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Abstract
This study is concerned with the finite-difference solution of singularly perturbed initial
value problem for a linear first order Volterra integro-differential equation with delay.
The method is based on the method of integral identities with the use of exponential
basis functions and interpolating quadrature rules with the weight and remainder terms
in integral form. The emphasis is on the convergence of numerical method. It is shown
that the method displays uniform convergence in respect to the perturbation parameter.
Numerical results are also given.
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1. Introduction
Volterra delay-integro-differential equations (VDIDEs) have a major influence on the

field of science such as ecology, medicine, physics, biology and so on [7–9, 15, 22]. These
equations play a significant role in modelling of some phenomena in engineering and sci-
ences, and hence have led researchers to develop a theory and numerical computation and
analysis for VDIDEs.

Here we shall concern with the development of fitted difference method for singularly
perturbed Volterra delay-integro-differential equation (SPVDIDE):

Lu := εu′ + a(t)u+
t∫

t−r

K(t, s)u(s)ds = f(t), t ∈ I, (1.1)

subject to
u(t) = φ(t), t ∈ I0, (1.2)

where I = (0, T ] =
m
∪

p=1
Ip, Ip = {t : rp−1 < t ≤ rp}, 1 ≤ p ≤ m and rs = sr, for 0 ≤ s ≤

m, I = [0, T ] and I0 = [−r, 0]. ε ∈ (0, 1] is the perturbation parameter and r is a constant
delay, which is independent of ε. a(t) ≥ α > 0, f(t) (t ∈ I), φ(t) (t ∈ I0) and K(t, s)
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(
(t, s) ∈ I × I

)
are assumed to be sufficiently smooth functions such that the solution,

u(t), has initial layer at t = 0 for small values of ε.
Singularly perturbed differential equations are typically characterized by a small pa-

rameter ε multiplying some or all of the highest order terms in the differential equation.
In general, the solutions of such equations exhibit multiscale phenomena. Within certain
thin subregions of the domain, the scale of some derivatives is significantly larger than
other derivatives. These thin regions of rapid change are called, boundary or interior lay-
ers, as appropriate. Such type of equations occur frequently in mathematical problems in
the sciences and engineering for example, in fluid flow at high Reynold number, electrical
networks, chemical reactions, control theory, the equations governing flow in porous media,
the drift-diffusion equations of semi-conductor device physics, and other physical models
[10,11,23,25,26]. It is well-known that standard discretization methods do not work well
for these problems as they often produce oscillatory solutions which are inaccurate if the
perturbed parameter ε is small. To obtain robust numerical methods it is necessary to
fit the coefficients (fitted operator methods) or the mesh (fitted mesh methods) to the
behavior of the exact solution [1–3,11,16,23,24,28,34] (see also references cited in them).
For a survey of early results in the theoretical analysis of singularly perturbed Volterra
integro-differential equations (VIDEs) and in the numerical analysis and implementation
of various techniques for these problems we refer to the book [17]. An analysis of ap-
proximate methods when applied to singularly perturbed VIDEs can also be found in
[2, 5, 6, 18,21,27,29,33].

In the last few years, a considerable amount of effort has been devoted to the numer-
ical solution of VDIDEs. An overview of the approximate methods for VDIDEs may be
obtained from [4, 12, 14, 19, 31, 32, 38–40]. Effective methods for the numerical solutions
of high-order Fredholm and Volterra-Fredholm-Hammerstein integro-differential equations
were proposed by Turkyilmazoglu [35,36].

The above mentioned papers, related to VDIDEs were only concerned with the regular
cases, i.e., in the absence of initial/boundary layers. SPVDIDEs also frequently arise
in many scientific applications. Wu and Gan [37] investigated error behaviour of linear
multistep methods applied to SPVDIDEs and derived global error estimates A(α)−stable
linear multistep methods with convergent quadrature rule. He and Xu [13] discussed
the exponential stability of impulsive SPVDIDEs. Amiraliyev and Yilmaz [3] gave an
exponentially fitted difference method on a uniform mesh for (1.1)-(1.2) except for a delay
term in differential part and shown that the method is first-order convergent uniformly
in ε. A useful discussion of uniform convergence on a fitted mesh, for another form of
SPVDIDEs have been investigated in [20].

