and 1977) with strong connectives, which is weakly paraconsistent, as well as some
applications. A specific claim we demonstrate in the paper is the equivalence between rough
sets and the semantics of the logic presented. The paper is organised as follows. In section
1 the basic idea of the four-valued logic is presented and its underlying algebraic properties
are discussed. In section 2 the first order extension of Belnap’s logic with strong connectives
is defined. In section 3 some relevant properties of the logic are presented. In section 4, a
brief account of the application of the logic for preference modeling purposes is presented.
In section 5, we demonstrate and discuss the equivalence between the logic’s semantics and
rough sets. Some open problems are discussed at the end of the paper.

2 Four truth values

The four values introduced by Belnap in his two seminal papers (Belnap 1976 and 1977) are
of a clear epistemic nature. Actually these truth values represent different states where an
agent (natural or artificial) may find himself/herself when asked to answer a query. Given
a sentenceφ, the agent may have been told that “φ holds”, that “φ does not hold”, both or
nothing. The problem is how the agent should react in any of these cases, independently of
the ontology ofφ since (s)he is obliged to provide an answer. The logic presented tries to
model the epistemic nature of reasoning without introducing epistemic operators such as the
modal ones of knowledge and belief. The basic idea is to characterise some basic states in
which an agent may find himself/herself through a four valued valuation of his/her language.
The four values are:
- true (t): there is evidence that is true and there is no evidence that is false;
- false (f ): there is evidence that is false and there is no evidence that is true;
- both (k): there is evidence that is true and false;
- unknown (u): there is no evidence that is either true or false;
and we define the four corresponding epistemic states as the “true” one, the “false” one,
the “contradictory” one and the “unknown” one. The logic we develop will therefore be a
calculus on epistemic states and not on the ontology of the language.

2.1 Lattices and Bilattices

Let us first introduce some basic definitions and notations (see also Ginsberg 1988, Fitting,
1991) limited to complete lattices.

Definition 2.1 A complete latticeL is a triplet 〈T,t,u〉 whereT is a partially ordered set,
t andu being the joint and the meet operators, respectively.

Therefore we have:



∃ � ⊆ T × T : ∀x, y ∈ T : x t y = glb�(x, y) x u y = lub�(x, y)

Definition 2.2 A complete bilatticeB is a 5-tuple〈T,t,u,+, •〉 whereT is a twice par-
tially ordered set,t andu being the joint and the meet operators of the first partial order,
respectively, and+ and • being the joint and meet operators of the second partial order,
respectively.

Therefore we have:

∃ �1,�2 ⊆ T × T : ∀x, y ∈ T :

x t y = glb�1(x, y) x u y = lub�1(x, y)

x + y = glb�2(x, y) x • y = lub�2(x, y)

We restrict the field by considering a particular class of bilattices known as “interlaced
bilattices” (see Fitting, 1991).

Definition 2.3 An interlaced bilattice is a complete bilattice such that meets and joints of
one order are monotone with respect to the other order of the bilattice. That is:

∀x, y, z, w ∈ T, x �1 y andz �1 w, thenx • z �1 y • w

∀x, y, z, w ∈ T, x �2 y andz �2 w, thenx u z �2 y u w

The concept of monotonicity is introduced as a basic condition for a bilattice to be inter-
laced. Interlacity is the minimum property of a bilattice to ensure it is not just two lattices
stuck together. However, the concept of monotonicity will also be used in order to define
basic transformations of a lattice (and a bilattice). In Scott’s work (1972, 1982) on “approxi-
mation” lattices (mathematically equivalent to complete lattices) the concept of “continuity”
is introduced as a necessary property of a function in order to be accepted as a transformation
on the lattice. In the discrete case (as in this case) continuity reduces to monotonicity. Such a
property is important as monotonic transformations are the only ones that preserve the order
in a lattice. We can therefore define some properties of the basic unary transformations of an
interlaced bilattice (keeping in mind monotonicity).

Definition 2.4 Given an interlaced bilatticeB:
N1 : T 7→ T is a monotone transformation on�1 iff

∀x, y, x �1 y ⇔ N1(x) �1 N1(y)

N2 : T 7→ T is a monotone transformation on�2 iff

∀x, y, x �2 y ⇔ N2(x) �2 N2(y)

I : T 7→ T is an interlaced monotone transformation on�1 and�2 iff

∀x, y, x �2 y ⇔ I(x) �1 I(y)

∀x, y, x �1 y ⇔ I(x) �2 I(y)



2.2 Lattice representation of four truth values
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Figure 1. The smallest non trivial interlaced bilatticeΛ.

