

A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture

Yuhua Duan

Citation: J. Renewable Sustainable Energy **4**, 013109 (2012); doi: 10.1063/1.3683519 View online: http://dx.doi.org/10.1063/1.3683519 View Table of Contents: http://jrse.aip.org/resource/1/JRSEBH/v4/i1 Published by the American Institute of Physics.

Related Articles

Isotopic effect on the vibrational lifetime of the carbon-deuterium stretch excitation on graphene J. Chem. Phys. 135, 114506 (2011)

Vibrational properties of graphene fluoride and graphane Appl. Phys. Lett. 98, 051914 (2011)

Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: A first-principles density-functional theory and phonon dynamics approach J. Renewable Sustainable Energy 3, 013102 (2011)

Energetic, mechanical, and vibrational stability of metastable OsC phase J. Appl. Phys. 108, 083523 (2010)

Diffuse and doubly split atom occupation in hexagonal LiBH4 Appl. Phys. Lett. 95, 221901 (2009)

Additional information on J. Renewable Sustainable Energy

Journal Homepage: http://jrse.aip.org/ Journal Information: http://jrse.aip.org/about/about_the_journal Top downloads: http://jrse.aip.org/features/most_downloaded Information for Authors: http://jrse.aip.org/authors

ADVERTISEMENT

Explore AIP's new open-access journal

- Article-level metrics now available
- Join the conversation! Rate & comment on articles

A first-principles density functional theory study of the electronic structural and thermodynamic properties of M_2ZrO_3 and M_2CO_3 (M = Na, K) and their capabilities for CO_2 capture

Yuhua Duan^{a)}

National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA

(Received 28 June 2011; accepted 2 January 2012; published online 8 February 2012)

Alkali metal zirconates could be used as solid sorbents for CO_2 capture. The structural, electronic, and phonon properties of Na₂ZrO₃, K₂ZrO₃, Na₂CO₃, and K₂CO₃ are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO₂ absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na₂ZrO₃, K₂ZrO₃, Na₂CO₃, and K₂CO₃, respectively. The calculated phonon dispersions and phonon density of states for M_2ZrO_3 and M_2CO_3 (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO₂ pressures of the M_2ZrO_3 (M = K, Na, Li) reacting with CO₂, we found that the performance of Na₂ZrO₃ capturing CO₂ is similar to that of Li_2ZrO_3 and is better than that of K_2ZrO_3 . Therefore, Na_2ZrO_3 and Li_2ZrO_3 are good candidates of high temperature CO2 sorbents and could be used for postcombustion CO₂ capture technologies. [doi:10.1063/1.3683519]

I. INTRODUCTION

Nowadays, the burning of fossil fuels is the main energy source for the world economy. One consequence of the use of these carbon based fuels is the emission of huge quantities of CO_2 into the atmosphere creating environmental problems such as global climate warming.^{1–4} In order to solve such environmental problem and to stop emission, the CO_2 must be captured and sequestered underground.^{5,6} During past few decades, many efforts have been devoted to develop new technologies for CO_2 capture, sequestration, and utilization for improving energy efficiency.⁷ Among them, capture is the key technology in which the effective sorbent materials must be available. Current CO_2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO_2 reversibly with acceptable energy costs if CO_2 is to be captured and sequestered economically.

Inorganic sorbents are one such class of materials which typically capture CO_2 through the reversible formation of carbonates. Recent experimental investigations found that alkali metal silicates and zirconates are good candidates of solid sorbents for CO_2 capture in terms of large CO_2 sorption capacity, infinite CO_2/N_2 or CO_2/H_2 selectivity, good reversibility, and high

^{a)}Author to whom correspondence should be addressed. Electronic mail: yuhua.duan@netl.doe.gov. Tel.: 412-386-5771. Fax: 412-386-5920.

013109-2 Yuhua Duan

operating temperature.⁸⁻¹³ As described in our previous paper,¹⁴ in the literature, there are many experimental works on Li₂ZrO₃ capture CO₂, but only have few reports on CO₂ capture by Na₂ZrO₃ and K₂ZrO₃. Lopez-Ortiz et al.¹⁵ compared the CO₂ capture performance of Na₂ZrO₃ with Li₂ZrO₃ and Li₄SiO₄ and found that Na₂ZrO₃ has better performance. Their experimental data showed that Na₂ZrO₃ presented highest sorption rate and can absorb almost 100% of the maximum theoretical CO₂ sorption compared to 70% and 80% of Li_2ZrO_3 and Li₄SiO₄. Their results also indicated the regeneration performance of Na₂ZrO₃ was not as good as Li₄SiO₄ and Li₂ZrO₃. Zhao et al.¹⁶ investigated the kinetics of the CO₂ capture properties of nanocrystalline Na₂ZrO₃ and found that monoclinic Na₂ZrO₃ is much more active than its hexagonal counterpart. Their results showed that nanocrystalline Na_2ZrO_3 is a very promising CO_2 acceptor for different applications due to its excellent stability and durability¹⁷ and to be able to work at CO_2 partial pressure as low as 0.025 bar. Based on measuring the isotherms of CO_2 sorption and kinetic analysis, Alcerreca-Corte et al.¹⁸ investigated the CO₂ absorption on Na_2ZrO_3 and found that there are two different processes taking place: (1) CO₂ chemsorption over surface of the particles; (2) once the Na_2CO_3 shell formed, the second process of Na diffusion from core of the particles to the surface to reactive the first chemsorption process. Obviously, the second step is the limiting step of the total absorption process as the estimated activation energies of these two steps are 33.866 kJ/mol and 48.009 kJ/mol, respectively. Sandoval-Diaz and Pfeiffer¹⁹ explored the effects of CO₂ chemsorption of K-doped Na₂ZrO₃ and found that doped-K enhanced the CO₂ chemsorption and diffusion kinetics of Na₂ZrO₃ and the 40% doping rate give the best solid solution for the CO₂ capture. Ochoa-Fernandez et al.²⁰ explored the effects of steam addition on the properties of high temperature ceramic CO_2 acceptors and found that the presence of water in the form of steam enhances the capture and regeneration rates but has a large decay in capacity compared to the performance at dry conditions. Velderrain et $al.^{21}$ found that small portion of Li addition could increase the absorption capacity of Na₂ZrO₃, but too much Li (>25% mol) will decrease its absorption capacity. Although the K_2ZrO_3 is a stable solid material and there are several reports on K-doped Li₂ZrO₃ and Na₂ZrO₃ sorbents,^{10,19,20,22–24} no report on the performance of pure K_2ZrO_3 capture CO_2 was found in the literature. Therefore, it is worthwhile to investigate the CO_2 capture behaviors of K₂ZrO₃ and provide the comparison with Li₂ZrO₃ and Na₂ZrO₃.

Computational modeling could play an important role in developing new CO_2 sorbents by identifying the corresponding thermodynamic and kinetic characteristics of the sorbent materials of interest.²⁵ In order to identify optimum candidates for CO_2 solid sorbents (that can be further subjected to experimental testing) from vast of solid materials, we have developed a multi-step computational methodology based on combining the first principles' calculations with lattice phonon dynamics to describe the thermodynamic properties of CO_2 capture reactions by solid sorbents.^{26–28} In the literature, there are few theoretical studies, particularly on the electronic structure and lattice dynamics of the alkali metal zirconates. In our previous study,¹⁴ we explored the CO₂ capturing properties of Li_2ZrO_3 and $Li_6Zr_2O_7$ and found that the performance of Li_2ZrO_3 as a CO₂ sorbent is better than that of $Li_6Zr_2O_7$. In the first half cycle, sorbents absorbing CO_2 to form lithium carbonate, $Li_6Zr_2O_7$ performs better than Li_2ZrO_3 because the former releases more heat of reaction and has a lower Gibbs free energy and a higher CO₂ capture capacity. However, during the second half cycle, regenerating sorbent from carbonate and zirconia to release CO₂, the main product is the thermodynamically favorable Li₂ZrO₃ rather than forming Li₆Zr₂O₇. These results are in a good agreement with experimental findings.⁵ Following our previous study of lithium zirconates capture CO₂,¹⁴ in this study, we use same procedure to investigate the electronic structural and the lattice dynamical phonon properties of M_2ZrO_3 and M_2CO_3 (M = Na, K) extensively. Then, compared with Li₂ZrO₃, we analyze in detail their properties of CO₂ absorption/desorption based on the calculated energetic and thermodynamic results from the obtained electronic structural and phonon dynamical properties.

