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Summary. A corrected, first-order solution for modelling acoustic wave 
scattering in layered halfspaces containing random inhomogeneities is derived. 
Energy lost to higher order scattering and intrinsic attenuation is included in 
the correction, which is constructed so that energy is conserved to first order. 
The complex propagation effects of the layering are overcome by represent- 
ing the motion as a sum of normal modes. This approach renders the 
kinematic description of the scattering two dimensional, with the wave 
vectors of incident and scattered modes lying parallel to the layering. At each 
level in the halfspace, the inhomogeneities are resolved into two-dimensional 
Fourier spectra also parallel to the layering. The root mean square (rms) 
motion of a scattered mode depends on the correlation between spectra at 
different levels and the group velocity of the mode. To simplify the solution, 
it is assumed that the inhomogeneity spectra are piecewise constant and that 
the energy of a normal model propagates only at its group velocity. The 
final step of the theory establishes a criterion for the source-receiver 
separations over which the results are accurate. 

Numerical calculations have been carried out for a single layer of in- 
homogeneities over a halfspace. The spectra of the inhomogeneities were 
assumed band limited, and several different spectra were examined. The 
results suggest the existence of a diagonal selection rule whereby a wavelet 
of mode order IZ scatters mostly to wavelets of the same order. Moreover, a 
resonant frequency of scattering occurs, causing the rms signal to appear 
monochromatic. The frequency of the resonance is controlled by the in- 
homogeneity spectra band limits. With the aid of the diagonal selection rule, 
the simplified solution allows for both rapid computation of synthetic 
signals and inversion of data for scattering cross-section. 

Existing data suggest the theory may be applied to obtain approximate 
models of local earthquake codas. The synthetic signals of the single 
layer cases, for example, have codas similar to published observations. To 
illustrate the inversion of data with the theory, a preliminary scattering cross- 
section for the lunar crust is presented. 

* Present address: Department of  Geological Sciences, University of Southern California, University Park, 
Los Angeles, California 90007, USA. 
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Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Recordings of elastic waves in layered media commonly include long concluding trains, or 
codas, of oscillatory motion. For seismologists, the most familiar examples are the codas of 
local earthquakes (A4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 4 and A < 100 km) and lunar seismic events. In these cases, the 
source of the coda appears to  be scattering from random inhomogeneities withn crustal and 
mantle layers (Aki & Chouet 1975; Dainty et al  1974). Various theories for elastic waves in 
Iayered media containing inhomogeneities have been given by Herrera & Ma1 (1965), 
Kennett (1972), Saastamoinen (1977) and Woodhouse (1974). In this first of two papers, 
the acoustic case is used to illustrate a first-order, or Born-like, scattering theory for 
modelling wave motion in such media. 

The theory, known as first-order multiple scattering, includes a correction for energy 
loss to higher order scattering and intrinsic attenuation (for a general review of t h s  and 
other scattering theories, including cross-section definitions, see Ishimaru 1978; see also 
Landau & Lifshtz 1959, p. 295). Key features in its application here are the use of normal 
modes to  represent the motion and description of the inhomogeneities by their statistical 
properties. What is implied by normal modes are waves entirely trapped within the model 
layers b y  total reflection (Tolstoy 1973, pp. 95-108; Ewing, Jardetzky & Press 1957, 
pp. 124-147). Pekeris (1948) has shown that such modes conveniently and compactly 
contain all possible ray paths between a source and receiver. This representation, however, 
neglects waves that start out as, or scatter to, waves only partially trapped by the lowest 
horizon. As wdl be pointed out in the Discussion, if the layering forms a strong wave trap 
the resulting errors will not be serious. 

Each normal mode is the product of a wave propagating parallel to the layers and a 
standing wave normal to them. The propagation vectors of incident and scattered waves are 
thus parallel to the layers, rendering the kinematic description of the scattering two 
dimensional. Since the inhomogeneities couple the modes, their properties along and normal 
to the layering are also treated in a separate manner. Parallel to the layers a two-dimensional 
Fourier representation is utilized (a brief but rigorous treatment of the procedure is given by 
Tatarskii 1971, pp. 7-10). The character of these spectra and their variation normal to the 
layering determine the scattering cross-sections between modes. The group velocity of the 
scattered mode also appears in the cross-section formulae and plays an important role in the 
scattering process. The spectral description of the inhomogeneities is an extension to three 
dimensions of the one used by Kennett (1972) in two dimensions. 

Along with the theory, the scattering cross-sections and point source signals of some layer 
over halfspace models are presented. These examples are designed to show how the in- 
homogeneity spectra control the duration and frequency content of a coda. They also 
suggest two important features for acoustic wave scattering in layered media. First, for 
inhomogeneities composed of a limited range of scale lengths, the cross-sections are peaked 
at a frequency set by the scale-length limits. Second, a normal mode component (order n )  
of an incident wave will scatter mostly to the same mode (also order n). This latter result 
constitutes a ‘diagonal selection rule’ for the scattering of waves trapped in layered 
structures. 