Using Scott’s results on approximation lattices (see Scott 1972 and 1982) Belnap (1976
and 1977) ordered the four truth values on two lattices one named “information” lattice,
the other “truth” lattice. Not surprisingly, these two lattices form the smallest non trivial
interlaced bilattice (see Ginsberg 1988 and Fitting, 1991). Such a bilattice is shown in figure
1 and denoted as the bilatticeΛ. Following the information order (thek one) we readx �k y
as “y approximates the information at least as well asx”. The glbk is the valueu and the
lubk is the valuek. Following the t truth order we readx �t y as “y is true at least as
x is”. The glbt is the valuef and thelubt is the valuet. In this context, negations are
monotone transformations on a lattice with the duality property, that isH is a negationiff it is
a monotone transformation on the bilattice (see definition 1.4) and,∀x,∈ B H(H(x)) = x
(duality property). In fact, imposing the monotonicity of negation is the only way to preserve
the structure of the bilattice and its interlaced property.

Belnap developed his propositional logic using a monotone transformation on thek lattice
as a negation and as basic binary connectives, the conjunction which corresponds to the meet
on thet lattice and the disjunction which corresponds to the joint on thet lattice. He then
defined implication as a two-valued binary connective such that “x→y” is true iff x �t y and
false otherwise.

Such a logic however, lacks any specific semantics and is too weak to be used as calculus.
Following the pioneering work of Dubarle (1963), we therefore tried to develop a stronger
logic which could allow a first order calculus and connectives strong enough to represent both
four valued and two valued sentences.

The basic extensions made to the propositional logic introduced by Belnap are the fol-
lowing.

1. Introduce a weak negation6∼ (to be read“perhaps not”, which is an interlaced mono-
tone transformation of theΛ with duality. We therefore have the usual strong negation



¬ as defined by Belnap as well as a weak negation. The truth tables of the two negations
are shown in table 1 (on the use of two negations, see also Fages and Ruet, 1997).

α t k u f

¬α f k u t

6∼α k t f u

Table 1. The truth tables of the two negations.

2. Define implication “→” as follows:
α→β=def¬6∼¬6∼α∨β
The reasons for such a definition will become clearer in the next section.

The resulting logic is a functionally complete propositional logic as has already been
shown by Dubarle (1963) and it corresponds to a Boolean algebra on the bilatticeΛ. Ruet
(1996) also demonstrated the soundness and completeness of a practically equivalent logic
(see also Fages and Ruet, 1997; the difference is only semantic, the weak negation in DDT is
the complement of the weak negation introduced by Ruet, 1996). A similar functionally com-
plete four valued logic was proposed by Bergstra et al., (1995), while extensions of Belnap’s
logic can be found in Font and Moussavi, (1993) and Kaluzhny and Muravitsky (1993).

3 A first order four valued logic

3.1 Syntax

An alphabet of the first order languageL, henceforth called DDT, consists of (for a prelimi-
nary version, see Doherty et al., 1992):
- a denumerable set ofindividual variables(possibly subscripted):x1, x2 · · · y1, y2 · · ·
- the logical connectives“∨” (or), “∧” (and), “→” (implication), “∼” (complementation),
” 6∼” (weak negation) and “¬’ (strong negation),
- theunary operators“T” (true), “F” (false), “U” (unknown), “K” (both), “4” (presence of
truth),
- thequantifiers“∀ (for all) and “∃” (exists),
- the constantsT ,K, U , F ,
- the symbols “(” and “)” serving as punctuation,
- a countable set ofpredicate constants(i, p, q, r, ...) of positive arity.
We use greek lettersα, β, γ, · · · to represent general formula of the language. Well-formed
formula are defined as usual. Ifα, β are wff, then¬α, 6∼α, Tα, α∧β, α∨β etc. are wff.

In the following we give the truth tables of the principal connectives. In Table 2, we
provide the truth tables of the negations and their combination. In table 3, we provide the
truth tables of the three basic binary operations, the conjunction, the disjunction and the
implication.



α 6∼α ∼6∼α ∼α ¬α ¬6∼α ¬∼6∼α ¬∼α

t k u f f k u t
k t f u k f t u
u f t k u t f k
f u k t t u k f

Table 2. The truth tables of¬, 6∼ and∼ and their combinations.

From an algebraic point of view these eight combinations represent one of the Sylow
subgroups of the group of all permutations of four elements and precisely the one preserving
complementarity betweent andf and betweenk andu. Under such a property it is easy
to observe that the “complementation” can be defined through the other two negations. The
following identities are true (the proofs are trivial from the truth table).

∼α ≡ ¬6∼¬6∼α ≡ 6∼¬6∼¬α
¬¬α ≡ α
∼∼α ≡ α
6∼6∼α ≡ α.

