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The Schauder-Tychonoff theorem states that a continuous function from a

compact convex subset of a locally convex topological vector space into itself must

have a fixed point ([1, Chapter V, 10.5], or [2]). Using this theorem, we obtain here a

stronger result, stating that a map from such a set into the surrounding vector space

has a fixed point if the directions in which the points are moved satisfy a certain

"inwardness" condition.

It follows immediately that a symmetrical "outwardness" condition also implies

the existence of a fixed point. We find also that under the latter condition the image

of the map necessarily includes the original set!

1. Definitions. Let A' be a topological vector space, and F a compact convex

subset of X.

We shall call a map F:K^X "inner" if F(K)cK

Given x e K, let us define the "inward set" of x with respect to K as the set of

points of the form (1 — a)x+ay, for y e K, a ^ 0. It can be thought of as the union of

all rays originating at x and drawn so as to pass through some other point y of K

For zeK, j=x, a necessary and sufficient condition for z to lie in the inward set

of x is that the line segment connecting x and z meet F in some point other than x.

A map F:K^-X will be called "inward" if for all xeK, F(x) belongs to the

inward set of x. The class of inward maps clearly includes the class of inner maps.

Similarly, the "outward set" of x with respect to F will mean the set of points

(1 — a)x+ay for y e Fand (N.B.) a£0, and Fwill be called outward if F(x) always

belongs to the outward set of x.

The "weakly inward" and "weakly outward" sets of a point x will be defined

as the closures of the inward and outward sets of x, respectively. "Weakly inward"

and "weakly outward" maps will mean maps taking every x to a member of the

appropriate set.

We note that if F is a (weakly) inward map, then the map x\-^2x—F(x) is

(weakly) outward, and conversely. Also, x is a fixed point of one map if and only if

it is a fixed point of the other. Hence fixed-point results for (weakly) inward maps
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are equivalent to such results for (weakly) outward maps. We shall derive our

results by considering maps of the former type.

2. The strictly-convex-normed case. Suppose that the X considered above is a

strictly convex normed linear space. Then to every point y e X there corresponds

a unique point NK(y) e K whose distance to y is minimal. The function NK so

defined is a continuous retraction of X onto K.

Given xeK, let us define the "normal-outward set of x" to be the set of points

y^x such that NK(y)=x.

Given any xeK, the weakly-inward set of x and the normal-outward set of x

are disjoint. To show this, we must find, given y in the normal-outward set of x,

a neighborhood of y containing no members of the inward set of x. We claim that

the open ball of radius ||x-j|| about y has this property. For, given z in this ball,

all points of the segment joining z and x, other than x itself, belong to this ball,

and hence are nearer to y than x is. Since x is the point of K nearest to y, no point

of this segment can belong to K, hence z is not in the inward set of x.

Let us call a map F: K-> X "nowhere normal-outward" if F(x) belongs to the

normal-outward set of x for no x. It is clear from the above that the class of maps

so defined includes the weakly inward maps.

Theorem 2.1. Let X be a strictly convex normed linear space, Ka compact convex

subset of X, and Fa nowhere normal-outward map from K into X. Then F has a fixed

point.

Proof. NKF is a continuous map of K into itself. Hence by the Schauder-Tycho-

noff theorem, there exists x in K such that NKF(x)=x. Looking at the definition

of the "normal-outward set of x", we see that F(x) must belong to that set unless

F(x) = x. Hence F(x) = x.    |

3. The case X=Rco, and a Fibering Lemma. Let Rx designate the space of all

sequences x=(xx, x2,...) of real numbers, with the product topology. Let

Pi : Ä°° -> R be the /th-coordinate map.

Lemma 3.1. Let K be a compact convex subset ofR", and Fa weakly inward map

from K into Ä™. Then F has a fixed point.

Proof. Suppose F has no fixed point. Then the sets Ut = {x e K \ PiF(x) ¥"Pi(x)}

cover K, hence some finite number of them—say Ux,..., Un—cover K. Thus the

function supi=i.n\piF(x)-pi(x)\ is nowhere zero, hence is bounded away from

zero. We can clearly assume it is everywhere ^ 1.

