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A FIXED POINT THEOREM-FREE APPROACH TO

WEAK ALMOST PERIODICITY

BY

WILLIAM A. VEEOK1)

ABSTRACT.     In this paper we present a generalization of the Eberlein, de Leeuw

and Glicksberg decomposition theorem for weakly almost periodic functions which

does not rely on any fixed point theorem for its proof.   A generalization of the

Ryll-Nardzewski fixed point theorem is given.

1.   Introduction.   In the present note we generalize certain results pertaining

to the theory of weakly almost periodic functions, such as the Eberlein decompo-

sition theorem  [4] (in the general form given to it by de Leeuw and Glicksberg [2])

and the Ryll-Nardzewski fixed point theorem [18].   One feature of our approach is

that the decomposition theorem is obtained without recourse to the Ryll-Nardzewski

(or any other) fixed point theorem.   We begin with some notations and standard

definitions.

A flow  (2, X) consists of a semigroup  2, a topological space  X, and a homo-

morphism from 2 to the semigroup of continuous maps from X to X (in which

composition of maps is the binary operation).   As is customary, we suppress the

homomorphism and write simply   ax for the image of x £ X under (the image of)

0" £ 2.   If   [| is a uniformity compatible with the topology of  X,  we can speak of

(2, X) being distal relative to   U.   This means for every pair x, x   £ X, x / x ,

there exists   U eu such that  iox, ax') 4 U, a e 2.   If the uniformity is understood

or unique (as in the case of  X compact Hausdorff) we say simply that   (2, X) is

distal.   If   LI is defined by a metric   D( • , • ), then distality relative to   U is equiv-

alent to  infaeSDiax,   ax ) > 0 for  x / x'.

If  (2, X) is distal with  X compact Hausdorff, there is an associated object

F = E(2, X), called the Ellis group.   To construct  E,  let   2 (or more correctly

the image of   2) be regarded as a subset of the Tychonoff compact space   X   ,  and

define   E to be the closure of   2 in this space.   E  is a subgroup of the semigroup

X     because   (2, X) is distal.   (Ellis   [6];  there   2 is assumed to be a group, but

as pointed out in  [16] the arguments use only the semigroup property.)   It follows
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in particular that each  a e S is onto and therefore a homeomorphism.   Letting  2

be the subgroup of  E generated by  2, we have that  (2 , X) is a distal flow with

Ellis group E.   Below we give two consequences of these remarks.

1.1  Lemma.    Let  (2, X) be a distal flow with X compact Hausdorff.   X sup-

ports a regular Borel probability measure invariant under the transformations of 2.

Proof.   This follows from the existence of an invariant measure for  (2 , X)

([8], [7]).

1.2 Lemma.   Let  (2, X) and 2   be as above, and let  2n C 2   be the set of
*

transformations of the form o~~   , a £ 2.   For each x £ X,   2x and 2nx  have the

same closure (namely  Ex).

Proof.   2Q is a subsemigroup of  2   which generates   2   and therefore

E(2Q, X) = E(2 , X) = E(2, X).   The claim follows now because closure  (2Qx) =

E(2*0, X)x = E(2, X)x = closure   (2x).

Finally, recall that a flow   (2, X) is minimal if   2x is a dense subset of  X

for every  x £ X.

2. Flows on bitopological spaces. One often encounters a semigroup acting

on a space which has two "natural" topologies. Our results are based on simple

comparisons of dynamical properties of the flows in the competing topologies. We

remark that our application of the Baire category theorem to obtain the set C be-

low with certain continuity properties is not new (we were unaware of this at the

time [19] was written). Compare with [15]. So far as we know, the results them-

selves are new.

2.1  Lemma.   Let X  be a space with topologies  r    and r    such that

(a) (X, r.) is compact Hausdorff.

(b) (X, r )  is metrizable with compatible metric D( ■ , ■ ).

(c) For each x £ X,  D(x,  ■ ) is  r    continuous at all points of a r    residual

set.

(d)   X has a countable r    dense subset.

Let  (2, X) be a ¡low on the discrete space  X,  and assume

(i)   (2, X, r.) z's a minimal flow.

(ii)   (2, X, D) is a distal flow.