This is not a surprising result. Actually, only¬ and 6∼ are negations (fulfilling mono-
tonicity and duality) while∼ (which is not a monotone transformation) should be viewed as
an abbreviation of¬6∼¬6∼ which represents in turn the complement on the bilattice. It is easy
to observe that the negation corresponding to the monotone transformation on thet lattice
can be defined as the sequence6∼¬6∼. Moreover, the implication introduced corresponds to
the conventional strong monotonic implication. In factα→β should be read as“either the
complement ofα or β” .

We now introduce the truth tables for the basic binary operators.

∧ u f t k

u u f u f
f f f f f
t u f t k
k f f k k

∨ u f t k

u u u t t
f u f t k
t t t t t
k t k t k

→ t k u f

t t k u f
k t t u u
u t k t k
f t t t t

Table 3. The truth tables of∧, ∨ and→.

A two-valued fragment of the language, called DDT2, can be created by introducing some
strong unary operators. They are defined as follows:
- Tα=defα∧∼¬α.
- Fα=def∼α∧¬α.
- Uα=def∼6∼α∧¬6∼α.
- Kα=def 6∼α∧6∼¬α.
- 4α=defTα∨Kα.
- 4¬α=defFα∨Kα.



The truth tables for the defined operators are presented in table 4. It is easy to verify that
4α ≡ T(α∨6∼α) and4¬α ≡ T(¬α∨6∼¬α).

α Tα Kα Uα Fα 4α 4¬α
t t f f f t f
k f t f f t t
u f f t f f f
f f f f t f t

Table 4. Truth Tables for the strong unary operators.

3.2 Semantics

The logic introduced deals with uncertainty. A setA may be defined, but the membership of
an objecta to the set may not be certain either because the information is not sufficient or
because the information is contradictory.

In order to distinguish these two principal sources of uncertainty, the knowledge about the
“membership”of a to A and the“non-membership”of a to A are evaluated independently
since they are not necessarily complementary. From this point of view, from a given knowl-
edge, we have two possible entailments, one positive, about membership and one negative,
about non-membership. Therefore, any predicate is defined by two sets, its positive and its
negative extension in the universe of discourse. Since the negative extension does not neces-
sarily correspond to the complement of the positive extension of the predicate we can expect
that the two extensions possibly overlap (due to the independent evaluation) and that there
exist parts of the universe of discourse that do not belong to either of the two extensions. The
four truth values capture these situations.

More formally we have:

A similarity typeρ is a finite set of predicate constantsR, where eachR has an aritynR ≤
ω. Every alphabet uniquely determines a class offormulas. Relative to a given similarity type
ρ, R(x1, . . . , xm) is an atomic formula iffx1, . . . , xm are individual variables,R ∈ ρ, and
nR = m. Similarly, (x = y) is an atomic formula iffx andy are variables. The definitions
of L[ρ] formulas, free variables, etc. are defined in the usual way. In this paper, formulas are
denoted by the lettersα, β, γ, · · ·, possibly subscripted.

A structureor modelM for similarity typeρ consists of a non-empty domain|M | and, for
each predicate symbolR ∈ ρ, an ordered pairRM = 〈RM+

, RM−〉 of sets (not necessarily
a partition) ofnR-tuples from|M |. In fact, an individual can be in the two sets or in neither
of them.

A variable assignmentis a mapping from the set of variables to objects in the domain of
the model. Capital letters from the beginning of the alphabet are used to represent variable
assignments.

The truth definition for DDT is defined via two semantic relations,|=t (true entailment)
and|=f (false entailment), by simultaneous recursion as in the following definition (due to
the structure introduced in the case of “not true entailment”6|=t does not coincide with the



false entailment and in the case of “not false entailment”6|=f does not coincide with the true
entailment). Each formula is univocally defined through its model whichis however, a couple
of sets, the “positive” and “negative” extensions of the formula.

Definition 3.1 LetM be a model structure andA a variable assignment.

