
A FIXED POINT THEOREM IN EUCLIDEAN BUILDINGS

CHRISTOPHE CORNUT

Abstract. We establish a �xed point theorem for a certain type of non-
expanding maps in Euclidean buildings, which is inspired by a theorem of
La�aille in p-adic Hodge theory [10, Theorem 3.2].

1. Introduction

1.1. We establish a �xed point theorem for certain non-expanding self-mappings
of a Euclidean building X. The maps we consider are of the form α = F ◦Φ, where
Φ moves every point a distance t towards a point ξ at in�nity, for some �xed t and
ξ, and F is an isometry satisfying a decency condition. The results and methods
are similar to those of [7] and [1], who dealt with maps of the form Φ1 ◦ · · · ◦ Φn,
with all Φi's as above. However, our initial motivation was the generalization of
a theorem of La�aille [10, Theorem 3.2] in p-adic Hodge theory: we framed it
as a �xed point theorem, axiomatized the situation, and arrived at the building
theoretical proof given here. The actual applications of our �xed point theorem
to p-adic Hodge theory are thoroughly explained in [4], but we brie�y describe
the relevant framework in Remark 3 below: X is a Bruhat-Tits building, F is a
Frobenius and Φ is a �ltration. The notion of a decent isometry introduced here
gets its name from the related notion of a decent isocrystal [14].

1.2. Let thus X be a Euclidean building, as de�ned in [9, �4.1.2]. Recall that an
isometry F of X is called semi-simple precisely when Min(F ) 6= ∅, where

Min(F ) = {x ∈ X : dist(x,Fx) = min(F )} with

min(F ) = inf {dist(x,Fx) : x ∈ X} .

We say that F is decent if it is semi-simple and its minimal set Min(F ) is a locally
compact subbuilding of X such that the following property holds:

(1.1) ∀c > 0,∃c′ > 0 s.t. ∀x ∈ X : dist(x,Fx) ≤ c =⇒ dist(x,Min(F )) ≤ c′.

See section 2.3.3 below for some comments on (1.1).

1.3. Let ∂X be the visual boundary of X and let C (∂X) be the cone on ∂X, so
that C (∂X) = ∂X ×R≥0/ ∼ where the equivalence relation contracts ∂X ×{0} to
a single point, the origin 0 of the cone C (∂X). There is an �action�

C (∂X)×X −→ X

which sends Φ = (ζ, t) ∈ ∂X × R≥0 to the non-expanding function

Φ or e(Φ) : X −→ X
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which maps a point x in X to the unique point

Φx = e(Φ)(x) = x+ tζ

at distance t from x on the geodesic ray from x to ζ. For ξ ∈ ∂X, let

Bξ : X ×X −→ R
be the Busemann function de�ned by

Bξ(x, y) = lim−→ (dist(y, z + tξ)− dist(x, z + tξ))

for an arbitrary z in X, see [2, II.8.20].

1.4. We �x a decent isometry F of X and some Φ in C (∂X). We de�ne

µ(F ,Φ; ξ) = inf {Bξ(F ◦ Φ(x), x) : x ∈ X}
µ(F ,Φ) = sup {µ(F ,Φ; ξ) : ξ ∈ ∂Min(F )}

Max(F ,Φ) = {ξ ∈ ∂Min(F ) : µ(F ,Φ; ξ) = µ(F ,Φ)}
XF (Φ) = {x ∈ X : F ◦ Φ(x) = x}

Theorem 1. With notations as above, µ(F ,Φ) ∈ {−∞} ∪ R and

µ(F ,Φ) ≤ 0 ⇐⇒ XF (Φ) 6= ∅.
Moreover: XF (Φ) is a closed convex subset of X and

(1) µ(F ,Φ) = −∞ if and only if F has a unique �xed point ? on X.
(2) µ(F ,Φ) < 0 if and only if XF (Φ) is non-empty and bounded.
(3) µ(F ,Φ) = 0 if and only if XF (Φ) is non-empty and unbounded. Then

∂XF (Φ) equals Max(F ,Φ), and this is a convex subset of ∂Min(F ).
(4) If µ(F ,Φ) > 0, then Max(F ,Φ) is a singleton.

The proof will be given in section 3 after some preliminaries on CAT(0)-spaces,
Busemann functions and angles in Euclidean buildings.

Remark 2. The implication XF (Φ) 6= ∅ =⇒ µ(F ,Φ) ≤ 0 is obvious, since

∀x ∈ XF (Φ), ∀ξ ∈ ∂X : µ(F ,Φ; ξ) ≤ Bξ(F ◦ Φ(x), x) = 0.