While the acoustic examples are meant to stand on their own merits, it is suggested that 
they may be viewed as approximations to the vertical components of seismograms. The 
model densities and P wdve velocities were in fact taken from profiles for some local 
terrestrial and lunar structures (Ewing et al. 1957, pp. 147-149; Cooper & Kovach 1974). 
Shear wave contributions are neglected, but their inclusion does not alter the basic method 
introduced here (for the complete theory see Malin 1978). Moreover, published observations 
indicate first-order scattering theory is valid for modelling seismic codas. Support for this 
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assertion is briefly given below, and the advantages it provides in such modelling are outlined 
in the Discussion. 

First- order theory accurately describes the scattering of waves whenever their wave- 
number k ,  the density of scatterers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 and the total scattering cross-section d obey 

a <  k, a = r p t  (1) 

(Chernov 1960, pp. 35-57). By its definition, the scattering coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy is the fraction of 
wave energy lost per unit distance travelled. Equation (1) simply states that first-order 
theory is accurate when the fractional loss per unit wavelength is much less than 1. The 
source-receiver distance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, over which valid results can be obtained is also limited (Bugnolo 
1960). For isotropically scattered normal modes the appropriate criterion, derived in the 
next section, is 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 1.25~1-'. (2) 

Beyond thu distance higher-order scattering must be taken into account. 
Aki & Chouet (1975) have determined the backscattering energy loss of local earthquake 

waves. In the frequency range of 1 to 10 Hz and hgher, it is on the order of 10-2-10-3 
krn-lrad-'. As pointed out by &to (1977), t h s  parameter is equivalent to the density of 
scatterers times their differential cross-section in the backward direction: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(.) = qod(n). 
Thus for the wavenumbers Aki & Chouet consider (10°-102km-1), equation (1) holds for 
total and backscattering cross-sections differing by as much as an order of magnitude. Since 
the evidence given by these authors indicates the coda is composed of isotropically scattered 
waves, first-order models of such waves should be adequate. By equation (2), the maximum 
source-receiver distance the models can be extended to is 10'km. 

Dainty & Toksoz (1977) have reported that at 1 Hz the lunar scattering Coefficient is 
similar to  that of the Earth. At 10 Hz, they find it exceeds the terrestrial value by an order 
of magnitude. On the other hand, the corresponding wavenumbers are also an order of 
magnitude larger. These differences balance and equation (1) remains satisfied. The distance 
range for accurate first-order modelling at 10 Hz is, however, reduced to 10 km. Beyond this 
distance a multiple scattering method such as that of Kopnichev (1977) must be used. Later 
in this paper, a consistent first-order model is constructed for frequencies below 2 Hz and 
distances less than 10'km. 

It is significant to note that waves trapped in plane layers have geometric spreading 
factors of r-l''. The efficiency of such wave propagation is well known: the acoustic 
stratification of the oceans, for example, allows even small explosions to be heard over 
distances of 104km (see the discussion of the SOFAR channel in Tolstoy 1973). The 
equivalent examples in the solid earth are surface waves. Even weak scattering between 
trapped waves can thus generate a surprisingly large coda. 

Basic theory 

The aim of this section is to derive equations for modelling the scattering of acoustic waves 
in layered halfspaces. The general halfspace model under consideration, along with the 
geometry required for the derivation is shown in Fig. 1. It will be assumed that the density 
and bulk modulus of this model can be separated into mean values varying normal to the 
layering plus randomly fluctuating volume components: 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. (a) Oblique view of a layered acoustic halfspace with random inhomogeneities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the top layer. 
This layer is of thickness h and has a source and receiver on its surface at positions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B respectively 
(in the theory these positions are arbitrary). Also shown is a subvolume 6V of inhomogeneities, which is 
assumed to be in the far field of the source and receiver, and to have a mean dimension of 2a parallel to 
layering. For convenient calculation of its cross-section, SV was chosen to lie on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 axis at x;x ’  is thus 
the distance from x along the direction of plane waves from A,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% is the scattering angle, r the distance 
from x to B and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd the source-receiver separation. The coordinates r’ and 0 ’  appear in the Green’s 
function of equation (8). This geometry must, of course, be generalized for an arbitrary subvolume. 
However, once the cross-sections of the inhomogeneities are known, only the source-6 V-receiver 
distances are needed to compute synthetic signals. In the theoretical development the inhomogeneities 
within SV will be  represented in terms of their two-dimensional Fourier spectra parallel to the layering. 
@) The two-dimensional Fourier representation of a possible (but arbitrarily chosen) distribution of 
density or bulk modulus inhomogeneities at the levelz,. It isassumed that ( p , i = ( h , ) = O  so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,(O,O,z) 
= h , ( O , O , z ) = O .  

Here the ensemble mean value denoted by (.) is taken as identical to a spatial average. The 
elastic displacement associated with these properties and an arbitrary source T are the 
familiar equations (- denoting the frequency domain) 

- pw2u = O F  t i  

E = O  on z = O  

u . 2  and F continuous. 
- 
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The first step in dealing with these random differential equations is to convert them into 
an integral equation. Following Hudson (1977), equation (4) may be written as 

where is the Green’s function of the mean structure and the layering is assumed flat. This 
form shows that the inhomogeneities act as sources of motion and the scattered displace- 
ment depends on the total field. 