The remainder of this report is organized as follows: In Sec. II, we briefly describe the theoretical method we employed. In Sec. III, we present the electronic and phonon results for these alkali metal zirconates and carbonates and compare them with other available data. Subsequently, compared with Li₂ZrO₃, we analyze their capabilities for CO₂ capture by calculating 013109-3 CO_2 capture by M_2ZrO_3 , M = K, Na, Li

the chemical potential change for the capture reactions under different external pressures and temperatures. And in Sec. IV, we summarize our conclusions.

II. THEORETICAL METHODS

The complete description of our computational methodology can be found in our previous papers.^{14,26–29} Here, we limit ourselves to provide only the main aspects relevant for the current study. When applying the alkali metal zirconates as solid CO_2 absorbents, we have the following reactions:

$$M_2ZrO_3 + CO_2 \stackrel{i,P}{\longleftrightarrow} M_2CO_3 + ZrO_2 \quad (M = K, Na, Li).$$
 (1)

Assuming the difference between the chemical potential of solid phases (M_2ZrO_3 , ZrO_2 , and M_2CO_3) can be approximated by the differences in their electronic energies (ΔE^{DFT}) and their entropies (ΔS_{PH}) and harmonic free energies (ΔF_{PH}), we can obtain the temperature and pressure dependent chemical potential ($\Delta \mu$) for these reactions^{14,28–31}

$$\Delta\mu(T,P) = \Delta\mu^0(T) - RT \ln\left(\frac{P_{CO_2}}{P_0}\right),\tag{2}$$

with

$$\Delta \mu^0(T) = \Delta E^{DFT} + \Delta E_{ZP} + \Delta F_{PH}(T) - G_{CO_2}(T), \tag{3}$$

where ΔE_{ZP} is the zero point energy difference between the reactants and products and can be obtained directly from phonon calculations. P₀ is the standard state reference pressure of 1 bar. (Note that in our previous paper,¹⁴ in Eq. (3) there is a typo error with an extra term $-T\Delta S_{PH}(T)$.) The enthalpy change for the reactions (1), $\Delta H^{cal}(T)$, can be derived from above equations as

$$\Delta H^{cal}(T) = \Delta \mu^0(T) + T(\Delta S_{PH}(T) - S_{CO_2}(T)).$$
⁽⁴⁾

As described in our previous study,^{14,27,28} the zero-point energy, the free energy and the entropy of CO₂ (E_{zp CO₂}, G_{CO₂}(T), S_{CO₂}(T)) can be obtained by standard statistical mechanics and accurately evaluated using the Shomate equation. In Eq. (3), ΔE^{DFT} is the total energy change of the reactants and products calculated by density functional theory (DFT). In this work, the Vienna Ab-initio Simulation Package (VASP)^{32,33} was employed to calculate the electronic structures of the solid materials involved in this study. All calculations have been done using the projector augmented wave (PAW), pseudo-potentials, and the PW91 exchange-correlation functional.³⁴ This computational level was shown to provide an accurate description of oxide systems.^{28,29,35} Plane wave basis sets were used with a cutoff energy of 500 eV and a kinetic energy cutoff for augmentation charges of 605.4 eV. The k-point sampling grids of $n_1 \times n_2 \times n_3$, obtained using the Monkhorst-Pack method,³⁶ were used for these bulk calculations, where n_1 , n_2 , and n_3 were determined consistent to a spacing of about 0.028 \AA^{-1} along the axes of the reciprocal unit cells. The corresponding k-points sets that we used in our calculations were $7 \times 4 \times 4$ for Na₂ZrO₃, $6 \times 3 \times 5$ for K₂ZrO₃, $4 \times 8 \times 6$ for Na₂CO₃, and $6 \times 4 \times 6$ for K₂CO₃, respectively. The valence electrons contain the s and p orbitals of Na, C, and O atoms, and the s, p, and d orbitals of K and Zr. During the calculations, all atoms in the cell as well as the lattice dimensions and angles were relaxed to the equilibrium configurations. For band structure and phonon dispersion calculations, the symbols and coordinates of the high symmetrical points in the first Brillouin zone of the crystals are taken from Bradley and Cracknell's definitions.³⁷

In Eqs. (3) and (4), the zero-point-energies (E_{ZP}), entropies (S_{PH}), and harmonic free energies (F_{PH} , excluding zero-point energy which was already counted into the term ΔE_{ZP}) of solids were calculated by the PHONON software package³⁸ in which the direct method is applied following the formula derived by Parlinski *et al.*³⁹ to combine *ab initio* DFT with lattice phonon

Downloaded 08 Feb 2012 to 204.154.137.252. Redistribution subject to AIP license or copyright; see http://jrse.aip.org/about/rights_and_permissions

013109-4 Yuhua Duan

dynamics calculations. In the phonon calculations, a $2 \times 1 \times 1$ supercell is created for Na₂ZrO₃ and a $2 \times 1 \times 2$ supercell for K₂ZrO₃ from their optimized unit cells that are calculated through DFT while a $2 \times 2 \times 2$ supercell for M₂CO₃ (M = Na, K) is created for phonon calculations. Based on the partition function carried out with the phonon dispersions and phonon densities of states, their thermodynamic properties, such as internal energy, free energy, entropy, heat capacity, etc., can be evaluated under different temperature and pressure that are used in Eq. (2) to calculate the chemical potentials for the reaction (1).

III. RESULTS AND DISCUSSIONS

A. Structural optimization and electronic structural properties

Experimentally, with different M₂CO₃/ZrO₂ ratios (where M = Li, Na, K), the alkali metal zirconates are synthesized by reacting alkali carbonates M₂CO₃ with ZrO₂ at high temperature.^{40–42} Figure 1 shows the crystal structures of these four crystals which are studied in this work. As Bastow *et al.*⁴⁰ measured and shown in Fig. 1(a), the structure of Na₂ZrO₃ is isotypic with Li₂SnO₃ (Ref. 43) and Li₂TiO₃,⁴⁴ crystallizing in a monoclinic space group C2/c (#15) with unit cell parameters a = 5.623 Å, b = 9.749 Å, c = 11.127 Å, and β = 99.98°, and with eight formula units (f.u.) per unit cell. However, K₂ZrO₃ is in the orthorhombic system *Pnma* (#62) with unit cell dimensions of *a* = 5.93 Å, *b* = 10.48 Å, and *c* = 7.03 Å (shown in Fig. 1(b)).^{41,42} Its structure contains chains of edge-sharing ZrO₅ square pyramids, with apices oppositely directed, running in the *x* direction. Their experimental crystal structural constants as well as our optimized structural constants of Na₂ZrO₃ and K₂ZrO₃ are summarized in Table I. Although the experimental measurements showed that the Na₂CO₃ and K₂CO₃ could have

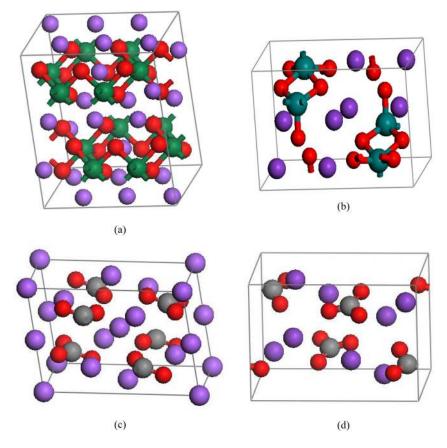


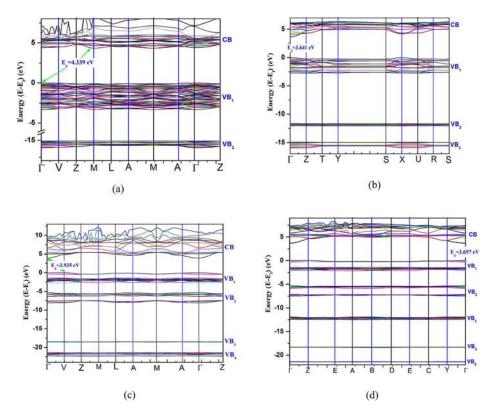
FIG. 1. The crystal structures of sodium and potassium zirconates and carbonates. Biggest ball stands for Zr in green or C in gray, smallest in red for O, purple for Na or K. *c* axis is vertical. (a) Na_2ZrO_3 in space group C12/c1(No.15); (b) K_2ZrO_3 in space group Pnma(No.62); (c) Na_2CO_3 in space group C12/m1(No.14); (d) K_2CO_3 in space group $P12_1/c1(No.14)$.

