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1. The fixed point theorem. Let T: X^> Y be a point-to-set

function and let T~l: Y—>X be the point-to-set function such that

xET~l(y) if and only if yET(x). If X and Y are topological spaces,

T is continuous provided the function T~l is both open and closed,

and each set T(x) is closed.

Let H be Cech homology theory with coefficients in a field, and let

En be Euclidean w-space. A mapping /: 5—>£„ will be said to link a

point of En provided that x£/(5) and the induced homomorphism

/*: Hn_i(B)—>i7„_i(£„ — x) is not zero.

Theorem. Let C be a compact connected subspace of En and let

T: C—>C be a continuous point-to-set function. Let B be a compact space,

I the unit interval, with h: 5X/->£n a homotopy such that h0 links

every point of C and hi links no point of C. Then there exists a number t

withO<t^l and a point y EC such that y Eh i(B) andht(B) meets T(y).

(Here, as usual, ht denotes the map of B into £„ such that ht(b)

= h(b, t)). We note that the hypothesis on h is fulfilled in case B is the

boundary of a bounded open set containing C and h is a deformation

of B such that En — hi(B) is connected.

To prove the theorem we need the following lemmas.

Lemma 1 (Notation as in Theorem). In the space CX-Ei, let

U= \(x, t)\t<0}, V= {(x, t)\t>\], 5*= {(x, t)\x = h(b, t) for some

bEB}. Then U and V are contained in different components of

CXEi-B*.

Proof. Let L be the set of points (x, t) of CXI such that ht links x.

In view of the hypotheses on ho and hi, it suffices to prove that L and

CXl-(B*yjL) are open in CXI. If (x, t)ECXl-B*, there is an

e-neighborhood N of x in En and a neighborhood P oi t\n I such that

if uEP then hu(B)r\N = <p. Consider the neighborhood (NC\C)XP

of (x, t) in CXI- If (y, u) is in this neighborhood, then ht and huare

homotopic, considered as maps into En — N. But the inclusion maps

of En — N into En — x and En—y induce homology isomorphisms.

Thus ht links x if and only if hu links y, and the proof is complete.
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A subset A of a space X will be said to separate two points a and b

of X provided every compact connected subset F of X containing

a and b meets A.

Lemma 2. Let the points a and b of a compact space X be separated by

a closed subset A of X. If the homology group IIi(X) is zero, then there

is a compact connected subset K of A which separates a and b.

Proof. An application of Zorn's lemma shows that there is a mini-

mal compact subset K of A which separates a and b. But K is con-

nected, for if not K can be expressed as the union of two disjoint

nonempty closed subsets of X neither of which separates a and b.

However this would contradict Theorem VII 9.2 of [l].

Lemma 3. // T: A7—>F is a continuous point-to-set function from a

compact connected space X onto a compact space Y and if L is a com-

ponent of Y, then T~l(L) =X.

Proof. The set L is the intersection of its open-and-closed neigh-

borhoods Na, and since T is continuous and X connected, T~l(Na) =X

for each a. Thus the closed sets T(x)f^Na are all nonempty, and for a

particular x£X the collection {T(x)r\Na\ has the finite intersection

property, so that T(x) meets L.

Proof of the theorem. Identify the points (x, t) of CX-Ei for

which t^2 (call this point a) and the points for which t^ — 1 (call this

point P). The resulting space C is the two-point suspension of C.

Using the Mayer-Vietoris sequence [2] one finds that since C is con-

nected, Hi(C)=0. By Lemma 1, B* separates a and p in C, and

thus, by Lemma 2, there is a compact connected subset K of B*

which also separates a and p. The function TX.1: CX-Ei—>CX£i is

continuous and determines in a natural way a continuous function

f: C—>C. Let L be a component of the compact space T(K). Suppose

L and K are disjoint. By Lemma 3 T~l(L) —K; hence in particular K

and L have the same projections on £t. Thus there are arcs in

C — K from a and P to L. But this contradicts the fact that K sepa-

rates a and p, hence L meets K. Thus there is a t, 0<t^1, such that

T(ht(B)) meets ht(B).

Note that the theorem remains true if T is an upper semi-continuous

function such that T(x) is connected for each x, for then T(K) is it-

self connected and can replace L in the preceding proof.

2. Applications. 1. Let B be an w-sphere in£„+i and C a (concentric)

w-sphere in the interior of B. Let rf^diam C and let ht be as in the

Theorem. Then some Bt = ht(B) will intersect C in points x, y with

d(x, y) =d.
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Proof. Let Cx be the set of points on C whose distance from x is

d. Then the mapping T(x) = Cx is continuous.

Remark. We can define the function t(x) on C as the "time" t at

which xEBt. This function is not necessarily single valued and there-

fore usually upper semi-continuous only but it is a function with

connected graph. Thus the theorem of Kakutani-Yamabe-Yujobo

[3] can be generalized for this function to yield that for some t the

set BtC\C contains the endpoints of « + l mutually orthogonal radii

of C.
2. W. Gustin has raised the following question. Given a convex

surface C in Ez what is the minimal length of a closed curve that can

be "slipped over" C? He remarked that the minimal perimeter of all

orthogonal projections of C is obviously long enough to be slipped

over C even without bending. I. Schoenberg has shown that this

length is not minimal even for tetrahedra and conjectured that the

minimal length is that of the minimal closed geodesic on C. There are

good heuristic arguments in favor of this conjecture, but it has not

been proved completely so far.2

With the help of our theorem we can obtain some information on

the problem even without the assumption that C is convex.

The process of "slipping over" can be replaced by a varying simple

closed curve Kt (0=^^=1) on C whose closed interior expands from a

point for Ko to the whole of C for Ki. This process can in turn be re-

placed by the shrinking of a surface B which contains C in its interior

to a point in the interior of C, if we replace the interior of Kt on C

by its image under a slight radial contraction towards a point P in

the interior of C, and the exterior of Kt on C by its image under a

slight radial dilation from P. We then connect the two pieces by the

necessary part of the cone through Kt with vertex P.

Thus we can rephrase the problem. Let B be a closed surface con-

taining the convex surface C. Let B be shrunk to a point so that

BtC\C is a rectifiable simple curve Kt, and let I be the maximum of

the length of Kt. Then what is the minimum of I for all possible con-

tractions Bt?

From our theorem we know that for every continuous transforma-

tion T of C into itself, Kt will have to pass through a point x and in-

tersect T(x) for some t. Thus the mapping into diametrically opposite

points proves Gustin's curves to be minimal for spheres and some

other centrally symmetric surfaces (such as right circular cylinders

and ellipsoids).

2 Added in proof. Schoenberg's conjecture has been proved by H. Busemann and

will appear in his book Convex surfaces, Interscience Publishers, New York.
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We may obviously restrict our attention to arbitrarily smooth sur-

faces C. For such surfaces we can define the continuous mapping T

which maps every point x into the set of points whose geodesic dis-

tance from x is no less than that of the nearest conjugate point of x.

Thus we obtain that / is no less than twice the distance between the

nearest conjugate points on C.

This investigation arose from a more special theorem of C. B.

Tompkins. We wish to thank Arnold Shapiro for valuable suggestions.
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