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Abstract: In this research, we proposed a Deep Convolutional Neural Network (DCNN) model for
image-based plant leaf disease identification using data augmentation and hyperparameter optimiza-
tion techniques. The DCNN model was trained on an augmented dataset of over 240,000 images of
different healthy and diseased plant leaves and backgrounds. Five image augmentation techniques
were used: Generative Adversarial Network, Neural Style Transfer, Principal Component Analysis,
Color Augmentation, and Position Augmentation. The random search technique was used to op-
timize the hyperparameters of the proposed DCNN model. This research shows the significance
of choosing a suitable number of layers and filters in DCNN development. Moreover, the experi-
mental outcomes illustrate the importance of data augmentation techniques and hyperparameter
optimization techniques. The performance of the proposed DCNN was calculated using different
performance metrics such as classification accuracy, precision, recall, and F1-Score. The experimental
results show that the proposed DCNN model achieves an average classification accuracy of 98.41%
on the test dataset. Moreover, the overall performance of the proposed DCNN model was better than
that of advanced transfer learning and machine learning techniques. The proposed DCNN model is
useful in the identification of plant leaf diseases.

Keywords: data augmentation; deep convolutional neural networks; generative adversarial network;
hyperparameters optimization; neural style transfer; principal component analysis; random search

1. Introduction

Identification of plant diseases is essential to improving the farmer’s profit from the
yield and growth of plants. Manual monitoring of plant diseases will not give accurate
outcomes regularly. Moreover, finding domain experts for monitoring plant diseases is
highly complicated and expensive for farmers. Currently, many artificial intelligence tech-
niques are proposed for automatic plant disease detection and diagnosis with fewer human
efforts [1]. A Deep Convolutional Neural Network (DCNN) is a recent artificial intelli-
gence technique for solving computer vision and natural language processing challenges.
The DCNN has been effectively applied in numerous fields, such as agriculture, healthcare,
finance, security, and production. The DCNN uses a sequence of several layers to learn
from the training data. The most common DCNN layers are convolution layers, pooling
layers, and fully connected layers. The convolution layer extracts features from every input
image [2]. The convolutional layer is a significant element of DCNN, and it understands
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the connection among pixels by learning features using input image data. Convolution is
a mathematical operation that takes three inputs, such as an image matrix, filter matrix,
and stride value, and produces feature maps. The filters are supported to extract the fea-
tures from the input images. Moreover, the stride is a numerical value referred to as the
number of pixels that move the filters over the input matrix [3]. After the convolutional
layer, the pooling layer reduces the dimensionality of the future map. Max pooling and
average pooling are the most common pooling techniques. The max-pooling takes the
maximum value, and the average pooling takes the average value from the feature map.
In this research, the performance of the different numbers of convolutional layers and
different pooling functions was compared in terms of the most critical performance metrics.

In addition, the DCNN is required a large volume of training data, optimized hyperpa-
rameters value, and high-performance computing to improve the classification performance.
Data augmentation is the most popular approach to dealing with the insufficient training
data problem for image classification tasks [4]. Data augmentation is producing new images
by different transformation techniques [5]. The five most advanced image augmentation
techniques were used to produce new input images for the training process in this re-
search. The augmentation techniques are Generative Adversarial Network (GAN), Neural
Style Transfer (NST), Principal Component Analysis (PCA), four different color Augmenta-
tion, and seven different Position Augmentation. The position augmentation techniques
are affine transformation, scaling, cropping, flipping, padding, rotation, and translation.
Moreover, the color augmentation techniques are brightness, contrast, saturation, and hue.

The GAN is one of the unsupervised neural networks used to create a new set of
realistic images. The GAN comprises two deep neural networks, such as a generator and
a discriminator. The generator network creates new images similar to the training data,
while the discriminator network classifies the original and newly created images [6]. GAN is
one of the most successful image augmentation techniques in medical image processing
applications. The NST is an image transformation technique to produce new images
using three different images such as content images, style reference images, and input
images. Hyperparameters are the most significant parameters that can influence the
training process of machine learning techniques. The most common hyper-parameters in
DCNN include learning rate, training epochs, filter size, batch size, loss function, activation
function, and dropout value [7]. The selection of hyperparameter values is one of the
most challenging tasks in machine learning algorithm design. Hyperparameter tuning
is the technique of finding the value of the most suitable hyperparameters to achieve
maximum performance [8]. The random search technique is a popular hyperparameter
tuning technique to optimize the value of the hyperparameter of the machine learning
algorithm [9]. In this research, random search techniques were used to optimize the values
of the hyperparameters of all proposed DCNNs.