In this present paper, we analyze the numerical solution of the initial-value problem
(1.1)-(1.2). The numerical method presented here comprises a fitted difference scheme on
a uniform mesh. Fitted operator method is widely used to construct and analyze uniform
difference methods, especially for a linear differential problems. We have derived this
approach on the basis of the method of integral identities with the use of interpolating
quadrature rules with the weight and remainder terms in integral form. This results in a
local truncation error containing only first derivatives of exact solution and hence facili-
tates examination of the convergence. In Section 2, we state some important properties
of the exact solution. The derivation of the difference scheme has been given in Section
3. In Section 4, we present the error analysis for the approximate solution. The method
is shown to be first order uniformly convergent with respect to the singular perturbation
parameter. In Section 5, we give numerical example, which validate the theoretical anal-
ysis computationally. The approach to construct discrete problem and error analysis for
approximate solution is similar to those one’s from [1–3,20].

Notation. Throughout the paper C (sometimes subscripted) will denote a generic
positive constant independent of the mesh and perturbation parameter ε. Also, ∥.∥∞
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indicates a continuous maximum norm on the corresponding closed interval, in particular
we shall use ∥g∥∞ = max

t∈[0,T ]
|g(t)|, for any g ∈ C[0, T ].

2. Properties of the exact solution
In this section, we will establish a priori bounds on the solution of (1.1)-(1.2) and its

first derivative. These bounds will be used in the error analysis in later sections.

Lemma 2.1. ([3]) Assume that a, f ∈ C[0, T ] such that a(t) ≥ α > 0, |F (t)| ≤ F(t) and
F(t) is a nondecreasing continuous function. Then the solution of the initial value problem

εv′(t) + a(t)v(t) = F (t), t ∈ I, (2.1)
v(0) = A (2.2)

satisfies
|v(t)| ≤ |A| + α−1F(t), t ∈ I.

Lemma 2.2. For a, f ∈ C1[0, T ],∣∣∣∣∣ ∂∂tK(t, s)
∣∣∣∣∣ ≤ M0 < ∞,

the solution of (1.1)-(1.2) satisfies

∥u∥∞ ≤ C0 (2.3)∣∣u′(t)
∣∣ ≤ C

{
1 + 1

ε
e− αt

ε

}
, 0 ≤ t ≤ T, (2.4)

where

C0 =
(
|φ(0)| + α−1K ∥φ∥1,0 + α−1 ∥f∥∞

)
eα−1KT ,

K = max_
I×

_
I

|K(t, s)| ,

∥φ∥1,0 =
0∫

−r

|φ(t)| dt.

Proof. Since∣∣∣∣∣f(t) −
t∫

t−r

K(t, s)u(s)ds
∣∣∣∣∣ ≤ ∥f∥∞ +K

t∫
t−r

|u(s)| ds

≤ ∥f∥∞ +K


0∫

t−r
|φ(s)| ds+

t∫
0

|u(s)| ds, for t < r

t∫
t−r

|u(s)| ds, for t > r

then we can write∣∣∣∣∣f(t) −
t∫

t−r

K(t, s)u(s)ds
∣∣∣∣∣ ≤ K ∥φ∥1,0 + ∥f∥∞ +K

t∫
0

|u(s)| ds, t > 0.

Now, applying the Lemma 2.1 to (1.1)-(1.2) we get

|u(t)| ≤ |φ(0)| + α−1K ∥φ∥1,0 + α−1 ∥f∥∞ + α−1K

t∫
0

|u(s)| ds, t ∈ I.
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From here, by using the Gronwall’s inequality it follows that

|u(t)| ≤
(

|φ(0)| + α−1K ∥φ∥1,0 + α−1 ∥f∥∞

)
eα−1Kt

which leads to (2.3).

