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A FIVE-COLOR THEOREM FOR GRAPHS ON SURFACES

JOAN P. HUTCHINSON

Abstract. We prove that if a graph embeds on a surface with all edges suitably

short, then the vertices of the graph can be five-colored. The motivation is that a

graph embedded with short edges is locally a planar graph and hence should not

require many more than four colors.

Introduction. It is well known [4, 15] that a graph embedded on a surface of genus

k > 0, the sphere with k handles, can always be //(/c)-colored, where H(k) =

[(7 + \/48fc + 1 )/2]; H(k) is called the Heawood number of the surface. A variety

of properties are known which ensure that an embedded graph needs significantly

fewer than H(k) colors, for example, large girth [12, 13], few triangles (for graphs on

the sphere or torus and, more generally, on surfaces of nonnegative Euler character-

istic) [9, 11] and Eulerian properties of the (topological) dual graph [10].

On the other hand, one can look for properties which ensure that an embedded

graph is locally a planar graph and hence needs not many more than four colors. In

this spirit, Mycielski [14] has asked whether for every surface S there is an e > 0 such

that a graph embedded on S with edges of length less than e can be five-colored. We

restate Mycielski's question in terms of an explicit metric and then answer it in the

affirmative for all surfaces. Work of Albertson and Stromquist [3] has already settled

the case for the torus (k = 1), and we use many of their techniques in our proof.

Also in [3] examples due to J. P. Ballantine and S. Fisk are given which show that no

similar result for four-colorability is possible for any surface of positive genus.

A surface of genus k > 1 can be represented as a 4/c-sided polygon with pairs of

sides identified [7, 16, 18]. If a graph is embedded on a surface of genus k > 1, we

obtain a representation Gk of G in and on the boundary of the 4/c-gon. Without loss

of generality we take the polygon to be a regular Ak-gon with sides of unit length; we

call this the standard Ak-gon, Pk. Each edge of G is represented in Gk by one or more

arcs in Pk (if an edge crosses the boundary of Pk, it is divided into pieces). As

explained in [5, p. 16], we may assume that each arc of Gk is a polygonal arc; then

by the length of an edge of an embedded graph G we mean the sum of the lengths of

its polygonal arcs in the representation Gk. Thus length is always defined in terms of

a fixed representation of the graph on a standard polygon.

Our main result is the following.
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Theorem 1. Suppose G has a 2-cell embedding on a surface of genus k > 1 and

suppose G has a representation Gk on the standard Ak-gon such that every edge of G

has length less than e = 1/5. Then G can be five-colored.

For the torus Albertson and Stromquist [3] have shown that a graph embedded

with all noncontractible cycles of length at least 8 can be five-colored. This implies

Theorem 1 with k — 1 and e = 1/7 since all noncontractible cycles on Pk have

(Euclidean) length at least 1. Stromquist [17] has more recently shown that 5-colora-

bility follows for toroidal graphs provided all noncontractible cycles have length at

least 4, giving Theorem 1 with k = 1 and e = 1/3. They conjecture that for each

k s* 1, there is a bound bk such that every graph embedded on the surface of genus k

with all noncontractible cycles of length at least bk can be 5-colored. The value of

the bound must depend on k since there are 6-chromatic graphs of arbitrarily large

girth [6]. A proof of their conjecture would give Theorem 1 with e = \/(bk - 1);

however, our result holds with a fixed value of e for all surfaces. On the other hand,

their results and conjecture are more natural in that they use a metric intrinsic to the

graph whereas Theorem 1 relies upon an external geometric one.

Although short edges (as defined here) imply that all noncontractible cycles are

long, the converse does not hold; for all surfaces there are graphs with all noncon-

tractible cycles long and with some long edges in every representation Gk. For

example, the graph on the double torus in Figure 1 has all noncontractible cycles of

length at least 6; it is a 4-colorable graph.

There is no loss of generality in our interpretation of Mycielski's question and in

our definition of edge length for the following reasons. Suppose Sk, the sphere with

Figure 1
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k handles, is taken to be some "nice" surface in R3 and that a graph G embedded on

Sk has all edges rectifiable in R3. Then we may ask what bound on these edge lengths

ensures that G will be 5-colorable.