Equations such as (5) are traditionally solved iteratively, the total field being first 
approximated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo. The first iteration is adequate when the ratio of the scattered to total 
field is small. If the inhomogeneities are confined to some finite region distant to the source 
and receiver, the ratio equals the fraction of an incident plane wave scattered. Thus taking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
uo in the plane wave limit, this ‘total scattering cross-section’ is defined by 
- 

The norm 1) II denotes the total energy density, which for plane waves is equal to  twice the 
kinetic energy density (Landau & Lifschitz 1959, p. 249). The definition anticipates the two- 
dimensional nature of the wave propagation by assuming the scattered wave energy spreads 
as r-I. Likewise, the ‘differential cross-section’ ud is assumed to depend on the planar angle 6 

(see Fig. la). The units of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’ and ud are length and length per radian. 
In the case at hand, numerous regions of inhomogeneities are assumed to exist, they may 

even form a continuous layer. The density of scatterers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 is defined as the number of regions 
per unit area parallel to the layering. As stated, if the density of regions times their total 
cross-sections satisfies equations (1) and (2), the scattered field of each region is accurately 
given by 

A formal justification of this first-order, or Born, approximation may be found in Frisch 
(1968), as well as Chernov (1960). The volume integral is over the region FV under con- 
sideration, where it is assumed that (p l>  = (h i )  = 0. When equation (7) is used to  evaluate the 
various cross-sections, GVmust be in the far field of the source and observation point. 

Except for p1 and XI, the scattered displacement from FV is now expressed in quantities 
that depend on the mean properties of the halfspace. Construction of the scattered dis- 
placement due to all the regions proceeds from this result. Briefly stated, the remaining steps 
consistent with fist-order theory are: (1) finding convenient representations for 2, Go, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl, 
hl and grinding through the algebra of equation (7); (2) transforming the result into the time 
domain; (3) choosing a component of this displacement and finding its ensemble mean 
square value; (4) adding a correction for higher-order scattering and intrinsic attenuation; (5) 
summing the contributions of each region independently; and finally (6 )  establishing the 
distances over which the results are valid. 

Step 1. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3’ are constructed from the normal modes of the mean halfspace. The modes 
may be obtained from the equivalent of equation (4) with p1 = hl = 0 and the added 
condition u”+  0 as z -+ 00. Due to this latter assumption, all incident and scattered waves 
that do not remain trapped in the layering are neglected. The results below are thus accurate 
when the ratio of trapped to total wave energy is a fist-order quantity (see Discussion). 
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Reduced to the far field and written in the mixed coordinates of Fig. l(a), the Green’s 
function and incident displacement are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 t m R m s m  ~ X P  ( ~ x L )  G =r-’/’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ , R ~ s ,  exp (ix,) uo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-112 

n m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz p o ~ , .  R,* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI En = k”2(32r)-3’2(wg,s2,)-’ 

R, = v n f  t iw,i S, = v,f‘ - iwni 

71 71 
h = k n [ r f  cos(0 - O ‘ ) - r ]  + -  x:, = -k , (x ‘  + x )  t ~ 

4 4 

sm = j d V S , .  T 

u,, w,,=nth mode z dependent eigenfunctions. With this choice of G and 3, useful 
representations for p 1  and hl are their two-dimensional Fourier spectra parallel to the 
layering (see Fig. 1 b). 

g, = nth mode group velocity 

As motivation for this step it should be noted that, parallel to the layering, Go is also a 
superposition of sine and cosine functions. Kennett (1972) has applied a similar resolution 
for two-dimensional inhomogeneities. Note that equation (9) allows for inhomogeneities 
that are different in the x and y directions. This feature can be carried through the develop- 
ment without great difficulty. Inserting equations (8) and (9) into (7) and exchanging the 
orders of integration over d ~ , d ~ , ,  and dx dy, each term in the double sum for 6’becomes 
proportional to 

u a (knx - k ,  - K ~ ) - ’  (kny - K,,)-’ sin [a(k,, - k ,  - K,)] sin [a(kny - K , ) ]  

where a is the mean planar radius of SV, k ,  and k,, the x and y components of the 
scattered wave vector, and k,  the incident wave vector, which is taken to be on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis. 
The functions on the right side of equation (10) have their most important contributions to 
the remaining integrations over d ~ ,  d~,,  where 

(10) 
“S 

K E n  ( K x ,  Ky ,  0) = (knx - km, kny, 0). (11) 

In fact, if alKEnI % 1, contributions at wavenumbers other than KE, can, to first order, be 
ignored. Equation (1 1) defines a so called Bragg condition and KZ, will be termed the Bragg 
vector. The scattered displacement then simplifies to 
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Step 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn this step the approximate method of Aki (1960) is used to return equation (12) 
to the time domain. Mi's method breaks the transform integral into segments over whch 
only the phase of the integrand is rapidly varying. Expressed in compact notation, each term 
of us yields for the j th  segment of width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6wj 

Here $ represents all the coefficients on the right side of equation (1 2), which are assumed 
constant over each transform segment. From equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13), it can be seen that us is once 
again relatively large over a narrow range of its independent variables, namely where imnj = 0 
for (r/gn + x/g , )bw > 1. The times for whch fmni = 0 correspond to the arrival of energy at 
the group velocities of incident and scattered waves. In the subsequent steps, energy 
propagating at other speeds will be neglected. The condition f m n j  = 0 places no restrictions 
on the time behaviour of the source. 