1. M |=t R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ RM+
.

2. M |=f R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ RM−
.

3. M 6|=t R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ |M | \RM+
.

4. M 6|=f R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ |M | \RM−
.

5. M |=t ¬α[A] iff M |=f α[A].

6. M |=f ¬α[A] iff M |=t α[A].

7. M 6|=t ¬α[A] iff M 6|=f α[A].

8. M 6|=f ¬α[A] iff M 6|=t α[A].

9. M |=t 6∼α[A] iff M |=t α[A].

10. M |=f 6∼α[A] iff M 6|=f α[A].

11. M 6|=t 6∼α[A] iff M 6|=t α[A].

12. M 6|=f 6∼α[A] iff M |=f α[A].

13. M |=t (α∨β)[A] iff M |=t α[A] or M |=t β[A].

14. M |=f (α∨β)[A] iff M |=f α[A] andM |=f β[A].

15. M 6|=t (α∨β)[A] iff M 6|=t α[A] andM 6|=t β[A].

16. M 6|=f (α∨β)[A] iff M 6|=f α[A] or M 6|=f β[A].

17. M |=t (α∧β)[A] iff M |=t α[A] andM |=t β[A].

18. M |=f (α∧β)[A] iff M |=f α[A] or M |=f β[A].

19. M 6|=t (α∧β)[A] iff M 6|=t α[A] or M 6|=t β[A].

20. M 6|=f (α∧β)[A] iff M 6|=f α[A] andM 6|=f β[A].



21. M |=t ∀xα[A] iff M |=t α[A′] for all A′ differing withA at most atx.

22. M 6|=t ∀xα[A] iff M 6|=t α[A′] for all A′ differing withA at most atx.

23. M |=f ∀xα[A] iff M |=t α[A′] for anA′ differing withA at most atx.

24. M 6|=f ∀xα[A] iff M 6|=t α[A′] for anA′ differing withA at most atx.

It is now possible to introduce an evaluation functionv(α) mappingL in to the set of
truth values{t, k, u, f} as follows:
- v(α) = t iff M |=t α[A] andM 6|=f α[A]
- v(α) = k iff M |=t α[A] andM |=f α[A]
- v(α) = u iff M 6|=t α[A] andM 6|=f α[A]
- v(α) = f iff M 6|=t α[A] andM |=f α[A]

Recalling that the truth values are ordered on the bilatticeΛ, it is easy to verify that the
evaluation function previously defined fulfills the following properties:
- v(α∧β) = mint(v(α), v(β))
- v(α∨β) = maxt(v(α), v(β))
- v(α→β) = t iff v(α) �t v(β)
- v(α ≡ β) = t iff v(α) = v(β)
where subscriptt indicates the “truth” dimension of the bilatticeΛ.

From the above definitions, it is easy to see that whenM |=t α[A], formula α can be
“true” or “contradictory” which in any case implies that there is presence of truth inα. Such
a consequence relation introduces a kind of “ambiguity” since it does not allow to assign a
truth value univocally (actually we need the “false consequence relation”). We can therefore
define a“strong consequence”relation which may correspond to the case where formulaα,
in a variable assignment A, has exactly the truth value “true”. This is typical of two-valued
valuations.

Definition 3.2 (Strong Consequence.)A formulaα is truein a modelM iff M |=t α[A] and
M 6|=f α[A] for all variable assignmentsA and we writeM |≡α[A]. A formulaα is satisfiable
iff α is true in a modelM for someM . A set of formulasΓ is said to be astrong conse-
quenceor strongly entailsa formulaα (written Γ|≡α) when for all modelsM and variable
assignmentsA, if M |≡βi[A], for all βi ∈ Γ, thenM |≡α[A].

See Thomason and Horty (1988) and Fenstad et. al. (1987) for an account of related
logics and their applications.

4 Some properties of DDT

4.1 Theorems of DDT

Proposition 4.1 The following formulas hold in the DDT logic.

1. 6∼α ≡ (α∨K)→(α∧K).



2. T6∼α ≡ K(α∧¬α).

3. 6∼α∧6∼β→6∼(α∧β).

4. α∧6∼β→6∼(α∧β).

5. 6∼α∧β→6∼(α∧β).

6. (α→β)→((α→(β→γ))→(α→γ)).

7. α→((α→β)→β)).

8. α∧β→β.

9. α∧β→α.

10. α→(β→(α∧β)).

11. α→β∨α.

12. β→β∨α.

13. α∨∼α.

14. ¬∀xφ(x) ≡ ∃x¬φ(x).

15. ¬∃xφ(x) ≡ ∀x¬φ(x).

16. 6∼∀xφ(x) ≡ ∀x¬6∼¬φ(x).

17. 6∼∃xφ(x) ≡ ∃x¬6∼¬φ(x).

Proof. Trivial from truth tables and semantics.

The following formulas do not hold in DDT.

1. α∧¬α→β.

2. β→α∨¬α.

4.2 Paraconsistency

DDT is a paraconsistent logic. From the previous section we see that the“reduction ad ab-
surdum” law does not hold in this logic and that this is sufficient to characterise it. However,
two observations should be made.

1. The same law may be valid if we substitute the “strong negation” by the “complemen-
tation”. The following therefore holds:
- α∧∼α→β.
- β→α∨∼α.



2. In the two-valued fragment of the DDT logic, using formulas containing the strong
unary operatorsT,K,U,F,4, the law is again valid. The following therefore holds:
- Tα∧T¬α→β.
- Tα∧¬Tα→β.
- T(α∧¬α)→β.
- β→Tα∨¬Tα.

Since the logic contains non-paraconsistent fragments we will call it a“weakly paracon-
sistent logic”.