Put α = F ◦ Φ, so that α : X → X is a non-expanding map and

XF (Φ) = Fix(α) := {x ∈ X : α(x) = x} .
In particular, XF (Φ) is a closed and convex subset of X by [3, Theorem 1.3]. It is
a well-known property of non-expanding maps in complete CAT(0) spaces that

Fix(α) 6= ∅ ⇐⇒ ∃x ∈ X : n 7→ αn(x) is bounded,

⇐⇒ ∀x ∈ X : n 7→ αn(x) is bounded.

See [8, Remark p. 1452]1. The main content of the theorem is the implication

µ(F ,Φ) ≤ 0 =⇒ α has bounded orbits.

The overall strategy of the proof is similar to that of the main theorem of [1].

1Here is Karlsson's proof that a non-expanding map α with a bounded orbit xn = αn(x) has a
�xed point. There is a non-empty invariant bounded closed convex subset in X, for instance the
closure of ∪k≥1 ∩j≥k B(xj , d) where d = sup{dist(xn, xm) : n,m ≥ 1} and B(x, d) is the closed
ball of radius d centered at x. Using [12, 2.12] and Zorn's lemma, we �nd that there is a minimal
such set, call it C. Then C is equal to the convex closure of α(C). Let z and r be the circumcenter
and minimal radius of C, so that C ⊂ B(z, r). Then α(C) ⊂ α(B(z, r)) ⊂ B(α(z), r), thus also
C ⊂ B(α(z), r) and α(z) = z by uniquess of the circumcenter.
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Remark 3. In the sequel [4] to this paper, we apply our theorem to the study of cer-
tain objects naturally arising in p-adic Hodge theory, namely �ltered G-isocrystals,
see [6]. There G is a reductive group over the p-adic completion Qp of Q, X is the
Bruhat-Tits building of G over the fraction �eld K = W (k)[ 1

p ] of the Witt ring of

a perfect �eld k of characteristic p, the isometry F is given by the action of an ele-
ment (b, σ) in G(K)o 〈σ〉 on X where σ is the Frobenius automorphism of K, and
Φ corresponds to an R-�ltration on the �ber functor RepQp

(G) → VectK from the
category of algebraic representations of G on �nite dimensional Qp -vector spaces
to the category of �nite dimensional K-vector spaces. When k is algebraically
closed, the main result of [5] implies that any such F is a decent isometry of X.
More precisely, it shows that Min(F ) is a non-empty locally compact subbuilding
of X and (1.1) follows from [12, Théorème 4.1], as explained in section 2.3.3 below
or [5, Proposition 8]. For every k, the assumption µ(F ,Φ) ≤ 0 is equivalent to
the (weak)-admissibility of (F ,Φ) and our theorem 1 thus implies that (F ,Φ) is
(weakly)-admissible if and only if XF (Φ) 6= ∅. For G = GLn and Φ given by a
Z-�ltration, this statement is equivalent to La�aille's theorem [10, 3.2].

2. Preliminaries on CAT(0)-spaces and Euclidean buildings

Reference: [2, II, �1-3,6,8,9], [9, �2-4], [12, �1,2], [15].

2.1. Angles and Busemann functions. Let X be a complete CAT(0)-space.

2.1.1. Let x, y, z be three points of X. A comparison triangle for (x, y, z) is a
triangle (x,y, z) in the Euclidean plane E2 such that

dist(x, y) = dist(x,y), dist(y, z) = dist(y, z) and dist(x, z) = dist(x, z).

If x 6= y, z, we denote by ∠cx(y, z) the angle at x in any comparison triangle.

2.1.2. For x in X and ξ1, ξ2 in ∂X, the function

(t1, t2) ∈ R2
>0 7→ ∠cx(x+ t1ξ1, x+ t2ξ2) ∈ [0, π]

is non-decreasing in both variables. We de�ne

∠x(ξ1, ξ2) = inf {∠cx(x+ t1ξ1, x+ t2ξ2) : t1, t2 > 0} ,
∠x(ξ1, ξ2) = sup {∠cx(x+ t1ξ1, x+ t2ξ2) : t1, t2 > 0} .

Then ∠x(ξ1, ξ2) = ∠(ξ1, ξ2) = sup {∠x(ξ1, ξ2) : x ∈ X} is independant of x and

∠(ξ1, ξ2) = lim
t→∞

∠x+tξ1(ξ1, ξ2) = lim
t→∞

∠x+tξ2(ξ1, ξ2).

Remark. It is not true that ∠(ξ1, ξ2) is also the limit of ∠x(ξ1, ξ2) as x converges
to ξ1 (or ξ2) in the cone topology of X ∪∂X, as one checks easily when X is a tree.