By the assumption that F is weakly inward, we can, for every xeK, find y e K

and a^O, such that the first n coordinates of u(x) = (l — a)x+ay differ from those

of F(x) by less than 1/2". Now it is clear that the y and a chosen for a given x

will work for all x' in a neighborhood of x in K. Hence by compactness of K, we

can handle all points of K by choosing y and a from some finite set; u can thus be
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chosen as a function which, though not necessarily continuous, will take on all its

values in a compact set. Hence for each i> 0, we can find a real number 5¡ such that

VxgF, \pi(x)\ <B¡, |p¡F(x)| <Fi; and \pi(F(x)-u(x))\ <F¡. Multiplication of each

coordinate by an independent constant is a linear homeomorphism on F", hence

preserves all the structure we are considering. Consequently, we may assume

F(^2_i for all />«. (We have already put conditions on the first « coordinates.)

Now let H designate the space of all F2 (square-summable) sequences of real

numbers under the F2 norm—a vector subspace of Rx, but with a stronger topol-

ogy. Let B be the set of all x = (xx, x2,...) such that Vi \x{\ ̂ F¡. B lies in H, and

it is easily shown that the Rx and Tf-topologies agree on B. Hence F is a compact

convex subset of Ff and Fis continuous in the topology of H.

We note that for all x e K, u(x) is at a distance less than 1 from F(x), since

\pl(u(x) — F(x))\ < 1/2* (for i both ^« and >«). On the other hand, F(x) is at a

distance at least 1 from x (see first paragraph). Hence u(x), a point on a ray drawn

from x, through some other point of K, is nearer to F(x) than x is. Some point on

the line segment between x and u(x) will both be closer to F(x) than x is and be in

K. Hence x is not the point of F nearest F(x). So F is a nowhere normal-outward

map without a fixed point, contradicting Theorem 2.1.

We shall obtain our most general form of the fixed-point theorem from the

above by the Fibering Lemma and the corollary below. (This is a strengthened form

of the argument used in the Dunford-Schwartz lemma [1, Chapter V, 10.4]—the

analogous step in the proof of the Schauder-Tychonoff theorem.) Note that our

lemma merely requires F to be Lindelöf (every open covering has a countable

subcovering), though in the case we are interested in, it is compact.

Lemma 3.2 (Fibering Lemma). Let Xbea topological vector space whose topology

is induced by linear functionals, let Kbea Lindelöf subset ofX, and let F: K -> X be a

continuous map. Then, given any countable family G0 of continuous linear functionals

on X, there is a continuous linear mapp : X -> J?", anda continuous map F' : p(K)-+R'°

such that:

(1) F'p=pF,
(2) For eachfe G0 there exists anfi : F°° -*■ R such thatf=f'p.

Proof. We shall first show that any continuous real-valued function g on F is

(in a sense to be made clear) "continuously determined" by a countable family of

continuous linear functionals of X.

Given g we can, by the Lindelöf assumption, find for each e > 0 a countable

covering of K by open sets (Ua)aeAe, such that for each a in the index-set Ae, and

x, x' e Ua, \g(x)-g(x')\ <£. By the assumption on the topology of X, each Ua

can be assumed of the form

{x g F I faX(x) e (aaX, baX),..., fma(x) e (aana, banJ}

where the fai are continuous linear functionals on X, and the aai < bal are real

numbers.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



356 B. R. HALPERN AND G. M. BERGMAN [February

Let A be the union of index-sets Ax U ^4i/2 U Axli u • • •. Then it follows from

our  construction that g  is  a  continuous  function  of the  family  of maps

(/«iLá,i=i.n„- Le., g can be written g0f, where / is the product map of the

fai, sending Zinto ä««.»!«6^'^,,^ and g0 is a continuous function on f(K), as we

desired.

We are given a set of functionals G0; for j>0 let us, inductively, make G¡ a

countable family of linear functionals which, for every feGj-x, "continuously

determines" fF. Let G={J?=0 G„ which we can reindex (/)¡=i,2,..., since it is

countable. (If G is finite, we let/ = 0 for large /.) Let/?: Z-> R°° be the product of

this family of maps. It is clear from our construction that for all /,/Fis continuous

determined by p, thus pF is continuously determined by p, i.e., we can write

pF=F'p, where F' is continuous. On the other hand, for every/g G0,/will equal

some/; letting/' be the ith projection map we have/=/'/>.    |

Corollary 3.3. Lemma 3.2 still holds if the hypothesis "the topology of X is

determined by linear functionals," is replaced by "linear functionals distinguish

points of X, and K has compact closure."

