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A B S T R A C T
A method for the recovery of the real space line-of-sight mass density field from Lyman
absorption in QSO spectra is presented. The method makes use of a Lucy-type algorithm for
the recovery of the H i density. The matter density is inferred from the H i density assuming
that the absorption results from a photoionized intergalactic medium that traces the mass
distribution as suggested by recent numerical simulations. Redshift distortions are corrected
iteratively from a simultaneous estimate of the peculiar velocity. The method is tested with
mock spectra obtained from N-body simulations. The density field is recovered reasonably
well up to densities where the absorption features become strongly saturated. The method is an
excellent tool with which to study the density probability distribution and clustering properties
of the mass density in the (mildly) non-linear regime. Combined with redshift surveys along
QSO sightlines, the method will make it possible to relate the clustering of high-redshift
galaxies to the clustering of the underlying mass density. We further show that accurate
estimates for ðQbarh

2Þ2J¹1HðzÞ¹1 and higher order moments of the density probability function
can be obtained despite the missing high-density tail of the density distribution if a parametric
form for the probability distribution of the mass density is assumed.

Key words: intergalactic medium – quasars: absorption lines – cosmology: observations –
cosmology: theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

The Lyman forest in QSO absorption spectra is now generally
believed to be caused by absorption by large-scale neutral hydrogen
(H i) density fluctuations of moderate amplitude in a warm photo-
ionized intergalactic medium (IGM). This relatively new paradigm
for the forest differs considerably from the conventional ‘cloud’
picture, which had been advocated for two decades and in which the
Lyman forest is due to a superposition from discrete absorbers with
small cross-sections (see Rauch 1998 for a review). The new picture
had been investigated using analytical calculations (e.g. Bond,
Szalay & Silk 1988; McGill 1990; Bi, Börner & Chu 1992) but
was only generally accepted after the coherence length of the
absorbing structure could be measured accurately and turned out
to be of the order of several hundred kpc (Dinshaw et al. 1994; e.g.
Bechtold et al. 1994). The picture was then further sustained by
(hydrodynamical) cosmological simulations of gas in dark matter
dominated universes (Cen et al. 1994; Petitjean, Mücket & Kates
1995; Zhang, Anninos & Norman 1995; Hernquist et al. 1996;
Miralda-Escudé et al. 1996). Important results of these simulations
are a tight correlation between the H i and the dark matter distribu-
tion (on scales larger than the Jeans length of the IGM) and a simple

temperature–density relation for the IGM, which depends only on
the reionization history of the Universe (e.g. Hui & Gnedin 1997;
Haehnelt & Steinmetz 1998).

As a consequence of this new picture the Lyman forest can be used
to probe the distribution and clustering of dark matter at high redshift.
For example, Bi & Davidsen (1997) have developed a simple analytic
model for the IGM to generate artificial QSO absorption spectra for a
variant of the cold dark matter (CDM) cosmogony. They were able to
reproduce the characteristic properties of observed absorption spectra.
Croft et al. (1998) showed that absorption spectra provide important
information on the shape and the amplitude of the power spectrum of
mass fluctuations. Croft et al. used the following procedure. They first
obtained a linearized flux distribution by applying the Gaussianization
scheme proposed by Weinberg (1992). They then inferred the shape of
the linear power spectrum of dark matter density fluctuation from the
power spectrum of the linearized flux and used mock spectra from
numerical simulations to determine the amplitude of the power
spectrum. Gnedin & Hui (1998) used mock spectra generated
from simulations of collisionless particles run with a particle-mesh
code modified to mimic pressure effects of the gas to investigate the
effect of amplitude and the power spectrum of dark matter fluctuations
on the column density distribution of absorption systems.

In this paper a complementary approach is taken. We propose
to use an analytical model of the IGM for a direct inversion of
the absorption features in QSO spectra. This approach has the
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advantage that no particular cosmological model has to be assumed.
Furthermore, the actual real space density along the LOS and its
probability distribution can be studied and a direct link to other
observations is posssible.

The paper is organized as follows. In Section 2 we describe the
assumed model for the Lyman absorption. Section 3 presents the
inversion algorithm for recovering the real space dark matter (DM)
density along the line of sight, concentrating on the forest. In Section 4
we test the inversion procedure with mock spectra generated from
numerical simulations of collisional dark matter and show how to
estimate higher order moments of the density probability distribution
and ðQbarh

2Þ2J¹1HðzÞ¹1 [the parameter combination of baryonic
density Qbarh

2, ionizing flux J and Hubble constant HðzÞ that
determines the mean flux level in QSO absorption spectra]. In Section
5 we discuss possible applications and give our conclusions.

2 LY M A N A B S O R P T I O N B Y A
P H OT O I O N I Z E D I N T E R G A L AC T I C M E D I U M

Absorption spectra are normally presented in the form of a normal-
ized flux which (neglecting noise and instrumental broadening) can
be related to the optical depth as

FðwÞ ¼ IobsðwÞ=IcontðwÞ ¼ e¹tðwÞ
; ð1Þ

where t is the optical depth, w is the redshift space coordinate,
IobsðwÞ is the observed flux and IcontðwÞ is the flux emitted from the
quasar that would be observed without intervening absorption and
which has to be estimated from the data as well.

