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We give a general condition which enables one to easily establish fixed point theorems for
a pair of maps satisfying a contractive inequality of integral type.

Branciari [1] obtained a fixed point result for a single mapping satisfying an analogue
of Banach’s contraction principle for an integral-type inequality. The second author [3]
proved two fixed point theorems involving more general contractive conditions. In this
paper, we establish a general principle, which makes it possible to prove many fixed point
theorems for a pair of maps of integral type.

Define Φ= {ϕ : ϕ :R+ →R} such that ϕ is nonnegative, Lebesgue integrable, and sat-
isfies

∫ ε
0
ϕ(t)dt > 0 for each ε > 0. (1)

Let ψ :R+ →R+ satisfy that
(i) ψ is nonnegative and nondecreasing on R+,

(ii) ψ(t) < t for each t > 0,
(iii)

∑∞
n=1ψ

n(t) <∞ for each fixed t > 0.
Define Ψ= {ψ : ψ satisfies (i)–(iii)}.
Lemma 1. Let S and T be self-maps of a metric space (X ,d). Suppose that there exists a
sequence {xn} ⊂ X with x0 ∈ X , x2n+1 := Sx2n, x2n+2 := Tx2n+1, such that {xn} is complete
and there exists a k ∈ [0,1) such that

∫ d(Sx,Ty)

0
ϕ(t)dt ≤ ψ

(∫ d(x,y)

0
ϕ(t)dt

)
(2)

for each distinct x, y ∈ {xn} satisfying either x = Ty or y = Sx, where ϕ∈Φ, ψ ∈Ψ.
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Then, either
(a) S or T has a fixed point in {xn} or
(b) {xn} converges to some point p ∈ X and

∫ d(xn,p)

0
ϕ(t)dt ≤

∞∑
i=n
ψi(d) for n > 0, (3)

where

d :=
∫ d(x0,x1)

0
ϕ(t)dt. (4)

Proof. Suppose that x2n+1 = x2n for some n. Then x2n = x2n+1 = Sx2n, and x2n is a fixed
point of S. Similarly, if x2n+2 = x2n+1 for some n, then x2n+1 is a fixed point of T .

Now assume that xn �= xn+1 for each n. With x = x2n, y = x2n+1, (2) becomes

∫ d(x2n+1,x2n+2)

0
ϕ(t)dt ≤ ψ

(∫ d(x2n,x2n+1)

0
ϕ(t)dt

)
. (5)

Substituting x = x2n, y = x2n−1, (2) becomes

∫ d(x2n+1,x2n)

0
ϕ(t)dt ≤ ψ

(∫ d(x2n,x2n−1)

0
ϕ(t)dt

)
. (6)

Therefore, for each n≥ 0,

∫ d(xn,xn+1)

0
ϕ(t)dt ≤ ψ

(∫ d(xn−1,xn)

0
ϕ(t)dt

)
≤ ··· ≤ ψn(d). (7)

Let m,n∈N, m> n. Then, using the triangular inequality,

d
(
xn,xm

)≤ m−1∑
i=n

d
(
xi,xi+1

)
. (8)

It can be shown by induction that

∫ d(xn,xm)

0
ϕ(t)dt ≤

m−1∑
i=n

∫ d(xi,xi+1)

0
ϕ(t)dt. (9)

Using (7) and (9),

∫ d(xn,xm)

0
ϕ(t)dt ≤

∞∑
i=n
ψi(d)≤

∞∑
i=n
ψi(d). (10)

Taking the limit of (10) asm,n→∞ and using condition (iii) for ψ, it follows that {xn}
is Cauchy, hence convergent, since X is complete. Call the limit p. Taking the limit of (10)
as m→∞ yields (3). �
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Theorem 2. Let (X ,d) be a complete metric space, and let S, T be self-maps of X such that
for each distinct x, y ∈ X ,

∫ d(Sx,Ty)

0
ϕ(t)dt ≤ ψ

(∫M(x,y)

0
ϕ(t)dt

)
, (11)

where k ∈ [0,1), ϕ∈Φ, ψ ∈Ψ, and

M(x, y) :=max
{
d(x, y),d(x,Sx),d(y,Ty),

[
d(x,Ty) +d(y,Sx)

]
2

}
. (12)

Then S and T have a unique common fixed point.