5 Preference modeling applications

Preference modeling problems have been the original stimulus for the development of DDT
logic. Preference modeling is a fundamental activity in decision aiding processes where
a decision- maker’s preferences have to be represented in order to identify a choice or a
ranking among a set of alternatives (for more details see Roubens and Vincke, 1985 or Vincke,
1992). In such situations, uncertainty and/or ambiguity are very common, either because the
available information is uncertain and/or imprecise or because the decision-maker is not sure
and/or inconsistent. Decision aid calls for more or less“action here and now”. In other words
decision-makers have to make a decision (whatever that means) in a precise time horizon,
provided a specific amount of resources and information - knowledge is available. Therefore,
no one cares what the definitely optimal choices may be, while a locally satisfactory solution
is searched for (see Simon, 1979). Under such a perspective, uncertainty may not always be
always reducible to more stable and sure situations, hence the necessity to study alternative
formalisms for preference modelling (see also Kacprzyk and Roubens, 1988).

From a decision point of view, the distinction between uncertainty due to lack of in-
formation and uncertainty due to contradictory information is of capital importance since it
generates different operational attitudes. In the first case, uncertainty may be reduced (if pos-
sible) to gathering more information (or the relevant information), while in the second case
some conflicts, inconsistencies or contradictions have to be solved. When decision-makers
are not sure it is always useful to know why.

The DDT language captures this kind of reasoning in a very clear and intuitive way. It
has therefore been used as the basic formalism under which a non-conventional theory about
preference modelling could be developed. In Tsoukiàs and Vincke (1995) a new preference
structure, namedPC, is introduced and axiomatised, while in Tsoukiàs and Vincke (1997)
a semantical investigation, from a decision point of view, of thePC preference structure is
conducted.

The basic ideas of this approach are the following. Preferential information is usually
captured under a binary relationS (s(x, y): x is at least as good asy). Given any two objects
x andy, the relationS may be established between them evaluating both positive and negative
reasons.

Conventional preference models use the well-known〈P, I, R〉 preference structure where
(see also Roubens and Vincke, 1985):
- P is strict preference;∀x, y p(x, y) ⇔ s(x, y)∧¬s(y, x)
- I is indifference;∀x, y i(x, y) ⇔ s(x, y)∧s(y, x)



- R is incomparability;∀x, y p(x, y) ⇔ ¬s(x, y)∧¬s(y, x)
under the implicit hypothesis that negative reasons againstS are the complement of positive
reasons. However, if we keep the evaluation of positive and negative reasons between such
crisp and sure situations independent, some hesitation may occur either due to lack of relevant
information when an objectx is compared to an objecty or vice versa and/or contradictory
information when an objectx is compared to an objecty or vice-versa (for examples see
Tsoukìas, 1994 or Tsoukiàs and Vincke, 1997). Therefore, between each pair of relations,
two more relations can be introduced (one for each source of hesitation) and precisely:
- betweenP andI, the relationsK andH; positive reasons are clear, but negative reasons
are not;
- betweenP andR, the relationsV andQ; negative reasons are clear, but positive reasons
are not;
- betweenR andI, the relationsU andJ ; symmetric hesitation
plus relationL betweenR andI (non symmetric hesitation).

These ten relations constitute thePC preference structure that can be defined using the
DDT language as follows:
- ∀x, y Tp(x, y) ⇔ Ts(x, y)∧Fs(y, x);
- ∀x, y Th(x, y) ⇔ Ts(x, y)∧Ks(y, x);
- ∀x, y Tk(x, y) ⇔ Ts(x, y)∧Us(y, x);
- ∀x, y Ti(x, y) ⇔ Ts(x, y)∧Ts(y, x);
- ∀x, y Tj(x, y) ⇔ Ks(x, y)∧Ks(y, x);
- ∀x, y Tu(x, y) ⇔ Us(x, y)∧Us(y, x);
- ∀x, y Tr(x, y) ⇔ Fs(x, y)∧Fs(y, x);
- ∀x, y Tl(x, y) ⇔ Ks(x, y)∧Us(y, x);
- ∀x, y Tq(x, y) ⇔ Fs(x, y)∧Ks(y, x);
- ∀x, y Tv(x, y) ⇔ Fs(x, y)∧Us(y, x);
Tsoukìas and Vincke (1995) proved that such a preference structure is amaximal well-
founded fundamental relational system of preferencesunder the following three axioms.

A1 any preference structure on a setA should be a f.r.s.p. (fundamental relational system
of preferences), i.e. should define a partition onA×A for any givenA; in other words
the preference relations included in the preference structure should be exhaustive for
all possible situations and not redundant;

A2 the preference structure should follow the axiom of “independence from irrelevant al-
ternatives”; roughly speaking if a specific ordered couple belongs (and in which way)
to a specific relation, the evaluation should depend on information concerning only this
ordered couple;

A3 the preference structure should be “well-founded” in the sense that any binary relation
in it should be univocally defined by its properties.

