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ABSTRACT

We present a refinement of the Fisk-Parker hybrid field of Burger and Hitge which now includes a region bordering
the solar rotational equator where magnetic field footpoint motion occurs only through diffusive reconnection. The
hybrid field, therefore, only occurs above a certain latitude in a given hemisphere, and in the equatorial region the field is
a pure Parker field.We also propose a simple qualitativemodel for the solar cycle dependence of the hybrid field, taking
into account changes in the tilt angle of the heliospheric current sheet and the latitudinal extend of the polar coronal hole
on the photosphere and on the source surface over the course of a solar activity cycle. We find that the amplitude of
magnetic field fluctuations for assumed solar minimum parameters would not be observable above the background
noise (see Roberts and coworkers). We also show that for these parameters, periodicities associated with differential
footpoint motion would be barely distinguishable from rigid rotation at the solar equatorial rate. We point out that the
question of periodicities in magnetic field data is perhaps more complicated than previously thought. We confirm the
result of Burger and Hitge that a Fisk-type heliospheric magnetic field provides a natural explanation for the observed
linear relationship between the amplitude of the recurrent cosmic-ray variations and the global latitude gradient (see
Zhang).We show that this relationship holds for helium, protons, and electrons.Moreover, we show that the constant of
proportionality is larger when qA > 0 than when qA < 0, as inferred from observations by Richardson and coworkers.

Subject headinggs: cosmic rays — diffusion — Sun: magnetic fields — turbulence

1. INTRODUCTION

Fisk’s model of the heliospheric magnetic field (Fisk 1996)
forms the basis of the hybrid field approach of Burger & Hitge
(2004). In a Fisk-type field, magnetic field lines exhibit extensive
excursions in heliographic latitude, and has been cited as a pos-
sible explanation for recurrent energetic particle events observed
by the Ulysses spacecraft at high latitudes (see, e.g., Simpson
et al. 1995; Zhang 1997; Paizis et al. 1999), as well as the smaller
than expected cosmic-ray intensities observed at high latitudes
(Simpson et al. 1996). Since the original paper by Fisk (1996),
the Fisk field and the physics behind it have been discussed in a
series of papers by Fisk and his coworkers (see, e.g., Fisk &
Schwadron 2001; Fisk 2001, 2005; Fisk & Zurbuchen 2006, and
references therein). Fisk assumed that the polar coronal hole is
symmetric with respect to the solar magnetic axis, and that the
magnetic field expands nonradially to yield a uniform field far-
ther away from the Sun. The footpoints of the magnetic field lines
anchored in the photosphere experience differential rotation. Then,
if the magnetic axis of the Sun is assumed to rotate rigidly at the
equatorial rate, differential rotation will cause a footpoint to move
in heliomagnetic latitude and longitude, thus experiencing dif-
ferent degrees of nonradial expansion. The end result is a field
line that moves in heliographic latitude, and the simple concept
of ‘‘field lines on cones’’ of the Parker field (Parker 1958) breaks
down. Over the last 10 years, various attempts to incorporate the
Fisk field into numerical modulation models have been reported
(Kóta & Jokipii 1997, 1999, 2001; Burger et al. 2001; Burger &
Hitge 2002, 2004; Burger & de Jager 2003; Krüger 2005). A
recent overview of various models for the heliospheric magnetic
field, including Fisk-type fields, is given by Burger (2005).

A key question is of course whether a Fisk-type field actually
exists. The analysis of Ulyssesmagnetic field data by Zurbuchen
et al. (1997) suggests very strongly that it does. Roberts &
Goldstein (1998) report that solar wind seen within about 30

�
of

the magnetic equator actually originates from polar regions, at

latitudes larger than about 60
�
(see, however, Woo et al. 1999),

with clear indications of differential photospheric rotation and
rigid coronal hole rotation. They find that signatures of the latter
two phenomena are also present in magnetic field data. Forsyth
et al. (2002) analyzed data from theUlysses spacecraft and do not
rule out the existence of a Fisk-type field, but the authors con-
clude that systematic deviations that would be its signature may
have amplitudes too low to be reliably detected in heliospheric
magnetic field data from spacecraft such asUlysses. Lionello et al.
(2006) use a time-dependent three-dimensional MHD simula-
tion and find that the basic idea of Fisk (1996) that open mag-
netic field lines do undergo latitudinal excursion is confirmed by
their calculations. However, they state that the latitudinal excur-
sion is too small to explainUlysses observations of energetic par-
ticles at high latitudes if their transport occurs via direct magnetic
connection. They also point out that coronal holes in their models
do not rotate strictly rigidly as assumed by Fisk. A recent in-depth
analysis of Ulysses magnetic field data by Roberts et al. (2007)
shows no evidence of a Fisk-type field. Their conclusion is based
on predicted field variations for parameters used by Zurbuchen et
al. (1997) and they point out that some of these parameters may
have been overestimated. They still find the physics of the Fisk
field plausible.

