
A Fixed-Parameter Algorithm for Minimum
Common String Partition with Few Duplications

Laurent Bulteau1, Guillaume Fertin1, Christian Komusiewicz1?

and Irena Rusu1

Université de Nantes, LINA - UMR CNRS 6241, France.
{Laurent.Bulteau,Guillaume.Fertin,Christian.Komusiewicz,Irena.Rusu}@univ-nantes.fr

Abstract. Motivated by the study of genome rearrangements, the NP-
hard Minimum Common String Partition problems asks, given two
strings, to split both strings into an identical set of blocks. We consider
an extension of this problem to unbalanced strings, so that some elements
may not be covered by any block. We present an efficient fixed-parameter
algorithm for the parameters number k of blocks and maximum occur-
rence d of a letter in either string. We then evaluate this algorithm on
bacteria genomes and synthetic data.

1 Introduction

Comparative genomics has various applications, one of which is understanding
the evolution of genomes under the assumption that gene content and gene order
conservation are closely related to gene function [11]. To this end, a fundamental
task is to define and compute the true evolutionary distance between two given
genomes [15]. This is done by the correct identification of orthologs and paralogs
and by the correct identification of the evolutionary events resulting into changes
in gene content and gene order. The first of these objectives is handled by
several homology-based approaches [12, 16]; more evolved programs handle
both objectives [1, 4, 13]. The second objective gave birth to a large number
of important distances between genomes represented either as strings or as
permutations. Such distances either exploit the similarity between genomes in
terms of gene content and order, or count specific genome rearrangements needed
to transform one genome into another (see [3] for an extensive survey).

In this work, both objectives above are followed via a distance between
genomes represented as strings, which was defined independently by Chen et al.
[1] (for ortholog/paralog identification) and Swenson et al. [15] (for evolution-
ary events defining an evolutionary distance). Informally, given two strings S1

and S2 representing two genomes, the operation to realize is cutting S1 into
non-overlapping substrings and reordering a subset of these substrings such that
the concatenation of the reordered substrings is as close as possible to S2. The
ortholog/paralog identification between S1 and S2 is then directly given by the
substrings of S1 used to approximately recompose S2, whereas the evolutionary

? Post-doc funded by a Région Pays de la Loire grant

ababcd dbadcbbaa babab ababa

ababcddbadcbbaabababababa

cd db

aa a

Fig. 1. A common string partition of size 4. Copies of a, b, c and d that could not be
matched are deleted.

distance is given by the minimum number of substrings needed to obtain such a
reconstruction.

The above transformation between the two genomes is formalized by the notion
of common string partition (CSP). Let S1 and S2 be two strings on an alphabet
Σ. A partition P of S1 and S2 into blocks x1x2 · · ·xp and y1y2 · · · yq is a common
string partition if there is a bijective function M from D(M) ⊆ {xi | 1 ≤ i ≤ p}
to I(M) ⊆ {yj | 1 ≤ j ≤ q} such that (1) for each xi ∈ D(M), xi is the same
string as M(xi), and (2) there is no letter a ∈ Σ that is simultaneously present in
some block xj 6∈ D(M) and in some block yl 6∈ I(M) (see Fig. 1 for an example).
The size of the common string partition P is the cardinality k of D(M). We
study the problem of finding a minimum-size CSP:

Minimum Common String Partition (MCSP)
Input: Two strings S1 and S2 on an alphabet Σ, and an integer k.
Question: Is there a common string partition (CSP) of S1 and S2 of
size at most k?

The definition of a CSP given above is actually a generalization to arbitrary
(or unbalanced) strings of the definition given in [1] for balanced strings, that is,
when each letter appears the same number of times in S1 and S2. Note also that
in this paper, the strings we consider are unsigned. Although this model is less
realistic from a genomic viewpoint, our study is a first step towards improved
algorithms for the MCSP problem in the most general case, that is, for signed
and unbalanced strings.

Related Work. MCSP was introduced by Chen et al. [1], but close variants also
exist with different names, such as block edit distance [10] or sequence cover [15].
Most of the literature on MCSP actually considers the restricted case where the
input strings S1 and S2 are balanced. In that case, necessarily D(M) (resp. I(M))
contains every block from S1 (resp. S2). Let Bal-MCSP denote this restricted
class of problems. Bal-MCSP has been shown to be NP-hard and APX-hard
even if d = 2, where d is the maximum number of occurrences of any letter
in either input string [5]. Several approximation algorithms exist with ratios
1.1037 when d = 2 [5], 4 when d = 3 [5], and 4d in general [9]. Concerning fixed-
parameter tractability issues, Damaschke [2] initiated the study of Bal-MCSP in
the context of parameterized algorithmics by showing that it is fixed-parameter
tractable with respect to the combined parameter “partition size k and repetition
number r”. More recently, Jiang et al. [6] showed that Bal-MCSP can be solved
in O((d!)k · poly(n)) time.