Suppose we define "nice" to mean that Sk is a differentiable manifold ([16, §§2-3]

gives a good introduction to this subject), and suppose we assume all edges of G are

piecewise differentiable curves on Sk (as shown in [5], we lose no generality in this

assumption). Then the length of each edge of G can be determined by an integral;

we denote the length of a piecewise differentiable curve y on Sk by ||y||,. Further-

more, there is a homeomorphism / from Sk to the standard Ak-gon Pk in the plane,

which is also differentiable. Then /will map edges (or arbitrary piecewise differentia-

ble curves y) to piecewise differentiable curves in Pk; we denote the resulting lengths

by ||/(y)||2- Since Sk and Pk are compact, there are constants c, and c2 such that

cilly||i ^ Il/(y)ll2 ^ c2IIyIIi f°r a^ piecewise differentiable curves y on Sk. Then we

have the following consequence of Theorem 1.

Corollary 1. Suppose G has a 2-cell embedding on a differentiable manifold of

genus k > 1 and suppose every edge of G is piecewise differentiable. Then if every edge

of G has length less than l/(5c2), G can be five-colored.

This follows by noting that the proof of Theorem 1 holds as well when the edges

in the representation Gk are piecewise differentiable.

Background in topological graph theory. We use basic graph theory terms as found

in [18]. We consider only simple graphs and their 2-cell embeddings on surfaces, i.e.

embeddings in which the interior of every face is a contractible (or null-homotopic)

region. A 2-cell embedding implies that the graph is connected; there is no loss of

generality in considering only 2-cell embeddings since any embedding of a con-

nected graph can be transformed into a 2-cell embedding by suitably cutting handles

of the surface without affecting the graph embedding (see [18, p. 54]).

A cycle in a graph embedded on a surface is said to be contractible or noncontract-

ible according as it is or is not homotopic to a point on the surface; we abbreviate

the latter by calling it an nc-cycle. A cycle in an embedded graph is said to be

null-homologous or non-null-homologous if it is an nc-cycle whose removal does or

does not, respectively, disconnect the graph; we abbreviate the latter by calling it an

nnh-cycle. In Figure 1 the graph shown on the double torus contains C, = {1,9,14},

a contractible cycle, and C2= {1,2,3,4,5,6,7,8,9} or C3 = {1,10,11,12,13,14}, a

non-null-homologous cycle. In Figure 2 a noncontractible and null-homologous

cycle C is marked in dashed lines; such cycles are present in the graph of Figure 1

but are long and not as illustrative. For the torus only, all nc-cycles are nnh, but for

other surfaces the distinction is important (e.g. see [1]).

A cycle in a graph is said to be minimal if it contains no diagonal. If C is a

minimal nc-cycle, we arbitrarily give C an orientation and define R(C) and L(C) to

be the set of neighbors of C which lie, respectively, to the right and to the left of C

on the surface as C is traversed following the given orientation. R(C) and L(C) need

not be disjoint.
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Figure 2

The final standard topological fact which we shall use is the following. Suppose G

has a 2-cell embedding on Sk, k> 1, and contains k disjoint, pairwise nonhomo-

topic, nnh-cycles Cx, C2,...,Ck. Then deleting the vertices of C,, C2,...,Ck and

their incident edges leaves a planar graph, since the elimination of C>,..., Ck can be

performed by cutting the surface along these cycles and sewing in 2 k discs, leaving a

sphere [7, p. 63]. Further, if C,,.. .,Ck are also minimal, we define G(CX, C2,... ,Ck)

to be the planar graph obtained by adding 2k vertices to G — {Cx,.. .,Ck], two for

each / = 1,... ,k: let x'R be adjacent to each vertex of R(C¡) and x\ adjacent to each

vertex ofL(C/).

The next three lemmas are crucial to the proof of Theorem 1 ; the proofs of the

first two can be found in [3]. Although in [3] these results are stated only for the

torus, they were designed to be valid for all surfaces and hence yield Lemmas 1 and

2 as stated. Let a graph G have a 2-cell embedding on a surface of genus k > \. The

embedding is said to be orderly if G is a triangulation, if every contractible 3-cycle is

a face boundary, and if every contractible 4-cycle is either the first neighbor cycle of

a vertex of degree 4 or the modulo 2 sum of two face boundaries with an edge in

common.

Lemma 1. Let G be a triangulation of a surface and G0 the orderly triangulation

obtained by deleting all vertices interior to a contractible 3- or A-cycle and by

subdividing any resulting quadrilateral. If G0 can be 5-colored, then so can G.