		Lattice constants		Fractional coordinates			
Crystal and space group	Experimental	Optimized	Deviation (%)	Experimental	Optimized		
$Na_2ZrO_3 C12/c1(No.15)^a$ f.u. = 8	a = 5.623 b = 9.749 c = 11.127 β = 99.98°	5.612809 9.735747 10.95675 100.0426°	-0.18 -0.14 -1.53 0.01	Na: (0.238, 0.077, -0.0001) (0.250, 0.250, 0.500) (0.000, 0.085, 0.250) Zr: (0.000, 0.415, 0.250) (0.000, 0.747, 0.250) O: (0.141, 0.265, 0.138) (0.102, 0.586, 0.138) (0.138, 0.906, 0.135)	Na: (0.236467, 0.078715, -0.000236 (0.250000, 0.250000, 0.500000) (0.000000, 0.084843, 0.250000) Zr: (0.000000, 0.417918, 0.250000) (0.000000, 0.750255, 0.250000) O: (0.147306, 0.268494, 0.142479) (0.096802, 0.584613, 0.142216) (0.145907, 0.901650, 0.140869)		
$K_2ZrO_3 Pnma(No.62)^b$ f.u. = 4	a = 5.93 b = 10.48 c = 7.03	5.945627 10.63924 7.116156	0.26 1.52 1.23	K: (0.264, 0.5857, 0.1143) Zr: (0.2730, 0.25, 0.1598) O: (0.175, 0.75, 0.390) (0.015, 0.121, 0.234)	K: (0.264974, 0.585884, 0.113494) Zr: (0.278576, 0.250000, 0.159942) O: (0.159605, 0.750000, 0.391444) (0.016177, 0.122053, 0.229819)		
Na ₂ CO ₃ C12/m1(No.12) ^c f.u. = 4	a = 8.99881 b = 5.24381 c = 6.2868 $\beta = 97.689^{\circ}$	8.95180 5.33507 6.13861 102.21°	-0.52 1.74 -2.36 4.63	Na: (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.5000) (0.168, 0.5000, 0.7511) C: (0.1643, 0.5000, 0.2535) O: (0.1017, 0.3003, 0.2798) (0.2891, 0.5000, 0.1899)	Na: (0.00000, 0.00000, 0.000000) (0.000000, 0.000000, 0.500000) (0.170359, 0.500000, 0.746427) C: (0.163355, 0.500000, 0.248804) O: (0.100637, 0.289239, 0.287696) (0.288175, 0.500000, 0.172350)		
$K_2CO_3 P12_1/c1(No.14)^d$ f.u. = 4	a = 5.63961 b = 9.8312 c = 6.83407 β = 98.703°	5.76055 9.90478 7.18110 97.30°	2.14 0.75 5.08 -1.42	K: (0.2418, 0.0831, 0.2148) (0.7391, 0.2602, 0.9720) C: (0.2455, 0.4174, 0.2489) O: (0.7368, 0.0430, 0.2014) (0.0631, 0.3488, 0.2770) (0.4147, 0.3609, 0.1718)	K: (0.241092, 0.081862, 0.195855) (0.740909, 0.267167, 0.974545) C: (0.250376, 0.416094, 0.255014) O: (0.737693, 0.042671, 0.194517) (0.063280, 0.346453, 0.276849) (0.424794, 0.359532, 0.186594)		

TABLE I. The experimental and optimized crystal structural constants of M_2 ZrO₃ and M_2 CO₃ (M = Na, K), with all distances in angstroms (Å) and angles in degrees.

^aFrom Ref. 40. ^bFrom Ref. 42.

^oFrom Ref. 42. ^oFrom Ref. 47.


^dFrom Ref. 46.

013109-6 Yuhua Duan

several phases at different temperature ranges,^{45–47} here in this study, we only deal with their most stable phases:²⁹ β -Na₂CO₃ in monoclinic with space group C2/m (#12)⁴⁷ (Fig. 1(c)) and monoclinic phase of K₂CO₃ with space group P2₁/c (#14) (Fig. 1(d)).⁴⁶ In Table I, we also listed their experimental crystal structural constants as well as our optimized results.

From Fig. 1 and Table I, it can be seen that there are eight f.u. in Na_2ZrO_3 unit cell and four f.u. in other three unit cells. In Na_2ZrO_3 , each Zr atom coordinated with six O and each O coordinated with two Zr. Along *c* axis, the connected [ZrO₃] groups form planar layers and separated by Li layers. In [ZrO₃] layer, Zr is in the middle, the bonded O located both sides of Zr, and the Li atoms locate between two Zr, as shown in Fig. 1(a). Similar to Na_2ZrO_3 , in K_2ZrO_3 as shown in Fig. 1(b), the [ZrO₃] group also connects to each other. Instead of forming planar layer, they form into [ZrO₃]_n chains. Each chain is surrounded by K atoms. In the case of Na_2CO_3 and K_2CO_3 as shown in Figs. 1(c) and 1(d), the [CO₃]⁻ groups do not connect to each other and are separated by Na^+ or K^+ ion. From Table I, one can see that the deviations of our optimized structures of Na_2ZrO_3 and K_2ZrO_3 from the corresponding experimental measurements are less than 1.5%. However, large deviations on the angle of Na_2CO_3 and on constant *c* of K_2CO_3 were obtained.

The calculated band structures of M_2ZrO_3 and MCO₃ (M = Na, K) are shown in Fig. 2. It can be seen from Figs. 2(a) and 2(b) that the band structures of Na₂ZrO₃ and K₂ZrO₃ are quite different. Na₂ZrO₃ has two valence bands (VBs), while K₂ZrO₃ has three VBs. The calculated band gap of Na₂ZrO₃ is an indirect one, located between Γ and Z high symmetric points with the value of 4.339 eV, while the calculated band gap of K₂ZrO₃ is direct with the values of 3.641 eV. They are both insulator materials with large band gaps. As described in our previous work,^{27,35} the DFT calculation underestimated the excited-state energy. The calculated band-gaps are usually smaller than the experimental measurements, although currently there is no experimental value available for comparison. The calculated band-gaps, the widths of VBs and the gaps between the VBs of M₂ZrO₃ are summarized in Table II.

 $FIG.\ 2.\ The\ calculated\ electronic\ band\ structures:\ (a)\ Na_2ZrO_3;\ (b)\ K_2ZrO_3;\ (c)\ Na_2CO_3;\ (d)\ K_2CO_3.$

Downloaded 08 Feb 2012 to 204.154.137.252. Redistribution subject to AIP license or copyright; see http://jrse.aip.org/about/rights_and_permissions

TABLE II. The calculated band gaps and valance band widths of M_2 ZrO₃ and M_2 CO₃ (M = K, Na, Li) and their corresponding DFT total energies (E^{DFT}), the zero point energies (E_{zp}), and the entropies (S) at T = 298 K from phonon calculations.