Transfer learning is an advanced learning technique to reuse a pre-trained model on a
new similar task. It helps to accelerate the training process of the new model and achieve
better performance [10]. The standard transfer learning techniques are AlexNet, VGG16,
Inception-v3, and ResNet. The performance of the proposed DCNN is compared with the
standard transfer learning and most common machine learning techniques. The machine
learning techniques are Artificial Neural Network (ANN), Naive Bayes (NB), and Support
Vector Machine (SVM). Moreover, DCNN requires a huge number of data and iterations to
train the model. In order to train the model with better efficiency and less time consumption,
the machine needs sufficient processing power. The GPU-accelerated deep learning frame-
work is used in this work to train DCNN with a large dataset. The GPU-accelerated deep
learning framework delivers high-performance and low-latency inference for the DCNN.

This research proposed a novel DCNN model for the diagnosis of plant leaf diseases
using leaf images. The performance of the model was improved using data augmentation
and hyperparameter optimization techniques. The remaining sections of the paper were
organized as follows: Section 2 provides the literature survey of the plant leaf disease
classification-related works. Section 3 describes the materials and methodologies of the
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proposed DCNN model. Section 4 contains results and related discussions. Section 5 gives
the conclusions and future directions of the research.

2. Related Works

Detection of diseases in plant leaves is a significant challenge for precision crop
protection and smart farming. Automatic plant disease detection can facilitate the control of
diseases through suitable control approaches, for instance, chemical applications, pesticides,
fungicides, and bactericide applications, and can increase production. Some earlier efforts
to use machine learning techniques for plant disease detection are reviewed in this section.
The authors in [2] proposed an SVM with a radial basis function and hyperspectral data for
detecting three different sugar plant leaf diseases, such as leaf spot, leaf rust, and powdery
mildew. On average, the classification accuracy using this technique was between 65% and
90%, subject to disease stage and category. The author in [11] proposed the SVM algorithm
for solving the agriculture data classification problems. The SVM is an extensively used
machine learning algorithm. It has been used in various fields, such as image processing and
information retrieval. The F1 measure of the algorithm is higher than the typical machine
learning algorithms, such as NB and ANN algorithms. The author in [12] proposed another
approach based on SVM for the identification of Huanglongbing (HLB) or citrus greening
diseases using multi-band imaging sensor data.

The authors of [13,14] discussed several methods for the detection of plant diseases
using their leaf images that were based on various image processing and feature extraction
techniques. Identification of tomato yellow leaf curl disease can be achieved using SVM
with a quadratic kernel function as proposed by the author in [15]. Overall, the classification
accuracy using this algorithm was 92%. The authors of [16] proposed a Huanglongbing
disease identification model for citrus plants. The SVM and ANN were used to design the
Huanglongbing detection technique. The testing accuracy of the SVM and ANN models
was 92.8% and 92.2%, respectively. The accuracy of the SVM models is higher than that
of the ANN model. The authors of [17] proposed an apple leaf spot disease forecasting
model using a K-Nearest Neighbors (KNN) classifier. The forecasting model achieved 88%
of accuracy, which is higher than other machine learning models.

The authors of [3,18] developed convolutional neural networks (CNN), based models
for recognizing different plant species. Moreover, their experiment shows that performance
improvements in plant leaf disease detection can be made using CNN rather than traditional
machine learning techniques. The authors of [19,20] proposed a CNN-based model for
solving crop disease identification problems using different datasets. In [21], the authors
proposed the AlexNet and VGG16 models for disease detection in tomato crops with
optimized hyperparameters. In [22], the authors proposed a leaf disease detection model
using the AlexNet pre-trained model. The AlexNet based model achieved a test accuracy
of 98%, which is better than machine learning techniques. The author of [23] developed the
GoogLeNet and Cifar10 models based on deep learning for identifying maize leaf diseases.
Overall, the top-1 accuracy using this GoogLeNet and Cifar10 technique was 98.9% and
98.8%, respectively.