Lemma 2. Suppose G has an orderly embedding on a surface and let C be a minimal

nc-cycle of length at least A. Then within the induced (and embedded) subgraph of
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C U R(C), there is a minimal nc-cycle which either has even length or contains a

vertex of degree A (in G).

Such a cycle is called nice.

Suppose C, and C2 are two disjoint, nonhomotopic, nnh-cycles in an embedded

graph. We define d(Cx, C2) to be the length (number of edges) of the shortest path

from a vertex of C, to one of C2. We define d(C„ C,), i = 1,2, to be the length of the

shortest path joining two vertices of C„ say v and w where possibly v~w, such that

the path plus one segment of C, joining v and w is an nc-cycle, not homotopic to C¡.

The resulting shortest nc-cycle is called C*; the idea is that C* is the shortest cycle

going around the same handle as C„ but in a "different" direction. (For more details

see [2, 3].)

We sketch the proof of the next result. It is only slightly different than that

presented in [3], but it illustrates the coloring techniques involved.

Lemma 3. Suppose G is an orderly triangulation of a surface of genus k > 1 and

contains k nice, nnh-cycles Cx,...,Ck which are pairwise disjoint and nonhomotopic. If

d(C,, Cj) 3* A for all i, j G {\,...,k}, then G can be 5-colored.

Proof. Form G(CX,.. .,Ck) as defined above. Note that this graph is a triangula-

tion of the sphere and that the induced subgraph on each set R(C,) and L(C¡) is a

cycle. Then G(Cx,...,Ck) can be 4-colored [4] from which G — {Cx,...,Ck} inherits

a 4-coloring which we shall extend to a 5-coloring of G. Each cycle in {R(C¡), L(C¡):

i = 1,..., k} has been colored with (at most) 3 colors (since, for example, all vertices

of R(Cj) are adjacent to x'R). Suppose L(C,) and R(C¡) have received the same triple

of colors, say {1,2,3}. Then colors {4,5} can be alternated on C,; if C, has odd

length, alternate these colors, leaving the vertex of degree 4 to the end at which point

it can receive one of the 5 colors. If L(C¡) and R(C¡) have different triples, say

{1,2,3} and {1,2,4}, we replace colors {3,4} by color 5 on L(C,) and R(C¿), and

use colors {3,4} on C, as above. Since d(C¡, Cj) > 4, no two vertices from distinct

cycles in {L(C¡), R(C¡): i— 1,... ,k) are adjacent; thus this 5-coloring is proper.

Main results. We now prove our main result. We need to consider G embedded on

a surface and simultaneously its representation Gk on Pk; when we alter G or Gk we

carry out the corresponding alteration on the other.

Proof of Theorem 1. We assume G has a 2-cell embedding on a surface of genus

k 3s 1 and a representation Gk on Pk with all edges of length less than e = 1/5. As in

[3] we begin by extending G to an orderly triangulation of the surface.

First we subdivide every nontriangular face by adding a vertex adjacent to all

vertices on the face boundary (and add these new vertices and edges to Gk ). If any

new edge has length e or more, we subdivide it by adding new vertices along the

edge. We repeat the above process until the resulting graph G' is a triangulation with

all edges of length less than e. Finally we create G" by erasing all vertices inside a

contractible 3- or 4-cycle and subdividing any resulting quadrilaterals. If G" can be
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5-colored, then so can G' by Lemma 1. Then G inherits a 5-coloring from G' since

no edge of G was subdivided.

Thus we assume G is an orderly triangulation and try to 5-color it. For each

i = l,...,k we consider the "handle" in the polygon Pk with sides labelled a¡, b¡,

a~\ and b~] (see Figure 2); note that one point S is common to all Ak sides of Pk.

Let p¿ be the set of all points of Pk at distance 1/2 from the side b¡ (see Figure 2).

Thus p, is a path from the midpoint of a¡ to the midpoint of a~] and represents an

nnh-cycle on the original surface (but which is not necessarily a cycle in the graph).

Let L, be the set of all points of Pk which lie to the left of p¡, as it is traversed from a¡

to a,"1, and within distance e of p¡.

We claim that within L, there is a path in Gk, starting and ending at corre-

sponding edges or vertices of at and a\r1, which represents an nnh-cycle in G. To find

such a path, color a region (or face) of Gk blue if it meets the set L, but does not

cross Pj. Since all edges have length less than e and G is a 2-cell embedding, one

component of the boundary of the blue region lies in L„ giving the path in Gk and

the corresponding nnh-cycle in G. Within the latter cycle, find C/ which is a minimal

nc-cycle.