Crystal	VB ₃ width (eV)	Gap between VB_3 and VB_2 (eV)	VB ₂ width (eV)	Gap between VB_2 and VB_1 (eV)	VB ₁ width (eV)	Band gap (eV)	E ^{DFT} (eV/f.u.)	$\begin{array}{c} E_{zp} \\ (kJ/mol) \end{array}$	Entropy (J/mol K)
K ₂ ZrO ₃	0.973	2.839	0.487	8.921	2.757	3.641 (direct)	-40.32835	28.485	168.654
Na ₂ ZrO ₃			0.943	11.837	3.259	4.339 (indirect)	-41.56924	34.497	119.319
Li ₂ ZrO ₃ ^a			1.01	11.695	3.73	3.898 (indirect)	-43.76850	36.108	101.88
									91.63 [°]
K ₂ CO ₃	0.639	4.370	2.132	5.197	2.158	3.697 (direct)	-36.90480	44.683	160.121
									155.50 ^c
Na ₂ CO ₃	0.119	10.466	2.735	2.616	2.736	3.935 (indirect)	-37.29272	47.118	134.685
									138.783 [°]
Li ₂ CO ₃ ^b	0.117	10.276	3.49	2.102	2.51	5.10 (direct)	-39.55190	57.807	93.615
									90.169 ^c
$ZrO_2^{\mathbf{a}}$			1.51	10.971	4.94	3.76 (direct)	-28.73057	20.102	51.30
									50.39 ^c

^aTaken from Ref. 14.

 ${}^{b}\alpha$ -phase Li₂CO₃ taken from Ref. 27. ^cTaken from HSC Chemistry package.⁴⁸

013109-8 Yuhua Duan

As shown in Figs. 2(c) and 2(d), the calculated band structures of Na₂CO₃ and K₂CO₃ have some similarities with several VBs. The calculated band gap of Na₂CO₃ is an indirect one, located between Γ and V high symmetric points with the value of 3.935 eV, while the calculated band gaps of K₂CO₃ is direct with the values of 3.697 eV. Within their VB₁ and VB₂, there are some small gaps. In Na₂CO₃, the width of VB₁ is 2.736 eV in which a 0.714 eV gap was found and divided the VB₁ into two sub-VBs with widths of 0.595 eV and 1.427 eV, respectively. And its width of VB₂ is 2.725 eV in which a 0.952 eV gap was found and divided the VB₂ into two sub-VBs with widths of 1.070 eV and 0.713 eV, respectively. Similar to Na₂CO₃, in K₂CO₃ the widths of its VB₁ and VB₂ are 2.158 eV and 2.132 eV, respectively. With a gap of 1.172 eV, its VB₁ was separated into two sub-VBs with values of 0.240 eV and 0.853 eV. And by a gap of 1.386 eV its VB₂ was also divided into two sub-VB₂ with the widths of 0.533 eV and 0.426 eV, respectively. As shown in Figs. 2(c) and 2(d), at low energy range (-22 eV ~ -10 eV), Na₂CO₃ has another two bands (VB₃, VB₄) while K₂CO₃ has three

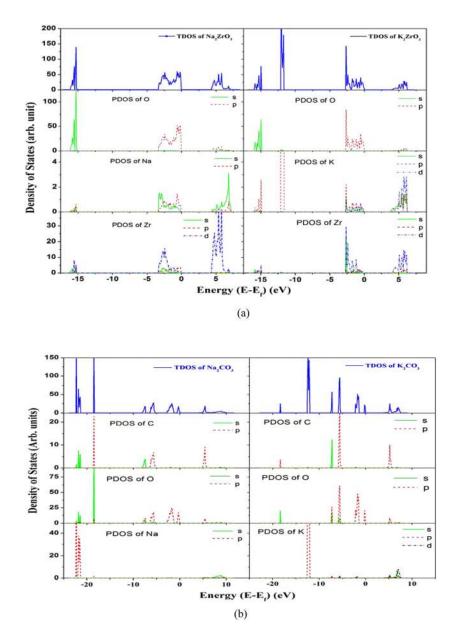


FIG. 3. The calculated electronic TDOS and projected PDOS: (a) Na₂ZrO₃ and K₂ZrO₃; (b) Na₂CO₃ and K₂CO₃.

Downloaded 08 Feb 2012 to 204.154.137.252. Redistribution subject to AIP license or copyright; see http://jrse.aip.org/about/rights_and_permissions

bands (VB₃, VB₄, and VB₅) with narrow widths. Their band widths and gaps are also summarized in Table II.

Figure 3(a) shows the calculated total density of states (TDOS) and their corresponding atom partial density of states (PDOS) for Na₂ZrO₃ and K₂ZrO₃. In both cases, the *s* orbital of O contributes to the lowest energy VBs of Na₂ZrO₃ (VB₂) and K₂ZrO₃ (VB₃), while its *p* orbitals are mainly contributed to their VB₁. All the *s*, *p*, and *d* orbitals of Zr contribute to both VBs, but its *d* orbitals have higher contributions than its *s* and *p* orbitals. Compared Na₂ZrO₃ to K₂ZrO₃, one can see that in the case of Na₂ZrO₃, the *s* orbital of Na has more contribution to the lower portion of VB₁ and the conduction band (CB) and its *p* orbitals have more contribution to the upper portion of VB₁, while in the case of K₂ZrO₃, except for having higher contribution over its *s* and *d* orbitals on VB₁, VB₃, and CB, the *p* orbitals of K are mainly contributed to the VB₂. Comparing with Li₂ZrO₃, ¹⁴ one can see that the electronic structure of Na₂ZrO₃ is similar to that of Li₂ZrO₃, and both of them are different from that of K₂ZrO₃.

From Fig. 3(b), one can see that in Na₂CO₃ the VB₁ is mainly formed by p orbitals of O, VB₂ by interactions of s and p orbitals of O and C, VB₃ by s orbital of O with p orbitals of C, and the VB₄ mainly formed by p orbitals of Na with s orbital of C and O. However, in K₂CO₃, except for VB₁ and VB₂ which are similar to those in Na₂CO₃, the p orbital of K forms a single valence band (VB₃), while its s and p orbitals also involve into other VBs and CB interacting with the s and p orbitals of C and O.

B. Dynamical phonon properties

As shown in Table I, for Na_2ZrO_3 and Na_2CO_3 , there are eight and four f.u. in their unit cells, but their primitive cells have only four f.u. and two f.u., respectively. For both of K_2ZrO_3 and K_2CO_3 , since their unit cells are same as their primitive cells, they have four f.u. Therefore, there are 72 phonon modes in Na_2ZrO_3 , K_2ZrO_3 , and K_2CO_3 , while there are only 36 phonon modes in Na_2CO_3 . The calculated phonon dispersions of M_2ZrO_3 and M_2CO_3 (M = Na, K) are shown in Figs. 4(a)-4(d), respectively. In Tables III and IV, we summarize our calculated phonon frequencies of these four solids together with the corresponding irreducible representations. It can

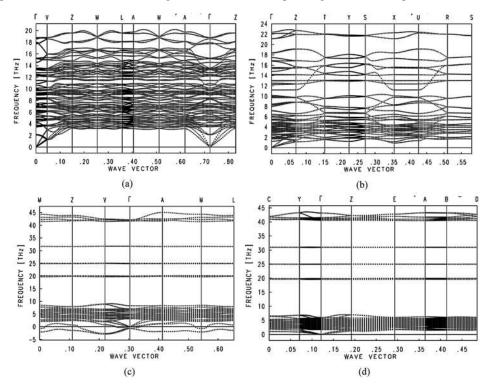


FIG. 4. The calculated phonon dispersions: (a) Na_2ZrO_3 ; (b) K_2ZrO_3 ; (c) Na_2CO_3 ; (d) K_2CO_3 .

