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A First Step Towards the Use of Proper General Decomposition

Method for Structural Optimization

A. Leygue · E. Verron

Abstract In structural optimization, the implicit nature of

the cost function with respect to the optimization parame-

ters, i.e. through the solution of the structural problem cal-

culated with fixed values of these parameters, leads to pro-

hibitive computations whatever the adopted formulation.

Consequently, it yields limitations in both the number of

parameters and the size of the structural problem. Moreover,

some know-how is required to define a relevant structural

problem and a well-behaved cost function.

Here, we profit from the ability of the Proper Gen-

eralized Decomposition (PGD) method to handle large-

dimensionality problems to transform the optimization pa-

rameters into variables of an augmented-structural problem

which is solved prior to optimization. As a consequence, the

cost function becomes explicit with respect to the parame-

ters.

As the augmented-structural problem is solved a priori,

it becomes independent from the a posteriori optimization.

Obviously, such approach promises numerous advantages,

e.g. the solution of the structural problem can be easily ana-

lyzed to provide a guide to define the cost function and ad-

vanced optimization schemes become numerically tractable

because of the easy evaluation of the cost function and its

gradients.
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Institut de Recherche en Génie Civil et Mécanique—GeM, UMR 
CNRS 6183, Ecole Centrale Nantes, BP 92101, 44321 Nantes 
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1 Introduction

A classical problem of structural optimization consists in de-

termining the optimal set of n parameters α
opt = (α

opt
i )i=1,n

such that

α
opt = min

α

C (α) (1)

where C is a cost function, and α = (αi)i=1,n are parameters

of different types: geometrical and material; the cost func-

tion can be written as

C (α) = F (u(x, t)|
α
) . (2)

In this equation, F is a functional of the space (x)-time (t )

field u which can be a scalar, a vectorial or a tensorial field,

e.g. temperature, displacement, stress. u is usually the solu-

tion of a structural problem, i.e. a set of partial differential

equations that can be non-linear; the subscript ·|
α

signifies

that the parameters (αi)i=1,n are fixed. For complete reviews

on optimization problems, the reader can refer to the recent

papers: [3] and the references herein for general optimiza-

tion methods, and [8] for the special problem of structural

topology optimization. This later type of optimization prob-

lem is not considered here; we only focus on optimization

problems in which simple geometrical quantities are opti-

mized.

The most common optimization strategy consists in con-

sidering only the design variables as optimization variables;

it is referred to as the conventional formulation in [3], or

Nested ANalysis and Design (NAND). The central idea of

this approach is to treat the field u as an implicit function

of the design variables α. Consequently the evaluations of

the cost function and its gradient require the repeated so-

lution of the structural problem, classically by the finite el-

ement method. In order to circumvent the implicit nature
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of the cost function with respect to the optimization para-

meters, Schmit et al. proposed to treat simultaneously both

the design and the field variables as optimization variables

[9]. The structural problem then reduces to equality con-

straints; therefore no explicit structural analysis is needed.

This method referred to as Simultaneous Analysis and De-

sign (SAND) in the context of structural optimization was

applied by Fuchs [6, 7] to trusses. A summary of the respec-

tive advantages and disadvantages of the above-mentioned

methods is presented in Table 2 of [3]. In both methods, dif-

ficulties arise from large-scale problems. Obviously, for the

conventional method, numerous solutions of the large scale

structural problem rapidly become numerically prohibitive.

For the SAND method the huge number of equality con-

straints necessitates specific optimization algorithms. More-

over, large scale problems produce a number of optimization

variables that can exceed the capacity of optimization codes

and computers. Consequently, one must reduce a priori his

ambition by carefully selecting the most relevant optimiza-

tion parameters and cost function. Therefore, the definition

of optimization problems is usually constrained by numeri-

cal and algorithmic possibilities.