The optical depth in redshift space due to resonant scattering
is related to the neutral hydrogen density, nH i, along the line of
sight in real space as (Gunn & Peterson 1965; Bahcall & Salpeter
1965)

tðwÞ ¼ j0
c

HðzÞ

�∞

¹∞
nH iðxÞ H ½w ¹ x ¹ vpðxÞ; bðxÞÿ dx; ð2Þ

where j0 is the effective cross-section for resonant line scattering,
HðzÞ is the Hubble constant at redshift z, x is the real space
coordinate (in km s¹1), H is the Voigt profile normalized such
that

� H dx ¼ 1, vpðxÞ is the line of sight peculiar velocity, and bðxÞ
is the Doppler parameter due to thermal/turbulent broadening. For
moderate optical depths the Voigt profile is well approximated by a
Gaussian, H ¼ 1=ð

����
p

p
bÞ × expf¹½w ¹ x ¹ vpðxÞÿ

2
=b2Þg. Assum-

ing that hydrogen is highly ionized and in photoionization
equilibrium (nH i ~ n2

HJ¹1) we have

nH i ¼ n̂H i
nHðxÞ

n̄H

� �a

¼ n̂H i
rðxÞ

r̄

� �a

; ð3Þ

where n̂H i is the neutral hydrogen density at the mean total gas
density and 1:56 < a < 2 (Hui & Gnedin 1997). The second relation
assumes that the gas density traces the dark matter density. At the
low densities considered here shock heating is not important and the
gas is at the photoionization equilibrium temperature. The Doppler
parameter can then be related to the total gas density and tempera-
ture as

bðxÞ ¼ 13
T̂

104 K

� �0:5
rDMðxÞ

r̄DM

� �b

km s¹1
; ð4Þ

where T̂ is the temperature at the mean density and 0 < b < 0:31
(Hui & Gnedin 1997).

Combining equations (2), (3) and (4) we get

tðwÞ ¼ AðzÞ
�∞

¹∞

rDMðxÞ

r̄DM

� �a

H ½w ¹ x ¹ vpðxÞ; bðxÞÿ dx; ð5Þ

AðzÞ ¼ j0
c

HðzÞ
n̂H i

, 0:12h¹1 Q¹0:5
mat

Qbarh
2

0:0125

� �2

×
G

10¹12 s¹1

� �¹1 T̂

104 K

� �¹0:7
1 þ z

4

� �4:5

; ð6Þ

where Qbar and Qmat are the baryonic and total matter density in
terms of the critical density and G is the photoionization rate per
hydrogen atom (G is related to the flux of ionizing radiation Jn as
G ¼ 4p

�
dn jn Jn=hn, where jn is the hydrogen absorption cross-

section). To obtain the second relation in equation (6) we have have
taken arec ¼ 4:7 × 10¹13ðT=104 KÞ¹0:7 cm¹3 s¹1 for the hydrogen
recombination coefficient, j0 ¼ 4:5 × 10¹18 cm2 as the effective
cross-section for resonant scattering and used the high-redshift
approximation for the Hubble constant, HðzÞ ¼ H0 Q1=2

mat ð1 þ zÞ3=2.

3 T H E I N V E R S I O N A L G O R I T H M

3.1 The basic iterative scheme

The proposed scheme for recovering the line of sight density from
the flux is motivated by Lucy’s method (Lucy 1974). In order to
demonstrate the method let us, for the time being, consider the case
where t p 1 and vp ¼ 0. In this case, we have

1 ¹ FðwÞ ¼

�
nH iðxÞGðw; xÞdx: ð7Þ

This is a linear integral equation with a positive kernel
Gðw; xÞ ¼ H ½w ¹ x; bðxÞÿj0 c=HðzÞ and can be solved for nH i

using Lucy’s iterative method. This is done in the following way.
Divide w into equal bins of size Dw (the data are actually given in
bins of w anyway) and set fi ¼ 1 ¹ Fi. Provide an initial guess for
ðnH iÞj, say ðnH iÞ

0
j ¼ 1 ¹ Fj HðzÞ=ðj0 cÞ. Denote the values of ðnH iÞj

at the rth iteration by ðnH iÞ
r
j and evaluate the sum

f r
i ¼

X
j

ðnH iÞ
r
j Gr

ij Dw; ð8Þ

where

Gr
ij ¼ H ½wi ¹ xj; b

r
j ÿ

j0 c
HðzÞ

: ð9Þ

The ðr þ 1Þth estimate of ðnH iÞj is then

ðnH iÞ
rþ1
i ¼

1
2m þ 1

Xiþm

k¼i¹m

ðn
HI
Þr
k

" # P
jðfj=f

r
j ÞG̃ijP

j G̃ij
; ð10Þ

where G̃ is some kernel that in principle may be chosen to be
different from G. Lucy’s method, however, uses G̃ ¼ G. The
averaging over 2m þ 1 adjacent bins mitigates the effect of noise
in the data. We work with m ¼ 3.

Now we generalize the iteration scheme to the case where t is not
necessarily small. In this case, the relation between F and t is non-
linear. However, since the relation is monotonic, we can still use a
modified version of equation (10),

f r
i ¼ 1 ¹ exp½¹

X
j

ðnH iÞ
r
j Gr

ij Dwÿ: ð11Þ

How do we decide when to stop the iterations? Suppose that in the
j th bin, the 1j error in the measurement of Fj is jj. Let us define the
quantity

x2 ¼
X

j

1
j2

j

fj ¹ f r
j

ÿ �2
: ð12Þ
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We choose to stop at the rth iteration when the value of x2

drops below the number of data bins. It implies that the observed
flux is consistent with being a noisy realization of the reconstructed
flux.