Let R(C¡) be the set of neighbors of C[ which lie to the right of CJ, as it is

traversed from a¡ to a~x in Gk. By Lemma 2 we can find a nice nnh-cycle C, within

CJ U R(C¡), all vertices and edges of which lie within e of p, in Pk.

Clearly Cx, C2,...,Ck are pairwise disjoint and nonhomotopic. By Lemma 3, G is

5-colorable provided d(C¡, Cj) > 3 for all i, j G {1,2,... ,k). The shortest path from

C, to Cj (i =£j) and the shortest path from C, to C, which induces an nc-cycle C* lie

along a path (in i^) from C, to S and from (another copy of) 5 to C (or C,). Such a

path has (Euclidean) length at least 2(1/2 - e). Thus d(C,, C;) > (1 - 2e)/e > 3

when e < 1/5.

We can more easily see that short edges ensure 7-colorability.

Theorem 2. Suppose G has a 2-cell embedding on a surface of genus k > 1 and a

representation Gk on Pk such that every edge of G has length less than e = 1 /2. Then G

can be 1-colored.

Proof. As in the proof of Theorem 1 we may alter G to become a triangulation

with all edges of length less than e; we do not require the graph to be orderly and so

do not concern ourselves with separating 3- and 4-cycles. As before we find minimal

nnh-cycles C[,..., C'k which are pairwise disjoint and nonhomotopic; these cycles

need not be nice. The shortest path from C¡ to CJ has (Euclidean) length at least

1/2 — e + 1/2. Thus d(C,', CJ) > (1 - e)/e > 1, when e *S 1/2, and no vertex of C/

is adjacent to one of CJ. Removing the cycles C[,..., C'k leaves a planar graph which

can be 4-colored; at most 3 more colors are needed on the cycles Cf, and no coloring

conflicts occur in this 7-coloring.

The contrapositive of Theorems 1 and 2 is worth noting.

Corollary 2. Let G be a 6- (respectively 8-) chromatic graph. Then in every

embedding of G on a surface of genus k 5* 1 (2) there are edges of length at least 1/5

(1/2).
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Presumably there are /c-colorability results for k = 6 and k s* 8 similar to those of

Theorems 1 and 2. It is a bit surprising that the e of these results does not depend

upon k; however, if we had chosen our 4/r-gon to be regular with sides of length

s(k), as for example with a regular polygon with unit radius or unit area, then the

same proofs would show that a graph with all edges of length less than e = s(k)/5

(or £ = s(k)/2) can be 5-colored (7-colored).

We note that Theorems 1 and 2 can be interpreted to read that a "locally planar"

graph embedded on a surface needs "few" colors. Albertson and Stromquist have

called an embedded graph locally planar if there is an i>\ such that the z'th

neighborhood of every vertex v (i.e. the induced subgraph on v and all vertices at

distance at most i from v) is embedded in a subset of the surface homeomorphic to a

subset of the plane. Graphs which satisfy the hypotheses of Theorems 1 or 2 are

locally planar since the second (first) neighborhood of each vertex lies in the

representation Gk with a circle of radius 2/5 (1/2) and in Pk each noncontractible

cycle has (Euclidean) length at least one.

We conclude with two questions. Although the qualitative nature of Theorem 1

may be its main importance, it would be nice to know or to bound the constant c2 of

Corollary 1. In particular, if the embedding surface is taken to be one with all

nc-cycles (of the surface) of length at least one, is there an edge length bound in

terms of this unit of measure?

We ask a question which is a variant on one in [3]. In the proof of Theorem 1 (and

of Lemma 3) the fifth color is used on relatively few vertices, about half of those of

the C,'s or of R(C¡) U L(C¡). In [8] it is shown that by removing at most

0((logk)T¡kñ) vertices of a graph embedded on a surface of genus k with n vertices,

a planar graph results. Hence all but 0((\og k)ifkñ) vertices can be 4-colored. Are

there constants M(k) such that a graph embedded on a surface of genus k > 1 with

all edges suitably short can have all but M(k) vertices 4-colored?

Addendum. These same techniques can be applied to nonorientable surfaces to

show that graphs embedded on these surfaces with (similarly) short edges also can be

five-colored.
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