Our Results. Our main result in this paper is an improvement on the latter result,
showing that MCSP (and thus, Bal-MCSP) can be solved in O(d2k ·kn) time, thus
considerably improving the running time from Jiang et al. [6]. Our result is also
more general since it is one of the rare known fixed-parameter algorithms that
deals with unbalanced strings. Moreover, a(n approximate) solution to MCSP
is computed within the pipeline of MSOAR, MSOAR2.0 and MultiMSOAR
software [4, 13, 14] (all used to determine orthology relations between genes),
hence these programs could benefit from any algorithmic improvement concerning
MCSP [7], such as the one presented here. Indeed, our algorithm actually runs
in d2k

′ · kn, where k′ is the number of blocks of D(M) that contain no letter
appearing only once in S1 and S2. Moreover, we present reduction rules that yield
further speed-up, and finally test our algorithm on genomic and synthetic data.

Basic Notation. A marker is an occurrence of a letter at a specific position in
a string. Formally, the marker at position i in a string S corresponds to the
pair (S, i), which we denote by S[i]. Given a marker u we denote by S(u) the
string that contains u. For all i, 1 ≤ i < n, the markers S[i] and S[i + 1] are
called consecutive. Let r(S[i]) := S[i+ 1], 1 ≤ i < n, denote the right neighbor
of marker S[i], and let l(S[i]) := S[i− 1], 1 < i ≤ n denote the left neighbor of
marker S[i]. An adjacency is a pair of consecutive markers. For two markers u
and v we write u ≡ v if their letters are the same and u = v if the markers are
identical, that is, they are at the same position in the same string. An interval is
a set of consecutive markers, that is, an interval is a set {S[i], S[i+ 1], . . . , S[j]}
for some i ≤ j. We write [u, v] to denote the interval whose first marker is u and
whose last marker is v. For two intervals s and t, we write s ≡ t if they represent
the same string of letters (if they have the same contents) and s = t if they are
the same interval, that is, they start and end at the same position in the same
string. Given two strings S1, S2, a letter is abundant in a string Si if it appears
with strictly more occurrences in Si than in the other string. Otherwise, it is rare
in Si. A marker u is abundant if it corresponds to an abundant letter in S(u),
and rare otherwise.

Fundamental CSP-Related Definitions. We assume that S1 6= S2, otherwise
MCSP is trivially solved by reporting a CSP of size one. A candidate match is an
unordered pair of markers {u, v} such that u ≡ v and S(u) 6= S(v), that is, the
markers have the same letters and are from different input strings. Two candidate
matches {x, y} and {x′, y′} where S(x) = S(x′) and x is to the left of x′ are
called parallel if [x, x′] ≡ [y, y′]. Note that this implies that for the i-th marker u
in [x, x′] and the i-th marker v in [y, y′] the pair {u, v} is also a candidate match
and it is parallel to {x, y} and to {x′, y′}. Informally, being parallel means that
two candidate matches could potentially be in the same block of a CSP.

A CSP P is a set of pairwise disjoint candidate matches containing all rare
markers. If a marker does not appear in any candidate match of P then it is
necessarily abundant, and it is called deleted in P , otherwise we use fP (u) to
denote the unique marker v such that {u, v} ∈ P . The block relation ∼P of a
CSP is defined as the (uniquely determined) equivalence relation such that each

equivalence class is a substring of S1 or S2 and u ∼P r(u) if and only if u and r(u)
are not deleted, and {u, fP (u)} and {r(u), fP (r(u))} are parallel. Note that this
implies that, for any two markers x and x′ with x ∼P x′ it holds that {x, fP (x)}
and {x′, fP (x′)} are parallel. The blocks are precisely the equivalence classes of
∼P of non-deleted markers, that is, two markers u and v are in the same block
iff u ∼P v.

Due to lack of space, some proofs are deferred to a full version of this work.

2 An Improved Fixed-Parameter Algorithm

We now describe our fixed-parameter algorithm. It is a branching algorithm that
adds, one by one, candidate matches to a temporary solution. The main idea is
that these candidate matches belong to different blocks of the CSP.

2.1 CSPs, Samples and Witnesses

As stated above, the algorithm gradually extends a temporary solution called
sample. Formally, a sample T is a set of disjoint candidate matches. We use
M(T) to denote the set of all markers belonging to a candidate match in T (thus,
|M(T)| = 2|T |). The algorithm tries to construct an optimal CSP by extending
a sample T that describes this CSP and is furthermore non-redundant. That is,
the sample contains only candidate matches that are in the CSP and at most one
candidate match for each pair of matched blocks. We call such samples witnesses.

Definition 1. A sample T = {{x1, y1}, {x2, y2}, . . . , {xm, ym}} is a witness of
a CSP P if (1) T ⊆ P , that is, yi = fP (xi) for each i, and (2) for all x, y ∈M(T)
with x 6= y we have x 6∼P y.