With the above classical methods, the primary problem

of an optimization study consists in the evaluation and min-

imization of the cost function C and changing the cost func-

tion leads to the definition of a new problem. The structural

problem (which solution is u) appears only as secondary:

in the evaluation of the cost function or as additional con-

straints. Our objective in this work is to change this para-

digm by considering the structural problem as the primary

problem and the minimization of the cost function as the sec-

ondary one. Our strategy consists in changing the relation-

ship between the design parameters α and the field u from

implicit to explicit. In this way, the optimization parameters

α are no longer considered as parameters but as additional

variables of an augmented structural problem. The resulting

optimization problem consists in:

(i) solving the augmented structural problem which solu-

tion (exact or approximated) is ũ (x, t,α),

(ii) defining a cost function

C (α) = F
(

ũ (x, t,α)
)

, (3)

and minimizing it to obtain α
opt.

This proposal may appear unrealistic. Nevertheless, recent

advances in numerical methods can help us to handle such

approach: the so-called Proper Orthogonal Decomposition

(PGD) method has been successfully used to solve large di-

mensionality problems [1, 2, 4]. In the present paper, we

propose to extend this method to optimization problems by

considering geometrical parameters as new dimensions of

the structural problem which is solved by the PGD method.

We study a simple multilayer thermal problem which addi-

tional variables are the thicknesses of the layers.

2 Methods

2.1 Basics of the PGD Method

Here, we only recall the basics of the method. For more

complete information, the reader can refer to [5].

2.1.1 General Statements

Consider a differential problem

L (u) = 0, (4)

with both Dirichlet and Neumann boundary conditions. u is

the unknown field and depends on a large number of vari-

ables x1,x2, . . . ,xD such as (x1,x2, . . . ,xD) ∈ �1 × �2 ×

· · · × �D . (�di
)i=1,D are subsets of (Rdi )i=1,D and then

the dimensionality of the problem is
∑D

j=1 dj . Note that the

variables (xi)i=1,D can be space variables, time, tempera-

ture, but also material parameters, loading conditions, . . . .

The PGD method consists in searching an approximated

solution of the problem (4) under a separated form

ũ(x1,x2, . . . ,xD) =

N
∑

i=1

F i
1(x1)F

i
2(x2) · · ·F i

D(xD). (5)

The product F i
1(x1)F

i
2(x2) · · ·F i

D(xD) is called the ith mode

of the solution, and the number of modes N is chosen large

enough to ensure convergence at a given precision ε, i.e.

∫

�

|L (u)|2 dx1dx2 · · ·dxD < ε. (6)

Practically the solution (5) is built incrementally, i.e. mode

by mode. We consider the weak form of the problem (4)

∫

�1×�2×···×�D

u∗ · L(u)dx1dx2 · · ·dxD = 0 ∀u∗ (7)

where u∗ satisfies the Dirichlet boundary conditions. We as-

sume that the first (i − 1) modes have been determined and

we note

ũi−1(x1,x2, . . . ,xD) =

i−1
∑

k=1

F k
1 (x1)F

k
2 (x2) · · ·F k

D(xD) (8)

the previous solution. Then, determining the ith mode con-

sists in calculating functions F1(x1),F2(x2), . . . ,FD(xD)

such as

∣

∣L(ũi−1 + F1F2 · · ·FD)
∣

∣ <
∣

∣L(ũi−1)
∣

∣ . (9)

Moreover, the first mode is classically chosen such as it sat-

isfies the Dirichlet and Neumann boundary conditions, and

then next modes must only satisfy homogeneous boundary

conditions.
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The functions Fj (xj ) are calculated iteratively by a fixed-

point algorithm that consists in alternatively considering,

until convergence, all the functions known except one, e.g.

FJ (xJ ). Then, the trial function u∗ is chosen as

u∗(x1,x2, . . . ,xD) = F1(x1)F2(x2) · · ·F ∗
J (xJ ) · · ·FD(xD).

(10)

So, the function FJ (xJ ) becomes simply the solution of a

differential problem in a dJ -dimensional space. In partic-

ular, we have an ordinary differential equation with initial

(e.g. when xJ is the time coordinate) or boundary (e.g. when

xJ is a space coordinate) conditions. The weak form of this

problem is

∫

�1×�2×···×�D

F1F2 · · ·F ∗
J · · ·FD

· L(ũi−1 + F1F2 · · ·FD)dx1dx2 · · ·dxD = 0, (11)

which must be satisfied for all functions F ∗
J (xJ ). Noting �′

the set of the known variables, i.e.