Then (2, X, r.) is a distal flow.

Proof.   Let x., x2, ... be  z"2 dense, and define, for each  n,  <f> (x) = D(x, x^).

If  C    is the  fj residual set of points of  r^ continuity for <p , define C = fl~_1Cn.

C / 0 by the Baire category theorem.   We will show D(x, • ) is  r^   continuous at

x for every x £ C.   To this end fix  e > 0 and let n be such that D(x, x  ) < e/3.
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Since x £ C, there exists a r}  neighborhood  W of x such that   \cßniw) - cß (x)| <

f/3, w £ W.   By the triangle inequality  D(x, z^) < e, îx1 eW.   Now suppose  x, x' are

t.   proximal.   This means there exists a net  {ay\ in  2 and  y £ X such that

7"j-lim„o-j^x = y = Tylita.vavx .   Since   (2, X, 7j) is minimal, we may suppose  y £ C.

Therefore,   limvDiavx, avx ) = 0,  which by the assumed  D-distality implies x = x .

The lemma is proved.

2.2 Proposition.   Let the hypotheses of Lemma 2.1 hold with (d) and (i)

replaced by

(d )   The  r,   closure of every countable subset of X  has a countable  t    dense

subset.

(i )   (2, X, r.) z's a flow (we do not assume minimality).

Then  (X, r.) supports a regular Borel invariant probability measure.

Proof.   Let  2Q C 2 be a countable subsemigroup, and let  XQ C X be a  r^

closed set such that  (20, X Q, r^) is minimal.   (The existence of  XQ is a well-

known consequence of Zorn's lemma.)   XQ has a countable  fj dense subset,

namely  2Qx for any x eXQ, and therefore (d) is true for  (XQ, r2).   It follows by

Lemma 2.1 that  (2Q, XQ, r^) is distal, and therefore, by Lemma 1.1,  (XQ, r}) sup-

ports a  2Q invariant probability measure which we denote by /t(2n).   The collec-

tion  ift(20)|20 C 2 a countable subsemigroup! is a net if the  20's  are ordered by

inclusion, and if p is the limit of a weak- convergent subnet,  p   is the desired

measure.   The proposition is proved.

2.3 Proposition.    Let the hypotheses of Lemma 2.1 hold with (a) and (d)

replaced by

(a )   (X, r ) is homeomorphic to a weakly compact subset of Banach space B.

((X, 7j)  z's an "Eberlein compact".)

(d )   As in Proposition 2.2.

Then  (X, rA  is metrizable, and (2, X, r A  is distal.

Proof.   If   (X, 7j) is metrizable, then  X has a countable   r^ dense subset,

and so, by (d ),  X has a countable   r    dense subset.   Distality is then a conse-

quence of Lemma 2.1.   We have left to prove metrizability.   By Proposition 2.1,

(X, 7-j) supports an invariant Borel probability measure  p, which, by minimality,

must assign positive measure to every nonempty  r.   open set.   Thus,  (X, r.)

satisfies the "countable chain condition", meaning X does not contain an un-

countable collection of pairwise disjoint, nonempty, t    open sets.   Corollary 4.6

of  [17] asserts that a weakly compact subset of a Banach space is weakly met-

rizable if it satisfies the countable chain condition, and so we are done.   (The

existence of  p makes the full strength of Rosenthal's theorem unnecessary.   For

the unit ball of   L   iu) is a weakly compact weak- total set   L  of the dual of
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C(X, 7j) and by Proposition 1 of  [l ] C(X, r^) contains a weakly compact total set

X which in particular is point separating on  X.   By the Dunford-Pettis property

[il]  X, regarded as a subset of  C(L), is norm compact, hence norm separable, and

therefore   X is weakly separable (hence norm separable in   C(X)), and this implies

(X, 7j) is metrizable.   Rosenthal proves in  [13, Theorem 4-5] that a compact space

X satisfies the countable chain condition if and only if every weakly compact sub-

set of  C(X) is norm separable.)