We now prove (2.4). Differentiating (1.1) gives

εv′ + a(t)v = Φ(t), t > 0, (2.5)

with

v(t) = u′(t)

Φ(t) = f ′(t) − a′(t)u(t) −
t∫

t−r

∂

∂t
K(t, s)u(s)ds−K(t, t)u(t) +K(t, t− r)u(t− r).

Under the conditions of the Lemma 2.2 we have

|Φ(t)| ≤
∥∥f ′∥∥

∞ +
∥∥a′∥∥

∞ ∥u∥∞ +M0
(

∥φ∥1,0 + ∥u∥∞

)
+K

(
∥u∥∞ + ∥φ∥∞

)
, for 0 < t < r

|Φ(t)| ≤
∥∥f ′∥∥

∞ +
∥∥a′∥∥

∞ ∥u∥∞ +M0 ∥u∥∞ + 2K ∥u∥∞ , for t > r

which by virtue of (2.3) implies that

|Φ(t)| ≤ C, 0 ≤ t ≤ T. (2.6)

Next, from (1.1) we have the estimate for u′(0) :

∣∣u′(0)
∣∣ ≤ 1

ε

∣∣∣∣∣f(0) − a(0)u(0) −
0∫

−r

K(0, s)u(s)ds
∣∣∣∣∣

≤ 1
ε

(
∥f∥∞ + ∥a∥∞C0 +K ∥φ∥1,0

)
,

thereby

|v(0)| ≤ C

ε
. (2.7)

From (2.5) and (2.7) it follows that

v(t) = v(0)e
− 1

ε

t∫
0

a(ξ)dξ

+ 1
ε

t∫
0

Φ(ξ)e
− 1

ε

t∫
ξ

a(η)dη

dξ.

Therefore

|v(t)| ≤ |v(0)| e− αt
ε + 1

ε

t∫
0

|Φ(ξ)| e− α(t−ξ)
ε dξ

and after using (2.6) and (2.7)

|v(t)| ≤ C

ε
e− αt

ε + Cα−1
(
1 − e− αt

ε

)
which immediately leads to (2.4). �
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3. The difference scheme
We introduce the uniform mesh on the [0, T ] :

ωN0
=
{
ti : iτ, i = 1, 2, ..., N0; τ = T

N0
= r

N

}
which contains N mesh points at each subinterval Ip (1 ≤ p ≤ m) :

ωN,p =
{
ti : (p− 1)N + 1 ≤ i ≤ pN

}
, 1 ≤ p ≤ m,

and consequently

ωN0
=

m∪
p=1

ωN,p .

To simplify the notation, we set gi = g(ti) for any function g(t) and moreover yi denotes
an approximation of u(t) at ti, also gi− 1

2
= g(ti − τ

2 ). For any mesh function gi defined on
ωN0

we use the backward difference and norms:

g_
t ,i

= gi − gi−1
τ

, ∥g∥∞,ω
N,p

= max
(p−1)N≤i≤pN

|gi| .

For the difference approximation to (1.1), we integrate (1.1) over (ti−1, ti) :

µ−1
i τ−1

ti∫
ti−1

Lu(t)φi(t)dt = µ−1
i τ−1

ti∫
ti−1

f(t)φi(t)dt (3.1)

with the exponential basis functions

φi(t) = e− ai
ε

(ti−t), i = 1, 2, ..., N0,

where

µi = τ−1
ti∫

ti−1

φi(t)dt = 1 − e−aiρ

aiρ
, ρ = τ

ε
.