013109-10 Yuhua Duan

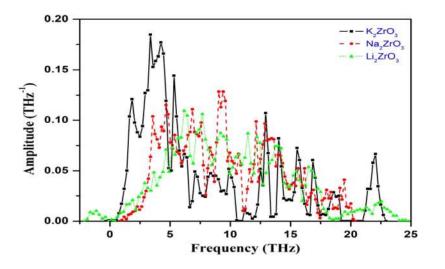
J. Renewable Sustainable Energy 4, 013109 (2012)

	Na ₂ ZrO ₃ (C1	2/c1(No.15))		K ₂ ZrO ₃ (Pnma(No.62))					
Modes	Frequencies	Modes	Frequencies	Modes	Frequencies	Modes	Frequencies		
A _u (I)	-0.10	B _u (I)	305.34	B _{3u} (I)	0.17	A _u	180.65		
B _u (I)	0.10	B _u (I)	309.71	$B_{1u}(I)$	0.23	B _{3u} (I)	184.59		
B _u (I)	0.47	$A_u(I)$	310.37	B _{2u} (I)	0.43	$A_g(R)$	198.27		
$A_g(R)$	69.75	$A_g(R)$	310.71	A_u	40.93	B _{3u} (I)	205.84		
$B_g(R)$	72.08	$B_g(R)$	323.11	$A_g(R)$	57.01	$B_{1u}(I)$	215.34		
B _u (I)	116.11	$A_g(R)$	326.12	$B_{2u}(I)$	62.61	$B_{2g}(R)$	215.44		
$A_u(I)$	122.65	$B_u(I)$	327.62	$B_{3g}(R)$	66.14	$B_{1g}(R)$	238.43		
$B_g(R)$	123.98	$B_g(R)$	329.52	$B_{2g}(R)$	66.21	$B_{2u}(I)$	239.79		
B _u (I)	125.92	$A_u(I)$	338.02	$B_{1g}(R)$	77.12	A_u	267.84		
B _g (R)	141.50	$B_u(I)$	354.74	$B_{1g}(R)$	85.62	B _{3u} (I)	275.65		
A _u (I)	147.60	$A_g(R)$	363.57	B _{3u} (I)	87.59	$A_g(R)$	279.15		
B _u (I)	155.07	$A_u(I)$	382.59	$A_g(R)$	89.19	$B_{3g}(R)$	282.45		
B _u (I)	160.64	$B_g(R)$	407.10	$A_{g}(R)$	97.27	$B_{1u}(I)$	323.72		
$A_g(R)$	172.21	$A_{g}(R)$	409.74	B _{3u} (I)	102.90	$B_{2g}(R)$	328.85		
$B_{g}(R)$	175.92	B _u (I)	410.04	A _u	104.64	$B_{1u}(I)$	331.12		
$B_{g}(R)$	186.12	$A_u(I)$	417.21	$B_{1g}(R)$	107.97	$B_{2g}(R)$	338.86		
A _u (I)	193.33	$B_g(R)$	425.82	B _{2u} (I)	109.51	B _{3u} (I)	372.92		
$A_u(I)$	200.00	B _u (I)	427.08	$B_{1u}(I)$	112.44	$A_g(R)$	373.11		
B _u (I)	206.77	$A_u(I)$	443.79	B _{3g} (R)	115.31	A _u	408.47		
B _u (I)	212.17	$B_g(R)$	444.80	$B_{1u}(I)$	117.34	B _{3g} (R)	417.58		
$A_g(R)$	226.98	B _u (I)	445.33	A _u	119.38	$B_{2u}(I)$	433.02		
B _g (R)	231.52	$A_g(R)$	445.33	$B_{1g}(R)$	122.82	$B_{1g}(R)$	434.82		
$B_u(I)$	235.23	B _u (I)	447.56	$B_{2u}(I)$	127.72	$B_{3g}(R)$	470.85		
$A_g(R)$	237.66	$A_u(I)$	450.30	$B_{2g}(R)$	128.15	A _u	473.55		
$A_u(I)$	247.03	$A_g(R)$	451.30	A _u	132.66	B _{2u} (I)	493.63		
$B_g(R)$	248.60	$B_g(R)$	453.54	$B_{3g}(R)$	133.99	$B_{1u}(I)$	512.67		
A _u (I)	272.41	B _u (I)	485.49	$A_{g}(R)$	134.76	$B_{2g}(R)$	519.61		
$A_g(R)$	274.92	$B_g(R)$	505.37	B _{3u} (I)	139.43	$B_{1g}(R)$	558.90		
B _u (I)	276.65	B _u (I)	506.97	$B_{2g}(R)$	140.53	$A_{g}(R)$	562.64		
$A_u(I)$	278.52	$A_u(I)$	508.44	$B_{1g}(R)$	141.89	B _{3u} (I)	582.02		
B _g (R)	278.72	$A_g(R)$	508.44	$B_{3g}(R)$	149.90	$B_{2g}(R)$	612.04		
B _u (I)	283.09	$A_{g}(R)$	591.49	$B_{2g}(R)$	150.93	$B_{1u}(I)$	614.14		
A _g (R)	298.06	A _u (I)	598.00	B _{1u} (I)	157.00	$B_{1u}(I)$	704.50		
A _u (I)	304.00	B _g (R)	619.74	$B_{2u}(I)$	162.61	B _{2g} (R)	705.80		
B _g (R)	304.37	A _u (I)	626.59	$A_g(R)$	162.64	$A_{g}(R)$	737.99		
$B_{g}(R)$	305.00	$A_g(R)$	627.25	$B_{3g}(R)$	177.55	B _{3u} (I)	746.36		

TABLE III. The calculated frequencies for each irreducible representation vibrational mode of Na_2ZrO_3 and K_2ZrO_3 (unit: cm⁻¹). *R* stands for Raman-active modes and *I* stands for the infrared-active modes.

be seen from Fig. 4(c) that only in Na₂CO₃ along the wave-vector there are two soft modes which correspond to the one type of O displacements. In other three solids (Figs. 4(a), 4(b), and 4(d)), no obvious soft mode was found.

The calculated phonon density of states of M_2ZrO_3 and M_2CO_3 (M = K, Na, Li) is shown in Figs. 5(a) and 5(b), respectively. Summarizing with our previous results on Li₂ZrO₃,¹⁴ overall, from K to Na to Li, the frequencies peaks of M_2ZrO_3 and M_2CO_3 are shifted to high frequencies due to the molecular weight decreased from K to Li.


The calculated phonon free energy of each solid versus temperature is shown in Figure 6(a), from which the zero-point energies (E_{zp}) can be obtained and are listed in Table II. In order to compare their properties of capturing CO₂, the thermodynamic properties of Li₂ZrO₃