�′ = �1 × �2 × · · · × �J−1 × �J+1 × · · · × �D, (12)

and

dx′ = dx1dx2 · · ·dxJ−1dxJ+1 · · ·dxD, (13)

(11) can be written under the following form

∫

�J

F ∗
J ·

[∫

�′

F1F2 · · ·FJ−1FJ+1 · · ·FD

· L(ũi−1 + F1F2 · · ·FD)dx′

]

dxJ , (14)

and furthermore, the functions (Fj )j=1,D j �=J being known,

∫

�J

F ∗
J ·

[

γJ + L
′ (FJ )

]

dxJ . (15)

The new operators involved in this equation are

γJ =

∫

�′

F1F2 · · ·FJ−1FJ+1 · · ·FD · L(ũi−1)dx′ (16)

where L(ũi−1) is the residual of the solution with (i − 1)

modes, and

L
′ (FJ ) =

∫

�′

F1F2 · · ·FJ−1FJ+1 · · ·FD

· L (F1F2 · · ·FD) dx′. (17)

Fig. 1 The multilayer body: notations

Remark that (15) can be seen as a particular1 strong form

of the problem:

γJ + L
′ (FJ ) = 0. (18)

2.1.2 Numerical Treatment

As mentioned above, the determination of a new mode con-

sists in solving a series of ordinary differential equations

(unknown FJ ) in weak form (see (15)) with homogeneous

initial or multi-point boundary conditions. In the fixed-point

algorithm, each problem, i.e. the determination of each func-

tion FJ (xJ ), is independent to each other, and can be solved

by the more appropriate numerical method: finite difference

method, finite element method, spectral method, . . . As a

classical example, if xJ is the time variable, the correspond-

ing problem is classically solved by finite differences; if it is

a space variable, finite elements are usually used.

2.2 A Simple Structural Problem

2.2.1 Definition

The problem consists in optimizing a multilayer body sub-

jected to given temperatures on its external faces for differ-

ent cost functions. Only the steady-state heat transfer prob-

lem is considered and the unknown temperature field is de-

noted u. As shown in Fig. 1, the body is composed of n

layers and the boundary temperatures are u0 and un. The

thicknesses of the layers are denoted (λi)i=1,n. For sake of

simplicity, we consider a one-dimensional problem in space,

the space variable is x, the total space domain is denoted �x

and the space domains of the layers are (�x
i )i=1,n such as:

�x =

n
⋃

i=1

�x
i =

[

0,

n
∑

i=1

λi

]

(19)

1Particular because the strong form depends on the choice of the trial

function (10).
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with

�x
1 = [0, λ1] and �x

i =

⎡

⎣

i−1
∑

j=1

λj ,

i
∑

j=1

λj

⎤

⎦

for i = 2, n. (20)

As proposed above, thicknesses of the layers are considered

as variables of the problem, then the temperature field can

be written as u(x, (λi)i=1,n). The strong problem to solve is

∂

∂x

(

D(x)
∂

∂x
u(x, (λi)i=1,n)

)

+ f (x) = 0, (21)

where D(x) is the thermal conductivity and f (x) is the heat

source, both of them can explicitly depends on x. Consider-

ing layers of different homogeneous materials, D(x) is set

constant per layer (Di)i=1,n. So, referring to the notations

introduced in the previous section, the variables are:

x1 = x;x2 = λ1; . . . ;xi = λi+1; . . . ;xn+1 = λn. (22)

Each variable λi is defined in a finite interval [λmin
i , λmax

i ].

In fact, in the classical approach of optimization, these re-

strictions would have been expressed in terms of inequality

constraints, e.g. λi < λmax
i .

If the variables (λi)i=1,n governing the physical dimen-

sions of the problem were known, the solution would depend

on x only and the weak problem (after integration by parts)

would read:

∫

�x

∂

∂x
u∗(x)

(

D(x)
∂

∂x
u(x)

)

− u∗(x)f (x)dx = 0, (23)

where u∗(x) is a trial function which satisfies the Dirich-

let boundary conditions. Since the physical domain depends

on (λi)i=1,n, it is convenient to introduce a fixed parent do-

main �s = [0, n] and a diffeomorphism φ : �s → �x which

depends also on (λi)i=1,n. More precisely, we take the fol-

lowing piecewise linear change of variable:

φ(s) =

⎧

⎨

⎩

sλ1 if 0 ≤ s ≤ 1,

(s − j + 1)λj +
∑j−1

k=1 λk if (j − 1) ≤ s ≤ j.