We note that the function φi(t) is the solution of the problem
−εφ′(t) + aiφ(t) = 0, ti−1 ≤ t ≤ ti,

φ(ti) = 1.
(3.2)

After applying the method of exact difference schemes (see e.g., [2, 3] and [30, pp. 207-
214] for comprehensive description concerning to the second order differential equations)
we obtain

µ−1
i τ−1

ti∫
ti−1

[
εu′(t) + a(t)u(t)

]
φi(t)dt = µ−1

i τ−1
ti∫

ti−1

[
εu′(t) + a(ti)u(t)

]
φi(t)dt

+ µ−1
i τ−1

ti∫
ti−1

[
a(t) − a(ti)

]
u(t)φi(t)dt

= εθiu_
t ,i

+ aiui +R
(1)
i (3.3)

with
θi = aiρ

1 − e−aiρ
e−aiρ (3.4)

and the remainder term

R
(1)
i = µ−1

i τ−1
ti∫

ti−1

[
a(t) − a(ti)

]
u(t)φi(t)dt. (3.5)
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Further

µ−1
i τ−1

ti∫
ti−1

f(t)φi(t)dt = fi +R
(2)
i (3.6)

with

R
(2)
i = µ−1

i τ−1
ti∫

ti−1

[
f(t) − f(ti)

]
φi(t)dt. (3.7)

For the integral term from (3.1), after applying the appropriate quadrature rules, we have

µ−1
i τ−1

ti∫
ti−1

φi(t)
( t∫

t−r

K(t, s)u(s)ds
)
dt =

t
i− 1

2∫
t
i− 1

2
−r

K(ti− 1
2
, s)u(s)ds+R

(3)
i

= τ
i−1∑

j=i−N+1
K(ti− 1

2
, sj)uj +R

(3)
i +R

(4)
i , (3.8)

where

R
(3)
i = µ−1

i τ−1
ti∫

ti−1

dtφi(t)
ti∫

ti−1

d

dt

( ξ∫
ξ−r

K(ξ, s)u(s)ds
)[
T0(t− ξ) − T0(ti− 1

2
− ξ)

]
dξ, (3.9)

R
(4)
i =

i−1∑
j=i−N+1

t
j+ 1

2∫
t
j− 1

2

(
tj− 1

2
− ξ − τT0(tj − ξ)

) d
ds

(
K(ti− 1

2
, ξ)u(ξ)

)
dξ (3.10)

and
T0(λ) = 1, λ ≥ 0; T0(λ) = 0, λ < 0.

Consequently we have the exact relation for u(ti)

LNui := εθiu_
t ,i

+ aiui + τ
i−1∑

j=i−N+1
K

i− 1
2 ,j
uj = fi −Ri (3.11)

with remainder term
Ri = R

(1)
i −R

(2)
i +R

(3)
i +R

(4)
i (3.12)

where R(k)
i (k = 1, 2, 3, 4) are defined by (3.5),(3.7),(3.9),(3.10), respectively.

Based on (3.11) we propose the following difference scheme for approximating (1.1)-(1.2)

LN yi := εθiy_
t ,i

+ aiyi + τ
i−1∑

j=i−N+1
K

i− 1
2 ,j
yj = fi, 1 ≤ i ≤ N0, (3.13)

yi = φi, −N ≤ i ≤ 0, (3.14)
where θi is defined by (3.4).

4. Stability bound and convergence
Lemma 4.1. Consider the following difference problem

lN vi := εθiv_
t ,i

+ aivi = Fi, 1 ≤ i ≤ N0, (4.1)

v0 = A. (4.2)
Let |Fi| ≤ Fi and Fi be a nondecreasing function. Then the solution of (4.1)-(4.2) satisfies

|vi| ≤ |A| + α−1Fi, 1 ≤ i ≤ N0. (4.3)
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Proof. First, we note that for the difference operator lN vi the maximum principle holds
in the form: If for any mesh function lN vi ≥ 0, 1 ≤ i ≤ N and v0 ≥ 0, then vi ≥ 0, for
0 ≤ i ≤ N.