As a consequence, some theoretical and operational problems in the field of multiple
criteria decision aid can find elegant and definite solutions (see Tsoukiàs and Vincke, 1998,
Tsoukìas et al., 2002).



6 Rough sets semantics for DDT

6.1 About rough sets

Pawlak (1982) introduced rough sets theory as a new approach to the treatment of uncertain
information, in particular the capability of distinguishing objects described in a more or less
accurate way (see also Pawlak, 1991).

Following Pawlak, givenU 6= ∅ a set or universe of objects andR (R being a family of
equivalence relationsRi), R 6= ∅, then we define an“indiscernibility” relationIND(R) as

IND(R) =
⋂
U

R intersection of all the equivalence relations belonging toR

andU/IND(R) or U/R as the family of all the equivalence classes of the equivalence rela-
tion IND(R) onU .

We denote the couple(U,R) as a knowledge baseB. Usually, such a knowledge base
takes the form of an “information table” defined by a set of elementsxj , a set of attributes
Ri, the valuesRi(xj), and eventually a decision attribute classifying elements in a given set
X or in¬X. The indiscernibility relation induces the definition of equivalence classes so that
given an elementxj we denote as[xj ] the equivalence class of this elements as follows:

[xj ] = {y ∈ U : ∀i Ri(y) = Ri(xj)}

Given aB = (U,R) for each subsetX ⊆ U we associate two sets:

XR =
⋃

x∈X

{[x] ∈ U/R : [x] ⊆ X}

XR =
⋃

x∈X

{[x] ∈ U/R : [x] ∩X 6= ∅}

the R-lower andR-upper approximation ofX by the descriptionR of U , respectively. In
other words, given a set of objectsX, difficult to be describe, it is possible to approximate it
using the descriptionU/R with two sets:
- the lower approximation, which are the elements ofU that are surely inX (following the
classificationU/R);
- the upper approximation which are the elements ofU which possibly are inX (following
the classificationU/R);.

We finally define asB(X) = XR \ XR theR-boundary region ofX, that is the set of
elements for which there is a doubt about their belonging toX.

6.2 Semantics for DDT

We will now try to show that in rough sets theory there is an implicit equivalence between
rough sets semantics and DDT semantics. We will show that the true extension of a predicate
S can be seen as its lower approximation within a knowledge baseB, that its false extension



can be seen as the lower approximation of the negation, its contradictory extension as the
boundary region, the unknown extension being (almost) always empty.

The idea to associate a multiple-valued logic to rough sets is not new. Pagliani (1997)
makes an extensive presentation on this issue and shows that approximation spaces and rough
sets can be connected to three-valued Łukasiewicz algebras (see also Rine, 1991) and to chain
based lattices. The results in this section confirm this approach, since only three extensions
of a DDT predicate are non empty within an approximation space.

Given a structureM of similarity typeρ, let S(x1, · · ·xm) be an atomic formula, such
that x1 · · ·xm are individual variables,S ∈ ρ with arity m. Let alsoB = (U,R) be a
knowledge base inM such thatU ∈ M andR is a set of equivalence relations onU such
that

⋃
i{U/Ri} = U . Let also DDT to be the language adopted. In the following, we omit

variable assignments for clarity of the presentation. We give the following definition.

Definition 6.1

B|=t S(x) iff [x] ∩ S 6= ∅

B|=f S(x) iff [x] ∩ ¬S 6= ∅

whereS and¬S are two complementary sets representing a classification ofU .

Under such a definition the following proposition holds.

Proposition 6.1 Given a formulaS(x), a knowledge baseB = (U,R), St, Sk, Su, Sf

denoting the extensions ofTS(x), KS(x), US(x), FS(x), respectively. We have:
1. St = SR

2. Sk = SR ∩ ¬SR

3. Su = ∅
4. Sf = ¬SR

Proof
1. St = {x : B|=t S(x) andB6|=f S(x)}

ThereforeSt = {x : [x] ∩ S 6= ∅ and[x] ∩ ¬S = ∅} = SR.

2. Sk = {x : B|=t S(x) andB|=f S(x)}
ThereforeSt = {x : [x] ∩ S 6= ∅ and[x] ∩ ¬S 6= ∅} = SR ∩ ¬SR.

3. Obvious since it is not possible to have[x]∩S = ∅ and[x]∩¬S = ∅ at the same time,
S,¬S being a partition.

4. Sf = {x : B|=f S(x) andB6|=t S(x)}
ThereforeSt = {x : [x] ∩ ¬S 6= ∅ and[x] ∩ S = ∅} = ¬SR.



Hence the “true” extension of the predicateS(x) under the knowledge baseB = (U,R) is
its lower approximation using the descriptionR and the “false” extension is the lower approx-
imation of the negation ofS(x). The “contradictory” extension is the intersection between
the upper approximations of the predicate and its negation and the “unknown” extension is
empty.