J. Renewable Sustainable Energy 4, 013109 (2012)

Na ₂ CO ₃ (C12/m1(No.12))		$K_2CO_3 (P12_1/c1(No.14))$						
Modes	Frequencies	Modes	Frequencies	Modes	Frequencies			
B _g (R)	-23.38	B _u (I)	-0.17	A _g (R)	158.37			
A _u (I)	-21.05	B _u (I)	0.10	B _u (I)	161.04			
B _u (I)	-0.33	$A_u(I)$	0.13	$A_u(I)$	161.77			
$A_u(I)$	0.57	$A_g(R)$	53.87	$A_g(R)$	168.75			
B _u (I)	0.83	$A_g(R)$	64.08	B _u (I)	172.05			
$B_g(R)$	104.47	A _u (I)	69.51	$A_u(I)$	176.95			
A _u (I)	110.41	B _u (I)	75.12	B _g (R)	178.92			
B _u (I)	113.21	$B_g(R)$	82.65	B _u (I)	181.15			
$A_g(R)$	114.11	$A_{g}(R)$	82.89	$A_g(R)$	181.59			
B _g (R)	126.39	$B_g(R)$	84.59	$B_{g}(R)$	184.82			
A _u (I)	127.02	A _u (I)	87.92	A _u (I)	188.56			
$A_g(R)$	131.05	B _u (I)	91.33	$B_g(R)$	200.10			
B _u (I)	148.07	$A_g(R)$	93.80	A _u (I)	653.63			
A _g (R)	154.74	A _u (I)	98.70	$A_g(R)$	654.00			
B _u (I)	164.81	B _g (R)	99.00	B _u (I)	656.30			
$B_g(R)$	168.05	B _u (I)	99.50	$B_g(R)$	656.44			
B _u (I)	192.99	$B_g(R)$	105.90	A _u (I)	659.97			
$A_g(R)$	193.86	$A_{g}(R)$	109.04	$B_u(I)$	660.20			
A _u (I)	213.01	A _u (I)	116.31	$A_g(R)$	660.97			
$B_u(I)$	220.01	$A_g(R)$	117.14	$B_{g}(R)$	662.74			
$A_g(R)$	222.45	$B_g(R)$	117.88	B _u (I)	831.85			
B _u (I)	235.46	A _u (I)	123.08	$A_u(I)$	832.12			
$A_u(I)$	236.09	$A_g(R)$	124.32	$A_g(R)$	833.65			
B _u (I)	275.95	$B_g(R)$	125.88	$B_{g}(R)$	834.25			
$A_u(I)$	659.70	B _u (I)	128.18	B _u (I)	1034.09			
$B_g(R)$	661.31	B _u (I)	131.29	$B_g(R)$	1034.42			
B _u (I)	666.94	$A_g(R)$	133.62	A _u (I)	1034.79			
$A_g(R)$	667.38	A _u (I)	134.39	$A_g(R)$	1035.59			
B _u (I)	829.02	$A_g(R)$	140.43	A _u (I)	1353.30			
$A_g(R)$	835.45	B _u (I)	140.76	$A_g(R)$	1358.17			
B _u (I)	1060.24	$B_g(R)$	141.09	$B_{g}(R)$	1366.71			
$A_g(R)$	1060.34	B _g (R)	143.90	B _u (I)	1367.91			
$B_{g}(R)$	1389.75	A _u (I)	147.93	$A_u(I)$	1371.08			
B _u (I)	1396.49	B _u (I)	148.40	$A_g(R)$	1377.75			
A _u (I)	1398.63	$B_g(R)$	155.44	B _g (R)	1385.52			
$A_g(R)$	1405.90	A _u (I)	156.04	B _u (I)	1440.75			

TABLE IV. The calculated frequencies for each irreducible representation vibrational mode of Na_2CO_3 and K_2CO_3 (unit: cm⁻¹). *R* stands for Raman-active modes and *I* stands for the infrared-active modes.

and Li₂CO₃ are also shown in the same figure.²⁷ As one can see the zero-point energies of these solids are significant and must be included into the predicting their thermodynamic properties (Eq. (3)). Fig. 6(b) shows the calculated entropies of these solids versus the temperatures. Obviously, at 0 K, their entropies are zero and increase with increasing temperature. As shown in Table II, similar to other studied solid sorbents,²⁹ our calculated entropies of these three solids at room temperature are quite close to the experimental measured values, which indicate that our theoretical approach can achieve reasonable results and, therefore, can be used to evaluate other unknown systems. By including these free energies and entropies at different temperatures into Eqs. (2) and (4), the thermodynamic properties of the reactions of M₂ZrO₃ (M=K, Na, Li) capturing CO₂ can be evaluated as described in Sec. III C.

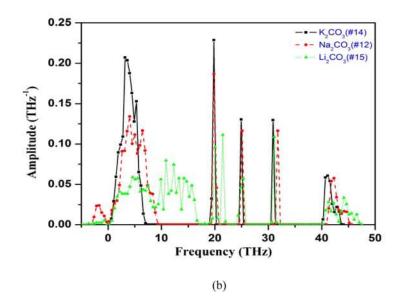
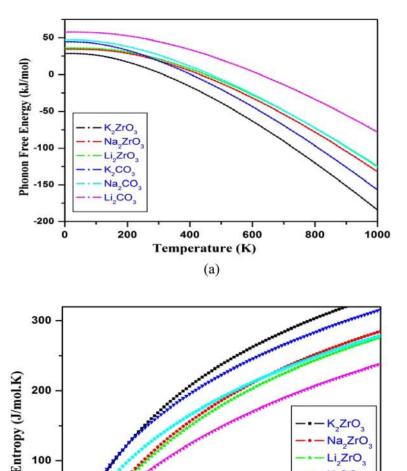



FIG. 5. The calculated phonon total density of states: (a) M_2ZrO_3 ; (b) M_2CO_3 , M = K, Na, Li.

C. Capabilities of Na₂ZrO₃ and K₂ZrO₃ capture CO₂

Experimental investigations showed that the alkali metal zirconates are good candidates of solid sorbents for CO₂ capture because they have large CO₂ sorption capacity, infinite CO₂/N₂ or CO₂/H₂ selectivity, good reversibility, and high operating temperatures.^{8,10–12,16} According to Eq. (4), the calculated heat of reaction (enthalpy change) for reactions of M₂ZrO₃ + CO₂ = M₂CO₃ + ZrO₂ (M = K, Na, Li) versus the temperatures is plotted in Fig. 7(a) and also summarized in Table V. The thermodynamic properties of ZrO₂ were taken from our previous work.¹⁴ For comparison, the available experimental data for the reaction of Na₂ZrO₃ capturing CO₂ from HSC Chemistry database⁴⁸ are also shown in Fig. 7(a). For the reaction of Na₂ZrO₃ capture CO₂ as shown in Fig. 7(a), the data from HSC Chemistry database have one discontinuity at temperature 725 K, which correspond to the solid-solid phase transition of the product Na₂CO₃ at that temperature solid phases of Na₂CO₃. Therefore, as an approximation, we used the structure of its low-temperature phase (<623 K) to represent its structure in

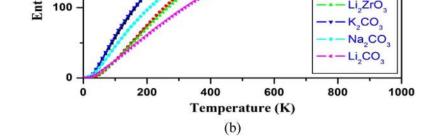


FIG. 6 The calculated thermo-dynamical properties of M_2ZrO_3 and M_2CO_3 , where M = K, Na, Li: (a) free energies including zero-point energy versus temperatures; (b) entropies versus temperatures.

high-temperature range, and the temperature effects were partially taken into account by phonon dynamics at different temperatures without specific phase transition. That is why in Fig. 7(a) the simulated enthalpy of the Na₂ZrO₃ capture CO₂ reaction does not have discontinuity compared to the HSC data. As one can see from Fig. 7(a) that overall our calculated heat of reaction for Na₂ZrO₃ is close to the data from HSC Chemistry database within 6 kJ/mol deviation along the temperature range for CO₂ capture. Since there is no experimental data available for K₂ZrO₃, in Fig. 7(a) only our calculated reaction heat of K₂ZrO₃ capturing CO₂ is plotted. For comparison reason, in Fig. 7(a), we also plotted the reaction heat of Li₂ZrO₃ capturing CO₂ from our previous study.¹⁴ From Fig. 7(a), one can see that the reaction of K₂ZrO₃ capturing CO₂ has larger heat of reaction (Δ H), while Na₂ZrO₃ and Li₂ZrO₃ have similar Δ H values with increasing temperatures, which means the reaction of K₂ZrO₃ absorbing CO₂ is stronger than those of Na₂ZrO₃ and Li₂ZrO₃ absorbing CO₂, but the reverse reaction to regenerate K₂ZrO₃ is much harder and needs more energy comparing with the cases of Na₂ZrO₃ and Li₂ZrO₃.