Given a witness T of some CSP P , a marker u is seen by T if ∃x ∈M(T) such
that u ∼P x. We use See(P, T) to denote the set of markers seen by T in P . Let
u ∈ See(P, T) be a marker seen by T in P , then we say that u is colored black
by P and T if u = x; u is colored green by P and T if it is to the right of x; or u
is colored red by P and T if it is to the left of x. Note that the coloring is unique
since for each marker u there is at most one x ∈M(T) such that u ∼P x.

The algorithm finds a witness describing an optimal CSP. More precisely, the
aim is to see all rare markers eventually. A witness T is complete if it contains a
marker from every block of P . Equivalently, T is complete if it sees every rare
marker. We first show that if a rare marker is unseen by a witness T for some
CSP P , then another witness for P can be obtained by extending T .

Lemma 1. Let u be a rare marker such that u /∈ See(P, T). Then there exists a
candidate match {u, v} such that T ∪ {{u, v}} is a witness of P .

Proof. Let v = fP (u) (u is rare, hence it is not deleted), then {u, v} is clearly a
candidate match. Furthermore, T ∪ {{u, v}} is a subset of P . It thus remains to
show that T is non-redundant. Since u /∈ See(P, T), u 6∼P x for all x ∈ M(T).
Furthermore, this also implies v 6∼P y for all y ∈ {fP (x) | x ∈ M(T)} =M(T).
Thus T ∪ {{u, v}} is a witness of P . ut

The following lemma shows that when an optimal CSP contains parallel candidate
matches, then the markers that are in the same string are also in the same blocks
of the CSP. We will use this lemma to argue that the algorithm only considers
samples without parallel edges.

Lemma 2. If a CSP P contains two parallel candidate matches {x, y} and
{x′, y′} such that S(x) = S(x′) and x 6∼P x′, then it is not optimal.

Proof. Aiming at a contradiction, assume that P is optimal. Moreover, assume
without loss of generality that S(x) = S(x′) = S1, and that {x, y} and {x′, y′}
have been chosen so as to minimize the distance between x and x′, while satisfying
the conditions of the lemma. Since the candidate matches {x, y} and {x′, y′} are
parallel, we have [x, x′] ≡ [y, y′]. Let ` denote the number of markers in [x, x′],
let xi denote the i-th marker in [x, x′] and let yi denote the i-th marker in [y, y′].
Then, each {xi, yi} is a candidate match, {xi, yi} and {xj , yj} are parallel for all
1 ≤ i, j ≤ `, and, by the minimality of the distance between x and x′, {xi, yi} /∈ P
for 1 < i < `. Moreover, for all 1 < i < `, x 6∼P xi 6∼P x′ and y 6∼P yi 6∼P y′.
Create a CSP Q, starting with Q := P .

If one of x2, y2 is deleted (say x2, note that they cannot both be deleted since
they cannot both be abundant), then let u2 := fP (y2). The pair {u2, y2} is the
left-most candidate match of its block in P . Remove {u2, y2} from Q and add
{x2, y2}, extending the block containing {x, y}. Then Q is also an optimal CSP.

If none of x2, y2 are deleted, then they are the left-most markers of blocks
ending in xp and yq respectively (assume without loss of generality that p ≤ q).
Note that p, q < `, since these blocks are strictly contained between x and x′ (y
and y′). Write ui = fP (yi) for all 2 ≤ i ≤ q, and vi = fP (xi) for all 2 ≤ i ≤ p. For
each 2 ≤ i ≤ p, remove {{xi, vi}, {yi, ui}} from Q and add {{xi, yi}, {ui, vi}}.
Then Q has no more blocks than P and is an optimal CSP. Indeed, [x2, xp] is
now merged to the block containing x, and [u2, uq] is now split in two blocks
[u2, up] and [up+1, uq].

In both cases, Q is an optimal CSP where {x2, y2} has been added to the
block containing {x, y}. If x2 ∼Q x′, then the block containing {x, y} and {x2, y2}
is merged with {x′, y′}, and Q has one block less than P . Otherwise, x2 6∼Q x′,
and Q satisfies the conditions of the lemma for {x2, y2} and {x′, y′} with a
smaller distance between x2 and x′ than between x and x′. Both cases lead to a
contradiction. ut

2.2 The Sample Graph

We now describe a multigraph that is associated with the current sample T .
We will use the structure in this graph to identify cases to which the branching
applies. First, we describe the construction of this graph.