(24)

The parent subdomains �s
i , are defined as:

�s
i = φ−1(�x

i ) = [(i − 1), i] . (25)

With this specific change of variable, the gradient of φ(s) is

constant over each subdomain:

dφ

ds
(s) = λi for s ∈ �s

i . (26)

We can now define the generalized weak problem which so-

lution is u(s, (λi)i=1,n):

∫ λmax
1

λmin
1

. . .

∫ λmax
n

λmin
n

∫ n

0

[((

dφ

ds
(s)

)−2
∂u∗

∂s
D(s)

∂u

∂s

− u∗f

)

dφ

ds
(s)

]

ds dλn · · ·dλ1, (27)

where we have omitted the s- and (λi)i=1,n-dependence of

both u and u∗. This last equation can conveniently be rewrit-

ten as

∫ λmax
1

λmin
1

. . .

∫ λmax
n

λmin
n

[ n
∑

i=0

∫

�s
i

(

∂u∗

∂s

Di

λi

∂u

∂s

− λiu
∗f

)

ds

]

dλn · · ·dλ1. (28)

Furthermore, in this specific example, we set f (x) = 0 in

the second term of the integrand, although considering more

complex sources f (x) would not yield to major difficulties.

2.2.2 Derivation of the Separated Problem

From (28) it is straightforward using the PGD method to

seek a solution u(s, (λi)i=1,n) of the form:

u(s, (λi)i=1,n) =

N
∑

k=1

Sk(s)	k
1(λ1) · · ·	k

n(λn). (29)

Note that the specific choice of mapping between �s and �x

renders the definition of strong problems per dimension a bit

difficult because the derivative of the mapping is not contin-

uous everywhere. Nevertheless, it does not change the rest

of the method, because the iterative determination of Sk(s)

and 	k
i (λ1)i=1,n is carried out by solving the weak form of

these problems. The solution procedure goes as follows:

1. Arbitrarily define the functions S1(s),	1
1(λ1) · · ·	1

n(λn)

of the first mode, such that they satisfy the non-homoge-

neous boundary conditions of our problem. In our case

we select S1(s) = u0(1 − s/n) + uns/n and

(	1
i (λi))i=1,n = 1.

2. Initialize the functions of the new mode Sk(s), 	k
1(λ1),

. . . ,	k
n(λn) to some arbitrary values. The only constraint

is on the boundary values of these functions. Indeed, in

order to preserve the values at the boundary set by the

first mode and therefore satisfy the boundary conditions

of our problem we must ensure that Sk(0) = Sk(n) = 0.

3. Compute the value of the new mode using a fixed-point

algorithm as described in the previous section. It is worth

mentioning that our problem does not involve any partial

derivatives with respect to (λi)i=1,n and therefore com-

puting the value of (	k
i (λi))i=1,n reduces to the resolu-

tion of an algebraic equation.
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Table 1 Discretization of the four variables

dimension range number of grid points

s [0,3] 301

λ1 [0.1,1.5] 25

λ2 [0.1,2.8] 25

λ3 [0.1,1.5] 25

4. Check for convergence and add a new mode if the norm

of the residual is too large.

3 Results

In this section we present the numerical results obtained

with the PGD method. All the results are computed for three

physical subdomains of variable size (n = 3). The two ex-

treme layers of thickness λ1 and λ3 are made of the same

material and their thermal conductivity is set to 1 W/(m K).

The middle layer of thickness λ2 is supposed highly more

insulating, its thermal conductivity is set to 0.05 W/(m K).

Finally, the boundary conditions are of the Dirichlet type,

and set to u0 = 0 K and u3 = 1 K.

3.1 Discretization and Convergence

As solving the four-dimensional (s, λ1, λ2, λ3) problem

only involves four one-dimensional problems along each

dimension, simple one-dimensional discretization methods

are considered. s-space as well as (λi)i=1,3-spaces are dis-

cretized by piecewise linear finite elements and the corre-

sponding weak problems are solved by the Galerkin method.