S t e p  3. Taking the ith displacement component of us, squaring it and averaging, the expected 
signal is ultimately found to depend on the various mean products of p1 and &. These 
products are: ( P I P ; ) ,  ( P l i \ )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(&T1), where unprimed and primed quantities depend on 
(K in j ,  z) and (K&,z, z') respectively. Under the condition alK2,I  1, only the products 
with K i n i  = K,&l are non-negligible (Tatarskii 1971, p. 9). Equivalently, it wdl be assumed 
that the spectral amplitudes of the inhomogeneities at different wavenumbe: are uncorrelated. 
The Bragg vectors KZnj and KoBpl are clearly equal whenever m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, n = p and j = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Cases 
where the Bragg vectors are equal but m + 0,  n # p and j # 1 (or any combination of equal 
and unequal indices) can arise. However, the added requirement that fmni = fopl = 0 makes 
these cases fortuitous and they will be neglected. The geometrical construction introduced 
in the next section can be used to visualize these relations. 

The products (&pi )  etc. may now be expressed as the correlation functions r p p ( K i n j ,  

z, z'). To simplify numerical evaluations involving these correlations, they will be approxi- 
mated by piecewise constant functions: 

Here nq is 1 if / i ( q - , ) x  < K, < / iqx  and / i ( q - l ) , ,  < K,, < A,, and zero otherwise. The in- 
homogeneity spectrum illustrated in Fig. l(b) has thus been broken into box cars of the sort 
shown in Fig. 2, Each segment describes perturbations of equal magnitude and z-dependent 
correlation, but different x and y length-scales. Other definitions of nq can also be made. A 
more useful form might for example be H q =  1 if lAq-  1 < JK,,jl< l / i q l ,  and zero other- 
wise. In either case, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz component mean square displacement due to 61' at f m n j  = 0 is 
now given by 

B 

(lull2) = (rx)-l C QknjImnjq  

mniq 
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(3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'(x 

*X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. (a) Piecewise constant approximation to the two-dimensional Fourier distribution shown in 
Fig. I(b). In this case the spectrum has been approximated with box car like functions parallel to the 
4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, axes. (b) A cross-section along the& axis through the box cars. The accuracy of the representa- 
tion can be  improved by increasing the number of box cars. 

Step 4. A correction, or renormalization, for the scattering regions that lie in the paths of 
the incident and scattered waves can be included in equation (1 5). The renormalization will 
be achieved by reducing, to first order, these waves in proportion to the inhomogeneities 
they encounter. A similar scheme has been employed by Sat0 (1977). It is important to note 
that the requirement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p l> = (A l )  = 0 makes this correction consistent to first order. Under 
this condition no energy can recombine with the incident wave, as can be seen from the 
Bragg vector K E n j .  For such an event, K Z n j  = 0. Since Pl(O, z) = & (0, z )  = (p l )  = ( A l >  = 0 
then us= 0 also. Without ( p l ) =  ( A l ) =  0 the wave incident on a region would not be the 
direct wave minus the energy lost to  first-order scattering. 

From the definition of the scattering coefficient a, for each unit distance travelled by 
the mth mode incident or scattered wavelet 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<Iu& 1') is the initial mean square wavelet. Equation ( 6 )  may be used to r i d  a, with 
the total energy density given to first order by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ll"u12>=02 dz p,("U.U*). 

Using steps 1 and 3 ,  a, is equal to 

s (17) 

0 emnq = { o4 [ (e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt '/z sin e)r, t 2 sin 8 1 ~  + el,] t 2w2 [sin 81, t 

The index n is over all the possible modes to which the mth mode can scatter. Since this 
calculation is carried out in the frequency domain, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj index is fixed and implicitly 
included. The limits 0,- and 8, depend in turn on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,- and / tq  of equation (14) and 
Fig. 2 (this relation will be discussed below and in the Appendix). According to equation 
(18), cy, is a function of group velocity as well as the inhomogeneities. Thus the mean, 
layered model enters directly into the description of the scattering. 

For the observations discussed in the Introduction, wave energy losses due to intrinsic 
attenuation appear as important as those due to scattering. Such dissipation may also be 
included in each layer of the model in Fig. 1. If r ( z )  is the attenuation factor at the depth z 
then, following Anderson & Archambeau (1964), the net attenuation of the mth normal 
mode is 

J t er6}mqnq 

0, -1 

Adding this to a, the net energy loss per unit distance is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii!, = a, t 7,. Finally, equation 
(14) may be corrected so that at f,,,i = 0 

Step 5. Sufficient theoretical ammunition is now available for finding the signal due to all 
the inhomogeneities. It will be accomplished by summing the mean square signals of the 
regions. This step requires that the signals of each region be uncorrelated, or equivalently the 
regions must be much larger than the longest scale-length inhomogeneity. (In terms of the 
spectra of Fig. 2, the mean scale a must satisfy boa 1 .) For each region the signal per unit 
area parallel to layeririg is (.na2)-'(lus12). The net signal, including renormalization of the 
direct wave, equals 

The domain A is the entire xy area over which p1 and X I  are non-zero. Next, the condition 
fmni = 0 can be used to simplify equation (20). At a futed time, only certain values of x 
and r satisfy f m n j  = 0: they form an ellipse in the xy plane. The areal integral in equation 
(20) therefore collapses into a line integral. For a point source consisting of a vertical 
impulse or explosion, this line integral can be computed in terms of logarithmic functions 
and exponential integrals. The logarithmic contributions arise from the scattering of mth 
mode wavelets to wavelets of the same order (n = m in equation 20). In a subsequent 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. E. Malin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
section, it will be numerically established that these terms dominate in single layer over 
halfspace models. Hence, for many important geophysical circumstances involving impulsive 
or  explosive sources, the right hand term of equation (20) is equal to  

2 ( d ) - '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi, exp (- gmgmt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[w4(@Jl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 2 1 2  + $113)  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2w2(@214 -t@11~) 
miq 

-t 41161 mmj (22) 

where the expressions for &, & and Q3 are written out in the Appendix. Again, the 
integration limits are determined by the box cars of equation (14) and Fig. 2. 