2.4 Theorem.   Let B  be a conjugate Banach space equipped with a weak-

topology r  , and let r^  be the norm topology.   Let D(x, y) - ||x — y||, x, y £ B,

where   ||  • ||   z's the norm on B.   Suppose   2 is a semigroup of bounded r    continuous

linear operators on B,  and let X C B be a r.   compact,  2-invariant set.   If the

assumptions (d ) and (ii) of Proposition 2.2 are valid for  2, X, r., r      and D,   the

weak-    closed convex hull of X contains a fixed point for 2.

Proof., Conditions (a), (b), (d ), (i ), and (ii) are automatically satisfied.   For

each x eX, D(x, • ) is  r^  lower semicontinuous and therefore continuous at the

points of a r.  residual subset of X.   It follows from Proposition 2.2 that  (X, r.)

supports a   2-invariant probability measure  p, and the desired fixed point is  xQ =

xjxfi(dx), the integral being taken in the weak-    sense.

2.5 Corollary.    Let X  be a weakly compact subset of a Banach space  B,  and

let  2 be a semigroup of bounded linear operators on B  which leaves  X  invariant.

If 2  is norm distal on X,   the weakly closed ( = 7207-?72 closed) convex hull of X

contains a fixed point for 2.

Proof.   Condition (d ) is automatic here because, by the Banach-Mazur theorem,

the weak closure of a countable set is norm separable.   Theorem 2.4 (or Proposi-

tion 2.2 of course) applies directly because we can regard  X, B as subsets of the

bidual  B     , where the weak- topology on  X is simply the original weak topology.

Remark.   If  X  is also convex, Corollary 2.5 is just the Ryll-Nardzewski fixed

point theorem (for Banach spaces).   Our fixed point theorem stands to that of Ryll-

Nardzewski as Namioka's fixed point theorem [16, Theorem 4.3] stands to Hahn's

fixed point theorem [12].

2.6 Lemma.   Let the assumptions of Lemma 2.1 be strengthened by

(ii )   (2, X, D)  is equicontinuous and distal.

Then r. = r     and in particular (2, X, r.) is equicontinuous.

Proof.   Let   C be the set constructed in Lemma 2.1.   Given  e > 0,  choose

8 > 0 so that if D(x, x') < ¿5, then  D(ox, ax') < e for all a £ 2.   Choose  y £ C,

and let  W be a  r^  neighborhood of  y on which  D(y, w) < 8/2  (see the proof of

Lemma 2.1).   If  w, w   £ W,  then  D(w, w') < ¿5 by the triangle inequality.   By
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Lemma 2.1 and the discussion preceding Lemma 1.1 each  a £ 2 is one-one onto.

Let   2q = {a~   \a £ 2|.   If x £ X, the fact that   2x  is   r^ dense implies, by Lemmas

2.1 and 1.2, that  2Qx is r1 dense.   In particular, there exists À e 20 with Ax £W.

The definition of  2Q therefore implies  jffW|cr £ 2| is an open cover of  X, and so

there exist  a., ■ • • , a   £ 2 such that X = OyW U • • • u a W.   The choice of 8 and

W implies   a.w, • ■ ■ , aw is an e-net for any w £ W.   Thus  (X, D) is totally bound-

ed.   We will prove   (X, D) is complete and that the identity map is continuous from

(X, D) to  (X, 7"j).   Both statements are a consequence of the following:  Let  {y  \

be a  D-Cauchy sequence, and let z be a  t    cluster point of |y  I.   Then

lim  _ocPiy , z) = 0.   To see this suppose   e, ¿5, and   W ate as above, and let  X =

o~    £ 20 be such that Xz £ W.   Infinitely often we have  Xy    £ W, and for each

such  Diy , z) = DioXy  , oXz) < e.   It follows there is a subsequence of {y   I which

is  D-convergent to z, and since  iy   | is Cauchy, Diy , z) —7 0.   The lemma is

proved.

2.7   Theorem.   Let X  be a weakly compact subset of a Banach space B,  and

let  2 be a semigroup of bounded linear operators on B   leaving  X  invariant.

Assume

(A) (2, X) is minimal in the weak topology.

(B) (2, X)  is distal and equicontinuous in the norm topology.

Then  X  is norm compact.

Proof.   By Proposition 2.3,  X  is weakly metrizable and therefore weak and

norm separable.   Apply Lemma 2.6.