It is easy to see that it is sufficient to exchange the definitions of unknown and contra-
dictory extensions and always obtain an empty contradictory extension, while the unknown
extension will be the intersection of the two approximations. This is not surprising. The
reader will find the algebraic reasons for that in Pagliani (1997).

6.3 Extensions

It is possible to extend rough sets theory in order to obtain a complete correspondence with
DDT semantics, in the sense of obtaining that all four extensions are not empty (the unknown
included)? The impediment is the definition of the indiscernibility relation and more precisely
its property of reflexivity. Under such a property, any element ofU belongs to at least one
class, the one defined by itself and that for any classification. The unknown extension should
be defined by[x]∩S = ∅ and[x]∩¬S = ∅. SinceS,¬S is a partition ofU and[x] are never
empty this can never occur. If[x] was defined by a non reflexive relation it could be the case.

Recently Słowínski and Vanderpooten (1997 and 2000) proposed to extend rough sets
theory using similarity relations instead of equivalence relations. However, their minimal
requirement is reflexivity of similarity. Stefanowski and Tsoukiàs (1999 and 2001) proposed
to use similarity relations to handle incomplete information tables (elements ofU may have
unknown values for some attributes). They introduce the following definition:

∀x, y ∈ U : H(x, y) ⇔ ∀i such thatRi(x) 6= ∗, Ri(y) 6= ∗ Ri(x) = Ri(y)

whereH(x, y) is a similarity relation and∗ denotes an unknown value. In other terms, “x is
similar toy” iff the known values ofx are equal to the known values ofy. It is not allowed
to compare unknown values. Such a relation is transitive, but not symmetric (it is actually
a partial order representing inclusion: an objectx whose vector of values is[∗, 1, 2, 3] is
similar to objecty whose vector of values is[0, 1, 2, 3], but the inverse is not true). Lower and
upper approximations are thus defined on the basis of similarity classes instead of equivalence
classes (for details see Słowiński and Vanderpooten 1997 and Stefanowski and Tsoukiàs,
1999, 2001).

In extreme situations, totally unknown objects (values in all attributes are unknown) are
not similar to themselves by definition of the relationH. Formally speaking, relationH is
not reflexive. The similarity class of such elements will be empty.

In such extreme situations we will have a non-empty “unknown extension”Su = {x :
B 6|=t S(x) andB 6|=f S(x)} = {x : [x] ∩ S = ∅ and[x] ∩ ¬S = ∅}, since there is anx for
which [x] could be empty ([x] denoting here a similarity class ofx, [x] = {y : H(x, y)}). In
reality the consequences are in reality marginal: some complementarity conditions no longer
hold such asSR = (¬SR)c, since the complement of the upper approximation of the negation
will also contain the unknown extension.



6.4 Rough Inference

One of the most common uses of rough sets is rules induction for classification purposes.
Such rules however do not define a real inference scheme since they do not belong to a de-
ductively closed system (the question was addressed by Orlowska and Pawlak, 1984 and
Fariñas Del Cerro and Orlowska, 1985, Orlowska, 1988). One of the main advantages of the
semantic equivalence between DDT and rough sets is that rules induced by rough approxi-
mations can be translated into logic formulas in DDT and therefore be incorporated in any
deductive system based on such a language.

Given a knowledge baseB = (U,R), under the usual form of an information table where
Ri are the attributes andd is a decision attribute partitioningU into setsS1, S2, ....,Sm (a
classification), the induced rules take the form:∧

i

Ri(vl) →d(Sj)

wherevl is a possible value for attributeRi andd(Sj) denotes the decision to classify the
object described in the antecedent into classSj .

Such rules are induced directly fromB using elements ofU which “support” them (ele-
ments which have the same description as the antecedent). Consider such an element:x
- if [x] ⊆ Sj then the rule is considered certain;
- if [x] ∩ Sj 6= ∅ the rule is considered possible.

Using the DDT2 language we can introduce the following types of rules:
-
∧

i Ri(vl) →Td(Sj) iff [x] ⊆ Sj

-
∧

i Ri(vl) →4d(Sj) iff [x] ∩ Sj 6= ∅
-
∧

i Ri(vl) →Fd(Sj) iff [x] ⊆ ¬Sj

Such a translation from DDT semantics is straightforward. The interesting part is that such
rules can be combined by axiom schemata of the DDT language (which is a deductively
closed system) of the type:
- ∀x ∀Sj TSi 6=j(x) → FSj(x);
- ∀x ∀Sj ¬4Si 6=j(x) →

∨
j 4Sj(x);

and/or specific inference rules associated to the knowledge base as axioms (originating from
different sources) of the type (for instance):
- ∀x FS2(x) →FS3(x).