Let T be a sample for an input instance (S1, S2, k), and let C denote the set
of all candidate matches between S1 and S2. The sample graph GT := {VT , ET }
of T is the following edge-colored multigraph. The vertex set VT is the set of
markers of S1 and S2. The edge multiset ET ⊆ C consists of the black edges Eb

T ,

d b a d b b a a b a b a b d b a b a b a

a b a b a a a b a b a b d b a d b b a a

Fig. 2. Sample graph computed for two sequences, given a sample of two candidate
matches (black edges), with green (dark gray) and red (light gray) edges. Note that
a and c are rare in the top sequence, and b, c and d are rare in the bottom sequence.
Vertices satisfying the conditions of Branching Rules 1 and 2 are marked with white
dots (four are isolated rare vertices, two appear in a rare odd path).

the green edges Eg
T , and the red edges Er

T . The edge sets are defined as follows.
The black edges are the pairs of the sample, that is, Eb

T := T . For the green
and red edges, we use the following notation. For a marker u /∈M(T), let lT (u)
denote the rightmost vertex from M(T) that is in the same string as u and to
the left of u. Similarly, let rT (u) denote the leftmost vertex from M(T) that is
to the right of u. Now, the green edge set is

Eg
T := {{x, y} ∈ C | x, y /∈M(T) ∧ {lT (x), lT (y)} ∈ T

∧ {lT (x), lT (y)} is parallel to {x, y}}.

The red edge set is

Er
T := {{x, y} ∈ C | x, y /∈M(T) ∧ {rT (x), rT (y)} ∈ T

∧ {rT (x), rT (y)} is parallel to {x, y}}.

See Fig. 2 for an example. Clearly, GT is bipartite. From now on, we use
the terms “marker” and “vertex” equivalently since there is a one-to-one corre-
spondence between them. Further, any definition applying to candidate matches
applies in a similar manner to edges. The black-, green-, and red-degree of a
vertex are the number of black, green, and red edges incident with it. The degree
of a vertex is simply defined as the sum of the three colored degrees. The sample
graph has the following properties.

Property 1. Let {u, v} be a green (red) edge of GT , then {l(u), l(v)} ({r(u), r(v)})
is either a black or green (red) edge of GT .

Proof. Consider the case that edge {u, v} is green. The property clearly holds
if {l(u), l(v)} is black. Otherwise, {l(u), l(v)} also fulfills the conditions in the
construction of Eg

T : First, l(u) 6= lT (u) and l(v) 6= lT (v), thus they cannot
belong to T . Second, {l(u), l(v)} is to the left of {u, v} and thus it is also parallel
to {lT (u), lT (v)}). ut

Property 2. Each vertex incident with a black edge has degree one. For each
other vertex, green-degree and red-degree are at most one.

Proof. First, let {x, y} ∈ T be a black edge. By the definitions of Eg
T and Er

T ,
neither x nor y is incident with a red or green edge. Since the sample T has only
pairwise disjoint candidate matchings, there is no other black edge in T incident
with either x or y.

Now, let e1, e2 be two green edges incident with some vertex v. Clearly, e1
and e2 fulfill the conditions in the definition of Eg

T . Note that, by Property 2, lT (v)
has degree one. Hence, e1 and e2 are parallel to the same edge. This implies
e1 = e2. The proof for red edges is symmetrical. ut

Property 2 implies that every vertex has degree at most two. Thus, each
connected component is either a singleton, a path or a cycle.

Property 3. Let u and u′ := l(u) be two consecutive markers such that GT

contains the edges {u, v} and {u′, v′}. If both edges are green (both edges are
red), then {u, v} and {u′, v′} are parallel, that is, v′ = l(v).

Proof. Assume that {u, v} and {u′, v′} are green. By Property 2, vertices incident
with black edges have degree one. Hence, lT (u) 6= u′ and thus lT (u) = lT (u′).
Consequently, {u, v} and {u′, v′} are parallel to the same edge {lT (u), lT (v)}.
Hence, they are also parallel to each other. The proof for red edges works
analogously. ut

2.3 Branching on Odd Connected Components

We now show some further properties that the sample graph GT has with respect
to any CSP witnessed by the sample T . We then exploit these properties to
devise branching rules that branch into O(d2) cases. Hence, consider an arbitrary
CSP P witnessed by T . The following is a simple corollary of Lemma 2, the
construction of the sample graph, and the definition of witness.

Lemma 3. If GT contains two parallel black edges, then P is not optimal.

The following lemma relates the colors that markers receive by the CSP P to
the edge colors in the sample graph.

Lemma 4. Let u ∈ See(P, T) be a marker seen by T . Then, there is at least one
edge incident with u in GT . In particular, if vertex u is colored black/green/red,
then {u, fP (u)} is a black/green/red edge in GT .

Corollary 1. If some vertex u has degree 0 in GT , then u /∈ See(P, T).

Combined with Lemma 1 this leads to the first branching rule.

Branching Rule 1. If the sample graph GT contains a rare degree-0 vertex u,
then for each vertex v /∈M(T) such that S(u) 6= S(v) and u ≡ v branch into the
case to add {u, v} to T .

The branching rule above deals with connected components that are singletons.
Next, we develop a branching rule for connected components that are a certain
type of path in the sample graph.

