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The purpose of this paper is to prove a simple fixed point theorem
in Banach spaces, and to show its application in ergodic theory. The
theorem asserts the existence of a unique fixed point for affine transfor-
mations and the convergence of successive approximations to the fixed
point. In the special case of linear operators in L1 generated by point-
to-point nonsingular transformations, this fixed point theorem demon-
strates the existence and uniqueness of invariant measures and the
exactness of corresponding measurable dynamical systems. The theorem
thus gives a new tool for proving the exactness of some measurable
endomorphisms.

The paper is divided into four parts. In Section 1 an abstract version
of the fixed point theorem is proved. From the formal point of view
it remembles some known results of Edelstein [1]. The proof, however,
is based on ideas due to Pianigiani and Yorke [7]. Section 2 contains
the specialization of the fixed point theorem to the space ZΛ In Section
3 the general theory is examined in the case of expanding mappings of
differentiable manifolds and a new simpler proof of the well known
Krzyzewski-Szlenk theorem [5] is presented. In the proof once again the
ideas of Pianigiani and Yorke are used. Finally, Section 4 is devoted to
the study of a class of dynamical systems generated by piecewise convex
transformations.

1. Fixed point theorem. Let E, \\ || be a Banach space. A closed
convex set C(zE is said to be imbedded in V (VaE) if for each two
different points xlf x2eC the closed interval [0, 1] is contained in the
interior of the set {XeR: Xxx + (1 — λ)x2e V}. The distance between a
nonempty set C czE and a point x e E is defined, as usual by

p(x,C) = mf{\\x-y\\:yeC}.

A sequence {xn} c E converges to C (xn —• C) if urn,, p(xn, C) = 0. In

part icular xn—> xQ always s tands for \\xn — xQ\\ - + 0 .
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THEOREM 1. Let C be a compact convex subset of a Banach space E,
imbeded in a set V a E. Assume that an a fine trasformation U: E —> E
satisfies the following two conditions:

( 1 ) There exists a constant q such that \\Unx —Uny\\ ^ q\\x — y\\
for all x, y eE and all integers n > 0.

(2 ) The set {x: Unx -> C} is dense in V.
Then U has in V a unique fixed point x0. Further, xoeC and

( 3 ) limΛ U
nx — x0 for each x e V .

PROOF. From (1) it follows that Unx -* C for each xeV. Since C
is a compact set, {Unx) is relatively compact for xeV. Thus according
to the Kakutani Yosida ergodic theorem (see also Edelstein [1]) there
exists a limit of the sequence n~1^lzlUkx which is a fixed point of U.
The condition Unx —» C implies that any fixed point of U in V belongs to C.
It remains to prove (3). Let xQ e C be a fixed point and let xeV. Suppose
that (3) does not hold. Then there exists a subsequence {Ua%x} such
that \imnU

anx = xι Φ x0. Now let {jn} be a subsequence of {an} such that
βn z= yn — an -> co. From (1) it follows that

-U' +fi xW + \\Ur*x - xx\\

-U^xW + \\U^x -x±\\ .

Since {τw} is a subsequence of {αj, this implies lim,,?/^^ = xx. Now
consider the family of points xλ = (1 — X)x0 + λ^. Since x0 is a fixed
point of U, one has limw t/^α^ = (1 — X)x0 + XXί = ̂ . The limit belongs
to C whenever xλ 6 V and therefore the following implication is proved

(4) xλeV=^x,eC.

Define

λ0 = inf {λ: xλ GC} , λx = sup {λ: xλeC) , y0 = %x0 , y^ = α?̂  .

Notice that λ0 ̂  0, λj. ̂  1 and let yλ = (1 — X)y0 4- λi/i Now implication
(4) may be rewritten in the form

From the definition of y0 and y1 it follows that yλeC if and only if λ6
[0,1]. Consequently, since C is imbedded in V there is an open z/Z)[0,1]
such that yλe V for xeΔ. This in turn implies that yλeC for λezί
which is impossible according to the definition of y0 and yx.