No unambiguous conclusion regarding the existence of the
Fisk field can be drawn from the above references. We will use
results from the detailed analysis of Roberts et al. (2007) to de-
terminewhether the Fisk-Parker hybrid field should be observable
for the parameters that we use for solar minimum conditions. We
will also point out an intriguing consequence of their analysis. Pre-
liminary results for the current project is given by Krüger (2005).

2. THE FISK-PARKER HYBRID FIELD:
A SOLAR-CYCLE DEPENDENT APPROACH

The hybrid field approach was first described by Burger &
Hitge (2004). They assume that ordered magnetic field footpoint
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motions on the source surface, where the field is essentially ra-
dial, persist up to the solar rotational equator. The resulting he-
liospheric field is therefore a Fisk-Parker hybrid at essentially all
latitudes. In the current model we assume that there is a range of
latitudes around the solar rotation equator where only diffusive
reconnection of magnetic field lines occur, and that ordered foot-
point motion only occurs at higher latitudes. The latter region is
determined by the mapping of open field lines, originating in an
idealized polar coronal hole on the photosphere, to the source
surface.

A fully realistic model to map what is happening on the pho-
tosphere to the source surface is beyond the scope of this study.
Given the complexity of the actual polar coronal holes, especially
when the solar magnetic field changes polarity (see, e.g., Fox et al.
1998), this is a daunting task.

The motivation for the current model is shown schematically
in Figure 1. We assume that the polar coronal hole is centered on
the rotation axis on the photosphere. The mapped region on the
source surface will, however, not be centered on this axis on the
source surface due to superradial expansion of the magnetic field.
The minimum latitude at which ordered footpoint motion can
occur is denoted by a dashed line in Figure 1 and labeled III. Be-
tween this latitude and the one labeled II in the figure, one would
expect a mixture of a region where footpoint motion occurs by
means of diffusive reconnection, and another bymeans of ordered
motion. The former leads to a Parker-type field, and the latter to
a Fisk-type field (Kobylinski 2001). At lower latitudes than
the one labeled III, the field will be Parker-like. Note that the mag-
netic equator is then always confined between latitude III and its
counterpart in the southern hemisphere. Turning now to the highest
latitudes, the question is whether differential rotation also occurs
in these regions (see, e.g., Schou et al. 1998). For the purpose of
the present study we assume that it does not. Given the way one
would expect the region denoted by a solid line on the photosphere
to map to the source surface, above a certain latitude there should
be a region where footpoint motion occurs mainly by means of
diffusive reconnection, and another mainly by means of ordered
motion. This latitude is denoted by I in Figure 1. We therefore
expect that the heliospheric magnetic field that originates from
the pole to latitude I the field is a mixture of Parker-type and
Fisk-type fields; a pure Fisk-type field from I to II, a mixture of

Parker-type and Fisk-type fields from II to III, and a Parker-type
between III and the solar rotation equator.
To model this complicated azimuthally dependent situation in

a simple way, taking into account the various latitude regions in
Figure 1, we use a transition function

FS ¼
�

tanh �p�
� �

þ tanh �p �� �ð Þ
� �

�tanh �e �� � 0b
� �� ��2

if 0F� < � 0b;

0 if � 0bF�F�� � 0b;
�

tanh �p�
� �

þ tanh �p(�� �)
� �

�tanh �e(�� �þ � 0b)
� ��2

if �� � 0b < �F�;
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which is illustrated in Figure 2 and is similar to the one used by
Burger & Hitge (2004). The parameters �p and �e are used to
control the transition from predominantly Fisk-type to Parker-
type fields at the poles and equator, respectively. The parameter
� 0b corresponds to the latitude III in Figure 1.
The velocity field of Burger & Hitge (2004) must be modified

in order to reflect the refinements discussed above. The new
divergence-free velocity field for the refined Fisk-Parker hy-
brid magnetic field in the frame corotating with the Sun is given
by

u� ¼ r0!
� sin �� sin ��;

u� ¼ r0

�

!� sin �� cos � cos �� þ !� cos �� sin �

þ d!�

d�
sin �� sin � cos ��

þ !� d�
�

d�
cos �� sin � cos ��

�

; ð2Þ

with

��(� ) ¼ �FS(� );

!�(� ) ¼ !FS(� ); ð3Þ

where FS is the transition function (eq. [1]) and � and ! have
constant values. Here � and �� are heliographic colatitude and

Fig. 1.—Schematic representation of field lines, shown as gray lines with ar-
rowheads, mapping from the photosphere (inner circle) to the source surface (outer
circle). The dotted line on the source surface near the pole represents the region to
which an area of reduced or no differential rotation on the photosphere will map to.
The lower dotted line on the source surface denotes the actual boundary of the edge
of the polar coronal hole, mapped from the photosphere. The magnetic axis is
denoted by M and the rotation axis by �. Not to scale. See text for discussion.