Both range and number of grid points for each of the dimen-

sions are given in Table 1. As no partial derivatives with re-

spect to the thicknesses (λi)i=1,3 are involved in the problem

(see step 3 in Sect. 2.2.2), for each fixed-point iteration three

algebraic systems (in terms of (λi)i=1,3) and one differen-

tial problem (in terms of s) must be solved. Nevertheless,

choosing a finite element discretization for the thicknesses

leads to an easy interpolation for out-of-grid values.

34 modes are sufficient to satisfy the convergence crite-

rion (6), as applied to the present problem

∫ 1.5

0.1

∫ 2.8

0.1

∫ 1.5

0.1

∫ 3

0

|L (ũ)|2 dsdλ1dλ2dλ3 < 10−4. (30)

As mentioned above, the first mode is chosen to satisfy

the non-homogeneous boundary conditions (see step 1 in

Sec. 2.2.2); and for each of the 33 correction modes, be-

tween 9 and 81 fixed-point iterations are necessary to

achieve convergence of the modes to machine precision.

Finally as we compute a variable-separated representa-

tion of the solution, the amount of memory required to store

ũ is negligible compared to what would have been required

to store it on an equivalent four-dimensional grid.

Fig. 2 Temperature field in three different multi-layer domains

3.2 Solution of the Primary Problem: Obtaining

ũ(x, λ1, λ2, λ3)

As described in the Introduction, the use of the PGD method

leads to the determination of an approximated solution

of the problem ũ for all combinations of the parameters

(s, λ1, λ2, λ3) in the ranges given in Table 1. In order to

illustrate the power of the method and the potential use of

the computed solution beyond optimization problems, we

present some particular results. For readability, they are re-

stricted to cases in which only three variables are indepen-

dent, although results with the four independent variables

are available.

• As a first example, we present the evolution of the tem-

perature ũ as a function of the space x for different thick-

nesses of the layers in Fig. 2. This figure shows that the

introduction of the parent domain parametrized by the

curvilinear coordinate s is a relevant tool to introduce the

change of geometry in the governing equations.

A similar conclusion can be drawn by considering

Fig. 3. In this figure, the temperature field in the whole do-

main ũ(x) is plotted as a function of the thickness of the

middle layer. Here, the thicknesses of the extreme layers

were set to 1, i.e. λ1 = λ3 = 1.

• The next two figures illustrate that the four variables are

considered of the same nature in the method. To simplify

the discussion, only results in which the whole thickness

of the domain is set to 3, i.e. λ1 +λ2 +λ3 = 3, are shown.

Figures 4 and 5 present respectively the value of the tem-

perature gradient in the origin, i.e. ∂ũ/∂x(x = 0), and the

value of the temperature field in the middle of the whole

domain, i.e. ũ(x = 1.5), as functions of the thicknesses

of the two extreme layers, i.e. λ1 and λ3. The power of

the method is demonstrated by these two examples: the
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Fig. 3 Temperature field in the domain as a function of the thickness

of the middle layer λ2 (with λ1 = λ3 = 1)

Fig. 4 Temperature gradient at x = 0 (with λ1 + λ2 + λ3 = 3)

geometrical parameters λ1 and λ3 are considered as vari-

ables of the problem and then the solution of the thermal

problem is available for all their possible values (in their

respective range given in Table 1).

3.3 Solution of the Secondary Problem: Calculating the

Cost Function

Once the primary problem solved, we can choose a cost

function and minimize it with respect to any set of variables

in (x,λ1, λ2, λ3) to determine the optimal set of parameters.

In order to illustrate the versatility of our approach, we adopt

successively two different cost functions.