2. Markov-Hopf processes. Let (X, Σ, m) be a measure space with
<7-finite measure m. A linear operator P: L1 -> U (L1 = L\X, m)) is called
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a Markov-Hopf process ([2], [3]) if it satisfies the following two conditions:
(a) Pf ^ 0 for / ^ 0, / e L\
(b) IIP/II = | | / | | for / ^ 0, feL\

where || || stands for the norm in ZΛ
Denote by D = D(X, m) the set of all densities, that is, all/ 6 L\X, m)

such that / ^ 0 and | | / | | = 1. From Theorem 1 follows immediately

COROLLARY 1. Let P:L1—>L1 be a Markov-Hopf process for which
there exists a convex compact set C imbedded in D and such that the
family {/: Pnf —> C) is dense in D. Then there exists a unique foeD
which satisfies Pf0 = fQ. Moreover limΛ Pnf = f0 for f efl.

The corollary is of special value for Markov-Hopf processes generated
by point-to-point transformations of the space X into itself. Let φ: X—*
X be measurable and nonsingular. The last condition means that
m(φ~\A)) = 0 whenever m(A) = 0 and AeΣ. The operator P99 corre-
sponding to <p, is defined by the formula

Pφf = (dldm)(μfoφ-1) , dμf = fdm .

Pψ is obviously a Markov-Hopf process. From the definition it follows
that μf is invariant under φ if and only if Pφf = f

Corollary 1 gives, therefore, a sufficient condition for the existence
and uniqueness of invariant measures for some nonsingular transforma-
tions. It will be shown below that it is also useful for proving the
exactness of some dynamical systems.

Let (X, Σ, μ) be a measure space with normalized measure μ (μ(X) = 1)
and let φ: X-> X be a measure preserving transformation. The dynamical
system (X, Σ, μ; φ) is called exact if the σ-algebra Π»=o Φ~n{Σ) contains
only sets of measure zero and their complements. Exactness is a strong
property, implying ergodicity and mixing of all orders. It is equivalent
[9] to the following condition: For each AeΣ such that φn(A) eΣ (n =
1,2, . . . ) ,

μ(A) > 0=*limnμ(?p*(A)) = 1 .

Using this definition it is easy to prove the following analog of M. Lin
condition:

PROPOSITION 1. Let (X, Σ, m) be a σ-finite measure space and let
φ: X—> X be a nonsingular tr an formation. If there exists fQeD(X, m)
such that \\mn P*f = /0 for each f eD, then the system (X, Σy μfo; φ)
is exact.

PROOF. First observe that for each f eD supported on a set A (/ =
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lAf), the function P*f vanishes outside of φn{A) {A, "-9φ
n(A) are as-

sumed to be measurable). In fact, write Bn = X\φn(A). Form the defi-
nition of Pψ it follows that

( P fdm = ( fdm = [ fdm .
JBn Jψ~n(Bn) JAθφ~n{Bn)

Since AΓ\φ~n(Bn) = 0 , the last integral is equal to zero. This proves
that Pφf vanishes on Bn. Now assume that μfo(A) > 0 and define fA =
lAfo/μ/o(A). Of course fAeD and consequently P?fA-+f0. From the
condition lφnu)P*fA = P$fA-*f0, it follows that V u ) / 0 ->/ 0 , and finally

μfo(φn(A)) = ( fodm = 1

The following result is a direct consequence of Corollary 1 and
Proposition 1:

THEOREM 2. Let φ: X—> X be a nonsίngular transformation of a
σ-finite measure space (X, Σ, m). Assume that there exists a convex
compact set C imbedded in D(X, m) such that the family {/: Pφf —> C} is
dense in D. Then there exists a unique normalized measure μ absolutely
continuous with respect to m and invariant under φ. The system
(X, Σ, μ\ φ) is exact and \\mn Pφf = dμ/dm for each f eD.

3. Expanding mappings. In this section M will always denote a
compact connected smooth (C°°) manifold equipped with a Riemannian
metric || ||. The metric induces on M the natural (Borel) measure m
and the distance p. A density / 6 D(M, m) will be called regular if there
is a constant c > 0 such that f(x) > 0 and | f(x) — f(y) \ ̂  cp(x, y) for
x, y eM. The regularity of / (see [7]) is defined by

R e g / = sup (I/'I//)
M

where \f\ is the length of the gradient of /. An important property
of regular densities is described by the following:

PROPOSITION 2. If f e D(M, m) is regular and Reg / ^ α, then

( 5 ) ke~ar ^ f(x) ̂  kear and | f(x) \ ̂  kear for x e M ,

where r = sup {p(x, y): x, y e M} and k — l/m(M).