Fig. 2.—Transition function that is used to model the physical situation il-
lustrated in Fig. 1 as function of colatitude. Here it is assumed that the influence of
the Fisk field extends to a colatitude of 80

�
.
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azimuth, respectively, r0 is the radius of the source surface, and
! is the differential rotation rate. To define the angle �, note that a
field line originating at the heliographic pole suffers no differential
rotation and therefore alwaysmaps to the same point on the source
surface, from where it is transported radially outward by the solar
wind, thus defining a virtual axis, denoted by p in Figure 3. The
angle between this axis and the rotation axis of the Sun, denoted
by �, is �.

In order for the velocity field (eq. [2]) to be divergence-free,
the only constraint onFS is that it must only depend on �. Thiswill
ensure that the heliospheric magnetic field derived from it (see,
e.g., Giacalone 1999) is also divergence-free.

Figure 3 shows the trajectories of magnetic field footpoints on
the source surface. We used values � ¼ 12

�
(see below for re-

lation to�),! ¼ �/4, �p ¼ 5:0, and �e ¼ 5:0 to produce Figure 3,
the same as in the numerical modulation code discussed in x 4.
Random motion of magnetic field footpoints is not shown but
will be superimposed on these trajectories and will be the only
kindof footpointmotion that occurs in the shaded regionbordering
the solar rotation equator in this figure. The effect of random foot-
point motion on the heliospheric magnetic field is discussed by
Giacalone (1999, 2001). If one considers direct numerical simu-
lation of particle transport (see, e.g., Giacalone 2001; Pei et al.
2006) the effect of these randommotions of the background field
should be taken into account directly. Giacalone et al. (2006) show
that a two-component model of interplanetary turbulence can
be generated from a quasi-static model with a suitable choice of
spacetime variations of the footpoint motions of magnetic fields
on a source surface. Since we will use a two-component slab/
two-dimensionalmodel for turbulence in our diffusion tensor, ran-
dom footpoint motion is incorporated indirectly in our modula-
tion model.

For the purpose of the present study it is assumed that the
Parker field is unaffected by differential rotation. Therefore, both
the angle � and the differential rotation rate ! must become
zero where the field is Parker-like, or equivalently, in the hybrid
field model they must scale with FS . These parameters are there-
fore multiplied by FS to give the effective latitude-dependent
functions.

The Fisk-Parker hybrid heliospheric magnetic field in the fixed
observer’s frame that follows from the velocity field (eq. [2]) is
given by

Br ¼ A
r0

r

	 
2

;

B� ¼ Br

r

Vsw

!� sin �� sin ��;

B� ¼ Br

r

Vsw

�

!� sin �� cos � cos ��

þ sin � !� cos �� � �ð Þ þ d!�

d�
sin �� sin � cos ��

þ !� d�
�

d�
cos �� sin � cos ��

�

; ð4Þ

where�� ¼ �� �t þ �(r � r0)/Vsw þ �0,A is a signed constant
[magnitude Br(r0)j j; positive when the field in the northern hemi-
sphere is directed away from the Sun, and negative when it’s
directed toward the Sun], and Vsw is the (constant and radial) solar
wind speed. The other quantities are defined in equation (2).

These equations are easily extended for the case when the
solar wind speed depends on latitude (Schwadron 2002). When
FS ¼ 1 the equations reduce to those presented by Zurbuchen

et al. (1997) and when FS ¼ 0, the standard Parker field (Parker
1958).

The relationship between the angle � and the tilt angle of the
heliospheric current sheet � is given by

� ¼ arccos 1� (1� cos � 0mm)
sin2�

sin2�mm

� �� �

� �; ð5Þ

where �mm and � 0mm are the polar coronal hole boundaries in
heliomagnetic coordinates on the photosphere and source sur-
face, respectively (Fisk 1996; Van Niekerk 2000; Krüger 2005).
In the original paper of Fisk (1996), it is assumed that the polar
coronal hole is symmetric with respect to the magnetic axis. In
the current approach, the polar coronal hole on the photosphere
is assumed to be symmetric with respect to the rotation axis of
the Sun. The quantities �mm and � 0mm should therefore be inter-
preted as the maximum extend of the polar coronal hole in he-
liomagnetic coordinates on the photosphere and the source
surface, respective. A nominal value for the maximum extend of
the polar coronal hole in heliographic coordinates on the pho-
tosphere during solar minimum conditions is about 30

�
(see, e.g.,

Waldmeier 1981; Bravo&Stewart 1994; Dorotovic 1996; Harvey
& Recely 2002). A plausible range for the maximum extend of
the polar coronal hole in heliographic coordinates on the source
surface during solar minimum conditions is between about 60

�

and 80
�
(see, e.g., Munro & Jackson 1977; DeForest et al. 1997;

Suess et al. 1998; Cranmer et al. 1999). Here we use a value
of 30

�
for the former (denoted �b) and 80

�
for the latter (de-

noted � 0b). It follows that �mm ¼ �b þ � and � 0mm ¼ � 0b þ � , and
these values are then used when equation (5) is needed in what
follows.