– The first optimization problem consists in finding the set

of thicknesses that minimize a complex cost function. We

will not actually solve this problem but we demonstrate

Fig. 5 Temperature in the middle of the domain (with λ1 + λ2 +

λ3 = 3)

here that the previously computed solution of the aug-

mented structural problem can be used to compute even

very complex cost functions:

C (λ1, λ2, λ3) =

(

3
∑

i=1

ciλi

)

(

max
i

γi(λ1, λ2, λ3)

)

, (31)

with

γi(λ1, λ2, λ3) = di

∫

�x
i

∂ũ

∂x
ũdx, (32)

under the constraint:

λ1 + λ2 + λ3 = 3. (33)

In the previous expressions, ci and di are scalar parame-

ters. In order to interpret this cost function, one should

see ci as the cost of each layer per unit length and γi as

a reciprocal lifetime of each layer. The cost function can

therefore be interpreted as the cost of the structure divided

by the minimum lifetime of its parts. Figure 6 presents

the value of the cost function as a function of the thick-

nesses of the extreme layers (the thickness of the middle

layer is deduced from the previous constraint (33)). The

following numerical values were used: ci = {1,50,1},

di = {1,0.05,1}. As exhibited in the figure, the optimal

set of parameters is easily determined by searching the

minimum of the cost function in the two-dimensional

space.

– The second cost function considered here is completely

different than the previous one. We assume that λ1 = λ2 =

1; only λ3 is considered as a parameter. The optimization

problem consists in determining the position x in the mid-

dle layer in which the temperature ũ(x) is the most rep-

resentative of the mean temperature in the whole domain.
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Fig. 6 Cost function of (31)

Fig. 7 Quadratic error between the whole temperature field and the

temperature measured in each position of the middle layer

So, the cost function can be defined as the quadratic error

between the whole temperature field and the temperature

in x

C(x,λ3) =
1

λ1 + λ2 + λ3

∫ λ1+λ2+λ3

0

(ũ(y) − ũ(x))2 dy

for x ∈ [λ1, λ1 + λ2]. (34)

Such cost function can be used for example to determine

the optimal position of a temperature sensor. Figure 7

shows the quadratic error as a function of the position in

the middle layer and the thickness of the third layer. As

in the previous example, the optimal set of parameters is

easily obtained by directly minimizing the cost function.

4 Discussion

In the present paper, we have proposed a new way to handle

structural optimization problems by using the Proper Gener-

alized Decomposition method. Contrary to previous applica-

tions of the PGD method, we consider here geometrical, i.e.

dimensions of the domain, as additional variables of an aug-

mented structural problem. The ability of the PGD method

to handle high dimensionality problems makes it possible to

solve, with reasonable computing time, the structural prob-

lem for all possible values of these new variables in given

ranges. Indeed, computing the solution of our problem using

the PGD method requires to solve 937 differential problems.

This number might be seen as huge but it is worth recall-

ing that it leads to the solution of the structural problem for

any value of the variables (λi)i=1,3 in their respective range.

A brute force approach, i.e. solving the problem for each

combination of (λi)i=1,3, would have required the solu-

tion of 253 = 15625 differential problems. Additionally, the

variable-separated representation for the solution maintains

memory usage to very low levels. For the chosen discretiza-

tion parameters, representing the full solution on a four di-

mensional grid would have required up to 35 megabytes of

memory, while the 34 modes of the PGD solution fit in about

100 kilobytes of memory. With this approach, the structural

problem is solved a priori and not in the optimization loop.

In a sense it becomes the primary problem and then the sec-

ondary optimization step only consists in defining a cost

function and finding its minimum values. Moreover, as the

whole solution is already known, it is possible and numeri-

cally inexpensive to explore the problem before defining the

cost function. Also, as evaluating the cost function is (al-

most) costless, potentially more efficient cost functions and

optimization algorithms (including direct search) might be-

come numerically tractable. This study demonstrates the rel-

evance of the PGD method in the context of structural opti-

mization. Nevertheless, it leaves some issues of fundamen-

tal importance unresolved. First, the ability of the method

to handle mechanical problems, i.e. problems in which the

displacement field is involved, has to be investigated. Sec-

ond, the convergence of the PGD method on such problems

must be thoroughly examined: here a fixed-point algorithm

has been used to calculate the modes, but we also tested the

minimization of the residual (see [5]) which failed to con-

verge. Finally, the principal limitation of the approach is ac-

tually the necessity to define a parent domain that relates the

geometry to the geometrical parameters; so it implies the

existence of a diffeomorphism between the parent and the

physical domains. Obviously, in other problems, the exis-

tence of such diffeomorphism can be questionable.
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