3.2 Recovery of the matter density in redshift space

We write (2) in terms of the redshift coordinate s ; x þ vpðxÞ,
instead of x. If the coordinates x and s are related by a one-to-one
mapping, then the velocity and the real-space coordinate can be
expressed uniquely as functions of the redshift coordinate s. Work-
ing with s, equation (2) takes the following form:

tðwÞ ¼ j0
c

HðzÞ

�∞

¹∞
nH i s ¹ vpðsÞ
� �

1 ¹
dvpðsÞ

ds

� �
× H fw ¹ s; b½s ¹ vpðsÞÿg ds ð13Þ

For brevity, we have maintained the same notation for the peculiar
velocity as a function of s. According to the continuity equation, the
density in redshift space, ns

H i, is related to the density in real space
by

ns
H iðsÞ ¼ nH i½s ¹ vpðsÞÿ 1 ¹

dvpðsÞ

ds

� �
: ð14Þ

Therefore (13) becomes

tðwÞ ¼

�∞

¹∞
Kðw; sÞ ns

H iðsÞ ds; ð15Þ

where Kðw; sÞ ¼ H fw ¹ s; b½s ¹ vpðsÞÿgj0 c=HðzÞ and the iterative
scheme described in the last section can be applied to obtain the
redshift-space density along the line of sight The parameter b
depends on ðs ¹ vpÞ implicitly via nH i. Because b is a weak function
of nH i, we assume that b is constant in the reconstruction algorithm.
This will greatly simplify the application of the algorithm. Tests of
the algorithm, however, are done using mock spectra generated with
varying b according to equation (4).

To relate the H i density to the matter density we use equations (3)
and (6). We still need to know the value of A to obtain rDM=r̄DM. A
has been estimated by adjusting the mean flux of mock spectra
generated from hydrodynamical simulations to match the mean flux
of observed QSO absorption spectra (Rauch et al. 1997). The
accuracy and possible biases of this determination have not yet
been investigated in detail (see also Weinberg et al. 1997), but we
consider the value of A [~ ðQbarh

2Þ2J¹1HðzÞ¹1] to be presently
known with about 30 per cent accuracy. For most of the paper we
therefore assume that we know the value of A . In Section 4.3 we
show how the value of A [~ ðQbarh

2Þ2J¹1HðzÞ¹1] can be estimated
directly from the distribution of the recovered quantity
A1=aðrDM=r̄DMÞ by assuming a parametric form for the probability
distribution of the matter density.

3.3 From redshift space to real space

The correction for redshift distortions requires knowledge of the
velocity field. The three-dimensional velocity and mass density
fluctuations are tightly related. However, non-linear velocity–
density relations, which are easy to implement, generally relate
real-space quantities, as does the relation (3) between the H i and
matter density. We therefore have to resort to an iterative procedure
to derive the real-space matter and H i densities from the estimated
redshift-space H i density. Two issues need to be stressed here: (i)
the velocity field is not uniquely specified by the line of sight
density field but is influenced by the unknown three-dimensional

matter distribution, and (ii) redshift distortions can and do result in
multivalued zones where regions which do not overlap in real space
are mapped on to the same redshift coordinate. In appendix A we
describe a method that resembles Wiener filtering and which
addresses the first point. It allows us to obtain the most probable
velocity field which is consistent with the estimated line of sight
DM density field and has the statistical properties of a gravitation-
ally clustering Gaussian random field of a given power spectrum. In
principle the power spectrum can also be determined from the
recovered density field but for simplicity we have chosen to adopt a
power spectrum a priori. The results do not change much for
reasonable choices of the assumed power spectrum. Multivalued
zones mainly occur in regions of high density where the inversion is
difficult due to saturation effects in the spectrum. We did not try to
correct for this effect, but discuss some of the biases introduced by
peculiar velocities in Section 4.

The iterative scheme to correct for redshift distortions that we
have adopted can be summarized as follows.

(i) Assume that the redshift-space and real-space H i density are
equal and use (3) to compute the matter density field along the line
of sight.

(ii) Estimate the peculiar velocity along the line of sight using the
method described in the Appendix.

(iii) Use the estimated peculiar velocity field to correct for
redshift distortions in the density field.

(iv) Use the corrected density field to obtain a better estimate for
the peculiar velocity field.

(v) Repeat steps (ii)–(iv) until convergence is achieved.

The scheme proved to be efficient; it typically converges after a
few iterations. Iterative schemes of this kind have been used for
correcting redshift distortions in galaxy redshift surveys (e.g. Yahil
et al. 1991).

4 T E S T S W I T H N U M E R I C A L S I M U L AT I O N S

Ideally one would like to test the method with a large high-
resolution hydrodynamical simulation of gas and dark matter.
However, simulations of collisionless particles are still vastly
superior in dynamical range and especially speed. We have there-
fore chosen to test our inversion algorithm with a high-resolution
N-body simulation of pure collisionless dark matter particles where
we used the relations in Section 2.1 to obtain the H i distribution
from the smoothed dark matter density field. As demonstrated e.g.
by Gnedin & Hui (1998) such a procedure results in a realistic H i
distribution. There are nevertheless a number of effects that are
neglected in this procedure, e.g. the smoothing of fluctuations on
scales smaller than the Jeans length due to pressure effects, the
collisional heating of the gas in shocks and the scatter in the
temperature density relation due to reionization effects. We will
address this point again at the end of Section 4.3.

The simulation used was run on the Cray T3E parallel super-
computer in Garching with a modified version (MacFarland et al.
1998) of Couchman’s P3M code (Couchman, Thomas & Pearce
1995). The initial conditions were generated from the power
spectrum for a standard cold dark matter (CDM) universe with
Q ¼ 1 and H0 ¼ 50 km s¹1 cubic box of comoving length
60 h¹1 Mpc. The simulation was normalized such that the linear
rms density fluctuation in a sphere of radius 800 km s¹1 was 0.5 at
redshift z ¼ 0. The softening parameter was 13:2 per cent of the
mean particle separation and the mesh size was N ¼ 512 in one
dimension.
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4.1 Inverting mock spectra

We have generated mock spectra from velocity and density fields
along lines of sight randomly drawn from the simulation box. We
used the output of the simulation at two redshifts, z ¼ 3 and z ¼ 0,
to investigate the effect of varying the fluctuation amplitude of the
density field. We emphasize here that the mock spectra generated
from the simulation at z ¼ 0 are not meant to resemble absorption
spectra at z ¼ 0. The density and velocity fields in the simulations
show significant variations in structure and amplitude at the two
redshifts and the z ¼ 0 spectra are investigated with the same mean
flux as the z ¼ 3 spectra in order to test the inversion algorithm
under varying conditions.