Proof. Let X' designate X with the topology induced by the continuous linear

functionals. Since the closure of K is compact in X, the closure of K, and hence K

itself, has the same topology in X' as in X. Hence continuous maps on K remain

continuous in the X' topology; and we get our results by applying Lemma 3.3

in X'.    |

4. The general fixed-point theorems.

Theorem 4.1. Let Xbea topological vector space such that continuous linear func-

tionals distinguish points. Let K be a compact convex subset of X, and F: K -> X a

weakly inward map. Then F has a fixed point.

Proof. Given any continuous linear functional fonX let Sf be the set of x e K

such that fF(x) =f(x). We claim that any finite intersection of the sets Sf is non-

empty.

Indeed, given any finite set, G0, of such functionals, we apply Corollary 3.3, getting

maps/?: X-^RX and F' : p(K) ^ Rm. The setp(K) is compact and convex. Further,

F' is weakly inward, for it is easy to see that the property of lying in the weakly

inward set of a point is preserved under continuous linear maps of the vector

space.

So by Lemma 3.1, F' has a fixed point p(z), z e X. We claim that z e P)0o Sf.

For given any/e G0, we compute

fF(z) =f'pF(z) =f'F'p(z) =f'p(z) =/(z).

It follows from the compactness of K that the intersection of the sets Sf over all

linear functionals / is nonempty. Clearly, a point in this intersection is a fixed

point of F.   |
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Figure 1

Given a map F on a compact convex set F in a topological space X, let us call a

coset C of a closed subspace of A' a nonempty section of F if C n K^ 0 ; and let us

call it an invariant section if F(C n fy^C. The proof in Dunford-Schwartz [1]

of the general case of the Schauder-Tychonoff theorem makes use of the fact that

the inverse image of a fixed point under a fibering is a nonempty invariant section,

and that if C is a nonempty invariant section and F is an inner map, then

(F | K n C): (K n C) -»• C is again an inner map. (Zorn's lemma is then used.)

The latter result also holds for inward maps, but not for weakly inward maps !

In fact, for F weakly inward, a nonempty invariant section need not contain a

fixed point. For example, let F be the disc x2 + (y-1)2 ^ 1 in the xy-plane, and let

F send the point (x, y) to the end of the clockwise segment of length'>>/2 tangent

to F at the point ((1 — (y— l)2)1'2, y). Then y = 0 and y = 2 are both invariant sec-

tions, but only y = 0 has a fixed point. (See Figure 1.)

,(*

Figure 2
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It was this observation that forced us to look, not at sets based on an arbitrary

choice, but sets such as the S/s which cannot exclude any potential fixed points.

Lemma 4.2. Suppose a compact convex subset K of a topological vector space X

contains the point 0. Then the outward set of any point x is closed under multiplication

by constants c>l. Hence so is the weakly outward set.

(Proof. See Figure 2, where z=(l— a)x+ay (a<0) is an arbitrary point of the

outward set of x. The reader can easily supply the numerical argument, getting cz

in the form (1 -a')x+ay'.   |)

Theorem 4.3. Let X be a topological vector space such that continuous linear

functionals distinguish points. Let K be a compact convex subset of X, and F: F—>- X

a weakly outward map. Then :

(1) F has a fixed point,

(2) F(K)^K.

Proof. (1) is clear from Theorem 4.1 and our original discussion of the

relationship between "inwardness" and "outwardness" conditions.

To show (2), let us suppose the contrary. Clearly, we can assume that 0 is a

point of F— F(K). The complement U of F(K) is a neighborhood of 0, so we can

choose c> 1 such that cU=>K. Then cF(K) is disjoint from F, and so the map cF

can have no fixed points. But, by Lemma 4.2 it is clear that cF is weakly outward.

Contradiction.
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