Step 6. Since the first-order solution exponentially loses energy to  multiple scattering, 
beyond some distance these contributions cannot be ignored. Following Bugnolo (1960), 
a useful measure is the distance where one half the total energy has been scattered twice. 
From Bugnolo, the energy density at the point R after n scattering is given by 

B,(R) = (27r-' [ 
m 

d s  exp (- i s .R)q , ( s )  

pl(r) describing how energy is distributed by the Zth scattering. For isotropically scattered 
normal modes each scattering is equivalent and given by 

&(r) = (2m)-'a, exp (- amr). (24) 

The quantity sought is the energy arriving at distance d that has been scattered twice, 
which is given by 

P,(d) = J d d R  B2 = 1 - a,dSi,(old). (25) 
0 

In equation (25) 51, represents the modlfied Bessel function of order 1. The criterion that 
this energy be less than one-half demands that 

d G 1.25a-'. (26) 

A geometrical interpretation 

An extremely useful set of geometric relations can be constructed to describe the scattering 
of the rnth mode wavelet due to the qth box car of perturbations. The construction is done 
at a fixed frequency and is illustrated in Fig. 3. First, concentric circles with radii equal to 
[ k ,  1, m = 1, 2,. . . , p are drawn in the wavenumber equivalent of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxy plane (only upper 
half planes will be included in the figures). The propagation direction and wavenumber of 
the mth mode can then be indicated by a vector along one of the radii. An example is the 
first mode with wave vector k,2.  Further, the scattering of rnth mode to the nth may be 
represented by the incident and scattered wave vectors, the scattering angle between them, 
and the Bragg vector that is equal to their difference. Such an event will be given the 
symbolic notation m -+ n, Kg, = k, - k, and an example is the event 1 + 1, KY, = k12  - k ~ ,  

which is shown in Fig. 3(a). 
The scattered amplitude of an m + n  event depends on the correlation functions of 

equation (14). The contribution from the qth box car will, for example, be zero if K i n  lies 
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Modelling elastic wave codas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA371 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A B t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, t 3  t 4  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. (a) The wavenumber diagram of the normal modes used to represent the wave motion. The 
diagram is at a frequency where two normal modes are above cut-off: their horizontal wavenumbers 
1 k, I and I k, 1 are equal to the radii of the semi-circles shown. Since the directions of k, and kv correspond 
to those of .t and 9 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxy space, the propagation direction and order of a mode can be indicated by a 
vector from the origin to the appropriate circle. An example is the fundamental mode propagating in the 
2 direction, k , i .  The effects of the 4th box car of inhomogeneities on this mode can be seen by drawing 
circles of radii 14 - 1 I and 1% 1 from its head. As the heavy lines indicate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk , i  may scatter only into modes 
whose wave vectors lie within the limits set by 14 - 11 and 1% 1. For mode 1 to 1 scattering (denoted by 
1 --t l), these limits correspond to the scattering angles 0,  and 0 2.  A scattering event may also be described 
by its ‘Bragg vector’, K:,, equal to the difference of the incident and scattered mode wave vectors. Thus 
the event shown by double line vectors is determined by the Bragg vector K E = k $  - k , j .  @) The xy 
space equivalent to the wavenumber diagram for 1 + 1 events at various times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A source and receiver are 
at A and B respectively, and the curves at times t , ,  t 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 3  and t ,  are determined by the condition f,, = O .  
As illustrated on the left side of the figure, only curve segments within the angles 0, and OZ contribute 
signals. The area swept out by these segments is shown by the stipling on the right hand side. At this 
frequency the area is finite, resulting in a signal of finite duration. The wavenumber diagram shows that 
this would not be the case for the events 1 -+ 2. 

outside the limits set by the defmition of n,(K:,). These limits may be expressed on the 
wavenumber diagram by tracing out curves on which the minimum and maximum values of 
KE, lie. The curves must be centred on the head of k, and will intersect the mode circles 
at various points. Only the circle segments between these curves are associated with non-zero 
scattering amplitudes. The scattered wave vector k, must terminate on such a segment 
for the event m -+ n to be non-zero. An example of this construction for n, = 1 when 
IR , - l l  < IKE,l< [kql  and zero otherwise is shown in Fig. 3(a). The incident wave was 
chosen to be k l i  and circles of radii R , -  and R ,  are centred on it. Heavy lines indicate the 
circle segments on which scattering can occur. The illustrated event 1 -+ 1, KYl = klZ - k d  

is thus non-zero. 
Next the events m + n can be traced in ordinary xy space. Again, the construction is done 

at a fured frequency with the added condition that fmni = 0. At time rf events such as m +rz 

lie on the curve r/g, t xJgm = tl. The curve segments on which non-zero scattering occurs 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. E. Malin 

correspond to those of the wavenumber diagram. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxy equivalent of the 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 1 events in 
Fig. 3(a) are plotted in Fig. 3(b). For this example only a finite area of the xy plane 
contributes to the scattering. The signal duration of 1 + 1 events at this frequency is thus 
also finite. The events 1 + 2 ,  on the other hand, would be non-zero over the entire plane 
as tI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. 