Reliable velocity and density fields cannot be derived from the
simulation on scales much smaller than the mean particle separa-
tion. We therefore applied Gaussian smoothing of widths 0:3 and
0:6 h¹1 Mpc, respectively, to the outputs of the simulation at z ¼ 3
and z ¼ 0. Both smoothing scales correspond to the same physical
scale (60 km s¹1). The rms values of the smoothed density fluctua-
tions were 0:89 and 3:52, respectively. The density of neutral
hydrogen was assumed to follow the relation (3) with a ¼ 1:7.
The absorption optical depth was computed according to equations
(2), (3), and (4) with b0 ¼ 30 km s¹1. For both redshifts the value of
A was adjusted so that the mean normalized flux of a large
ensemble of mock spectra was 0.69 (about the observed mean
flux at z ¼ 3 as determined by Rauch et al. 1997). The spectra were
convolved with a Gaussian of 8 km s¹1 FWHM to mimic instru-
mental broadening and photon/read-out noise was added with a
total signal-to-noise ratio S/N=50 per 3 km s¹1 pixel.

The solid curve in the top panel of Fig. 1 is a mock spectrum
generated from the simulation output at z ¼ 3. The dotted curve is
the same spectrum with the peculiar velocities set to zero. The
peculiar motions not only introduce a systematic shift but also a
narrowing of the absorption features (see also Weinberg et al. 1998
for a discussion of this point). Furthermore, unsaturated lines
become deeper due to the enhanced clustering in redshift space.
The mean flux is also affected. For constant A it increased from
0.66 to 0.69 including peculiar motions while the rms flux fluctua-
tions increased from 0.31 to 0.35.

Fig. 2 shows some typical results of our inversion procedure. In
the top panel a mock spectrum is plotted (solid line) together with
the spectrum corresponding to a recovered density and peculiar
velocity field (dotted line). The smoothness of the dotted curve
demonstrates that our inversion procedure succeeds in mitigating
the noise in the data (which for clarity is shown separately at the
bottom of the panel).

Let us now have a look at the DM density field recovered from a
mock spectrum generated with no peculiar velocities, as shown in
the middle panel of Fig. 1. In this case the correspondence is
excellent up to densities where the absorption features become
heavily saturated (for absorption at an overdensity of about 3 at
z ¼ 3. Without peculiar velocities our inversion procedure works as
well as we could reasonably expect. The obvious way to extend the
inversion procedure to regions of higher density would be to use the
higher order Lyman series lines, which have smaller effective
absorption cross-sections and therefore saturate at increasingly
higher densities (Cowie, private communication). However, as we
discuss below, peculiar velocities significantly affect the quality of
the recovered density field, especially in high-density regions. The
incorporation of higher order Lyman series lines in the inversion
procedure will therefore be difficult and we leave this to future work.

The second panel of Fig. 2 shows the DM density field recovered
from a mock spectrum generated with peculiar velocities but before
correcting for redshift distortions. As expected the correspondence
between true and recovered density is degraded compared with the
case where the spectrum was generated with the peculiar velocities
set to zero. The main features of the density field are still recovered
but there is a significant shift between true and recovered density in
real space and there of course remains the systematic underestimate
of the density in saturated regions.
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Figure 1. Normalized flux (top), density (middle) and velocity (bottom)
along one line of sight through the simulation box at z ¼ 3. The dotted curve
in the top panel shows the flux with peculiar velocities set to zero and the
dotted curve in the middle panel shows the corresponding recovered density
field.

Figure 2. Top panel: normalized flux (solid curve) in a line of sight through
the simulation at z ¼ 0 and the flux corresponding to the density and peculiar
velocity field recovered with a Lucy-type inversion algorithm (dotted curve).
The noise added to the input spectrum is shown separately at the bottom of
the panel. Second panel: true real-space density in the line of sight (solid
curve) and recovered redshift-space matter density (dotted curve). Third
panel: true real-space density (solid curve, same as in second panel) and real-
space matter density recovered applying redshift corrections (dotted curve).
Bottom panel: the true line-of-sight peculiar velocity field (solid curve), and
the peculiar velocity estimated from the recovered density in redshift space
(dotted curve). For comparison, also shown is the velocity recovered from
the true real-space density (dashed line).
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The third panel shows the reconstructed density for our full
iterative procedure including the correction of redshift distortions
as described in Section 2.4. The shift between true and recovered
density in real space is reduced and the overall correspondence has
significantly improved. This indicates that we succeed in removing
a major fraction of the redshift space distortion. The recovered and
true line of sight velocity fields are shown in the bottom panel. In all
cases shown we have used the correct value for A, i.e. the value
used to generate the mock spectrum. It should have become clear in
this section that peculiar velocities significantly influence the
quality of the recovery.

4.2 The density probability distribution

For a statistical analysis of the recovered density field we will use
the probability distribution function in differential (PDF) and
cumulative form (CPDF). Let us for the time being still assume
that the true value of A is known. We will discuss how A can be
estimated from the PDF of the recovered density field in the next
section.

Fig. 3 shows the CPDF for the true and recovered DM density
field for the simulations at z ¼ 3 and z ¼ 0. At low densities both
curves correspond very well but the deviations become large at high
densities due to saturation effects, which confirms the visual
impression from Figs 1 and 2. We further quantify the differences
between the CPDFs of true and recovered density field in terms of a
number of moments of the density distribution in Table 1. The bias
in the recovered density introduces large discrepancies between the
estimated and true values of the moments. For example, the mean
and rms values estimated at z ¼ 0 are 0.614 and 0.608, instead of the
true values of 1 and 3:52.

