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All the current variants of Jayatilaka’s X-ray constrained wavefunction (XCW)

approach work within the framework of the single-determinant wavefunction

ansatz. In this paper, a first-prototype multi-determinant XCW technique is

proposed. The strategy assumes that the desired XCW is written as a valence-

bond-like expansion in terms of pre-determined single Slater determinants

constructed with extremely localized molecular orbitals. The method, which can

be particularly suitable to investigate systems with a multi-reference character,

has been applied to determine the weights of the resonance structures of

naphthalene at different temperatures by exploiting experimental high-

resolution X-ray diffraction data. The results obtained have shown that the

explicit consideration of experimental structure factors in the determination of

the resonance structure weights may lead to results significantly different

compared with those resulting only from the simple energy minimization.

1. Introduction

The possibility of extracting wavefunctions or density matrices

from experimental crystallographic data has been a tempting

prospect for a long time (Grabowsky et al., 2017). In this

context, a prominent role is occupied by the strategies

originally proposed by Clinton, Massa and co-workers in the

1960s and later (Clinton, Galli & Massa, 1969; Clinton,

Nakhleh & Wunderlich, 1969; Clinton, Henderson & Prestia,

1969; Clinton, Galli, Henderson et al., 1969; Clinton & Lamers,

1969; Clinton & Massa, 1972a). They initially used only

theoretically generated X-ray diffraction data as external

constraints (Clinton & Massa, 1972b; Clinton et al., 1973;

Frishberg &Massa, 1978, 1981, 1982; Goldberg &Massa, 1983;

Boehme & La Placa, 1987) and the very first attempt at

exploiting real experimental structure factors was performed

in 1985 (Massa et al., 1985). Since then, inspired by the

pioneering techniques of Clinton and Massa, several

researchers have proposed different strategies to obtain

wavefunctions or density matrices compatible with experi-

mental diffraction data (Grabowsky et al., 2017), not exclu-

sively X-ray structure factors. Among them, it is worth citing

the methods aimed at reconstructing diagonal and off-

diagonal parts of one-electron density matrices by exploiting

simultaneously X-ray diffraction and inelastic Compton scat-

tering measurements, such as those proposed by Weyrich and

collaborators (Schmider et al., 1990, 1992; Weyrich, 2006) or
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those developed by Gillet, Becker and Cortona (Gillet et al.,

2001; Gillet & Becker, 2004; Gillet, 2007).

However, nowadays, among all the modern experimentally

constrained wavefunction or density matrix strategies, the

X-ray constrained wavefunction (XCW) approach proposed

by Jayatilaka (Jayatilaka, 1998, 2012; Jayatilaka & Grimwood,

2001; Grimwood & Jayatilaka, 2001; Bytheway, Grimwood &

Jayatilaka, 2002; Bytheway, Grimwood, Figgis et al., 2002;

Grimwood et al., 2003) is the most promising and reliable. The

XCW method basically consists in finding a plausible wave-

function that not only variationally minimizes the energy of

the system under examination, but also reproduces a set of

experimentally collected structure-factor amplitudes within

the limit imposed by the experimental errors. Initially devel-

oped in the framework of the restricted Hartree–Fock form-

alism (Jayatilaka, 1998; Jayatilaka & Grimwood, 2001;

Grimwood et al., 2003), the Jayatilaka strategy has since been

extended to the unrestricted case (Hudák et al., 2010) and to

relativistic corrections (Hudák et al., 2010; Bučinský et al.,

2016). Furthermore, the XCW technique has also been

coupled with a method proposed by Stoll et al. (1980) to

determine extremely localized molecular orbitals (ELMOs)

(Sironi et al., 2007). This led to the novel X-ray constrained

ELMO (XC-ELMO) strategy (Genoni, 2013a,b; Dos Santos et

al., 2014; Genoni & Meyer, 2016) which enables extraction of

molecular orbitals that are strictly localized on small mole-

cular fragments (e.g. atoms, bonds or functional groups) and

compatible with experimental X-ray diffraction data.

However, all the XCW methods developed so far are limited

to the single Slater determinant wavefunction ansatz and this

is probably one of the most plausible reasons why the current

XCW approaches seem to capture electron correlation effects

only partially (Genoni et al., 2017).