The characteristics of these diagrams differ at higher and lower frequencies. At very low 
frequencies only the fundamental mode (m = 1) can satisfy the trapped wave condition. The 
wavenumber diagram consists of one circle which may lie entirely outside the limits of 
&. With increasing frequency the first mode circle expands, more modes appear, and the 
bounds set by n, may be reached. For the example in Fig. 3(a), the scattering amplitude of 
the event 1 -+ 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAICYl = k l i  - k,$ may become equal to zero. At very high frequencies, only 
events nearly parallel to j? will be non-zero. (Tlte scattering is mostly 'forward'.) It should be 
noted, however, that as long as /& - is finite, no scattering directly parallel to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi occurs for 
the m + m events. This is an important feature since it insures that the renormalization 
scheme used in the theory is consistent to first order. The requirement that ( p l > = ( h l ) =  
Pl (O,  z )  = i l ( O ,  z )  = 0 guarantees this consistency. Stated otherwise, the incident wave has 
not been over corrected by the renormalization since m+m scattering in the forward 
direction does not occur. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 1000- 

.x 
t.l h 033- 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA667-  
W 
0 u 

x - 

w 500- 
a 
0 

= 3 3 3 -  

P 

T h e  diagonal selection rule 

Near the surfaces of the Earth and Moon, compressional wave velocities and densities 
increase rapidly with depth. This increase generally continues, but is more gradual, through- 

@ - 10.00 

833 

5.00 

LL W 

8 333 

0 

FREQUENCY HZ 

I 6 L -  0 588 

FREQUENCY HZ 

FREQUENCY HZ 

w ' 1  I 
6 5 8 8  1176 1765 2353 Z b 4 1  3529 4118 4706 

FREQUENCY HZ 

Figure 4. (a) The total scattering coefficients or, for five normal modes of model 1 (listed in Table l), 
@)-(d), the coefficients ormn for the individual events rn --f n .  Only the odd events are shown. 
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Modelling elastic wave codas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73 

out the respective crusts. An appropriate first-order model for these examples is a layer over 
a halfspace of greater velocity and density. The normal modes of such models obey scaling 
laws that show that the results of a single case are quite general (Andrianova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe t  al. 1967; 
Ewing et al. 1957). For example, models of differing layer thickness and equivalent ratios of 
material properties have modes that differ by simple scale factors. Thus, while the theory 
discussed so far allows for more complex structure, the two-layer halfspace covers a variety 
of situations occurring in nature. Most importantly, the various scattering coefficients of an 
inhomogeneous layer over a faster and denser halfspace establish a ‘diagonal selection rule’. 
By this rule the events m -+ m dominate the scattered signal and the scattering coefficient of 
equation (1 8) becomes 

@m = 277G c @mmq. (27) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

A second facet of such models is that a peak frequency of scattering exists for narrow band 
P1(Kkn, z )  and Kl(KEn, z ) .  These results will be substantiated below with a series of 
numerical examples. 

The canonical two layer halfspace adopted for examination is that of Ewing etal. (1957, 
p. 147). The specific mean structures chosen are listed in Table 1. The random in- 
homogeneities were distributed uniformly throughout the upper layer. To calculate the 
scattering coefficients, correlation functions of the sort used by Aki & Chouet (1975) were 
assumed: 

FREQUENCY HZ 

@ 

FREQUENCY HZ 

FREQUENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHZ 

w _  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
0 

5 A 5 f  

I I I I  
0 5 8 8  1176 1765 2353 2941 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 5 2 9  4118 4706 

FREQUENCY HZ 

Figure 5. (a)- (d) The same as Fig. 4 but for the second model of Table 1. Again note that am 

the new position of the fundamental mode resonance. 
amm and 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. E. Malin 

Table 1.  Material properties of the models used to compute the results in Figs 4-8. The 
percentage variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, etc. is given by the parameter 6 .  

Models from Ewing et al. Model from Cooper 

Upper layer 

h km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P, gem+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h,  1O-'"g cm-1s-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u,  km s-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 per cent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A, km-' 
8' km-' 
P km 

Lower layer 

h km 
P,, 
h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1O-Iog cm-'s-* 
u, km s-' 

(1957) 

Mean 
properties Model 1 

0.1 
1 .o 
2.25 
1.5 

30 
70.0 

300.0 
0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

2.0 
10.12 

2.25 

& Kovach (1974) 