Fig. 3.—Footpoint trajectories on one hemisphere of the source surface in a
frame corotating at the equatorial rotation rate of the Sun. The angle between the
rotational axis (�) and the virtual p-axis (see text for definition) is �. Direction of
travel is shown by arrowheads. Note that the trajectory to the far right has a
direction of travel that is counterclockwise, opposite to that of the other trajectories.
In the shaded region bordering on the solar equator footpoint motion only occurs
through diffusive reconnection.
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Turning now to the solar cycle dependence of the Fisk-Parker
hybrid field, we model the time evolution of the tilt angle of the
heliospheric current sheet by

� ¼ �min þ
�

4
� �min

2

	 


;

1� cos
�

4
T

	 


if 0F TF 4;

1� cos
�

7
(T � 11)

h i

if 4 < TF11;

8

>

<

>

:

ð6Þ

where the angles are expressed in radians and �min ¼ �/18 for
the present case. The tilt angle is therefore assumed to vary be-
tween 10

�
and 90

�
. We further assume that the polar coronal

vanishes at solar maximum, and that it has the same time evo-
lution as the tilt angle. This leads to the following expressions for
�b and � 0b:

�b ¼
�b;min

2

1þ cos
�

4
T

	 


if 0F T F 4;

1þ cos
�

7
(T � 11)

h i

if 4 < T F11;

8

>

<

>

:

ð7Þ

� 0b ¼
� 0b;min

2

1þ cos
�

4
T

	 


if 0F T F 4;

1þ cos
�

7
(T � 11)

h i

if 4 < T F11;

8

>

<

>

:

ð8Þ

at a time T years after solar minimum. Here �b;min ¼ 30
�
and

� 0b;min ¼ 80
�
at solar minimum.

Equations (5)Y (8) are shown in Figure 4 for an 11 year solar-
activity cycle. Note that the Fisk angle � increases from about
12

�
at solar minimum to 24

�
before becoming zero at solar

maximum.
Our current model for the time evolution of the heliospheric

tilt angle (eq. [6]) is obviously an oversimplification, and is used
here to give a qualitative idea of how the Fisk-type field could
evolve over the course of a solar cycle. In any attempt to study
cosmic-ray modulation over 11 or 22 yr, changes in the magni-
tude of the solar magnetic field and all the other quantities shown
in x 4 also have to be taken into account.

3. OBSERVATIONAL CONSTRAINTS
ON THE HYBRID FIELD

The question of whether a Fisk-type field actually exists has—
as was pointed out in the introduction—received some attention.
The obvious starting point is to look for its signature in magnetic
field data. This has been done, but with conflicting results (see,
e.g., Zurbuchen et al. 1997; Forsyth et al. 2002; Roberts et al.
2007). Equation (4) predicts that a fixed observer should see a
periodicity in magnetic field data at the solar equatorial rotation
rate. Zurbuchen et al. (1997) point out a second periodicity. This
occurs when the transit time of a magnetic feature along a foot-
point trajectory matches the transit time of the spacecraft in
its orbit between two points of intersection; this is described
in detail by Zurbuchen et al. (1997) and also by Van Niekerk
(2000). Van Niekerk considered other colatitudes than the 20

�
of

Zurbuchen et al. (1997) but for a constant differential rotation
rate. Here we also consider changes in the latter for a pure Fisk
field using the same basic parameters as Zurbuchen et al. (1997)
shown in Figure 5. For � � 30

�
( filled squares) and ! ¼ �/4

(solid line), the values used by Zurbuchen et al. (1997) the ob-
served period can vary from about 7 days at 10

�
colatitude to the

solar equatorial period of 25 days at 30
�
colatitude. The period

increases if either � or ! is decreased, and for � ¼ 12
�
and

!F�/4 it would be barely distinguishable from the solar equa-
torial period even at the highest latitudes. Note that the latter
values are those used in the current paper for solar minimum con-
ditions. The next question is whether the amplitude of the fluc-
tuations in the field is at a high enough level to be observable
above the random turbulent level. The answer is provided by
Roberts et al. (2007), who show that a value of � that is smaller
than about 15

�
would be consistent with observations, but hard

to be distinguished from noise. We therefore conclude that a
hybrid field with � ¼ 12

�
should not be observable in magnetic

field data.
The analysis of Roberts et al. (2007) shows a very significant

period of around 27 days in the solar wind velocity, especially in
the radial component. Given the fact that the Parker model of the
heliospheric magnetic field has an azimuthal component that
is inversely proportional to the solar wind speed, one would
then expect to see a similar significant periodicity in this com-
ponent of the magnetic field, but their analysis shows that this is

Fig. 4.—Maximum latitudinal extend �b of the model polar coronal hole on
the photosphere (short dashed line) and � 0

b on the source surface (long dashed
line), the tilt angle of the heliospheric current sheet � (dot-dashed line), and the
Fisk angle � (solid line) as function of time after solar minimum.