The authors of [24] studied numerous deep learning approaches to solve many agri-
culture challenges. Likewise, plant disease detection and diagnosis can be achieved using
convolutional neural network models. This technique was applied to 87,848 images of
25 different plants and presented in [25]. This model achieves an average accuracy of
99.53%. The authors of [26] presented a deep learning-based model for identifying ten
different plant diseases from individual lesions and spots. A nine-layer DCNN model was
developed in [27] for identifying different plant leaf diseases using optimized hyperpa-
rameters, six data augmentation methods, and the Graphics Processing Unit (GPU), and it
achieved a classification accuracy of 96.46% in the test data. The authors of [28] proposed a
leaf disease detection model for various plants using a transfer learning technique called
TL-ResNet50. They achieved a classification accuracy of 98.20% on disease detection. Most
recently, the authors of [29] proposed attention-based convolutional neural networks for
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tomato leaf disease classification. The model achieved a classification accuracy of 99.69%
on the test dataset. The performance of the model was compared with standard transfer
learning techniques. In [5], the authors proposed the apple leaf disease detection model
using ResNet-50 and Mask R-CNN techniques. Moreover, they compared the performance
of the MobileNetV3-Large and MobileNetV3-Large-Mobile models. The extensive survey
shows the importance of developing a plant disease detection model with high detection
accuracy. A DCNN with different convolutional layers and hyperparameters was trained
and tested to develop an image-based plant leaf disease identification model in this research.
The following section presents information about the dataset and the implemented models.

3. Materials and Methods

This section provides a complete procedure for creating and preprocessing the dataset
and designing and developing the proposed DCNN for plant leaf disease identification.
Initially, a novel CNN model was proposed with a different number of convolutional layers
between 3 and 5. A hyperparameter optimization technique was used to select the most
appropriate hyperparameters. The models were trained using optimized hyperparameters
on an augmented dataset. The training and testing of the DCNN and pre-trained models
were performed using an NVIDIA DGX-1 GPU deep learning server and an HP Z600
workstation. The Python programming language and advanced libraries were used to
implement the proposed and existing models. The essential Python libraries are Keras,
OpenCV, NumPy, Pillow, SciPy, and TensorFlow.

3.1. Data Collection and Preprocessing

The original dataset was downloaded from an open research data repository [27].
The original dataset contained 39 different classes of 55,448 healthy and diseased plant
leaves and background images. Figure 1 shows the four sample images from random
classes of the original dataset.
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Data augmentation techniques can increase the dataset size and reduce overfitting
during the training state of models by adding a small number of distorted images to the
training set. There are five types of data augmentation techniques used in this research to
create new training images. The augmentation techniques are Neural Style Transfer (NST),
Deep Convolutional Generative Adversarial Network (DCGAN), Principal Component
Analysis (PCA), Color Augmentation, and Position Augmentation. The augmentation
techniques increased the dataset size from 55,448 to 234,008 images. It also increased the
size of all the classes to 6000 original and augmented images.

3.1.1. Neural Style Transfer

Neural Style Transfer is a convolutional network to create augmented images using
content images and style reference images [30]. The NST performs the image transforma-
tion, converting the style properties of the style image into a content image for generating
a new output image. The sample content, style reference, and output images of NST are
shown in Figure 2.
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The VGG-19 based NST technique was used to generate 22,000 different plant leaf
images in this research. The augmented images were generated using 5000 iterations and
GPU techniques. Figure 3 shows some random augmented image samples of the different
classes using the NST technique.

Electronics 2022, 11, 1266 5 of 15 
 

 

3.1.1. Neural Style Transfer 
Neural Style Transfer is a convolutional network to create augmented images using 

content images and style reference images [30]. The NST performs the image transfor-
mation, converting the style properties of the style image into a content image for gener-
ating a new output image. The sample content, style reference, and output images of NST 
are shown in Figure 2.  

   
(a) (b) (c) 

Figure 2. NST technique: (a) Content image; (b) style reference image; (c) output image. 