Mean 
Model 2 properties Model 3 

1.4 
2.4 
2.4 
1 .o 

30 10 
70.0 2 .o 

150.0 30.0 
0.2 0.5 

m 

2.8 
44.8 
4 .O 

with the box car IIq defined as one if 14, - I < I KE, I < I hq I and zero otherwise. This choice 
is considered arbitrary since it was not made with some particular case in mind. Further- 
more, because more complicated models may be obtained by superposition, only results for 
a single box car of inhomogeneities were computed (q = 1 and I hol < IKk,I < I Al l ) .  Over a 
range of p, lAo l  and I A l l  values it was found that the scattering coefficients are most sensitive 
to changes in I A l l .  Two examples with different I Al l  values, which are listed in Table 1 along 
with l A o l  and p, are illustrated in Figs 4 and 5. Each figure is divided into four panels, the 
first of which shows the a, of equation (18) for all the modes between 0 and 50 Hz. The 
frequency at which these coefficients peak should be noted. In the remaining panels the 
coefficients representing energy scattered from the mth mode to just the nth mode are 
plotted (for clarity only the odd terms are plotted). Denoting the latter by am,,, it can be 
immediately seen that a, = a,,, which is the equivalent of equation (27). Thn diagonal 
selection property was found to hold even in the limits p+O, p + w ,  I Aol -+O and I Rol -+ 

1 All .  The scattering coefficients also maintain their resonance curve like character. While 
not affecting the diagonal selection rule, changes in I h1 I produce changes in the position of 
the resonance peak. As the figures show, a factor of 2 change in I hll results in a similar 
variation in the resonance frequency of the fundamental mode. It should be noted that 
a, Q k ,  for both cases. 

Some synthetic seismograms 

Synthetic seismograms due to  vertical impulses or explosions in the models of Table 1 can 
now be calculated with either equations (21) or (22). As an example, signals computed with 
equation (21) will be presented to illustrate the vertical rms motion due to an explosion in 
the upper layer of the second model. All the modes in the frequency band 0-50 Hz were 
included in the signals. The intrinsic attenuation was set equal to zero, so that at distances of 
several hundred kilometres or less the conditions of equations (1) and (2) are satisfied (see 
Fig. 5). The envelopes of ( I U , ~ ~ ) " ~  shown in Fig. 6 demonstrate that a substantial coda 
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Modelling elastic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwave codas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA375 

n.10 x = 5 9  y = a o  1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V 

-J 
a 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
il zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

t vy’ 

IN 

I , n = 5 0  X.59 y.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I D 

SECONDS - 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Synthetic seismogram envelopes observed at four distances from an explosion at the middle 
point of the upper layer of model 2, Table 1 .  The distances, time and rms displacement scale increments 
are given in the upper line of each plot by A in km, x in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, y in microns respectively. The source strength 
was arbitrarily scaled so that the y increments would be in microns. The time range of energy arriving on 
direct paths is indicated by a heavy bar and the letter D. Note that the coda shape remains nearly constant 
as a function of distance. 

0 [L q L 

W 
V 

J 

m 

a 
a 

TRAVEL TIME IN SECONDS- 

Figure 7. Synthetic seismogram envelopes in different frequency bands for the signal shown in Fig. 6 at 
A = 20 km. The upper plot is for the band 10-15 Hz, the lower for 20-25 Hz. Note how dominant 
forward scattering reduces the duration of the coda at the higher frequency. 
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follows the direct arrivals. Adjusting for scale changes, the shape and duration of the coda 
at the various distances is remarkably constant. Over observation distances many times the 
layer thickness, the direct waves have undergone normal dispersion. Combined with the 
coda, a slowly emergent and decaying seismogram results. Observation of such motion 
hinges on the assumption of zero anelastic energy loss. 

In Fig. 7 the rms motion in two separate frequency bands for the same model are plotted. 
The bands were from 10 to  15 Hz and 20 to 25 Hz. As discussed in the geometric interpreta- 
tion, at low frequencies lk l l  does not limit the scattering angle: the.coda is long and 
dominated by the resonance frequency shown in Fig. 5. At higher frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 & , I  limits 
the  scattering to the forward direction: a short, broadband coda is generated. For the simple 
box car spectrum of this case, the value of I k 1  I clearly plays a deciding role in the character 
of the coda. 

The rms vertical displacement of a third model, listed separately in Table I ,  is presented 
in Fig. 8(aj. The velocity and density structure of this case were taken from the lunar model 

-5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-7 , -  
0 2 0  039 0 5 8  076 095 114 133 152 171 

TIME SEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ~ 0 3 )  

O i  

+ /  

o l  I I I I 
0 10 2 0  

hz 

Figure 8. (a) The synthetic seismogram envelope due to a vertical impact on the surface of model 3, 
Table 1. The observation distance was 400 km. (b) A preliminary determination of the fundamental mode 
scattering coefficient of the lunar crust. The values of 6 ,  were obtained by fitting the coda generated by 
the Lunar Module 14 impact at 67 km from Apollo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 seismometers. It should be noted that 6 ,  includes 
the effects of intrinsic attenuation and meets the first order scattering criteria cil < k and d < 1 . 2 5 ~ ~ ; ' .  
Also plotted is a curve proportional to the frequency cubed. 
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of Cooper & Kovach (1974). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA vertical impulse was assumed for the source. This case shows 
the effects of large contrasts in the velocities of the two layers. Over a distance-layer 
thickness ratio equal to the furthest shown in Fig. 6, the direct wave is far more dispersed 
(the layer velocity is less than that of models 1 and 2). Scattered waves now mix in with the 
direct waves to produce a very emergent and long lasting coda. The lack of intrinsic attenua- 
tion is central to observation of such signals. 