What we would like to have is a simple parametric form for the
PDF of the DM density. This could then be used to correct for the
biases in the recovered density field. It has been suggested (e.g.
Kofman et. al. 1994; Coles & Jones 1991) that the PDF of the
density field of a gravitationally clustering Gaussian random field in
the mildly non-linear regime is well described by a lognormal PDF.
In that case the quantity

n ; ½lnð1 þ dÞ ¹ m1ÿ=m2 ð16Þ

has a normal (Gaussian) PDF, where m1 and m2 are the average and
rms values of lnð1 þ dÞ. In Fig. (4) we compare the PDF of the DM
density in the simulations (filtered with Gaussian windows of
widths Rs ¼1.2 and 5 Mpc in comoving units for z ¼ 0 and
z ¼ 3) with a lognormal distribution. For large smoothing scale

the density field is indeed adequately described by a lognormal
distribution. However, for decreasing smoothing scale, the true
PDF becomes more and more skewed. The skewness of n, which
we define as m3 ¼< n3

=m2 >, is one way of quantifying the
deviation from a lognormal distribution and is also indicated on
the plot.

To obtain an improved fit to the PDFs of our simulation we use the
first term of an Edgeworth expansion (Colombi 1994; Juszkiewicz
et. al. 1995),

PðnÞ ¼ GðnÞ 1 þ
1
3!

m3m2ðn
3 ¹ 3nÞ

� �
; ð17Þ

where GðnÞ is a Gaussian with zero mean and unit variance. By
imposing the condition < d >¼ 0 we find the following relation
between the three parameters:

m1 þ
m2

2

2
þ ln 1 þ

m4
2m3

3!

� �
¼ 0: ð18Þ

The functional form (17) therefore has two free parameters (one
more than a lognormal PDF). In the remainder of this section we
arbitrarily choose to work with m2 and m3. We also tried to reduce
(17) to a one-parameter family. We failed, however, at establishing a
tight relation between the two parameters for the PDFs of our
simulations, which holds at all redshifts (see also Colombi 1994).

In practice we again find it more convenient to work with the
CPDF rather than the PDF itself,

QðrÞ ;
�∞

r
PðnÞ dn

¼
1
2

erfc
n���
2

p !
þ

m2m3

3!
������
2p

p n2 ¹ 1
ÿ �

exp ¹
n2

2

� �
: ð19Þ

We fit the functional form (19) for the CPDF with m1 expressed in
terms of m2 and m3 (see 18) to Q0ðrÞ (the CPDF computed directly
from the recovered density) by minimizing the quantity

R ¼

�rmax

0
dr Qðm2; m3; rÞ ¹ Q0ðrÞ
� �2

ð20Þ

with respect to m2 and m3. The cutoff rmax is introduced in order to
give no weight to high-density regions where the discrepancy
between the recovered and true densities is severe. Typically
rmax < 2. Figs 3 and 4 show these fits as triangles. The quality of
the fit is generally satisfying. At the bottom of Table 1 we list the
corresponding moments. The mean is correctly recovered by

Direct inversion of the Lyman forest 183

q 1999 RAS, MNRAS 303, 179–187

Figure 3. The cumulative probability distribution of the true density field
(solid curve) and that of the density field recovered (dotted curve) from
mock spectra generated from the simulation at z ¼ 0 (left) and z ¼ 3 (right).
The triangles are the corresponding parametric form derived from an
Edgeworth expansion of the PDF (23) as explained in the text.

Table 1. Moments of the density field. The symbols h:i and j:j denote average
and absolute values respectively. Also x ¼ d=j, where d ¼ r= < r > ¹1. The
top figures are for the true density field, the middle figures are for the
recovered density field and the bottom figures are for the best-fitting
Edgeworth expansion as described in the text. The moments are computed
assuming the true value of A.

r=hri j S3 ¼ hx3i=j S3r ¼ hxjxji S4r ¼ hjxji

True
z=3: 1 0.89 4.85 0.66 0.61
z=0: 1 3.52 5.08 0.93 0.33

Rec
z=3: 0.80 0.51 2.25 0.36 0.79
z=0: 0.61 0.61 1.97 0.40 0.83

Fit
z=3: 1 1.12 4.27 0.69 0.59
z=0: 1 2.97 8.75 0.85 0.37
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construction but the other moments are also in significantly better
agreement with the moments of the true density field than those
calculated directly from the recovered density field. The rms value
at z ¼ 0 is now 2:97, compared with 0:62 from direct calculation
and 3:52 for the true density field. When we fitted a lognormal
distribution to the CPDF we found similar values for the moments
to those for the Edgeworth expansion.

4.3 Determining A (~Q2
bar=J)

So far we have assumed that we know the value of A . As is clear
from equations (3) and (6), assuming a wrong value of A leads to an
estimate of rDM=r̄DM that is wrong by a constant factor ðA=AtrueÞ

1=a

independent of the density. It is therefore possible to estimate
directly A by fitting one of the parametric forms discussed in the
last section to the CPDF of the recovered density with A being left
as an additional free parameter. It turned out that the Edgworth
expansion is less suitable for this procedure as is already has two
free parameters (it then sometimes becomes difficult to get a unique
fit). Fig. 5 shows the residuals of such a fit for the lognormal
distribution as a function of A at the two redshifts. The residuals
change significantly with varying A and show pronounced minima
but the values of A at the minima are biased low by about 25 and 15
per cent, respectively. The error of A determined in this way is
probably of the same order as that when A is estimated by adjusting
the mean flux level in mock spectra generated from numerical
simulations. We also show the case for a recovery from mock
spectra with the peculiar velocities set to zero (dotted curves). The
minima shift significantly. This demonstrates that the bias in A is
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Figure 4. The probability distribution of DM density in the simulation at z ¼ 0 (top panels) and z ¼ 3 (bottom panels) in terms of n ¼ ½lnð1 þ dÞ ¹ m1ÿ=m2 (the
density field was smoothed with Gaussian windows of width 1.2 and 5 Mpc in comoving units, respectively). The moments m1 ¼< x >, m2 ¼< ðx ¹ m1Þ

2
>

1=2 and
m3 ¼< ðx ¹ m1Þ

3
> =m2

2, where x ¼ lnð1 þ dÞ, are indicated on the plot. The dotted curves are the best-fitting log-normal distribution, while the triangles show the
best-fitting Edgeworth expansion of the PDF as in equation (17).