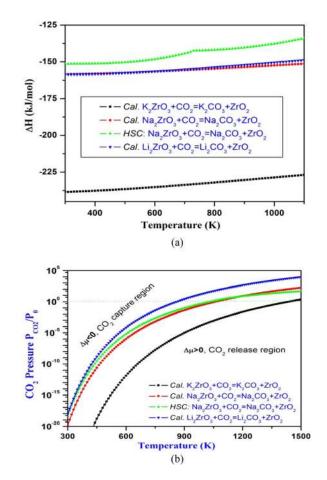


FIG. 7. The calculated thermodynamic properties of the reactions of M_2ZrO_3 (M = K, Na, Li) capturing CO₂: (a) the heat of reaction versus temperature. For the case of Na_2ZrO_3 , the data from HSC package are also presented in this figure. The discontinuity of HSC data at 723K indicates solid-solid phase transition of the product Na_2CO_3 ; (b) the contour plotting of calculated chemical potentials versus CO₂ pressures and temperatures of the reactions. Y-axis plotted in logarithm scale. Only $\Delta \mu = 0$ curve (van't Hoff relation) is shown explicitly. For each reaction, above its $\Delta \mu = 0$ curve, their $\Delta \mu < 0$, which means the alkali metal zirconates absorb CO₂ and the reaction goes forward, whereas below the $\Delta \mu = 0$ curve, their $\Delta \mu > 0$, which means the CO₂ start to release and the reaction goes backward to regenerate the sorbents.

According to Eq. (2), for the reactions of M_2ZrO_3 capturing CO₂, we can explore the relationship among the chemical potential ($\Delta\mu(T,P)$), the temperature, and the COB₂ pressure (P_{CO_2}). This kind of relationship for the reaction (a) is shown in Fig. 7(b) as contour plotting. Only one line for each reaction is plotted explicitly in the Fig. 7(b) on which the $\Delta\mu(T,P)$ is zero. Around the line is a good region for the absorption and desorption because of the minimal energy costs at the given temperature and pressure. Above the line, the solid (M_2ZrO_3) is favorable to absorb CO₂ and to form M_2CO_3 , while below the line the M_2CO_3 is favorable to release CO₂ and regenerate M_2ZrO_3 solids back.

As described above and shown in Fig. 7, all of these reactions are thermodynamically favorable over a quite wide range of temperatures (<1000 K) and P_{CO_2} , which means that under this temperature range the CO₂ is thermodynamically favored by M₂ZrO₃ (M = Li, Na, K). However, as a CO₂ solid sorbent, it should not only be easy to absorb CO₂ in the first half cycle but also be easy to release the CO₂ from products (M₂CO₃ and ZrO₂, for example) in the second half cycle. The operating conditions for absorption/desorption processes are depending on the pre- and post-combustion technologies. The Department of Energy (DOE) programmatic goal for post-combustion and oxy-combustion CO₂ capture is to capture at least 90% CO₂ with the cost in electricity no more than 35%, whereas the goal in the case of pre-combustion CO₂ capture is to capture at least 90% CO₂ with the cost in electricity no more than 10%.^{4,49} Under

TABLE V. The weight percentage of CO₂ capture, the calculated energy change ΔE^{DFT} , the zero-point energy changes ΔE_{ZP} , and the thermodynamic properties (ΔH , ΔG) of the CO₂ capture reactions by alkali metal zirconates. (unit: kJ/mol). The turnover temperatures (T₁ and T₂) of the reactions of CO₂ capture by solids under the conditions of pre-combustion (P_{CO2} = 20 bar) and post-combustion (P_{CO2} = 0.1 bar) are also listed.

	Abaabiaa			ATT	40	Turnover T (K)	
Reaction	Absorbing CO ₂ wt. %	$\Delta E^{\rm DFT}$	ΔE_{ZP}	$\frac{\Delta H}{(T=300 \text{ K})}$	$\frac{\Delta G}{(T=300 \text{ K})}$	T_1	T ₂
$\overline{K_2ZrO_3+CO_2\leftrightarrow K_2CO_3+ZrO_2}$	20.24	-223.158	5.813	-238.490	-187.884	hT ^b	1285
$Na_2ZrO_3 + CO_2 \leftrightarrow Na_2CO_3 + ZrO_2$	23.76	-140.862	2.236	-158.327	-114.121	1275	925
				-151.403^{a}	-105.252^{a}		
$Li_2ZrO_3 + CO_2 \leftrightarrow Li_2CO_3 + ZrO_2^{\ c}$	28.75	-146.648	11.311	-158.562	-103.845	1000	780
				-162.69^{a}	-113.18^{a}		

^aFrom HSC-Chemistry database package.¹⁴

^bhT means the temperature is higher than our temperature range (1500 K).

^cTaken from Ref. 48.

pre-combustion conditions, after water-gas shifting, the gas stream mainly contains CO₂, H₂O, and H₂. The partial CO₂ pressure is around $20 \sim 30$ bar, and the temperature is around $313 \sim 573$ K. To minimize the energy consumption, the ideal sorbents should work at these pressure and temperature ranges to separate CO_2 from H₂. This temperature, denoted T_1 , is listed in Table V and is the temperature above which the M_2ZrO_3 cannot absorb CO_2 anymore and will start to release CO_2 . This indicates that, during the first half cycle to capture CO_2 , the operating temperature should be lower than T_1 , whereas the operating temperature may be higher than T_1 (depending on the desired obtained CO_2 pressure) during the second half cycle of sorbents regeneration to release CO₂. For post-combustion conditions, the gas stream mainly contains CO_2 and N_2 , the partial pressure of CO_2 is around 0.1~0.2 bar, and the temperature range is quite different. Currently, in post-combustion CO₂ capture technology, the amine related solvents, carbon, and zeolite (including metal organic framework) based solid sorbents capture CO_2 at low temperature range (<200 °C),^{7,50} while oxides (such as CaO and Na₂O) and salts (such as Li₄SiO₄ and Li₂ZrO₃) capture CO₂ usually at high temperature range $(>400 \,^{\circ}\text{C})$.^{7,14,26,28,29} The turnover temperatures (denoted as T_2) for post-combustion capture by M_2 ZrO₃ (M = K, Na, Li) are also listed in Table V.

From Table V and Fig. 7(b), one can see that these three zirconates capture CO₂ up to higher temperatures ($T_1 > 1000$ K) compared with desired pre-combustion condition ($313 \sim 573$ K). Therefore, they are not good sorbents for capturing CO₂ in pre-combustion technology. However, they could be used for high-temperature post-combustion CO₂ capture with $T_2 = 1285$ K, 925 K, 780 K for K₂ZrO₃, Na₂ZrO₃, and Li₂ZrO₃, respectively. Obviously, compared to CaO,^{7,28} the T_2 of K₂ZrO₃ is still too high to be used for post-combustion technology. This may be part of the reason that there is no experimental work found in the literature for pure K₂ZrO₃ capturing CO₂. Therefore, Na₂ZrO₃ and Li₂ZrO₃ are good candidates for CO₂ sorbents working at high temperature in post-combustion capture technology.

From Table V and Fig. 7(b), one can see that the reverse reaction is not just to dissociate $MB_{2B}CO_3$ but also to regenerate $M_{2B}ZrO_3$ from M_2O by reacting with ZrO_2 which involves net energy gain, and lay down the conditions for $\Delta \mu > 0$ compared with the case of $MB_{2B}O$ (M = K, Na, Li). In other words, the presence of ZrO_2 can destabilize the stable phase of M_2CO_3 and make the reverse reaction to release CO_2 less energy required.²⁷ Obviously, our results, along with our previous studies, ^{14,26–29} showed that computational modeling could play an important role and provide guidelines in developing new solid sorbents for CO_2 capture.

IV. CONCLUSIONS

By combining the density functional theory and phonon lattice dynamics, we investigated the electronic structural and phonon properties of M_2ZrO_3 and M_2CO_3 (M = Na, K). The optimized structures of these solids are in a good agreement with experimental measurements.

013109-16 Yuhua Duan

The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na₂ZrO₃, K₂ZrO₃, Na₂CO₃, and K₂CO₃, respectively. In both cases of Na_2ZrO_3 and K_2ZrO_3 , the s orbital of O contributes to their lowest energy VB₂ in Na_2ZrO_3 and VB₃ in K_2 ZrO₃, while its p orbitals are mainly contributed to their VB₁. All the s, p, and d orbitals of Zr contribute to both VBs, but its d orbitals have higher contributions than its sand p orbitals. In K_2 ZrO₃, the p orbitals of K are mainly contributed to the VB₂. The electronic structure of Na₂ZrO₃ is similar to that of Li₂ZrO₃, and both of them are different from that of K_2ZrO_3 . The phonon dispersions and phonon density of states for M_2ZrO_3 and M_2CO_3 (M = K, Na) were calculated by the direct method. Overall, from K to Na to Li, the frequency peaks of M_2ZrO_3 and M_2CO_3 are shifted to high frequencies due to the molecular weight decreased from K to Na to Li.