Remark.   If  2 is a group, the distality assumptions made in 2.6 and 2.7 are

unnecessary.   In particular, Lemma 2.6, which plays a central role in  §3, does

not need Lemma 2.1 in the group case.

3.   The algebra /C(2).   In this section  2 is assumed to be a group.   We use

l°° = Z°°(2) to denote the Banach space of bounded, complex-valued functions  2.

To each  / £ I     we associate a compact space   X     the weak-*closure of the set

of right translates of /.   (l°° is the dual of the space of absolutely summable func-

tions on   2, and "weak-  " is with respect to this duality.)   Letting   2 act by

right translation on  X     we obtain a flow  (2, X,).

If  2p 22 are subsets of  2, and if / £ l°°', we shall denote by  X(/,2j,22)C

/°°(22) the set of restrictions to  22 of the weak- closure (in /°°(2)) of the right

translates of / by elements of  2j.   Thus,  X(f, 2, 2) = X .

3.1   Definition.   K(2) is the set of f £ lx having the property that X(/,2p22)

is norm separable for all countable sets   2,, 22 C 2.

3-2   Example.   If  X    is weakly compact in   1°° if is "right weakly almost

periodic"), then  X(/, ¿,, 2) is norm separable whenever   2,   is countable by the
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Banach-Mazur theorem, and therefore / £ K(2). The function / on the integers

( = Z) defined to be 0 for n < 0 and one for n > 0 belongs to X(Z) but is not

weakly almost periodic.

3-3    Lemma.   K(2) is a uniformly closed, conjugation closed, right and left

translation invariant subalgebra of  /°°.

Proof.   We omit the routine details.

3.4    Lemma.   // / £ K(2), then XfCK(2).

Proof.   Fix  g £ X. and  2., 22 C 2 countable.   To say g £ X. is to say there

exists a net   a= jav j in  2 such that g(o) = litnvf(aail) tot all a.   Let  2(      be

the (countable) group generated by  2j, 22.   There exists a sequence  a.      = ja  ^\

in  2 such that g(a) = lim f(aa    ), o £ 2     .   Let  2       be the (countable) group

generated by  2       and   a(   '.   Then choose   a(     for  2    ' with properties analogous

to those of  a     .   Proceeding in this fashion, we obtain an increasing sequence

2       of countable subgroups of   2, and a sequence .a.       of sequences from   2,

suchthat   (i)   limJ(oank) = g(a), a £2(k) and (ii)   2lk) U a(k) C 2(fe+1 \   A diag-

onal argument shows there is a sequence   o. in  2Q = U,2       such that g(o~) =

litaj(aaj, a £ 2n.   Since   2Q is a group,  X(g, 2Q, 20) C X(/, 2Q, 20).   Thus,

X(g, 2j, 2,) is norm separable because  X(f, 20, 20) is norm separable.   The

lemma is proved.

According to  [14] there exists a net   a = ! av ! in  2 with the properties

(a) S f(a) = limvf(oav) exists for all / and  a.

(b) S2J = SJ, all /.

(c) 5 / is right minimal.

We recall that a function  g  is right minimal if and only if   (2, X  ) is a mini-

mal flow.   S     is called a (right) minimal idempotent.   Every  f £ I    decomposes as

/ = g + h, g = S f,  h = f - g,  in which g is right minimal and  S h = 0.   Il f £ K(2),

then because  S f £ X., both g and  h are   K(2).  Shortly we will see that g is

almost periodic   (X    is norm compact).

3-5  Proposition.   // 2 is a countable group, then any right minimal element

of K(2) is almost periodic.

Proof.   Suppose  / £ K(2) is right minimal.   Then Lemma 2.6 applies to

(2, X .) with  t1 = weak- topology,  z"2 = norm topology,  D = norm metric.   (2, X ., D)

is distal and equicontinuous because  2 acts by norm isometries.   By Lemma 2.6,

X   is norm compact, and so / is almost periodic.