In this way it is possible to include induced rules in deductively closed systems thus
enhancing their use (presently limited to classification schemes). Such a potentiality has
been recently exploited by Greco et al., 1998, where a rough approximation of an outranking
relation is exploited in order to obtain a final prescription in decision aiding situations.

7 Conclusions

A first order, four-valued logic is presented in the paper as an extension of Belnap’s logic. The
logic is equipped with a weak negation (preserving interlaced monotonicity on the bilattice
of truth values) and a strong monotonic implication. A two-valued fragment, called DDT2, is
presented enabling the definition of strong two-valued sentences. Based on the idea that the



evaluation of the negative extension of a predicate is independent from the evaluation of the
positive extension, a semantic is introduced: the complement of a predicate does not coincide
with the extension of its negation and the universe of discourse may contain elements which
do not belong to either of the two extensions. The resulting four possibilities correspond to the
four truth values of the logic and define four possible extensions of any predicate. A double
entailment relation is used to define such concepts and a strong entailment is introduced so
as to have a correspondence with the evaluation function of the logic.

The application of the DDT language in preference modeling and decision aiding is out-
lined in the paper. Interested readers can refer to the quoted literature for more details. More-
over, the equivalence of rough sets semantics and DDT semantics is shown in the paper.
Such an equivalence does not allow for the existence of all four the extensions of the DDT
semantics, since the unknown extension is by definition empty. Some possible extensions are
discussed, highlighting the fact that the reflexivity property of the relation used to classify ob-
jects impedes the existence of unknown extensions. Some extreme situations of non-reflexive
relations are discussed, but are of limited interest. Finally, the equivalence of rough sets se-
mantics and DDT semantics is exploited to obtain logical rules that can be included in de-
ductively closed systems thus enhancing the potentialities of use of the induced classification
rules.

A major open research question is how to exploit the paraconsistent nature of the DDT
logic for defeasible reasoning to take into account new information which could be added in
the knowledge base, such that a revision or an updating is required.
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mation of the outranking relation in Multi-Criteria Choice and Ranking, in T.J. Stewart
and R.C. van der Honert (eds.),Trends in Multi-Criteria Decision Making, Springer
Verlag, LNMES 465, Berlin, 1998, 45 - 60.

14. Kacprzyk J., Roubens M., (eds.),Non Conventional Preference Relations in Decision
Making, Springer Verlag, LNMES n. 301, Berlin, 1988.

15. Kaluzhny Y., Muravitsky A.Y., A knowledge representation based on the Belnap’s four
valued logic,Journal of Applied Non-Classical Logics, 3, 1993, 189 - 203.



16. Orlowska E., Logical Aspects of Learning Concepts,International Journal of Approx-
imate Reasoning, 2, 1988, 349 - 364.

17. Orlowska E., Pawlak Z., Logical Foundations of Knowledge Representation,Institute
of Computer Science, Polish Academy of Science Reports, vol. 537,1984.

18. Pagliani P., Rough sets theory and logic algebraic structures, in E. Orlowska (ed.),
Incomplete Information: Rough Sets Analysis, Verlag-Physica, Berlin, 1997, 109 -
190.

19. Pawlak Z., Rough Sets,International Journal of Computer and Information Science,
11, 1982, 341 - 356.

20. Pawlak Z.,Rough Sets, Kluwer Academic, Dordrecht, 1991.

21. Rescher N., Brandom R.,The logic of inconsistency, Blackwell, Oxford, 1980.

22. Rine D.C.,Computer Science and Multiple Valued Logic: Theory and Applications,
North Holland, Amsterdam, 1991.

23. Roubens M., Vincke Ph.,Preference Modelling, Springer Verlag, Berlin, 1985.

24. Ruet P., Complete set of connectives and complete sequent calculus for Belnap’s Logic’s,
Document LIENS-96-28, cole Normale Suprieure, Paris, also inLogic Colloquium 96,
San Sebastian, 1996.

25. Scott D., Continuous lattices, toposes, algebraic geometry and logic, in LNM 274,
Springer, Berlin, 1972, 97 - 136.

26. Scott D., Some ordered sets in computer science, in I. Rival, (ed.),Ordered Sets, D.
Reidel, Dordrecht, 1982, 677 - 718.

27. Simon H.A., Rational Decision Making in Business Organizations,American Eco-
nomic Review, 69, 1979, 493 - 513.

28. Słowínski R., Vanderpooten D., Similarity relation as a basis for rough approximations,
in Wang P. (ed.)Advances in Machine Intelligence and Soft Computing, vol. IV., Duke
University Press, 1997, 17 - 33.
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