To this end, we distinguish the following types of paths. A black path is a path
containing exactly one black edge. An odd path is a path with an odd number of
vertices. An even path is a path with an even number of vertices. Note that by
Property 2, all black edges are contained exclusively in black paths. Furthermore,
also by Property 2, the colors of each other path alternate between green and
red. We thus call an even path green if it starts and ends with a green edge
and red, otherwise. An odd path is abundant if its first marker is abundant, rare
otherwise (this definition is not ambiguous since the markers at the ends of an
even path correspond to the same letter in the same string, they are thus both
abundant or both rare).

Lemma 5. Let T be a sample witnessing a CSP P . If a connected component
of the sample graph GT is a rare odd path (u1, v1, . . . , v`−1, u`), then there is
some ui, 1 ≤ i ≤ `, such that ui /∈ See(P, T) and ui is not deleted in P .

Branching Rule 2. If the sample graph GT contains a connected component
which is a rare odd path (u1, v1, u2, v2, . . . , v`−1, u`), then do the following for
each vertex ui, 1 ≤ i ≤ `: for each vertex x /∈ M(T) such that S(ui) 6= S(x)
and ui ≡ x branch into the case to add {ui, x} to T .

2.4 Solving Instances without Rare Odd Paths or Singletons

We now show how to find an optimal CSP in the remaining cases. As we will
show, the edge set defined as follows gives such an optimal CSP. See Fig. 3 for
an example.

Definition 2. Let GT be a sample graph. The set PT is the edge set containing

– all black edges from GT ,
– each green edge that is in a green path, in an odd path or in a cycle, and
– each red edge that is in a red path.

Lemma 6. Let T be a sample such that GT does not contain isolated vertices,
parallel black edges, or rare odd paths. Then, PT is a CSP for which T is a
complete witness.

Theorem 1. MCSP can be solved in O(d2k · kn) time.

Proof. We use the algorithm MCSP outlined in Algorithm 1. We first show the
correctness of MCSP, then we bound the running time. Consider a yes-instance,
and let P be an optimal CSP of size k. We show that MCSP(S1, S2, k, ∅) outputs at
least one CSP of size k in this case. Since T = ∅ T in the first call, T is initially a
witness of P . Combining Lemma 1 with Lemmas 4 and 5 shows that the algorithm
creates in each application at least one branch such that the set T is a witness

a u v w b x v d x

a u v d x v w b

a u v w b x v d x

a u v d x v w b

Fig. 3. Left: Sample graph GT with no isolated vertices, parallel black edges or rare
odd paths. Right: CSP PT obtained from GT (Definition 2 and Lemma 6). Note that
markers (with letter) u form a green path, markers v form a cycle, markers w form a
red path, and markers x form an abundant odd path.

Algorithm 1 The fixed-parameter algorithm for parameter (d, k).

MCSP(S1, S2, k, T)
1 if |T | > k abort branch
2 Compute the sample graph GT

3 if GT contains parallel black edges : abort branch
4 else if GT contains an isolated vertex :
5 apply Branching Rule 1; in each case call MCSP(S1, S2, k, T ∪ {{u, v}})
6 else if GT contains a rare odd path :
7 apply Branching Rule 2; in each case call MCSP(S1, S2, k, T ∪ {{ui, x}})
8 else compute PT , output PT

of P in this branch. Now, note that if a branch is aborted because |T | > k, then
the current set T either is redundant (and thus not a sample) or any CSP that it
witnesses has size at least k, thus it does not witness P in this case. Similarly, if
the graph GT contains parallel black edges, then the set T is either redundant,
or any CSP that it witness is not optimal; thus it does not witness P . Hence, the
algorithm eventually reaches a situation in which T is a witness of P and GT

contains no isolated vertices and no odd paths. Then it constructs and outputs a
set PT . By Lemma 6, PT is a CSP. Furthermore, it has size |T | and thus it is at
most as large as P which also has size at least |T | since T is a witness for P .

Now, assume that the instance is a no-instance, then the algorithm has empty
output since all CSPs that are output have size at most k due to the condition
in Line 1 of the algorithm.

It remains to bound the running time. We first bound the size of the search
tree. After the application of each branching rule, the set T has contains one
additional candidate match, so the depth of the search tree is at most k because
of the check in Line 1 of the algorithm. We now bound the number of new cases
for each branching rule. First, Branching Rule 1 branches into at most d cases.
Second, Branching Rule 2 branches into at most d2 cases: All vertices of a path
have the same letter since edges are candidate matches. Hence, there are at
most d ui’s. For each of them the algorithm creates at most d branches. Hence,
the overall search tree size is O((d2)k) = O(d2k). The time spent in each search
tree node can be seen as follows. The sample graph can be constructed in O(kn)

time by adding for each of the O(k) black edges the red and green edges in
linear time. This is done by moving to the left and the right until either the next
parallel marker pair is not a candidate match or contains a black vertex (this
can also be used to find parallel black edges). The sample graph has size O(n),
hence isolated vertices and odd paths can also be found in O(n) time. ut

3 Parameter Improvement

In this section, we show that the parameter k denoting the number of blocks
in an optimal solution can be replaced by a potentially much smaller param-
eter k′ :=“number of blocks without unique letters”. Herein, a letter is called
unique if it appears at most once in S1 and at most once in S2. To deal with
the blocks that contain unique letters we devise a simple rule for simplifying the
instance. The algorithm makes use of a data reduction rule. A data reduction
rule is correct if the new instance is a yes-instance if and only if the old one is.
An instance is reduced with respect to a data reduction rule, if an application of
the rule does not change the instance.