The VGG-19 based NST technique was used to generate 22,000 different plant leaf 
images in this research. The augmented images were generated using 5000 iterations and 
GPU techniques. Figure 3 shows some random augmented image samples of the different 
classes using the NST technique. 

    
Figure 3. Sample augmented images using NST technique. 

3.1.2. Deep Convolutional Generative Adversarial Networks 
Generative Adversarial Networks (GANs) are one of the exciting applications of 

deep neural networks. It creates new images from the input images using random noise 
and maps them into the input images. Two models are trained simultaneously by an ad-
versarial process such as generator and discriminator. The generator network learns to 
create new images similar to the input image. Furthermore, the discriminator learns to 
classify the real dataset images and generator-created images. A Deep Convolutional Gen-
erative Adversarial Network (DCGAN) was used to create augmented images in this re-
search [6]. The layered architecture of the generator and discriminator of the DCGAN are 
shown in Figures 4 and 5, respectively. The DCGAN creates the generator and discrimi-
nator networks, mainly using convolution layers without a pooling function. Transposed 
convolution and stride are used to upsampling and downsample the features of convolu-
tion layers. 

Figure 3. Sample augmented images using NST technique.

3.1.2. Deep Convolutional Generative Adversarial Networks

Generative Adversarial Networks (GANs) are one of the exciting applications of deep
neural networks. It creates new images from the input images using random noise and
maps them into the input images. Two models are trained simultaneously by an adversar-
ial process such as generator and discriminator. The generator network learns to create
new images similar to the input image. Furthermore, the discriminator learns to classify
the real dataset images and generator-created images. A Deep Convolutional Generative
Adversarial Network (DCGAN) was used to create augmented images in this research [6].
The layered architecture of the generator and discriminator of the DCGAN are shown in
Figures 4 and 5, respectively. The DCGAN creates the generator and discriminator net-
works, mainly using convolution layers without a pooling function. Transposed convolu-
tion and stride are used to upsampling and downsample the features of convolution layers.

The DCGAN network was trained using the training epoch of 30,000, the stride
dimension of 2 × 2, and the mini-batch size of 64. It generates 35,700 augmented images in
different classes. Four samples of augmented images from different classes using DCGAN
are shown in Figure 6.
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3.1.3. Principal Component Analysis Color Augmentation

Principal Component Analysis (PCA) color augmentation is one of the advanced
image augmentation techniques that shifts the values of the red, green, and blue pixels
in the input image based on which values are the maximum existing in the image by
calculating eigenvectors and eigenvalues of the image matrix. The PCA algorithm helps to
discover the relative color balance of the input image. This research performed PCA on
the set of RGB pixel values of original plant leaf disease images and generated 26,800 new
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images in various classes. Figure 7 shows the random sample augmented images using the
PCA technique.
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3.1.4. Color Augmentation

Color augmentation techniques adjust the color properties of the original images to
create augmented images. In this research, a combination of four different color properties
is used to generate new images, such as brightness, contrast, saturation, and hue. The color
augmentation techniques create over 47,000 augmented images in different classes. Figure 8
illustrates the sample images of color augmentation from random classes.
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3.1.5. Position Augmentation

Position augmentation techniques affect the position of pixel values of the input
original image to create augmented images. A combination of seven-position augmentation
techniques was used in this research, such as affine transformation, scaling, cropping,
flipping, padding, rotation, and translation. It created 47,052 images in all the classes of
the dataset. The sample position augmented images of random classes in the dataset are
shown in Figure 9.
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3.2. Building the DCNN Model

DCNN achieved great success in solving image classification problems. Three different
DCNN configurations were proposed for making plant leaf disease image classification
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from the augmented dataset: three convolutional layer DCNN (Conv-3 DCNN), four con-
volutional layer DCNN (Conv-4 DCNN), and five convolutional layers DCNN (Conv-5
DCNN). A random search hyperparameter tuning technique was used to optimize the
hyperparameter value of each proposed DCNN. The augmented dataset was divided into
the training and testing processes. The training and testing datasets contain 224,552 and
9448 images, respectively. Table 1 shows the hyperparameter options for the hyperparame-
ter optimization process. The random search optimization technique generates the random
combination of parameters for training the model. The generated combinations were used
to train the model for a few epochs. The best form generated combination was identified
from the training performance of the model. The designing and training processes of each
model were explained in the following subsections, starting with the Conv-3 DCNN model.