From the calculated thermodynamic properties of M_2ZrO_3 (M = K, Na, Li) reacting with CO_2 through reactions of $M_2ZrO_3 + CO_2 = M_2CO_3 + ZrO_2$, we found that the performance of Na_2ZrO_3 capturing CO₂ is similar to that of Li_2ZrO_3 and is better than that of K_2ZrO_3 . Therefore, Na₂ZrO₃ and Li₂ZrO₃ are good candidates of high temperature CO₂ sorbents and could be used for post-combustion capture technology. Pure K₂ZrO₃ is not a good CO₂ sorbent, because it needs much more energy for regenerating at very high temperature.

ACKNOWLEDGMENTS

The author thanks Dr. H. P. Loh for reading the manuscript, Dr. D. C. Sorescu, Dr. D. Luebke, and Dr. H. W. Pennline for their fruitful discussions.

- ¹D. Aaron and C. Tsouris, Sep. Sci. Technol. 40, 321 (2005).
- ²C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, J. Air Waste Manage. Assoc. 53, 645 (2003).
- ³R. S. Haszeldine, Science **325**, 1647 (2009).
- ⁴J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, Int. J. Greenhouse Gas Control 2, 9 (2008).
- ⁵H. Pfeiffer and P. Bosch, Chem. Mater. **17**, 1704 (2005).
- ⁶E. Ochoa-Fernandez, H. K. Rusten, H. A. Jakobsen, M. Ronning, A. Holmen, and D. Chen, Catal. Today 106, 41 (2005). ⁷Q. Wang, J. Luo, Z. Zhong, and A. Borgna, Energy Environ. Sci. 4, 42 (2011).
- ⁸G. Pannocchia, M. Puccini, M. Seggiani, and S. Vitolo, Ind. Eng. Chem. Res. 46, 6696 (2007).
- ⁹D. J. Fauth, E. A. Frommell, J. S. Hoffman, R. P. Reasbeck, and H. W. Pennline, Fuel Process. Technol. 86, 1503 (2005).
- ¹⁰J. Ida, R. T. Xiong, and Y. S. Lin, Sep. Purif. Technol. 36, 41 (2004).
- ¹¹K. Essaki, K. Nakagawa, and M. Kato, J. Ceram. Soc. Jpn. **109**, 829 (2001).
- ¹²K. Nakagawa and T. Ohashi, J. Electrochem. Soc. 145, 1344 (1998).
- ¹³B. N. Nair, R. P. Burwood, V. J. Goh, K. Nakagawa, and T. Yamaguchi, Prog. Mater. Sci. 54, 511 (2009).
- ¹⁴Y. Duan, J. Renewable Sustainable Energy **3**, 013102 (2011).
- ¹⁵A. Lopez-Ortiz, N. G. P. Rivera, A. R. Rojas, and D. L. Gutierrez, Sep. Sci. Technol. 39, 3559 (2004).
- ¹⁶T. J. Zhao, E. Ochoa-Fernandez, M. Ronning, and D. Chen, Chem. Mater. 19, 3294 (2007).
- ¹⁷L. O. G. Hernandez, D. L. Gutierrez, V. Collins-Martinez, and A. L. Ortiz, J. New Mater. Electrochem. Syst. 11, 137 (2008). ¹⁸I. Alcerreca-Corte, E. Fregoso-Israel, and H. Pfeiffer, J. Phys. Chem. C **112**, 6520 (2008).
- ¹⁹A. Sandoval-Diaz and H. Pfeiffer, Rev. Mex. Fis. **54**, 65 (2008).
- ²⁰E. Ochoa-Fernandez, T. J. Zhao, M. Ronning, and D. Chen, J. Environ. Eng. Asce 135, 397 (2009).
- ²¹V. G. Velderrain, D. B. Jimenez, D. L. Gutierrez, D. D. Vigil, J. S. Gutierrez, A. L. Ortiz, and V. Collins-Martinez, J. New Mater. Electrochem. Syst. 13, 295 (2010).
- ²²M. Olivares-Marin, M. Castro-Diaz, T. C. Drage, and M. M. Maroto-Valer, Sep. Purif. Technol. **73**, 415 (2010).
- ²³M. Y. Veliz-Enriquez, G. Gonzalez, and H. Pfeiffer, J. Solid State Chem. 180, 2485 (2007).
- ²⁴R. Xiong, J. Ida, and Y. S. Lin, Chem. Eng. Sci. **58**, 4377 (2003).
- ²⁵Y. Duan, D. C. Sorescu, and D. Luebke, in 28th Annual International Pittsburgh Coal Conference, Pittsburgh, 12-15 September 2011
- ²⁶Y. Duan and K. Parlinski, Phys. Rev. B **84**, 104113 (2011).
- ²⁷Y. Duan and D. C. Sorescu, Phys. Rev. B **79**, 014301 (2009).
- ²⁸Y. Duan and D. C. Sorescu, J. Chem. Phys. **133**, 074508 (2010).
- ²⁹Y. Duan, B. Zhang, D. C. Sorescu, and J. K. Johnson, J. Solid State Chem. 184, 304 (2011).
- ³⁰S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002).
- ³¹J. H. Wang and M. Liu, J. Power Sources **176**, 23 (2008).
- ³²G. Kresse and J. Hafner, Phys. Rev. B **47**, 558 (1993).
- ³³G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- ³⁴J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- ³⁵Y. Duan, Phys. Rev. B 77, 045332 (2008).
- ³⁶H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- ³⁷C. J. Bradley and A. P. Cracknell, *The Mathematical Theory of Symmetry in Solids* (Clarendon, Oxford, 1972).

- ³⁸K. Parlinski, Software PHONON (2006); http://wolf.ifj.edu.pl/phonon/

- ³⁸K. Parlinski, Software PHONON (2006); http://wolf.ifj.edu.pl/phonon/
 ³⁹K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. **78**, 4063 (1997).
 ⁴⁰T. J. Bastow, M. E. Hobday, M. E. Smith, and H. J. Whitfield, Solid State Nucl. Magn. Reson. **3**, 49 (1994).
 ⁴¹B. M. Gatehouse and D. J. Lloyd, J. Chem. Soc. D: Chem. Commun. **1969**, 727.
 ⁴²B. M. Gatehouse and D. J. Lloyd, J. Solid State Chem. **2**, 410 (1970).
 ⁴³G. Lang, Z. Anorg. Allg. Chem. **276**, 77 (1954).
 ⁴⁴G. Lang, Z. Anorg. Allg. Chem. **348**, 246 (1966).
 ⁴⁵M. Dusek, G. Chapuis, M. Meyer, and V. Petricek, Acta Crystallogr., Sec. B: Struct. Sci. **59**, 337 (2003).
 ⁴⁶Y. Idemoto, J. W. Richardson, N. Koura, S. Kohara, and C. K. Loong, J. Phys. Chem. Solids **59**, 363 (1998).
 ⁴⁷I. P. Swainson, M. T. Dove, and M. J. Harris, J. Phys.: Condens. Matter **7**, 4395 (1995).
 ⁴⁸HSC Chemistry software 6.1. Pori: Outdece Research Ov, www outdece com/hsc (2006).

- ⁴⁸HSC Chemistry software 6.1, Pori: Outotec Research Oy, www.outotec.com/hsc (2006).
 ⁴⁹DOE-NETL, "Cost and performance baseline for fossil energy plants," Volume 1: Bituminous coal and natural gas to electricty final report, www.netl.doe.gov/energy-analyses/baseline_studies.html (2007).
- ⁵⁰G. T. Rochelle, Science **325**, 1652 (2009).