Rule 1. If the input contains a pair of unique letters x and x′, where x′ is to
the right of x, such that the candidate matches {x, y} for x and {x′, y′} for x′

are parallel, then replace [x, x′] by x and [y, y′] by y.

Lemma 7. Rule 1 is correct.

After this simplification, the resulting instance has the property that candidate
matches between two different unique matches are in different blocks. This implies
that a set T containing all different unique matches is a sample witnessing any
optimal CSP. This leads to the following.

Theorem 2. MCSP can be solved in O(d2k
′ · kn) time where k′ denotes the

number of blocks in S1 that contain no unique letter.

4 Data Reduction Rules

In addition to the improvements described in previous sections which lead to
an improved worst-case running time bound, we also devise the following data
reduction rules. These rules proved crucial for solving larger instances of MCSP
and may be of independent interest. The first of these reduction rules identifies
unique letters that are in S1 and S2 surrounded by other unique letters.

Rule 2. If the instance contains a unique candidate match {u, v} and the letters
to the right and left of u and v are also unique, then let L(u), R(u), L(v),
and R(v) denote the uniquely defined candidate matches containing the left and
right neighbor of u or v. Remove u and v from S1 and S2 and do the following.

– If L(u) = L(v) or R(u) = R(v) leave k unchanged.

– Else, check whether removing u and v from S1 and S2 made either L(u)
and R(u) parallel or L(v) and R(v) parallel. If it makes none of the two
parallel, then decrease k by one, if it makes exactly one pair parallel, decrease k
by two, otherwise decrease k by three.

Proof (of correctness). In the first case, {u, v} is parallel to either L(u) or R(u)
and thus the rule is simply a special case of the parallel rule. In the other
cases, {u, v} is parallel to none of L(u), R(u), L(v), R(v). Hence, u and v will
be in a block of size one in any CSP. In case the removal of {u, v} makes no
other edges parallel, the minimum size of a CSP in the reduced instance thus is
one less. Hence, the parameter decrement is correct in this case. If the removal
of u and v makes only L(u) and R(u) parallel, then the minimum size of a CSP
after removing u is decreased by exactly two: Consider any CSP of the original
instance, “merging” the blocks containing the left and the right neighbor of u
and removing the blocks containing u and v gives a CSP for the reduced instance
with size decreased by two. Similarly, re-adding {u, v} to any CSP of the reduced
instance increases the size by exactly two. By symmetry, the same holds for the
case that the removal of u and v makes only L(v) and R(v) parallel.

Finally, if the removal makes L(u) and R(u) parallel and L(v) and R(v)
parallel, then the size of the minimum CSP decreases by exactly three which
follows from the above arguments with the additional observation that the two
block merges are indeed “different”. ut

The next two rules “split” letters into two “subletters”. The first rule looks
for letters that appear once in one sequence and twice in the other.

Rule 3. If there is a marker v such that there is exactly one candidate match {u, v}
containing v, the marker u has at least one further candidate match {u,w}, and
any CSP which contains {u, v} has u and v in blocks of size one, then change
the letter of v to some previously unused letter z.

Proof (of correctness). Any CSP P of size k containing the candidate match {u, v}
can be transformed into a CSP of size at most k containing the candidate
match {u,w}: Since u and v are in P in blocks of size one, replacing {u, v}
by {u,w} does not decrease the number of adjacencies in the blocks of the CSP.
Furthermore, this exchange is possible, since {u,w} is the only candidate match
containing w. Hence, there is an optimal CSP in which v is not contained in any
candidate match. It is thus safe to assign v some new unused letter. ut

The next rule follows the same idea, only with letters that appear twice.

Rule 4. If there is a set of four markers u, v, w, and z such that {u,w}, {u, z},
{v, w}, {v, z} are the only four candidate matches containing at least one of these
markers, and any CSP which contains {u,w} and {v, z} has u, v, w, and z in
blocks of size one, then change the letter of u and z to some previously unused
letter x.

Proof (of correctness). The proof is similar to the proof of Rule 3. Since the
blocks containing u, v, w, and z have size one, changing the candidate matches
does not decrease the number of adjacencies in the blocks. Hence, replacing {u,w}
and {v, z} by {u, z} and {v, w} gives a CSP of the same size. ut

Note that checking whether there is any CSP including some match {u, v} that
has u and v in blocks of size at least two can be done by simply checking
whether {u, v} is parallel to a candidate match of its right or left neighbor.