Table 1. Options for hyperparameters optimization.

Hyperparameters Value Options

Batch size 32, 48, 64, 80

epochs 10, 50, 100, 300, 500, 1000, 1200, 1500, 2000, 3000

Dropout 0, 0.2, 0.4, 0.6, 0.8

Optimizer Nadam, Adam

3.2.1. Three Convolutional Layer DCNN

Training the three convolutional layer DCNN model using the augmented image
dataset that is described in Section 3.2 was proposed. Three convolutional layers and
three max-pooling layers were used in this Conv-3 DCNN model. The max-pooling and
2 × 2 stride were used to downsample the feature dimensions. The layered structure of the
Conv-3 DCNN model is shown in Figure 10.
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Table 2 shows the optimized hyperparameters using the random search hyperparam-
eters tuning technique of the Conv-3 DCNN for the identification of plant leaf diseases.
The random search technique was used to address the parametric uncertainty challenge
of the model development. The training and validation accuracy of the Conv-3 DCNN



Electronics 2022, 11, 1266 9 of 15

were 98.32 and 97.87, respectively. The training progress of the Conv-3 DCNN using the
augmented dataset and optimized hyperparameters is shown in Figure 11.

Table 2. Optimized hyperparameters values of the Conv-3 DCNN.

Hyperparameters Optimized Value

Training Epochs 1000

Batch Sizes 64

Dropout Value 0.2

Optimizer Adam

Electronics 2022, 11, 1266 9 of 15 
 

 

Table 2. Optimized hyperparameters values of the Conv-3 DCNN. 

Hyperparameters Optimized Value 
Training Epochs 1000 

Batch Sizes 64 
Dropout Value 0.2 

Optimizer Adam 
 

  
(a) (b) 

Figure 11. Conv-3 DCNN model: (a) Training result; (b) validation result. 

3.2.2. Four Convolutional Layer DCNN 
The four-convolutional layer DCNN (Conv-4 DCNN) model using the augmented 

image dataset and optimized hyperparameters values was proposed. Four convolutional 
layers and four max-pooling layers are used in this Conv-4 DCNN model. The layered 
structure of the Conv-4 DCNN model is shown in Figure 12. 

 
Figure 12. Layered structure of Conv-4 DCNN model. 

The training accuracy of the Conv-4 DCNN was 99.12, and the validation accuracy 
was 98.74. Table 3 shows the optimized hyperparameters of the conv-4 DCNN for the 
identification of plant leaf diseases. Figure 13 illustrates the training performance of the 
Conv-4 DCNN model for the identification of plant leaf diseases.  

Table 3. Optimized hyperparameters of the Conv-4 DCNN. 

Hyperparameters Optimized Value 
Training Epochs 1000 

Batch Sizes 32 

Figure 11. Conv-3 DCNN model: (a) Training result; (b) validation result.

3.2.2. Four Convolutional Layer DCNN

The four-convolutional layer DCNN (Conv-4 DCNN) model using the augmented
image dataset and optimized hyperparameters values was proposed. Four convolutional
layers and four max-pooling layers are used in this Conv-4 DCNN model. The layered
structure of the Conv-4 DCNN model is shown in Figure 12.
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The training accuracy of the Conv-4 DCNN was 99.12, and the validation accuracy
was 98.74. Table 3 shows the optimized hyperparameters of the conv-4 DCNN for the
identification of plant leaf diseases. Figure 13 illustrates the training performance of the
Conv-4 DCNN model for the identification of plant leaf diseases.
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Table 3. Optimized hyperparameters of the Conv-4 DCNN.

Hyperparameters Optimized Value

Training Epochs 1000

Batch Sizes 32

Dropout Value 0.2

Optimizer Adam
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3.2.3. Five Convolutional Layer DCNN

The plant leaf disease identification model using a five convolutional layer DCNN
(Conv-5 DCNN) was proposed. Five convolutional layers and five max-pooling layers
were used in this Conv-5 DCNN model. The layered structure of the Conv-5 DCNN model
is shown in Figure 14.
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The random search hyperparameter tuning technique was used to discover the value
of the hyperparameter of the conv-5 DCNN. Table 4 shows the optimized hyperparameters
for the plant leaf disease identification model using the conv-5 DCNN. The conv-5 DCNN
achieves a training accuracy of 9923 and a validation accuracy of 98.93. These accuracies are
much higher than the other proposed DCNN algorithms. Figure 15 illustrates the training
performance of the Conv-5 DCNN model for the identification of plant leaf diseases.