3.6  Lemma.   If f £ l°° is right minimal, and if 2. C 2 is a countable set,

there is a countable subgroup 27,  2. C 2. C 2, such that f restricted to 22   is

right minimal.
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Proof.   A bounded function g on a group T is right minimal if and only if for

every f > 0 and finite set F C T there exist yl, ■ • • , y   £ T such that yjC U

U y C = r, where

C = CiF) =  ir I max \fiar) - fia)\ < c\
( \   j o-eF )

(see   [14]).   Fixing  2j C 2 countable, we associate to every finite set F C 2p

cardinality  (F) = n > 0, elements (not uniquely determined) o-j, • • • , a , p = piF)

such that  o-jCf(F) U • • • U opC(iF) = 2, e = 1/n.   Then define   A(F) to be the

smallest group containing  F and  o"j, ■ ■ ■ , a      Let ?(2j) = [JA(F), the union be-

ing over all finite sets   F C 2j.   Inductively, we define   2      = i?(2j), 2tn+  ' =

z?(2ln)), 7z >1.   Define  22 =(J°°_12(").   22  is a group, and we claim / is right

minimal on  22.   To see this fix  c > 0 and  FQ C 22 finite, and choose  F D FQ,

also finite, so that  1/n < e, B= cardinality (F).  Since  F C 2l      for some   K, there

exist  o-j, • ■ • , a   e 22  (actually in  2(K+1 J) such that  a^i.F) u • ■ • U a C((F) =

2 (since  c > 1/n).  Since  ffj, • • • , a   e 22, ajC^(F) U • • ■ U a C'(iF) = 22, where

Ci(F)= C(iF) n 22.   That / is minimal on  22 now follows from the "if" of the

result quoted above.

If / e K(2), then clearly / e K(2 ) for any subgroup 2   of  2, if we view /

as a function on  2 .   If / is right minimal on  2, and if / € K(2), then for every

countable set 2j  there exists a countable subgroup 22 2 ^-i such that (a) / e K(22),

and (b) / is right minimal on  22.   Thus, / is almost periodic restricted to this

same 22.   If  2j  is any countable subgroup, then because almost periodicity is an

hereditary property,  / is almost periodic on   2,.   That is, if / £ r\(2) is right

minimal, it is almost periodic when restricted to any countable subgroup.   With this

observation we prove

3-7  Theorem.   // / e K(2) z's right minimal, f is almost periodic.

Proof.   A necessary and sufficient condition that / fail to be almost periodic

is that there exist an  e > 0 and a sequence   CTj, a2, ■ ■ ■  in  2 such that for all

(3.8) sup|/(aa.)-/(aa.)| > c.

A necessary and sufficient condition for (3-8) to hold is that there exist a count-

able subgroup 2j   of  2, containing  CTj, a2, ■ ■ ■ , such that (3-8) holds on  2j.

Since  / is almost periodic on  2j,  (3-8) cannot hold on  2j, and therefore it cannot

hold in  2.   Thus  / is almost periodic.

Returning to the decomposition preceding Proposition 3-5 we see that if / =

g + h,  g = S f,  h = f - g, fot fe fí(2), then g is almost periodic.   Using this and

basic facts about weakly almost periodic functions, we shall prove
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3.9 Theorem   (Eberlein, de Leeuw and Glicksberg, Ryll-Nardzewski).   // / z's

weakly almost periodic, then f = g + h,  where g  is almost periodic and h has the

property that the constant function 0  z's z'72 the norm closed convex hull of both the

right and left translates of its absolute value.    These properties uniquely determine

g and h.

Proof. Let S be a right minimal idempotent, and set g = S f, h = f - g. g

is almost periodic by 3.7. As for h, it is weakly almost periodic, and therefore

\h\  is weakly almost periodic   [4].   Since  S   \h\ = \S h\ = 0, and since  S   \h\  is a
II 1 -r jjl    1 I    b    I U'l

pointwise limit of right translates of   \h\, 0 is a weak limit of right translates of

\h\.   By the Banach-Mazur theorem   \h\ has  0 in the norm closed convex hull of its

right translates.   Moreover, any function which is a (weak- ) limit of left translates

of   \h\ has the same property.   Now   \h\  is also weakly almost periodic on the left

[10],   If  T    is a left minimal idempotent, then by the left-hand version of Theorem

3.7,   T   \h\  is almost periodic, and by the remark just made,   T  \h\  has  0  in the

norm closed convex hull of its right translates.   Thus,   T  \h\ = 0 = T h, and so

\h\  has   0  in the norm closed convex hull of its left translates.   If / = g   + h    with

similar properties, then  T\h\-Q = Th   by the above, and so g = T f = g .   (It

T    is a minimal idempotent,   T g = g tot any almost periodic  g, as is easily

proven.)   The theorem is proved.