Proof. We will first show that any fixed point of S is also a fixed point of T , and conversely.
Let p = Sp. Then

M(p, p)=max
{

0,0,d(p,Tp),
d(p,Tp)

2

}
= d(p,Tp), (13)

and (11) becomes

∫ d(p,Tp)

0
ϕ(t)dt ≤ ψ

(∫ d(p,Tp)

0
ϕ(t)dt

)
, (14)

which, from (1), implies that p = Tp.
Similarly, p = Tp implies that p = Sp.
We will now show that S and T satisfy (2).

M(x,Sx)=max
{
d(x,Sx),d(x,Sx),d(Sx,TSx),

[
d(x,TSx) + 0

]
2

}
. (15)

From the triangular inequality,

d(x,TSx)
2

≤
[
d(x,Sx) +d(Sx,TSx)

]
2

≤max
{
d(x,Sx),d(Sx,TSx)

}
. (16)

Thus, (11) becomes
∫ d(Sx,TSx)

0
ϕ(t)dt ≤ k

∫ d(Sx,TSx)

0
ϕ(t)dt, (17)

a contradiction to (1).
Therefore, for all x ∈ X , M(x,Sx) = d(x,Sx), and (2) is satisfied. If condition (a) of

Lemma 1 is true, then S or T has a fixed point. But it has already been shown that any
fixed point of S is also a fixed point of T , and conversely. Thus S and T have a common
fixed point.

Suppose that conclusion (b) of Lemma 1 is true. Then, from (3),

∫ d(Sx2n,Tp)

0
ϕ(t)dt ≤ ψ

(∫ d(x2n,p)

0
ϕ(t)dt

)
, (18)

which implies, since X is complete, that limd(Sx2n,Tp)= 0.
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Therefore,

d(p,Tp)≤ d(p,Sx2n
)

+d
(
Sx2n,Tp

)−→ 0, (19)

and p is a fixed point of T , hence a fixed point of S. Condition (11) clearly implies unique-
ness of the fixed point. �

Every contractive condition of integral type automatically includes a corresponding
contractive condition not involving integrals, by setting ϕ(t)≡ 1 over R+.

There are many contractive conditions of integral type which satisfy (2). Included
among these are the analogues of the many contractive conditions involving rational ex-
pressions and/or products of distances. We conclude this paper with one such example.

Corollary 3. Let (X ,d) be a complete metric space, S and T self-maps of X such that, for
each distinct x, y ∈ X ,

∫ d(Sx,Ty)

0
ϕ(t)dt ≤ k

∫ n(x,y)

0
ϕ(t)dt, (20)

where ϕ∈Φ, k ∈ [0,1), and

n(x, y) :=max

{
d(y,Ty)

[
1 +d(x,Sx)

]
1 +d(x, y)

,d(x, y)

}
. (21)

Then S and T have a unique common fixed point.

Proof.

n(x,Sx)=max
{
d(Sx,TSx),d(x,Sx)

}
. (22)

As in the proof of Theorem 2, it is easy to show that any fixed point of S is also a fixed
point of T , and conversely.

If n(x,Sx)= d(Sx,TSx), then an argument similar to that of Theorem 2 leads to a con-
tradiction. Therefore n(x,Sx)= d(x,Sx), and either S or T has a common fixed point, or
(3) is satisfied. In the latter case, with limxn = p, n(p, p) = 0, so that, from (20), p is a
fixed point of S, hence of T . Uniqueness of p is easily established.

Corollary 3 is also a consequence of Lemma 1.
We now provide an example, kindly supplied by one of the referees, to show that

Lemma 1 is more general than [2, Theorem 3.1].

Example 4. Let X := {1/n : n∈N∪{0}}with the Euclidean metric and S, T are self-maps
of X defined by

S
(

1
n

)
=




1
n+ 1

if n is odd,

1
n+ 2

if n is even,

0 if n=∞,

T
(

1
n

)
=




1
n+ 1

if n is even,

1
n+ 2

if n is odd,

0 if n=∞.