Discussion 

A crucial feature of the normal mode scattering method is the inclusion of wave propagation 
effects generated by the layering. It also provides a way of computing the scattering cross- 
sections used in empirical methods such as those of Aki & Chouet (1975), and Dainty & 
Toksoz (1977). A weakness in the theory is the use of only trapped waves to represent the 
motion. This approximation neglects both the positive and negative contributions of scatter- 
ing between trapped and untrapped waves. Since untrapped to trapped wave scattering 
occurs basically near the source and the reverse everywhere, the rms motion is overestimated. 
Errors introduced by this approximation are thus least in strongly trapping models. If in the 
mean model the fraction of energy in the untrapped waves is much less than one, then the 
fraction generated by the inhomogeneities is also likely to be small. (Each point in the 
inhomogeneous medium can be viewed as a source.) 

The diagonal selection rule is by far the most useful result presented in this paper. As a 
consequence of this rule, whenever a layer of weak scatterers is excited by a normal mode, 
the scattered waves are mostly of the same mode. The frequency of the most strongly 
scattered waves is controlled by the distribution of inhomogeneity scale sizes parallel to the 
layering. For a given distribution and mean velocity structure, characteristic scattering 
coefficients exist for each mode. These coefficients and the diagonal selection rule can be 
used to rapidly compute the expected motion generated by an impulsive or explosive source 
within the model. 

In models where both diagonal selection and isotropic scattering apply, the coda of the 
mth mode in the j th  frequency band is roughly given by 

This result can be derived from equation (21) by setting od(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa at/2ri and is valid at times 
and distances where Cmgmt < 1 and g,t > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd .  A similar relation has been obtained by Sat0 
(1977) for unlayered models. Equation (29) becomes useful in circumstances where a given 
source strongly excites a single normal mode. The coda predicted by this equation vanes 
only slightly with distance and reflects the mean velocity-density structure as well as the 
inhomogeneities. 

If the mean structure of an area is known (by refraction studies, say) and a single mode 
dominates a coda observation, the coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAam can be determined inversely. For least- 
squares fitting, the logarithm of equation (29) is needed : 

Aki & Chouet (1975) have analysed local earthquake codas with an empirically derived 
equation not unlike equation (30). Their method, however, contains no distance dependence 
and combines the group velocity and scattering coefficient into a single parameter. The 
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relationship of the latter parameter to the mean structure, inhomogeneities and attenuation 
implied by  equation (30) is not known. 

On the other hand, Mark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sutton (1975) have demonstrated that mostly fundamental 
mode waves compose the coda generated by the Lunar Module impact of Apollo 14. Using 
their crustal model and the displacement spectra computed by Nakamura (1978), the co- 
efficient al was modelled with equation 30. The values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal between 0 and 2 Hz are plotted 
in Fig. 8(b). Over these frequencies equations (1) and (2) are satisfied. Additionally, a1 
appears to increase with the third power of the frequency. Such frequency behaviour can be 
associated with Rayleigh scattering in two dimensions; it may be derived from first 
principles (Ishimaru 1978), or by reducing equation (18) to the Rayleigh limit and finding 
the  frequency order of each term. The low frequency portions of the scattering coefficients 
in Fig. 4 exhibit similar frequency dependence. 

As the title of this contribution suggests, a further study of elastic wave codas is being 
prepared for publication. Included in this later work will be the effects of shear modulus and 
anelasticity. I have also begun to use Nakamura’s (1978) catalogue of lunar impacts for a 
more extensive study of the Moon’s crustal inhomogeneities. 
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Appendix 

As discussed in the text, the total scattered signal generated by an explosion or vertical 
impulse is proportional to the three line integrals (see step 5 of Basic Theory section). 

dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' - J  r 

4 - C -exp (- 6,x - tinr>, 

dx 
$z = [ - cos e exp (- 6,x - olnr), 

J r  

The geometric relationships of r, x and 0 are as shown in Fig. 1 and the condition Fmni=O 

allows r and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 to be expressed in terms of x :  

Here ymn is the ratio of the incident and scattered wavelet group velocities and d is the 
station distance. 

With equation (A2) the indefmite integral of equation (Al) can be completed, yielding 
algebraic, logarithmic, exponential and exponential integral quantities. For the contributions 
arising from m + m type events, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(x t r )  = amgmt and only algebraic, logarithmic and 
exponential terms occur. Whenever the diagonal selection rule is applicable, these terms 
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dominate and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - (In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  exp (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ymrm) 

The upper limit at which these quantities are to be evaluated is the maximum of x. This 
and the lower limit depend, in turn, on the definition of H, and the values of A,. Several 
relations are necessary to express the limits of x in terms of I t , .  These equations can best 
be presented by considering the upper limit of x as shown in the left half of Fig. 3(b). From 
Fig. 3(a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel is given by 

It: = k: + k: - 2 k l k l  cos el .  (-44) 

(I t yYI - 2y11 cos e1)x2 t 2(r1 cos el - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& T ~ ) x  t (7: -- d 2 )  = 0. 

Then, in terms of cos el, x is a root of the quadratic form 

645)  

The second root of equation (A5) corresponds to the minimum value of x on the right hand 
side of Fig. 3(b). Equations (A4)  and (AS) can be generalized by replacing the subscripts 
to correspond with the m + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYZ event under consideration. 
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