The performance of all the proposed models was calculated using the different performance
metrics that were discussed in the subsequent section. New input images were used to compare
the performance of the proposed models with advanced classification techniques.
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Table 4. Optimized hyperparameters of the conv-5 DCNN.

Hyperparameters Optimized Values

Training Epochs 1000

Batch Sizes 32

Dropout Value 0.2

Optimizer Adam
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4. Results and Discussions

The proposed Conv-3 DCNN, Conv-4 DCNN, and Conv-5 DCNN models were com-
pared to advanced classification techniques using the most critical performance metrics and
9448 original input images. Classification accuracy, precision, recall, and F1-Score are the
most critical performance metrics. The following subdivision calculates the classification
accuracy of all the models.

4.1. Classification Accuracy

Classification accuracy is one of the critical performance metrics, which refers to the
percentage of correct predictions made by the classification model. Figure 16 illustrates
the individual class testing accuracy of the proposed Conv-3 DCNN, Conv-4 DCNN,
and Conv-5 DCNN models.
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Figure 17 shows that the classification accuracy of the proposed Conv-5 DCNN model
is higher than the Conv-3 DCNN, Conv-4 DCNN, and advanced machine learning and
transfer learning techniques. The range of the classification accuracy is between 0 and 100%.
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4.2. Precision

Precision is defined as the ratio of correctly predicted values to the total predicted
values. Figure 18 represents that the proposed Conv-5 DCNN model achieved a precision
value of 0.94, much higher than the other techniques.
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4.3. Recall

The recall is also known as sensitivity and is a ratio of correctly predicted values to all
available values in a particular individual class. Figure 19 represents the recall value of the
Conv-4 DCNN, and the Conv-5 DCNN is more significant than all other techniques.
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4.4. F1-Score

The F1 score is the most crucial performance metric and is defined as the weighted
average of precision and recall. The F1-Score of the proposed models and other advanced
techniques are shown in Figure 20. The F1-score of the Conv-4 DCNN and Conv-5 DCNN
is higher than other techniques.
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Outcomes of all performance metrics show that the Conv-5 DCNN model produced
much higher performance than the other proposed Conv-3 DCNN, Conv-4 DCNN models,
and state-of-the-art transfer learning and machine learning techniques. The proposed
Conv-5 DCNN model achieved superior results using optimized hyperparameters and
an augmented dataset. Moreover, the proposed Conv-5 DCNN model uses the optimized
number of convolutional layers for extracting the feature information from the dataset.

5. Conclusions

In this research, a DCNN based approach was proposed to identify plant leaf diseases
from leaf images. This model can successfully identify 26 different plant diseases through
leaf images. Five augmentation techniques were used to enhance the dataset size from
55,448 to 234,000 images. The augmentation techniques are Neural Style Transfer (NST),
Deep Convolutional Generative Adversarial Network (DCGAN), Principal Component
Analysis (PCA), Color Augmentation, and Position Augmentation. The individual class
size of the dataset was 6000 original and augmented images. Training of the most suc-
cessful Conv-5 DCNN model was completed with the use of an augmented dataset of
224,552 images and optimized hyperparameter values. The random search hyperparameter
tuning technique was used to optimize the value of the hyperparameters. The proposed
Conv-5 DCNN model achieved a classification accuracy of 98.41%, a precision value of
0.94, a recall value of 1.0, and an F1-Score of 0.97 using an augmented plant leaf image
dataset. The optimized hyperparameters and the data augmentation process had a more
considerable influence on the result. Compared with other proposed approaches and
advanced machine learning and transfer learning techniques, the proposed Conv-5 DCNN
model has superior classification performance. An extension of this study will add new
classes of plant diseases and an increasing number of training images to the dataset and
modify the architecture of the DCNN model.
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