In this communication, we present a first attempt to go

beyond the single-determinant wavefunction ansatz in the

framework of the Jayatilaka approach. To accomplish this task

we exploited again the concept of ELMOs that enabled us to

define the basis of Slater determinants on which to expand the

wavefunction to be determined. This gave rise to the new

multi-determinant X-ray constrained ELMO valence bond

(XC-ELMO-VB) method, which can be particularly useful to

treat systems characterized by a multi-reference character and

which consequently allows one to extract the weights of the

different resonance structures of the investigated molecule

from experimental X-ray diffraction data.

2. Theory

As in the usual XCW techniques, we assume that we are

working with effective molecular crystals whose non-

interacting molecular units are described by formally identical

and symmetry-related wavefunctions. Furthermore, assuming

that each molecular unit is a symmetry-unique portion of the

crystal unit cell, we can write the global unit-cell electron

density as the sum ofNm crystal unit charge distributions �kðrÞ,
which are simply obtained from the reference electron density

�0ðrÞ by means of the unit-cell symmetry operations fQk; qkg:

�cellðrÞ ¼
PNm

k¼1

�kðrÞ ¼
PNm

k¼1

�0 Q�1
k ðr� qkÞ

� �
: ð1Þ

To guarantee the exactitude of equation (1), in all the Jaya-

tilaka-type approaches, the electron density �0ðrÞ is associated
with the wavefunction j�0i that not only minimizes the elec-

tronic energy of the reference unit, but that also reproduces

a set of experimental structure-factor amplitudes fjFexp
h jg.

Nevertheless, while in the usual XCW methods j�0i has the
form of a single Slater determinant, in the new XC-ELMO-VB

technique we express the reference wavefunction in the

following form:

j�0i ¼ j�XC�ELMO�VBi ¼
P
i

Cij�ii; ð2Þ

where the functions fj�iig are single Slater determinants that

describe all the possible resonance structures of the system

under examination. In our case, they will consist of normalized

ELMO wavefunctions that are pre-determined by means of

unconstrained ELMO calculations that exploit localization

schemes corresponding to the different resonance structures

(more details about the ELMO method are given in the

supporting information). For example, if we were interested in

studying benzene, the wavefunction j�XC�ELMO�VBi would be

a linear combination of at least two ELMO wavefunctions:

one corresponding to the localization scheme associated with

resonance structure A and another one corresponding to the

ELMO wavefunction associated with the localization scheme

for resonance structure B (see Fig. 1).

In the current version of the technique, the pre-optimized

unconstrained ELMOs are kept frozen, while the coefficients

fCig in equation (2) are determined by minimizing the

following functional:

J½C� ¼ EELMO�VB½C� þ � �2½C� ��
� �

; ð3Þ
where [C] indicates the functional dependence on the coeffi-

cients fCig of expansion (2), EELMO�VB is the electronic energy

associated with j�XC�ELMO�VBi, � is an external parameter

representing the strength of the constraints given by the

experimental data, � is the desired agreement between

theoretical and experimental values (usually set equal to 1.0)

and �2 is the measure of the fitting accuracy between calcu-

lated and observed structure-factor amplitudes, namely

�2 ¼ 1

Nr � Np

X

h

�jFcalc
h j � jFexp

h j� �2

�2
h

: ð4Þ

Nr is the number of considered X-ray diffraction data, Np the

number of adjustable parameters, h the triads of Miller indices
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Figure 1
The two resonance structures of benzene can be used as localization
schemes for two different ELMO calculations providing two different
ELMO wavefunctions.
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labelling the reflections, �h the experimental error associated

with the observed structure-factor amplitude jFexp
h j and � a

scale factor that is determined in order to minimize �2. Of

course, the summation in equation (4) runs only over the

triads of Miller indices associated with observed reflections,

the unobserved ones being excluded from the external

constraint.