Figure 5. Residuals of the fit of a log-normal distribution to the distribution
function of the recovered density as a function of the ratio of assumed to true
value of A . Solid and dotted lines refer to mock spectra generated with and
without peculiar velocities, respectively.
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not only due to the systematic underestimate of the density in high-
density regions and the inaccuracy of the lognormal distribution but
also due to the effect of peculiar velocities. Peculiar velocities
introduce a dependence of the bias on the amount of small-scale
power in the density fluctuation spectrum, as is apparent from the
comparison between the cases at z ¼ 3 and z ¼ 0, which differ by a
factor of 4 in the rms density fluctuations. More numerical work is
needed to quantify the effect of changing the cosmological model/
power spectrum and the resolution, but it seems nevertheless
feasible to correct for the bias in A to about 10 per cent accuracy.

The assumed value of A will obviously also affect the determi-
nation of the moments described in the last section. Fig. 6 shows the
dependence of the estimated moments on the assumed value of A.
For a reasonable range of A the biases range from 20 to 50 per cent.
If A is determined by fitting a lognormal CPDF and the moments
are then estimated by fitting an Edgeworth expansion to the CPDF
with this value of A, the biases in the moments are generally
smaller than 25 per cent.

As already mentioned, we would not expect the relations in
Section 2.1 to hold perfectly. There could be considerable scatter.
Furthermore we have to choose the parameters a and T̂ . We have
therefore also run our inversion procedure with equations of state
different from the one used to generate the mock spectra and
changed the mean flux in order to test how sensitive the biases
are to these parameters. The corresponding estimates of A and the
moments are listed in Table 2. The biases seem to be robust, at least
for the parameter space explored.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have used numerical simulations to demonstrate that the line of
sight matter density field can be recovered from QSO absorption
spectra using an analytical model for the IGM and a Lucy-type
iterative inversion algorithm. We have thereby estimated the line of
sight peculiar velocity field from the recovered density field and
have corrected for redshift distortions in an iterative procedure. The
inversion works well for the most underdense regions up to the
density where the absorption features saturate. For this occurs at an
overdensity of a few but this limit can be pushed to higher densities
by incorporating higher order lines of the Lyman series. However,
an inversion will become increasingly more difficult at higher
densities due to shell-crossing and shock heating of the gas.

We have then used the fact that the density probability distribu-
tion seems to have a universal shape to obtain reliable estimates of
higher order moments of the PDF despite the missing high-density
tail. We found that the Edgeworth expansion is an excellent
approximation to the PDF of the logarithm of the density, consistent
with the results of Colombi (1994). By fitting the first two terms of
such an Edgeworth expansion we estimated a number of moments
of the PDF with an accuracy of about 25 per cent. Estimates of similar
accuracy were obtained for the parameter combination
ðQbarh

2Þ2J¹1HðzÞ¹1by fitting to a lognormal distribution. There are
a number of physical effects, such as the pressure of the gas and shock
heating, that we neglected and which could decrease this accuracy. We
achieved, however, similar accuracy if we recovered the density with
an equation of state significantly different from that used to calculate
the spectrum, indicating that this is not the case.

In principle it should also be possible to estimate the correlation
function and the power spectrum directly from the recovered
density field. These will, however, be affected by peculiar motions,
the inability to recover high-density regions and the bias in the
determination of A . We have not yet investigated in detail how
large the resulting errors are. It might well be that a comparison of
observed flux power spectra with those of mock spectra as sug-
gested by Croft et al. (1998) is the most favourable way to deal with
these problems.

Observational information on the PDF of the matter density
comes so far mainly from the analysis of galaxy surveys and is
restricted to small redshifts. These constraints could be checked and
extended to a much wider redshift range by applying our inversion
technique to a moderate number of QSO absorption spectra of the
kind that are now routinely taken with 10-m class telescopes. This
should also check and tighten existing constraints on the evolution
of the UV background. By combining our inversion technique with
a redshift survey along QSO sightlines, the clustering of galaxies
and matter can be related without referring to a particular cosmo-
logical model. Such a determination of the bias between galaxy and
matter clustering is especially worthwhile. Most currently favoured
models agree with the recently determined clustering strength of
high-redshift galaxies but differ strongly in their predictions for the
yet unknown bias relation (Adelberger et al. 1998). Three-dimen-
sional information on the density and peculiar velocity field can be
gained by applying the method to two or more spatially close lines
of sight. An intermediate-resolution spectral survey of quasars
down to about 22nd magnitude in a field of size a couple of
square degree has e.g. been suggested as a possible project for the
Very Large Telescope (VLT) (Petitjean 1997). Such a survey will
result in about 100 lines of sight in a region about 30 Mpc across.
With the method proposed in the Appendix, such a region could
become a unique laboratory for the study of how galaxy formation
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Figure 6. Moments of the density probability distribution determined by
fitting an Edgeworth expansion as a function of the assumed value of A . All
values are divided by their true values. Solid, long-dashed, short-dashed and
dotted lines correspond to j, S3, S3r and S4r as defined in Table 1. The arrows
indicate the position of the minima in Fig. 5 for the case with peculiar
velocities.