PROOF. Let y(t) (0 ^ t ^ 1) be an arc joining the points x0 = 7(0)
and a?! = 7(1). The differentiation of f(j(t)) gives

(d/dt)f(y(t)) -

and consequently
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ί* f(x0)

According to the definition of r this implies f(xx) <; f(xo)ear for x0, xι e M.
Since / is a density, there is a point xeM such that f(x) = k. Sub-
stituting x0 = x and xx = x give the first inequality (5). The second follows
from the first one and the condition Reg / ^ a.

A C^-mapping φ: M-> M is called expanding if there exists a constant
λ > 1 such that at each point x e M the differential dφ(x) satisfies

(6) li^Wίll^λllίH

for each tangent vector ζ. The following theorem (proved in [5]) plays
a crucial role in the ergodic theory of expanding mappings.

THEOREM 3 (Krzyzewski, Szlenk). Assume that φ:M-+M is an ex-
panding mapping of class C2. Then there exists a unique normalized
measure μ absolutely continuous with respect to m and invariant under
φ. The system (M, μ, φ) is exact and the density f0 = dμ/dm is regular.
Moreover

(7) lim.P;/ = /0 for feD(M,m).

PROOF. Since dφ is nonsingular, for each point xeM there is a
neighbourhood Wx of x such that φ~\Wx) can be written as the union
of disjoint sets Vl9 , VN and φ restricted to Vt (i = 1, , N) is a
homeomorphism (from Vt onto Wx). Thus on Wx the operator P has an
explicit formula

- Σ
i

where ψt denotes the inverse function to φ\v.. Differentiation of Pφf
gives

l ( P f /yi

max, M i + max,

where Jt(x) = |Detd^ix) | . From (6) it follows that \\dφt\\ ^ 1/λ.
Therefore Reg Pφf ^ λ"1 Reg / + if, where ίΓ = supί)iC | J{(a?) I/Ĵ a;) and
consequently by induction Reg Pφf ̂  X~n Reg / + K(X — I)"1. Choose a
real α > UL/(X — 1). Then Reg Pφf ̂  a for sufficiently large n and, ac-
cording to Proposition 2, the sequence P*/ belongs to the set C =
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{g 6 D: ke~ar <; g <̂  kear, \g'\^ kear}. Since C is convex compact and imbedded
in D, this, in virtue of Theorem 2, finishes the proof.

REMARK 1. From the proof it follows that for each regular / the
sequence {Pφf} is relatively compact in the space of continuous functions
on M. Thus for such / the convergence in (7) is not only strong in L1

but also uniform.

4. Piece wise convex transformations. A real valued function g
defined on an interval Δ is convex if

g(ax + (1 — ά)y) ^ ag(x) + (1 — a)g(y) for x, y e Δ\ 0 ^ a <; 1 .

In general, the density of a measure invariant with respect to a piecewise
convex mapping is not differentiable (not even continuous) and the notion
of regularity is rather useless now. A somewhat analogous role will be
played by "positive variation":

V V = sup£(/(a*+i) ~ f(x<))+ (/: K b]-+R),

where z+ = max(0, z) and the supremum is taken over all possible par-
titions a = x0 < xx < - < xn = b. A simple but useful property of
densities (on the unit interval [0, 1]) with finite positive variation is
described by the following

PROPOSITION 3. Assume that f e D([0,1]) and

then

f(x) ^ (1 + oc)/x for x 6 (0, 1] .

PROOF. According to the definition of positive variation f(s) ^

f(x) - a for x ^ s. Hence 1 ^ (V(β)ds ^ Γ(/(a?) - a)ds ^ xf(x) - a.
Jo Jo

Let φ be a given transformation of the unit interval [0,1] into itself.
We shall assume that it satisfies the following conditions:

( i ) There exists a partition 0 = α0 < < aN = 1 such that for
each integer i (ί = 1, , N) the restriction φi of φ to the interval
\βi-u at) is continuous and convex.

(ii) φ%{fl^ = 0, φ'Afli^ > 1 for i = 1, , N.
(iii) φx([aQ, a,)) = [0, 1), sup^ί < oo.
From (ii) and the convexity of φt it follows that φ[{x) ̂  φ^a^) > 1

for all x e [at_u αj .
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The foregoing conditions are satisfied in particular for the ? -adic
transformations φ(x) = r#(modl) if r > 1. The existence of an absolutely
continuous invariant measure for these transformations was proved by
Renyi [8] and the exactness of the corresponding dynamical systems by
Rochlin [9].