In analogy with the usual XCW methods, in our new XC-

ELMO-VB approach, the external parameter � is iteratively

adjusted until convergence of the weights associated with the

resonance structures of the system under examination. In this

respect, it is worth noting that, due to the non-orthogonality of

the Slater determinants fj�iig in expansion (2), the coeffi-

cients fCig do not immediately provide the real weights

associated with the corresponding resonance structures. These

weights are actually given by the Chirgwin–Coulson coeffi-

cients (Chirgwin & Coulson, 1950), which are defined as

Ki ¼ jCij2 þ
P
j 6¼i

CiCjSij; ð5Þ

where Sij ¼ h�ij�ji is the overlap between the pre-deter-

mined ELMO wavefunctions j�ii and j�ji. Therefore, in the

current version of the strategy, we stopped the X-ray

constrained calculations when the largest absolute variation of

the Chirgwin–Coulson coefficients between two consecutive �
steps is lower than 1:0� 10�3:

maxfjK�
i � K��1

i jgi < 1:0� 10�3: ð6Þ

3. Test calculations

The new XC-ELMO-VB technique has been tested using the

high-resolution X-ray diffraction data collected for naphtha-

lene by Oddershede & Larsen (2004) at 100, 135, 170 and

205 K.

At first, for each crystal structure determined at the

different temperatures, we performed unconstrained ELMO

calculations by considering three possible localization

schemes, one for each resonance structure depicted in Fig. 2.

In other words, for each localization pattern, other than

having atomic fragments for the core electrons and bond

fragments for all the C—C and C—H � bonds, we have also

considered C—C bond fragments for each � bond in the

resonance structure. The essential results of the unconstrained

ELMO calculations (basis set cc-pVDZ) are shown in Table 1.

It is easy to observe that, for each crystallographic structure,

the unconstrained ELMO computations provided the same

trends. In fact, the ELMO wavefunction associated with

resonance structure B is always the one with the lowest energy,

while the ELMO wavefunctions corresponding to resonance

structures A and C are characterized by higher energies and

are always degenerate. However, in spite of the relative

energetic stability, it is worth noting that resonance structures

A and C always provide a better statistical agreement with the

experimental diffraction data (see the �2 values) than reso-

nance structure B. These results seem to show that, although

less energetically favourable in the gas phase, resonance

structures A and C are probably more compatible with the

collected structure-factor amplitudes and are probably

predominant in the crystal phase.

As mentioned above, the goal of the preliminary ELMO

computations was also to provide the ELMO Slater determi-

nants over which to expand the valence bond wavefunction

[see equation (2)] for the following XC-ELMO-VB calcula-

tions. Of course, in this case, for each crystallographic struc-

ture we used the ELMO wavefunctions corresponding to

resonance structures A, B and C of naphthalene (see Fig. 2).

Furthermore, for all the XC-ELMO-VB computations, we

exploited unit-cell parameters, anisotropic displacement

parameters (ADPs) and structure-factor amplitudes deposited

with the corresponding crystallographic structures. The main

results of the unconstrained ELMO-VB [external multiplier �
set equal to 0.0 in functional (3)] and of the X-ray constrained

ELMO-VB calculations are shown in Table 2, where we have

reported the �2 statistical agreements and the Chirgwin–

Coulson weights obtained in the different cases.

For all the unconstrained ELMO-VB computations, which

simply consist in simple energy minimizations without

considering the effects of the experimental structure-factor

amplitudes, resonance structure B is characterized by a greater

Chirgwin–Coulson weight compared with the other two

structures. This reflects the relative energetic stability resulting

from the unconstrained ELMO calculations. On the contrary,
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Figure 2
Resonance structures of naphthalene corresponding to the three different
localization schemes for the unconstrained ELMO calculations that have
been performed.

Table 1
Results of the unconstrained ELMO calculations (basis set cc-pVDZ)
performed on the crystallographic structures of naphthalene determined
at 100, 135, 170 and 205 K.

Temperature and
ELMO

resonance structure �2 Electronic energy (Eh)

100 K A 1.67 �841.791171
100 K B 3.35 �841.821438
100 K C 1.67 �841.791171

135 K A 1.90 �841.554899
135 K B 3.87 �841.585315
135 K C 1.90 �841.554899

170 K A 2.38 �842.209337
170 K B 4.37 �842.239801
170 K C 2.38 �842.209337

205 K A 3.16 �842.070174
205 K B 5.27 �842.100581
205 K C 3.16 �842.070174
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when the experimental diffraction data are directly taken into

account in the minimization of functional (3) (XC-ELMO-VB

computations), we can observe that resonance structures A

and C become predominant (with equal weights) over struc-

ture B. This confirms what we have previously inferred from

the unconstrained ELMO calculations, namely the fact that,

although less energetically favourable in the gas phase, reso-

nance structures A and C are more compatible with the

collected structure-factor amplitudes than structure B, and,

therefore, that they become predominant in the crystal phase.