Fig. 5.—Period with which Ulysses would observe magnetic feature moving
along footpoint trajectories as function of colatitude for various values of the Fisk
angle �, denoted by different symbols as indicated in the legend, and for two
values of the differential rotation rate !, �/4 (solid lines) and�/8 (dashed lines).
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certainly not always observed. The question now becomes, if
the period that one would expect to see in the well-established
Parker field’s azimuthal component is not observed, should one
expect to see the predicted periods of the Fisk-type field? It could
be that the periods we expect to see in either field is masked
by temporal changes in the field, or that the period in the solar
wind speed is not always seen in the field components because
footpoint motion is masking it, i.e., the field is really a Fisk-type
field.

4. MODULATION MODEL

The current modulation study is limited to solar minimum con-
ditions. Krüger (2005) did consider periods of increased solar
activity, but used a different diffusion tensor.

We use a steady state, three-dimensional modulation model
(Kóta & Jokipii 1983; Burger & Hattingh 1995; Hattingh &
Burger 1995; Hattingh 1998) to solve Parker’s transport equa-
tion (Parker 1965) for the cosmic-ray distribution function at
position r and with momentum p,

: = K
S
= :f

� �

� vd þ Vswð Þ = :f

þ 1

3
: = Vswð Þ @f

@ ln p
¼ @f

@t
; ð9Þ

where vd ¼ : < �AB/B0ð Þ (see eq. [16] below) is the drift ve-
locity, where B is the steady state version of the heliospheric
magnetic field (eq. [4]) and B0 is its magnitude, Vsw is the solar
wind velocity, and K

S is the symmetric part of the diffusion
tensor,

K ¼
�k 0 0

0 �?;2 �A

0 ��A �?;3

2

6

4

3

7

5
: ð10Þ

The distribution function f (r; p) is related to the differential in-
tensity with respect to kinetic energy, jT , by jT ¼ p2f .

The tilt angle of the heliospheric current sheet is 10
�
(see

eq. [6]), the solar wind speed Vsw ¼ 600 km s�1, and the outer
boundary is at 50 AU. The latter value is chosen due to com-
puting restrictions. Equation (9) is solved over the whole of this
model heliosphere.

The parallel diffusion coefficient, adapted from the random
sweeping model for dynamical slab turbulence of Teufel &
Schlickeiser (2003) is given by

�k ¼
B2
0

�B2
slab

3�I
ffiffiffi

�
p

�I � 1ð Þ
kminR

2
L

b

;

(

b

4
ffiffiffi

�
p þ 2

ffiffiffi

�
p

(2� �I )(4� �I )

b

R�I

þ 1

�(�D=2)
þ 1

ffiffiffi

�
p

(�D � 2)

� �

b�D�1

R�IQ�D��I

)

; ð11Þ

where B0 is the magnitude of the background heliospheric mag-
netic field, �B2

slab is the variance of the slab component of the
turbulence, �I and �D are the spectral indices in the inertial and
dissipation ranges, respectively, � is the gamma function, RL ¼
P/B0 is the (maximal) Larmor radius with P ¼ pc/ qj j particle

rigidity, kmin is the wavenumber associated with the transition
from the energy to the inertial range of the slab power spectrum,
and

R ¼ kminRL; ð12Þ
b ¼ v

2�dvA

; ð13Þ

Q ¼ kDRL; ð14Þ

where v is particle speed, �d is a parameter which determines
the strength of dynamical effects (Bieber et al. 1994; Teufel &
Schlickeiser 2002), vA is the Alfvèn speed, and kD is the wave-
number associated with the transition from the inertial to the
dissipation range of the slab power spectrum. We choose this
particular representation for the parallel diffusion coefficient be-
cause it gives an analytical expressionwhich can be used to study
the transport of low-energy electrons. Commenting on the use-
fulness of quasi-linear theory, Minnie et al. (2007a) report good
agreement with the simulated mean free paths from their direct
numerical simulations of charged-particle transport in a turbulent
magnetic field for low levels of turbulence.