Consider now the barrier functions
ψ±

i = ±vi + |A| + α−1Fi

and take into consideration that

F_
t ,i

= Fi − Fi−1
τ

≥ 0

since Fi is a nondecreasing function. Therefore,
ψ±

0 = ±A+ |A| + α−1Fi ≥ 0
and

lNψ
±
i := ±Fi + ai |A| + εθiα

−1F_
t ,i

+ aiα
−1Fi ≥ ±Fi + Fi ≥ 0,

so that according to the maximum principle ψ±
i ≥ 0, which proves (4.3). �

Lemma 4.2. For the solution of (3.13)-(3.14) the following inequality holds

∥y∥∞,ω
N0

≤ γ0
(

|φ0| + α−1K ∥φ∥1,0

)
+ γ1 ∥f∥∞,ω

N0
, (4.4)

where
γ0 = eα−1KT , γ1 = α−1eα−1KT .

Proof. Since

∣∣∣∣∣τ
i−1∑

j=i−N+1
K

i− 1
2 ,j
yj

∣∣∣∣∣ ≤ τK
i−1∑

j=i−N+1
|yj | ≤



τK
0∑

j=i−N+1
|φj | , i = 1

τK
0∑

j=i−N+1
|φj | + τK

i−1∑
j=1

|yj | , 1 < i ≤ N − 1

τK
i−1∑

j=i−N+1
|yj | , i > N − 1

then it is not hard to see that∣∣∣∣∣fi − τ
i−1∑

j=i−N+1
K

i− 1
2 ,j
yj

∣∣∣∣∣ ≤ ∥f∥∞,ω
N0

+K ∥φ∥1,0 + τK
i∑

j=1
|yj−1| .

Next, after applying Lemma 4.1 to (3.13)-(3.14) we get

|yi| ≤ |φ0| + α−1
(

∥f∥∞,ω
N0

+K ∥φ∥1,0

)
+ α−1τK

i∑
j=1

|yj−1| .

From here by using the difference analogue of Gronwall’s inequality we arrive at

|yi| ≤
(

|φ0| + α−1
(

∥f∥∞,ω
N0

+K ∥φ∥1,0

))
eα−1Kti , 1 ≤ i ≤ N0

which implies the validity of (4.4).

According to (3.11),(3.13) for the error of the approximate solution zi = yi − ui we have
LN zi = Ri, 1 ≤ i ≤ N0, (4.5)
zi = 0, −N ≤ i ≤ 0. (4.6)

�
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Lemma 4.3. The error of the approximate solution zi satisfies
∥z∥∞,ω

N0
≤ γ1 ∥R∥∞,ω

N0
(4.7)

Proof. It evidently follows from (4.4) by taking φ ≡ 0 and f ≡ R. �

Lemma 4.4. Let a,f ∈ C1[0, T ], φ ∈ C[−r, 0] and K ∈ C1
(
[0, T ]2

)
. Then for the trunca-

tion error Ri, the following estimate holds
∥R∥∞,ω

N0
≤ Cτ. (4.8)

Proof. We begin with the inequality

|Ri| ≤
4∑

k=1

∣∣∣R(k)
i

∣∣∣ (4.9)

and estimate R(k)
i separately.

For a(t), by the mean value theorem
|a(t) − a(ti)| ≤

∣∣a′(ξi)
∣∣ |t− ti| ≤ Cτ on ti−1 ≤ t ≤ ti.

Thereby for R(1)
i , using also |u| ≤ C from Lemma 2.2, we have

∣∣∣R(1)
i

∣∣∣ ≤ µ−1
i τ−1

∣∣∣∣∣∣∣
ti∫

ti−1

[
a(t) − a(ti)

]
u(t)φi(t)dt

∣∣∣∣∣∣∣ ≤ Cτµ−1
i τ−1

ti∫
ti−1

φi(t)dt = Cτ.

For R(2)
i similarly as above we get ∣∣∣R(2)

i

∣∣∣ ≤ Cτ.