Table 2. Sensitivity of the estimated A and the moments to uncertainties in
a. The bottom line shows the effect of varying the mean flux from 0:69 (as in
Table 1) to 0:75 (a ¼ 1:7 was assumed). Results are for z ¼ 0.

Amin m j S3 S3r S4r

a ¼ 2:0 0.72 1 2.00 6.35 0.82 0.46

a ¼ 1:7 0.84 1 2.97 8.75 0.85 0.37

a ¼ 1:5 1.08 1 3.70 15.64 0.82 0.31

hFi ¼ 0:75 1 0.92 2.89 8.89 0.85 0.37
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is related to the distribution and dynamics of the underlying matter
field.

AC K N OW L E D G M E N T S

We thank Rupert Croft, Michael Rauch, Ravi Sheth, David Wein-
berg and Simon White for helpful comments. AN thanks Yehuda
Hoffman for many discussions on constrained realizations. This
work was supported in part by the EC TMR network for ‘galaxy
formation and evolution’ and the ‘Sonderforschungsbereich 375-95
für Astro-Teilchenphysik der Deutschen Forschungsgemeinschaft’.

R E F E R E N C E S

Adelberger K. L., Steidel C. S., Giavalisco M., Dickinson M. E., Pettini M.,
Kellog M., 1998, ApJ, 505, 18

Bahcall J. N., Salpeter E. E., 1965, ApJ, 142, 1677
Bechtold J., Crotts A. P. S., Duncan R. S., Fang Y., 1994, ApJ, 437, L83
Bi H. G., 1993, ApJ, 405, 479
Bi H. G., Davidsen A. F., 1997, ApJ, 479, 523
Bi H. G., Börner G., Chu Y., 1992, A&A, 266, 1
Bond J. R., Szalay A. S., Silk J., 1988, ApJ, 324, 627
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A P P E N D I X A : P E C U L I A R V E L O C I T I E S A N D
T H R E E - D I M E N S I O N A L D E N S I T I E S F RO M
L I N E - O F - S I G H T D E N S I T Y F I E L D S

A1 From line-of-sight density to line-of-sight peculiar velocity

In this section we describe the method that we used to estimate the
line of sight peculiar velocity component from the (estimated) real-
space density along the line of sight. We first have to assume a non-
linear relation between the three-dimensional velocity and density
fields. Various such relations have been suggested; here we work
with the relation found empirically by Nusser et. al. (1991). For
brevity of notation we present the method for Q ¼ 1 only. Let
v ¼ ¹div v, where v is the physical peculiar velocity and the
divergence is with respect to the physical coordinate r in units of
kms^{-1}. The approximation suggested by Nusser et al. (1991) is
given by

v ¼
d

1: þ 0:18d
þ constant: ðA1Þ

The relation is local and provides v in terms of the density contrast
along the line of sight The constant factor is introduced to ensure
hvi ¼ 0. Since v involves derivatives of velocity components
perpendicular to the line of sight, the line of sight peculiar velocity
component cannot be uniquely determined from v. Therefore, the
best we can do is provide an estimate for the line of sight peculiar
velocity based on some statistical assumptions. Neither of the fields
v or d is Gaussian. However, for an approximate treatment we
assume here that v is Gaussian. Note that by (A1) this assumption
does not imply Gaussian density fluctuations. At the end of the next
subsection we will briefly describe how estimates of the peculiar
velocity can be obtained without assuming that the field v is
Gaussian. Let v be the component of v along the line of sight.
Subsequently we work with the (one-dimensional) Fourier tran-
forms, ṽðqÞ and ṽðqÞ, of the line of sight fields v and v. According to
Bi (1993) ṽ and ṽ are related by

ṽðqÞ ¼ ũðqÞ þ w̃ðqÞ; ðA2Þ

vðqÞ ¼ iqaðqÞw̃ðqÞ; ðA3Þ

where w̃ðqÞ and ũðqÞ are two uncorrelated Gaussian fields with
power spectra Pw and Pu. These power spectra can be written, in
terms of the three-dimensional matter power spectrum P,

PwðqÞ ¼ 2pa¹1
�∞

q
PðkÞk¹1 dk; ðA4Þ

and

PuðqÞ ¼ 2p

�∞

q
PðkÞk dk ¹ PwðqÞ; ðA5Þ

with

aðqÞ ¼

�∞
q PðkÞk¹3dk�∞
q PðkÞk¹1 dk

: ðA6Þ

The relations (A2) and (A3) can be used to estimate ṽðqÞ from
ṽðqÞ. For simplicity, we work with w̃ instead of ṽ and switch back to
ṽ at the end of the calculation. According to Bayes’ theorem the
conditional probability Pr½wjṽÿ is given by

PrðwjṽÞ ¼
PðwÞ

PðṽÞ
PðṽjwÞ: ðA7Þ

Using the relations (A2) and (A3) we find

PrðṽjwÞ ~ exp ¹
ðṽ ¹ wÞ2

2Pu

� �
; ðA8Þ
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and

Prðw̃Þ ~ exp ¹
w2

2Pw

� �
: ðA9Þ

Therefore

Prðw̃jṽÞ ~ exp ¹
ðṽ ¹ w̃Þ2

2Pu
¹

w̃2

2Pw

� �
: ðA10Þ

This is a Gaussian with mean

< w̃jṽ >¼ 1 þ
Pu

Pw

� �¹1

ṽ; ðA11Þ

and variance (power spectrum)