For diffusion perpendicular to the background field we use
the nonlinear guiding center (NLGC) theory of Matthaeus et al.
(2003). Shalchi et al. (2004) provide analytical approximations
for the results from this theory (see also Zank et al. 2004), and we
use

�? ¼ a2
v

�I � 1

2
ffiffiffi

3
p

�I

ffiffiffi

�
p �(�I=2þ 1)

�(�I=2þ 1=2)
l2D

�B2
2D

B2
0

� �2=3

�
1=3
k ; ð15Þ

where a is a constant and �B2
2D and l2D are the variance and the

correlation length of the 2D component of the turbulence, re-
spectively. Other quantities are defined in equation (11). To cal-
culate �? in equation (15), we use �k from equation (11).

The fact that drift is reduced by the presence of turbulence
has been established by direct numerical simulations (see, e.g.,
Giacalone et al. 1999;Minnie et al. 2007b, and references therein).
The functional form for the reduction has, however, not been un-
ambiguously established, and we choose a simple one that de-
pends only on particle rigidity,

�A ¼ pv

3qB0

P=P0ð Þ2

1þ P=P0ð Þ2
; ð16Þ

where P0 ¼ 1/
ffiffiffi

2
p

GV. For the turbulence quantities we use sim-
ple approximations, and assume that

kmin ¼ 32r0:5 AU�1;

kD ¼ 3 ; 106 B0=BEarthð Þ AU�1;

l2D ¼ 3:1 ; 10�3
� �

r�0:5 AU;

�B2
slab ¼ 0:2 25r�2:5

� �

nT2;

�B2
2D ¼ 0:8 25r�2:5

� �

nT2:

Note that we use a composite model for the turbulence, with 20%
slab and 80% 2D turbulence (see, e.g., Bieber et al. 1996). Other
relevant parameters are solar wind density ¼ 7 protons cm�3, a ¼
1/

ffiffiffi

3
p

, �I ¼ 5/3, �D ¼ 2:6, BEarth ¼ 4:2 nT, and �d ¼ 1. For the
present study we assume isotropic perpendicular diffusion, with
�?;2 ¼ �?;3 ¼ �?.
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For completeness, we note that a transformation from field-
aligned to spherical coordinates yields a tensor with elements

�rr ¼ �?;2 sin
2	 þ cos2	 �jj cos

2
�þ �?;3 sin

2
�

� �

;

�r� ¼ � �A sin�þ sin 	 cos 	

; �jj cos
2
�þ �?;3 sin

2
�� �?;2

� �

;

�r� ¼ � �A cos� sin 	 � �jj � �?;3

� �

sin� cos� cos 	;

��r ¼ �A sin�þ sin 	 cos 	

; �jj cos
2
�þ �?;3 sin

2
�� �?;2

� �

;

��� ¼ �?;2 cos
2	 þ sin2	 �jj cos

2
�þ �?;3 sin

2
�

� �

;

��� ¼ �A cos� cos 	 � �jj � �?;3

� �

sin� cos� sin 	;

��r ¼ �A cos� sin 	 � �jj � �?;3

� �

sin� cos� cos 	;

��� ¼ � �A cos� cos 	 � �jj � �?;3

� �

sin� cos� sin 	;

��� ¼ �jj sin
2
�þ �?;3 cos

2
�; ð17Þ

where tan� ¼ �B�/ B
2
r þ B2

�

� �1/2
and tan 	 ¼ B�/Br. Note that

Alania & Dzhapiashvili (1979), Alania (2002), and Kobylinski
(2001) give a similar result, but with tan� ¼ �B�/Br. The rel-
evant angles are shown in Figure 6. Finally, the respective local
interstellar spectra for helium, protons, and electrons are given in
the Appendix.

5. SAMPLE SOLUTIONS

In x 3 we have argued that the Fisk-Parker hybrid field, with
parameters appropriate for solar minimum conditions as given in
x 2, would not be observable inmagnetic field data. Here we show
that the signature of a Fisk-type should, however, be clearly vis-
ible in particle data. Our aim with this paper is to concentrate on
qualitative behavior rather than to try and fit any particle data set.

In what follows, we use global latitude gradients, defined for a
given rigidity as

G�(r) ¼
ln jT (r; �2; �)h i�= jT (r; �1; �)h i�
h i

��
; 100%; ð18Þ

where jT (r; � ) is the differential intensity at a heliocentric dis-
tance r and colatitude �, and �� ¼ �1 � �2. We always use co-

latitudes �2 ¼ 10
�
and �1 ¼ 90

�
, and either r ¼ 1 or 2 AU.