For R(3)
i using also (2.3), we have

∣∣∣R(3)
i

∣∣∣ ≤ 2µ−1
i τ−1

ti∫
ti−1

dsφi(s)
ti∫

ti−1

{ ξ∫
ξ−r

∣∣∣∣ ∂∂tK(ξ, s)
∣∣∣∣ |u(s)| ds+ |K(ξ, ξ)| + |K(ξ, ξ − r)|

}
dξ

≤ 2r
(
K(1) ∥u∥

∞,I
+ 2K

)
τ,

with ∣∣∣∣ ∂∂tK(t, s)
∣∣∣∣ ≤ K(1).

Finally for R(4)
i by virtue of (2.4), we obtain

∣∣∣R(4)
i

∣∣∣ ≤ 2τ
i−1∑

j=i−N+1

t
j+ 1

2∫
t
j− 1

2

(
K(2) ∥u∥

∞,I
+K

∣∣u′(ξ)
∣∣ )dξ

≤ 2K(2) ∥u∥
∞,I

τ2(N − 1) + 2τK
i−1∑

j=i−N+1

t
j+ 1

2∫
t
j− 1

2

∣∣u′(ξ)
∣∣ dξ

≤ 2rK(2) ∥u∥
∞,I

τ + 2τK

t
i− 1

2∫
t
i−N+ 1

2

∣∣u′(ξ)
∣∣ dξ, (4.10)
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with ∣∣∣∣ ∂∂sK(t, s)
∣∣∣∣ ≤ K(2).

Since
t
i− 1

2∫
t
i−N+ 1

2

∣∣u′(ξ)
∣∣ dξ ≤

0∫
t
i−N+ 1

2

∣∣φ′(ξ)
∣∣ dξ + C

t
i− 1

2∫
0

(
1 + 1

ε
e− αξ

ε

)
dξ

≤
∥∥φ′∥∥

1,0 + C

(
r + α−1

(
1 − e−

αt
i− 1

2
ε

))

≤
∥∥φ′∥∥

1,0 + C
(
r + α−1

)
, for 1 ≤ i ≤ N (4.11)

and
t
i− 1

2∫
t
i−N+ 1

2

∣∣u′(ξ)
∣∣ dξ ≤ C

t
i− 1

2∫
t
i−N+ 1

2

(
1 + 1

ε
e− αξ

ε

)
dξ

≤ C

(
ti− 1

2
− ti−N+ 1

2
+ α−1

(
e−

αt
i−N+ 1

2
ε − e−

αt
i− 1

2
ε

))

≤ C
(
r + α−1

)
, for i ≥ N + 1 (4.12)

the inequality (4.10) along with (4.11),(4.12) implies that∣∣∣R(4)
i

∣∣∣ ≤ Cτ.

Consequently, from (4.9) the proof follows. �
Now, we can formulate the main result of the paper.

Theorem 4.5. For a,f ∈ C1 [0, T ] , φ ∈ C1[−r, 0] and K ∈ C1
(

[0, T ]2
)
, the solution

of the difference problem (3.13)-(3.14) uniformly first order convergent to the solution of
(1.1)-(1.2):

∥y − u∥∞,ω
N0

≤ Cτ.

Proof. It evidently follows from (4.7) by taking into consideration (4.8). �

5. Numerical example
Example 5.1. Consider the test problem

εu′ + 2u−
t∫

t−1

u(s)ds = −1 + t− ε

2

(
1 − e− 2t

ε

)
, t ∈ (0, 2] ,

u(t) = 1, −1 ≤ t ≤ 0.
The exact solution is given by

u(t) =

 e− 2t
ε , 0 ≤ t ≤ 1

e−λ1(t−1)−e−λ2(t−1)
√

1+ε
− 1 + e− 2t

ε + e− 2(t−1)
ε , 1 ≤ t ≤ 2

where
λ1 = 1 −

√
1 + ε

ε
, λ2 = 1 +

√
1 + ε

ε
.
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We define the exact error eN
ε and the computed ε−uniform maximum pointwise error eN

as follows

eN
ε = ∥y − u∥∞,ω

N0
,

eN = max
ε

eN
ε ,

where y is the numerical approximation to u for various of N and ε. Parameter-uniform
rates of convergence are computed by

rN = ln
(
eN/e2N

)
/ ln 2.