5 Implementation & Experiments

We implemented the described algorithm to assess its performance on genomic and
on synthetic instances. We furthermore added three additional data reduction
rules and demonstrate their effect on the genomic instances. Although our
algorithm and experiments concern unsigned strings, they can be seen as a first
step; the results being more than encouraging, we will adapt, in the near future,
our algorithm to the signed (and unbalanced) case. We ran all our experiments on
an Intel(R) Core(TM) i5 M 450 CPU 2.40GHz machine with 2GB memory under
the Ubuntu 12.04 operating system. The program is implemented in Java and runs
under Java 1.6. The source code is available from http://fpt.akt.tu-berlin.de/mcsp/.
The search tree is implemented as described in Sections 2 and 3. In addition
to the data reduction rules described in Section 4, we apply Rule 1. All data
reduction rules are applied in the beginning and also in each search tree node.

Genomic Data. We performed experiments with genomic data from several
bacteria. The data was obtained as follows. The raw data consists of a file
containing transcripts and proteins of the species and positional information of
the corresponding genes. This data was downloaded from the EnsemblBacteria
database [8] and then filtered as described by Shi et al. [13] to obtain input
data for MSOAR 2.0. Then, the MSOAR 2.0 pipeline was invoked, and the
MCSP instances are output right before they are solved approximately by the
vertex cover 2-approximation algorithm. These instances contain signed genes.
Since the presented correctness proof only solves the unsigned MCSP problem,
we removed all genes from the negative strand. Afterwards, we removed all
non matched genes. Finally, we perform the following modification: the data
from MSOAR actually can allow arbitrary candidate matches between markers
in S1 and S2. However in MCSP the candidate matches are “transitive”, that
is, if {u, v}, {v, w}, and {w, x} are candidate matches of an MCSP instance,
then {u, x} is also a candidate match. We achieve this property for the input
data by adding the candidate match {u, x}, that is, every connected component
of the “marker-match” graph is assigned one letter not used elsewhere.

The species under consideration are Borrelia burgdorferi, Treponema pallidum,
Escherichia coli, Bacillus subtilis, and Bacillus thuringiensis. Our results are
shown in Table 1; the main findings are as follows. We can solve instances with
hundreds of genes if the average number d∗ of occurrences for each letter and the

http://fpt.akt.tu-berlin.de/mcsp/

Table 1. Running time, instance properties and effect of data reduction on genomic
data. Herein, n1 is the number of markers in the first genome, n2 the number of markers
in the second genome, k is the CSP size, k′ the number of blocks without fixed markers,
d∗ the average number of candidate matches for each marker, n′1 and n′2 denote the
respective number of markers after data reduction, δ is the number of removed candidate
matches during data reduction, and t is the running time in seconds.

Species 1 Species 2 n1 n2 k k′ d d∗ n′1 n′2 δ t

B. burg. T. pall. 91 93 68 0 3 1.02 13 15 4 0.06
B. burg. E. coli 66 72 59 0 6 1.09 22 28 12 0.22
B. burg. B. sub. 83 91 63 3 6 1.16 31 39 11 0.15
B. burg. B. thur. 61 71 51 3 5 1.19 32 42 11 0.09
T. pall. E coli 89 93 78 2 5 1.09 22 26 7 0.35
T. pall. B. sub. 136 144 82 0 7 1.12 23 31 11 0.18
T. pall. B. thur. 116 128 76 0 6 1.16 30 42 16 0.15
E. coli B. sub. 264 287 234 14 7 1.23 128 151 54 41.06
E. coli B. thur. 249 282 221 12 10 1.24 129 162 59 18.64
B. sub. B. thur. 673 693 340 14 8 1.17 173 193 51 249.71

number k′ of blocks without unique letters is small. Moreover, the parameter k′ is
in these instances much smaller than the parameter k. Finally, the data reduction
rules are very effective in decreasing the instance size and also decrease the overall
number of candidate matches somewhat.

Synthetic Data. We also experimented with synthetic data to test how growth
of k influences the running time. Each instance is generated randomly given five
parameters: the string length n, the upper bound k on the number of blocks,
the upper bound d on the number of occurrences, the upper bound f on the
number of gene families (size of the alphabet), and finally the number δ of deleted
markers (considered as noise between the blocks). We randomly generate k blocks
using available markers (that is, each block is a random string of markers so that
the number of occurrences is never more than d). The two input sequences are
generated by concatenating the blocks in different (random) orders, interleaving
with noisy parts of the required total size.