Following Zhang (1997), we define the amplitude of the recur-
rent cosmic-ray variations at a given rigidity as

�jT (r; � ) ¼
jmax
T (r; �; �)� jmin

T (r; �; �)

jT (r; �; �)h i�
; 100%; ð19Þ

andmake it negative if the associated latitude gradient is negative.
Figure 7a shows that a Fisk-Parker hybrid field (triangles)

produces smaller latitude gradients than a Parker field (circles),
confirming the results of Burger & Hitge (2004), who used a dif-
ferent diffusion tensor. Note that solutions for a Parker field are
obtained by setting FS ¼ 0 in equation (4) for the hybrid field.
The relative amplitude of the cosmic-ray variations as function
of latitude gradient at a colatitude of 50

�
for the Fisk-type field

(triangles) in Figure 7b shows a number of interesting features.
First, it explains the scatter in the simulated data of the similar
figure in Burger & Hitge (2004), who only used a limited num-
ber of points: the relationship between the two quantities is not
a single straight line; the behavior is slightly different for high
and for low rigidities, resulting in loops rather than straight lines.
To put this another way, if the latitude gradient is the same for

Fig. 6.—Coordinate system showing the angles� and 	 used in the transfor-
mation fromfield-aligned to spherical coordinates, resulting in the elements given
in expression (17).

Fig. 7.—(a) Global latitude gradient as function of rigidity, and (b) amplitude
of 26 day proton variations at colatitude 50

�
as function of global latitude gra-

dient, both at a radial distance of 2 AU, for the Fisk-Parker hybrid field (triangles)
and a standard Parker field (circles). Filled symbols denote qA > 0 solarmagnetic
polarity, and open symbols qA < 0 solar magnetic polarity.

BURGER ET AL.516 Vol. 674



particles with different rigidities, the relative amplitudes of the
cosmic-ray variations are not necessarily identical. The second
feature is that the constant of proportionality is different for the
two solar magnetic field polarities. This feature was inferred from
near-Earth particle data by Richardson et al. (1999). A third
prominent feature is seen when the variations for a Fisk-type
field (triangles) are compared with the variations for a Parker
field (circles). For A > 0 ( filled symbols), when particles are
drifting from the solar polar regions of the heliosphere to the
equatorial region, there are no recurrent variations in the simu-
lated particle data for a Parker field at this colatitude. For A < 0
(open symbols), when the drift direction is changed, recurrent
variations are present for both fields. This property of the Parker
field is expected, and is due to the interaction of particles with
the wavy current sheet. For this magnetic polarity cycle the
signature of the interaction is present far beyond latitudes where
the wavy current sheet is present (see e.g., Fig. 1 of Kóta& Jokipii
1983).

Figure 8 is similar to Figure 7, but is for a radial distance of
1 AU, and for recurrent variations in the equatorial plane, a co-
latitude of 90

�
. While the latitude gradients are very similar to

those at 2 AU, there are important differences in the recurrent
variations.Most notable is that recurrent variations for the Parker
field are present for both solar magnetic cycles, obviously caused
by the wavy current sheet. The Fisk-type field gives slightly larger

amplitudes than the Parker field for the same latitude gradients
when A < 0; the difference is in the same direction but more
pronounced when A > 0. While the difference in the constant of
proportionality for the Fisk-type field for the two magnetic cy-
cles is much less noticeable than at high latitudes, the constant of
proportionality for the Parker field when A > 0 is clearly smaller
than when A < 0. Overall, the Fisk-type fields gives larger re-
current variations when A > 0 than when A < 0; surprisingly,
the same is seen for the Parker field, although not as pronounced.
We know from accompanying runs that the shape of these curves
is sensitive to the choice of diffusion tensor especially in the
equatorial region and at this time we refrain frommaking general
conclusions.

In Figure 9 we show latitude gradients and the amplitude of
recurrent variations for three different species, helium, protons,
and electrons, for both solar magnetic field polarities. The lati-
tude gradients of the three species in Figure 9a are very similar
for rigidities above about 0.5 GV. Below this value, those for
helium and protons are still similar, but the latitude gradient for
electrons for qA < 0 decreases, changes sign, and increases
again. Below about 0.2 GV, the latitude gradients for the two
magnetic cycles are the same. The amplitude of recurrent vari-
ations for three different species in Figure 9b are qualitatively

Fig. 8.—Same as Fig. 7, but with (a) for 1 AU, and (b) for a colatitude of 90
�

and also 1 AU.

Fig. 9.—(a) Global latitude gradient as function of rigidity, and (b) amplitude of
26 day proton variations at colatitude 30

�
as function of global latitude gradient,

both at a radial distance of 2AU, for the Fisk-Parker hybrid field. Helium is denoted
by circles, protons by triangles, and electrons by squares. Filled symbols denote
qA > 0 solar magnetic polarity, and open symbols qA < 0 solar magnetic polarity.
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similar for all latitude gradients, and almost identical for those
latitude gradients associated with high rigidities. In fact, for
qA > 0, the constants of proportionality for best fits (not shown)
differ by less than 10% between the three species. The width of
the loops are the largest for helium and the smallest for electrons.
Taken together, the three data sets also show different constants
of propotionality for the two solar magnetic cycles. The differ-
ence is, however, less pronounced than that at the higher colat-
itude (i.e., lower latitude) in Figure 7b.