The values of ε andN for which we solve the test problem are ε = 2−i, i = 0, 6, 12, 18, 24; N =
64, 128, 256, 512, 1024. From Table 1 we observe that the ε−uniform experimental rate of
convergence is monotonically increasing towards one, so in agreement with the theoretical
rate given by Theorem 4.5.

Table 1 Errors eN
ε , e

N and rates of convergence rN
ε , r

N for Example 5.1.
ε N = 64 N = 128 N = 256 N = 512 N = 1024
20 0.008613 0.004680 0.002473 0.001271 0.000644

0.88 0.92 0.96 0.98
2−6 0.008602 0.004739 0.002522 0.001305 0.000657

0.86 0.91 0.95 0.99
2−12 0.008606 0.004741 0.002523 0.001305 0.000657

0.86 0.91 0.95 0.99
2−18 0.008609 0.004743 0.002524 0.001306 0.000657

0.86 0.91 0.95 0.99
2−24 0.008609 0.004743 0.002524 0.001306 0.000657

0.86 0.91 0.95 0.99

eN 0.008613 0.004743 0.002524 0.001306 0.000657
rN 0.86 0.91 0.95 0.99

Example 5.2. Consider the initial-value problem

εu′ + u+
t∫

1−t

su(s)ds = 5t2 − 2, 0 ≤ t ≤ 2,

u(t) = 5 + t, −1 ≤ t ≤ 0,

whose exact solution is not known.

We estimate errors in the computed solution and rates of convergence using the dou-
ble mesh principle. For this purpose, we calculate another approximate solution y2N on
a mesh that is obtained by uniformly bisecting the original mesh ωN0

. We estimate the
errors for different values of ε and N by

eN
ε =

∥∥∥yN − y2N
∥∥∥

∞,ω
N0

.

ε−uniform errors and ε−uniform rates of convergence are computed in the same way as
in Example 5.1.
The values of ε andN for which we solve the test problem are ε = 2−i, i = 0, 6, 12, 18, 24; N =
64, 128, 256, 512, 1024. From Table 2 we see that the values of rN close to one for large
values of N .
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Table 2 Errors eN
ε , e

N and rates of convergence rN
ε , r

N for Example 5.2.
ε N = 64 N = 128 N = 256 N = 512 N = 1024
20 0.035015 0.019972 0.010703 0.005617 0.002867

0.81 0.90 0.93 0.97
2−6 0.044512 0.025213 0.013605 0.007091 0.003594

0.82 0.89 0.94 0.98
2−12 0.060601 0.034326 0.018522 0.009721 0.004928

0.82 0.89 0.93 0.98
2−18 0.066050 0.037155 0.019910 0.010449 0.005297

0.83 0.90 0.93 0.98
2−24 0.067411 0.038450 0.020462 0.010739 0.005444

0.81 0.91 0.93 0.98

eN 0.067411 0.038450 0.020462 0.010739 0.005444
rN 0.81 0.91 0.93 0.98

6. Conclusion
In this paper, we have proposed the fitted finite-difference method for the linear first

order SPVDIDE exhibiting initial layer. We have shown that the method is first order
uniformly convergent with respect to perturbation parameter. The numerical results also
show that the presented method is first order uniformly accurate and hence it can be
strongly recommended for SPVDIDEs. The main lines for the analysis of the uniform
convergence carried out here can be used for study of more complicated linear SPVDIDEs
as well as quasilinear SPVDIDEs.
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