(23)
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For each n, define x2n+1 = Sx2n, x2n+2 = Tx2n+1. With x0 = 1, let O(1) denote the orbit
of x0 = 1; that is, O(1) = {1,1/2,1/3, . . .} and O(1) = O(1)∪ {0} = X . For x, y ∈ O(1),
y = 1/m, m even and x = 1/n= Ty = 1/(m+ 1), Sx = 1/(m+ 2), so that

d(Sx,Ty)=
∣∣∣∣ 1
m+ 1

− 1
m+ 1

∣∣∣∣= 1
m+ 1

− 1
m+ 2

= 1
(m+ 1)(m+ 2)

,

d(x, y)=
∣∣∣∣1
n
− 1
m

∣∣∣∣=
∣∣∣∣ 1
m+ 1

− 1
n

∣∣∣∣= 1
m
− 1
m+ 1

= 1
m(m+ 1)

.
(24)

Thus

d(Sx,Ty)
d(x, y)

= m

m+ 2
≤ 1. (25)

Also

sup
n∈N

d(Sx,Ty)
d(x, y)

= 1, (26)

so that there is no number c ∈ [0,1) such that d(Sx,Ty) ≤ cd(x, y) for x, y ∈ O(1) and
x = Ty. Therefore, [2, Theorem 3.1] cannot be used. On the other hand, the hypotheses
of Lemma 1 are satisfied. To see this, it will be shown that condition (2) is satisfied for
some ϕ∈Φ.

We will first show that for any x = 1/n, y = 1/m ∈ O(1) satisfying either x = Ty or
y = Sx,

d(Sx,Ty)≤
∣∣∣∣ 1
n+ 1

− 1
m+ 1

∣∣∣∣. (27)

There are four cases.

Case 1. y = 1/m, m even, x = 1/n= Ty = 1/(m+ 1), and Sx = 1/(m+ 2). Then

d(Sx,Ty)=
∣∣∣∣ 1
m+ 2

− 1
m+ 1

∣∣∣∣=
∣∣∣∣ 1
n+ 1

− 1
m+ 1

∣∣∣∣. (28)

Case 2. y = 1/m, m odd, x = 1/n= Ty = 1/(m+ 2), and Sx = 1/(m+ 3). Then

d(Sx,Ty)=
∣∣∣∣ 1
m+ 3

− 1
m+ 2

∣∣∣∣= 1
m+ 2

− 1
m+ 3

≤ 1
m+ 1

− 1
m+ 3

=
∣∣∣∣ 1
n+ 1

− 1
m+ 1

∣∣∣∣.
(29)

Case 3. x = 1/n, n even, y = 1/m= Sx = 1/(n+ 2), and Ty = 1/(n+ 3). Then

d(Sx,Ty)=
∣∣∣∣ 1
n+ 2

− 1
n+ 3

∣∣∣∣= 1
n+ 2

− 1
n+ 3

≤ 1
n+ 1

− 1
n+ 3

=
∣∣∣∣ 1
n+ 1

− 1
n+ 3

∣∣∣∣.
(30)
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Case 4. x = 1/n, n odd, y = 1/m= Sx = 1/(n+ 1), and Ty = 1/(n+ 2). Then

d(Sx,Ty)=
∣∣∣∣ 1
n+ 1

− 1
n+ 2

∣∣∣∣=
∣∣∣∣ 1
n+ 1

− 1
m+ 1

∣∣∣∣. (31)

Thus in all cases, (20) is satisfied.
Define ϕ by ϕ(t)= t1/2−2[1− log t] for t > 0 and ϕ(0)= 0. Then, for any τ > 0,

∫ τ
0
ϕ(t)dt = τ1/τ , (32)

and ϕ∈Φ.
Using [1, Example 3.6],

∫ d(Sx,Ty)

0
ϕ(t)dt ≤ d(Sx,Ty)1/d(Sx,Ty)

≤
∣∣∣∣ 1
n+ 1

− 1
m+ 1

∣∣∣∣
1/|(1/n+1)−(1/m+1)|

≤ 1
2

∣∣∣∣1
n
− 1
m

∣∣∣∣
1/|(1/n)−(1/m)|

= d(x, y)1/d(x,y)

(33)

for each x, y as in Lemma 1, and condition (2) is satisfied with ψ(t)= t/2. �
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