Moreover, analysing Table 2, we can also observe that, as

expected, the statistical agreement with the experimental

X-ray diffraction data improves when lower-temperature

experimental data sets are considered in the calculations. This

is obviously due to the better deconvolution of thermal

motion from the static electron density (i.e. better quality of

the atomic ADPs) and can also

be seen in Table 1. However,

notwithstanding these clear

changes in �2, the Chirgwin–

Coulson weights remain quite

stable (maximal fluctuation lower

than 2%; see Table 2), thus indi-

cating that correct information on

the electronic structure of naph-

thalene can actually be obtained

from all the four considered

X-ray data sets characterized by

different degrees of deconvolution of thermal motion.

The effects of the experimental constraints on the

Chirgwin–Coulson weights are also very clear in Fig. 3(a)

where we can better observe how the weights change as a

function of the external multiplier � for the crystallographic

structure determined at 100 K. The variation of the �2 statis-

tical agreement is also shown in Fig. 3(b). Analogous trends

have also been observed for the crystallographic structures

determined at the other temperatures (135, 170 and 205 K; see

Figs. S2–S4 in the supporting information).

For the sake of completeness, we want to point out that, not

considering individually the weights of the single resonance

forms, the delocalized picture of the electronic structure of

naphthalene jointly provided by the doubly degenerate reso-

nance forms A and C predominates over the description given

by resonance structure B, both in the gas (unconstrained

calculations) and crystalline (X-ray constrained calculations)

phases. This is in agreement with recent studies conducted by

Gatti, Lo Presti and co-workers (Monza et al., 2011; Gatti et

al., 2016) that exploited the Source Function descriptor to

analyse the delocalization pattern of naphthalene by consid-

ering also the electron-density distribution obtained from the

multipole model refinement of the experimental data used in

the present paper (Oddershede & Larsen, 2004).

4. Conclusions

In this short communication we have presented a first-

prototype multi-determinant X-ray constrained wavefunction

approach that mainly exploits pre-determined ELMO single

Slater determinants to expand a valence-bond-like wave-

function. The method can be particularly useful to study

molecules with a multi-reference character and, consequently,

to directly extract the weights of the resonance structures of

the system under examination from experimental structure

factors. Test calculations performed by exploiting high-

resolution X-ray diffraction data for naphthalene have shown

that the relative importance of resonance structures may

change when the resonance weights are determined by also

considering experimental structure factors instead of simply

minimizing the energy of the system. The promising preli-

minary results obtained with the current version of the tech-

nique encourage us to further improve the method in the

near future, in particular by also introducing an optimization

short communications
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Figure 3
(a) Chirgwin–Coulson weights (KA, KC in blue and KB in red) and (b) �2

statistical agreement as a function of the external multiplier � for the XC-
ELMO-VB calculations performed on the crystallographic structure of
naphthalene at 100 K.

Table 2
Statistical agreements with the experimental structure-factor amplitudes and Chirgwin–Coulson weights
obtained from the unconstrained (� ¼ 0:0) and X-ray constrained ELMO valence bond calculations (basis
set cc-pVDZ) performed on the crystallographic structures of naphthalene determined at 100, 135, 170 and
205 K.

Unconstrained ELMO-VB (� ¼ 0:0) X-ray constrained ELMO-VB

Temperature �2 KA KB KC �max �2 KA KB KC

100 K 1.73 0.257 0.486 0.257 0.39 1.51 0.365 0.270 0.365
135 K 2.00 0.257 0.486 0.257 0.38 1.76 0.367 0.265 0.367
170 K 2.49 0.257 0.486 0.257 0.38 2.25 0.367 0.266 0.367
205 K 3.33 0.257 0.486 0.257 0.36 3.10 0.362 0.276 0.362
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of the ELMO Slater determinants used to expand the multi-

determinant wavefunction.
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