We study the effect of varying parameters n, k and d. To this effect, we
fix the number of deleted markers to δ = 0.1n (we observed that the behavior
of the algorithm is uniform for 0 ≤ δ ≤ 0.2n). Values of δ > 0.2n are harder,
however, we assume that deleting too many markers is of less relevance in genomic
applications. The number f of gene families is fixed to 3n/d. This way we obtain
an average number of occurrences which is experimentally close to d/2. The
average occurrence of each letter thus is roughly twice that of the genomic data;
this was done to obtain more difficult input.

In the experiments, we set n = 1000, and varied k from 50 to 130. One run
was performed for d = 6 and one for d = 8. Our results are shown in Table 2.
For each set of parameter values, we generated 50 instances. We make the
following main observations. First, increasing d makes the instances much harder.

Table 2. Average running time in seconds for synthetic instances with d = 6 and d =
8, n = 1000 and varying k; for each parameter triple, 50 instances were generated.

d = 6 d = 8
k running time k running time

50 0.06 50 0.07
60 0.06 60 0.06
70 0.07 70 0.08
80 0.09 80 0.09
90 0.10 90 0.12
100 0.12 100 0.16
110 0.13 110 0.26
120 0.18 120 1.62
130 0.21 130 30.42

Second, for d = 6, the combinatorial explosion sets in at k ≈ 120, for d = 8 this
happens already at k ≈ 100. Finally, the algorithm efficiently solves instances
with n = 1000 and k ≈ 120 when the average occurrence of each letter is roughly
3.5 (this is the average occurrence number in the experiments for d = 8).

6 Conclusion

We have presented an efficient fixed-parameter algorithm for the Minimum
Common String Partition problem with parameters k and d. Our algorithm
even allows for unbalanced strings, since it can delete superfluous markers between
consecutive blocks of the string partition. Looking towards practical applications,
it would be interesting to consider signed instances, that is, blocks can be read
either from left to right or from right to left with opposite signs. We conjecture
that our algorithm can be extended to solve the signed variant of MCSP. Another
generalization of MCSP is as follows. Pairs of markers which form candidate
matches are given in input, rather than being defined from classes of letters.
From a graph theory point of view, the bipartite graph of candidate matches
may contain arbitrary connected components, not only complete ones. It would
be of interest to provide efficient algorithms for this extension of MCSP.

References

[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM T.
Comput. Bi., 2(4):302–315, 2005.

[2] P. Damaschke. Minimum common string partition parameterized. In
Proc. 8th WABI, volume 5251 of LNCS. Springer, 2008.

[3] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics
of Genome Rearrangements. Computational Molecular Biology. MIT Press,
2009.

[4] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. MSOAR: A high-
throughput ortholog assignment system based on genome rearrangement.
J. Comput. Biol., 14(9):1160–1175, 2007.

[5] A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005.

[6] H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23:519–527, 2012.

[7] T. Jiang. Some algorithmic challenges in genome-wide ortholog assignment.
J. Comput. Sci. Technol., 25(1):42–52, 2010.

[8] P. J. Kersey, D. M. Staines, D. Lawson, E. Kulesha, P. Derwent, J. C.
Humphrey, D. S. T. Hughes, S. Keenan, A. Kerhornou, G. Koscielny, N. Lan-
gridge, M. D. McDowall, K. Megy, U. Maheswari, M. Nuhn, M. Paulini,
H. Pedro, I. Toneva, D. Wilson, A. Yates, and E. Birney. Ensembl genomes:
an integrative resource for genome-scale data from non-vertebrate species.
Nucleic Acids Res., 40(Database-Issue):91–97, 2012.

[9] P. Kolman and T. Walen. Reversal distance for strings with duplicates:
Linear time approximation using hitting set. Electr. J. Comb., 14(1), 2007.

[10] D. P. Lopresti and A. Tomkins. Block edit models for approximate string
matching. Theor. Comput. Sci., 181(1):159–179, 1997.

[11] R. Overbeek, M. Fonstein, M. DSouza, G. D. Pusch, and N. Maltsev. The
use of gene clusters to infer functional coupling. PNAS, 96(6):2896–2901,
1999.

[12] M. Remm, C. E. Storm, E. L. Sonnhammer, et al. Automatic clustering of
orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol.,
314(5):1041–1052, 2001.

[13] G. Shi, L. Zhang, and T. Jiang. MSOAR 2.0: Incorporating tandem dupli-
cations into ortholog assignment based on genome rearrangement. BMC
Bioinformatics, 11:10, 2010.

[14] G. Shi, M.-C. Peng, and T. Jiang. Multimsoar 2.0: An accurate tool to
identify ortholog groups among multiple genomes. PloS one, 6(6):e20892,
2011.

[15] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E. Moret.
Approximating the true evolutionary distance between two genomes. ACM
J. Exp. Alg., 12, 2008.

[16] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T.
Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova,
and E. V. Koonin. The COG database: new developments in phylogenetic
classification of proteins from complete genomes. Nucleic Acids Res., 29(1):
22–28, 2001.

	A Fixed-Parameter Algorithm for Minimum Common String Partition with Few Duplications