Pwjṽ ¼
Pw

2

Pu þ Pw
: ðA12Þ

Thus, given ṽðqÞ, one may write

w̃ðqÞ ¼ 1 þ
Pu

Pw

� �¹1

ṽ þ nðqÞ; ðA13Þ

where nðqÞ is a random Gaussian variable with power spectrum Pw̃jṽ,
which is uncorrelated with ṽðqÞ. The form of (A11) is reminiscent of
Wiener filtering of noisy data (Wiener 1949, see also Zaroubi et. al.
1995 and Fisher et. al. 1995 for applications to cosmology). To see
this simply identify Pu and Pw as, respectively, the signal and noise
power spectra. According to (A2), the power spectrum of the
unconditional ṽ is Pv ¼ Pw þ Pu. This clearly differs from the
power spectrum of < w̃jṽ > given in (A11). Following Sigad et.
al. (1998), here we replace the filter ð1 þ Pu=PwÞ¹1 in (A11) by
ð1 þ Pu=PwÞ¹1=2 in order to preserve the power spectrum of the
unconditional field. Alternatively we could have complemented
< w̃jṽ > with the random field nðqÞ in order to preserve the power.

A2 Reconstruction of three-dimensional fields

For simplicity we discuss the case of a single line of sight. The
generalization to multiple parallel lines of sight is obvious. We
arbitrarily choose the line of sight to be along the x axis. Once the
density dlos in the line of sight is given, we can easily compute the
corresponding Fourier transform d̃

los
ðqÞ defined by

d̃
los

ðqÞ ¼
1

ð2pÞ1=2

�
dlosðxÞ expðiqxÞ dx: ðA14Þ

We write the three-dimensional density field dðrÞ in terms of its
Fourier transform,

dðrÞ ¼
1

ð2pÞ3=2

�
d̃ðkÞ expð¹ik·rÞ d3k: ðA15Þ

Define lðxÞ ¼ dðr ¼ xx̂Þ where x̂ is a unit vector along the x-axis.
Hence, by combining (A14) and (A15) we obtain

d̃
los

ðqÞ ¼
1

ð2pÞ

�
d̃ðkk; k'Þ expðiqx ¹ ikkxÞ dkk d2k' dx

¼

�
d̃ðq; k'Þ d2k'; ðA16Þ

where kk and k' are the components parallel and perpendicular to
the line of sight. The problem of reconstructing the three-dimen-
sional density field reduces to estimating d̃ðkÞ given the coefficients
d̃

los
ðqÞ and the relation (A16). Note that d̃

los
can be computed from

dlos. The method of Hoffman and Ribak (1991) (hereafter HR) can

be used to obtain such an estimate. First, we derive an expression for
the mean value d̃

MV
ðkÞ ¼< d̃ðkÞjfd̃

los
ðqÞg > of d̃ðkÞ corresponding to

a particular k given the set of coefficients fd̃
los

ðqÞg. According to
HR, we have

d̃
MV

ðkÞ ¼

�
Mðk; q0ÞN¹1ðq; q0Þd̃

los
ðqÞ dq dq0

; ðA17Þ

where Mðk; q0Þ ¼< d̃ðkÞd̃
los

ðqÞ > is the covariance matrix of d̃ and
d̃

los
, and N¹1ðq; q0Þ is the inverse of the covariance matrix

Nðq; q0Þ ¼< d̃
los

ðqÞd̃
los

ðq0Þ >; both matrices are of infinite dimen-
sion. Using the homogeneity condition, < d̃

los
ðkÞd̃

los
ðk0Þ >¼

dDðk ¹ k0ÞPðkÞ and the relation (A16) it can be seen that N and M
are given by

Nðq; q0Þ ¼ dDðq ¹ q0ÞPlosðqÞ ðA18Þ

and

Mðk; qÞ ¼ dDðq ¹ kkÞP
����������������
q2 þ k2

'

q� �
; ðA19Þ

where dD is the Dirac d-function and

Plos ¼ 2p

�∞

q
PðkÞk dk ðA20Þ

is the one-dimensional power spectrum of the density field along the
line of sight. The mean is given by

d̃
MV

ðkÞ ¼
PðkÞ

PlosðkkÞ
d̃

los
ðkkÞ: ðA21Þ

Once the mean values are given, a constrained random realization
D̃

C
can be generated from an unconstrained random realization D̃

using (HR),

D̃
C
ðkÞ ¼ D̃ðkÞ þ

PðkÞ

PlosðkkÞ
d̃

los
ðkkÞ ¹ D̃

los
ðkkÞ

h i
; ðA22Þ

where D̃
los

ðkkÞ are the one-dimensional Fourier coefficients of the
unconstrained density field in the line of sight.

The treatment so far has relied on the HR method which assumes
Gaussian fields. This treatment will not be satisfactory for a three-
dimensional reconstruction in the non-linear regime. The uncon-
strained density field as given by (A22) is not guaranteed to have
positive values everywhere. The scheme can be extended to the non-
linear regime by two modifications: (i) use lnð1 þ dÞ instead of d,
and (ii) extract an unconstrained random field DðrÞ or its Fourier
transform D̃ðkÞ from a fully non-linear N-body simulation. The
simulations can be used to compute the one- and three-dimensional
power spectra of lnð1 þ dÞ that are required to generate the
constrained realization. Note that these power spectra can in
principle be estimated from the density field along the line of sight.

A three-dimensional constrained realization obtained with this
scheme adapted to the non-linear regime can then be used to
estimate the peculiar velocity without assuming v to be Gaussian.
v can be computed at any point in space from the three-dimensional
constrained realization of the density field using the velocity–
density relation (A1) and assuming a potential flow. The peculiar
velocity is then obtained by solving a Poisson-like equation to
recover v. The implementation of this alternative scheme for
recovering the peculiar velocity field and a comparisons with the
scheme described in the last section is left to future work.
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