The main result of this section is the following

THEOREM 4. // φ: [0, 1] -> [0, 1] satisfies (i)-(iii), then there exists a
unique normalized absolutely continuous measure μ invariant under φ.
The system ([0, 1], μf φ) is exact and the density fQ = dμ/dx is positive
(inf/o > 0), bounded and increasing. Moreover

; / = / 0 for feD([0,l]).

PROOF. A simple computation shows that the operator Pφ can be
written in the form

( 8 )

where

[<PT\x) , x e φAa^, at))

From (i) and (ii) it follows that the functions ψi are increasing, continuous
and differentiable except on a set of at most countable number of points.
At these points ψ[ is defined as the right hand derivative. The functions ψΊ
are decreasing and O^ψKx)^'1 with λ = min i^'(α ί_1)>l. Now consider
the set C = {g e D: d<*g(x)^K, g decreasing} where the numbers K^>δ^Q
will be defined later. It is obvious that C is a convex compact subset
of U imbedded in D. Thus in order to finish the proof it is sufficient
to show that P£f ~> C for each / e D of bounded variation. The proof
of this convergence depends upon the fact that the operator Pφ has the
property of shrinking the positive variation. From (8) it follows that

Since ψ[ are decreasing, one has

V+ Ψ'i(f°Ψi) £ (sup ψϊ) V+ foψt ^ λ-1 V+

0 0 α ΐ _ 1

and consequently

V+ Pof ^ λ-1 Σ V+ / = λ-1 V+ /
0 ί.=i o ί _ 1
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Finally, by induction

Choose a function / 6 D of bounded variation. For each ε > 0 there is
an integer nQ(ε) such that the sequence fn = P"f satisfies

(9) V + Λ ^ ε for n^no(ε).
0

Thus, according to Proposition 3, fn(x)^2/x for n ^ nx = no(l). This
inequality allows one to evaluate /w(0). In fact

Λ+i(θ) = PΨfM - f ί(0)/.(0) + Σ -

and by induction

Λ(0) ^ / Λ l ( 0 ) λ - ^ + if0 for w ^ n l f where JBΓ0 = 2(λ

From this and (9) it follows that fn(x) ^ /,(0) + Vl+fn ^ fni{0)X~n+nι +
Ko + 1 for w ^ wlβ Let K — Ko + 2. Then there is τι2 ^ tii such that

(10) fn(x) ^K ίov n^n2.

Now it is easy to evaluate fn from below. In fact fn+1(x) — PΨfn(x) ^
By induction this implies

(11) f n + r ( x ) ^ a r f n ( ψ l ( x ) ) f o r n ^ n 2 , r > 0 ,

where, according to (iii), a = inf ψj = 1/sup ^ί > 0. From (ii) it follows
that for sufficiently large r (r ^ r0) we have ^ί(#) ^ (4ίΓ)~1. It is easy
to see that fn(y) ^ 1/2 for ?/ <; (4UΓ)"1 and large î, namely n ^ nd =
n2 + nQ(l/i). In fact suppose not, then

Jy[
JO

which is impossible. Thus, for r = r0, inequality (11) implies

(12) fn(x) ^δ for n^n, = nz + r0

where <5 = αr°/2. Now write gn(x) = (1 — 0)sup{/Λ(s): a; ^ s ^ 1} +
θinf {fn(s): 0 <^ s ^ x} where θe[0, 1] and is chosen such that ||flrj| = 1.
From the definition it follows that gn is decreasing. According to (10)
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and (12), δ <; gn <> K for n ^ n±. Thus gn e C for n ^ w4. On the other
hand, from (9) it follows that sup \fn — # J <̂  ε for w ^ wo(e). This implies

™ C) ^ ε for w ^ wo(e) + w4 and finishes the proof of the convergence

REMARK 2. The existence of absolutely continuous invariant measures
for piecewise convex transformations has been proved in [4] and [6] under
weaker assumptions than (i)-(iii). In particular, Condition (iii) can be
fully omitted. In this case, however, little can be said about the ergodic
properties of corresponding dynamical systems.
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