Note that the almost linear relationship between the amplitude
of the recurrent cosmic-ray variations and the global latitude
gradient for the Fisk-Parker hybrid field is in qualitative agree-
ment with the observational results of Zhang (1997) and Paizis
et al. (1999).

6. SUMMARY AND CONCLUSIONS

In this paper we present a refinement of the Fisk-Parker hybrid
field of Burger & Hitge (2004), which now includes a region
bordering the solar rotational equator where magnetic field foot-
point motion occurs only through diffusive reconnection. At high
latitudes the field is a mixture of Fisk field and Parker field, and
in the equatorial region it is a pure Parker field.We also propose a
simple model for the solar cycle dependence of the hybrid field,
taking into account changes in the tilt angle of the heliospheric
current sheet and the latitudinal extend of the polar coronal hole
on the photosphere and on the source surface over the course of a
solar activity cycle. Using the results of Roberts et al. (2007), we
deduce that the amplitude of magnetic field fluctuations for as-
sumed solar minimum parameters would not be observable about
the background noise. We also show that for these parameters,

periodicities associated with differential footpoint motion would
be barely distinguishable from the solar equatorial period.
We confirm the result of Burger & Hitge (2004) that a Fisk-

type heliospheric magnetic field provides a natural explanation
for the observed linear relationship between the amplitude of the
recurrent cosmic-ray variations and the global latitude gradient,
first reported by Zhang (1997). We show that this relationship
holds for helium, protons, and electrons.Moreover, we show that
the constant of proportionality is larger when qA > 0 than when
qA < 0, as inferred fromobservations byRichardson et al. (1999).
It is also clear that the question of periodicities in magnetic

field data is perhaps more complicated than previously thought.
We point out that given the strong periodicity in the solar wind
speed observed by Roberts et al. (2007) the lack of an ubiquitous
strong periodicity in the azimuthal component of the magnetic
field may be explained by the existence of a Fisk-type field.
Our model for a Fisk-type field was constructed to be as sim-

ple as possible. It clearly does not include all the complicated
azimuthal dependent structures that such a field should have, nor
is it time dependent. The question should not be if this field is
fully realistic, but rather if it did exist, would it be observable in
magnetic field data and could it explain at least some particle
measurements that as yet have no other generally accepted ex-
planation. We believe that the answers to these two questions are
no and yes, respectively.

R. A. B. thanks Len Fisk and Randy Jokipii for helpful dis-
cussions. This material is based on work supported by the Na-
tional Research Foundation and NASA grant NNX07AH73G.

APPENDIX

LOCAL INTERSTELLAR SPECTRA

The local interstellar spectrum (LIS) for protons is identical to that of Bieber et al. (1999) at high energy but higher at low energy. It
is expressed in terms of particle rigidity as

j
p
LIS ¼ 19:0

(P=P0)
�2:78

1þ (P0=P)
2
; ðA1Þ

in units of particles m�2 s�1 sr�1 MeV�1 with P0 ¼ 1 GV and P in GV. This spectrum is similar to that of Caballero-Lopez et al.
(2004), but slightly higher at lower rigidities. For helium we use

jHeLIS ¼ 5:0
(P=P0)

�2:7

1þ (P0=P)
2

� �1:25
; ðA2Þ

where the symbols and units are the same as for equation (A1). This spectrum is again similar to that of Caballero-Lopez et al. (2004).
The electron LIS is from Langner et al. (2001) parameterized by Langner (2004) as

j elecLIS ¼
214:32þ 3:32 ln (P=P0)

1þ 0:26 ln (P=P0)þ 0:02 ln (P=P0)½ �2
if P < 0:0026 GV;

1:7
52:55þ 23:01(P=P0)

1þ 148:62(P=P0)

� �2

if 0:0026 GV � P < 0:1 GV;

1555:89þ 17:36(P=P0)� 3:4 ; 10�3(P=P0)
2 þ 5:13 ; 10�7(P=P0)

3

1� 11:22(P=P0)þ 7532:93(P=P0)
2 þ 2405:01(P=P0)

3 þ 103:87(P=P0)
4

if 0:1 GV � P � 10:0 GV;

1:7 exp �0:89� 3:22 ln (P=P0)½ � if P > 10 GV;

8

>

>

>

>

>

>
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>
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>

>

>

>

>

>

:

ðA3Þ

in units of particles m�2 s�1 sr�1 MeV�1 with P0 ¼ 1 GV and P in GV.
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