It seems not to have been noted before that Godement's decomposition theorem

for positive definite functions can be derived from 3.9.   We indicate this here.   The

referee has pointed out to us that Godement's theorem also follows easily from the

(post Ryll-Nardzewski) theory of weakly almost periodic representations.

3.10 Lemma.    Let S     be a right minimal idempotent, and let y £ 2.   Then

Sy_.S S      is a right minimal idempotent, where if  a = \av\ defines S   ,

(3.11 ) Sy-lSuSy /(ff) = lim fl°Y~ la„y) •

Proof.   Idempotency is an easy consequence of (3.11).   Right minimality fol-

lows because  S y   is right minimal, where f   (a) = /(cry), the right minimal func-
zz _ ,

tions are closed under translations, and (3-11) is just (S f   )

3.12   Lemma.   Let S    and a be as above, and let f he weakly almost period-

ic.   Then for all a £ 2

S f(o) = lim ¡(a a A
v

(3T3) -lim/(aa-)

= lim f(a~  a)
V

= lim f(a  a).
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Proof. Recall from earlier discussion that SJ = SJ = TJ = TJ fot all left

and right minimal idempotents S , S T , T . The involution x —» x~ interchanges

right and left minimal idempotents, and therefore the first and third lines of (3.13)

are equal. That the first and fourth lines are equal is a consequence of (3-10) and

the fact that the fourth line, for fixed a, is just iS _ yS S^fia). Equality of lines

two and three is for similar reasons.   The lemma is proved.

Let H be a Hilbert space, and suppose  a —7 Ua is a unitary representation

of  2 on H.   According to Eberlein  [4], if x, y £H, the function /    , defined by

/    (a) = {x, U^y) Ü   ,   ) = inner product on H) is weakly almost periodic.   There-

fore, if we define   P on H weakly by (x, Py) = lim¡,(x, Ua y),  Lemma 3-12 implies

PU(T= U JP for all a and   P = P  .   Now Godement's representation of bounded

positive definite functions on  2 tells us a function g is bounded positive defi-

nite if and only if there exists  H, U a, and x £ H with g = /    .We obtain from all

this that, for g = /      positive definite,

gia) = SJia) + fia)-Sufia)

= iPx, UaPx) + ((/ - P)x, Uail - P)x) = fpxpx + f{I_P)x(I_P)x

is a sum of positive definite functions, one almost periodic, and one with proper-

ties similar to that of h in the Eberlein et al. theorem.   As mentioned earlier, this

decomposition is due to Godement.

The results of the present section have appeared in our unpublished notes

[19].

4.   Remarks.   Since this paper was written, Professor I. Namioka has informed

us that the approach of  §2 yields the following generalization of the Ryll-Nard-

zewski fixed point theorem for locally convex spaces.   We omit the details.

Theorem (Namioka).   Let  (E, J ) be a locally convex Hausdorff linear topo-

logical space,   let  C be a nonvoid weakly compact convex subset of E,  and let

2 be a semigroup of weakly continuous affine maps of C  into itself.   If 2 zs S

noneontracting on a 2 stable weakly closed nonempty subset K of C,  then there

is a common fixed point of 2  in the closed convex hull of K.

Let  (2, J ) be a topological group, and let  C(2, J ) be the Banach space of

bounded  J   continuous functions on  2.   Recall that / e C(2, S) is weakly almost

periodic on (2, J ) if the set of right translates of / is weakly relatively compact

in  C(2, J).  Since the inclusion  C(2, J) —» Z°°(2) is a weak isomorphism into,

it is equivalent to say that / is weakly almost periodic in the sense of §3.    Tak-

ing into account the fact that g and h in 3.9 lie in the closed translation invar-

iant subspace generated by /, we see that both g and h ate continuous.   There-

fore 3.9 (and its proof) imply the decomposition theorem in full generality.
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