2.1.3. The function ∠ : ∂X×∂X → [0, π] is a CAT(1)-distance on ∂X. It induces
a �scalar product� and a CAT(0)-distance on C (∂X), respectively given by

〈(ζ1, `1) , (ζ2, `2)〉 = `1`2 cos (∠(ζ1, ζ2))

dist (Φ1,Φ2) =

√
|Φ1|2 + |Φ2|2 − 2 〈Φ1,Φ2〉

where the length function |−| : C (∂X) → R≥0 maps (ζ, `) to `. We occasionaly
identify ∂X with the unit sphere {Φ ∈ C (∂X) : |Φ| = 1}.

Proposition 4. The function 〈Φ,−〉 : C (∂X)→ R is homogeneous and concave.
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Proof. Homegeneity means that for any λ ≥ 0 and Ψ = (ζ, `) in C (∂X),

〈Φ, λ ·Ψ〉 = λ · 〈Φ,Ψ〉

where λ · Ψ = (ζ, λ`). This is obvious from the de�nitions. Concavity means that
for any Ψ0,Ψ1 in C (∂X) and t ∈ [0, 1], if Ψt = t · Ψ1 + (1 − t) · Ψ0 is the unique
point at distance t from Ψ0 on the geodesic segment [Ψ0,Ψ1] of C (∂X), then

(2.1) 〈Φ,Ψt〉 ≥ t · 〈Φ,Ψ1〉+ (1− t) · 〈Φ,Ψ0〉 .

The following proof was indicated to me by G. Rousseau. Let (0, φ, ψ0, ψ1) be a
comparison triedron in E3 for (0,Φ,Ψ0,Ψ1), by which we mean that the length of
the edges containing 0 and the angle between them are the same for both tetra-
hedron. Then the length of the other three edges are also the same, since every
triangle (0, x, y) in C (∂X) is �at. Put ψt = t · ψ1 + (1− t) · ψ0, so that

〈φ, ψt〉 = t · 〈φ, ψ1〉+ (1− t) · 〈φ, ψ0〉

is equal to the right hand side of (2.1), and we have to show that

〈Φ,Ψt〉 ≥ 〈φ, ψt〉 .

We already know that |Φ| = |φ|, and also |Ψt| = |ψt| by �atness of (0,Ψ0,Ψ1).
On the other hand, (φ, ψ0, ψ1) is a comparison triangle for (Φ,Ψ0,Ψ1), therefore
dist(Φ,Ψt) ≤ dist(φ, ψt) since C (∂X) is a CAT(0)-space. The required inequality
then easily follows from the �atness of (0,Φ,Ψt). �

Remark 5. Scalar products on Euclidean cones were introduced in [11], from whose
Proposition 2.6 another proof of the above proposition can also be derived.

2.1.4. Recall that for x, y ∈ X, ξ ∈ ∂X and any z ∈ X, the limit

Bξ(x, y) = lim
t→∞

dist (y, z + tξ)− dist(x, z + tξ)

is well-de�ned and independent of z. The triangle inequality implies that

−dist(x, y) ≤ Bξ(x, y) ≤ dist(x, y).

If x 6= y, we may thus de�ne an angle ∠By (x, ξ) ∈ [0, π] by the formula

Bξ(x, y) = dist(x, y) · cos
(
∠By (x, ξ)

)
.

It may also be computed as follows. For y 6= x, z in X, one checks easily that

dist(y, z)− dist(x, z) = dist(x, y) ·
(
cos∠cy(x, z)− sin∠cy(x, z) · tan

(
1
2∠

c
z(x, y)

))
.

Replacing z by z + tξ and letting t→∞, we �nd that since ∠cz+tξ(x, y)→ 0,

∠By (x, ξ) = lim
t→∞

∠cy(x, z + tξ).

2.1.5. For Φ = (ζ, `) in C (∂X) with ` 6= 0, we de�ne ∠Bx (Φ, ξ) by

Bξ(Φ(x), x) = |Φ| cos
(
∠Bx (Φ, ξ)

)
.

Therefore ∠Bx (Φ, ξ) = ∠Bx (Φ(x), ξ) = limt→∞ ∠cx(x+ `ζ, x+ tξ) and using 2.1.2,

∠x(ζ, ξ) ≤ ∠Bx (Φ, ξ) ≤ ∠(ζ, ξ).

This yields yet another set of formulae for ∠(ζ, ξ), namely

∠(ζ, ξ) = sup
{
∠Bx (Φ, ξ) : x ∈ X

}
= lim
t→∞

∠Bx+tξ(Φ, ξ)
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together with the corresponding formulae for the scalar product:

〈Φ, ξ〉 = inf {Bξ(Φ(x), x) : x ∈ X} = lim
t→∞

Bξ(Φ(x+ tξ), x+ tξ).

2.2. Semi-simple isometries. Let F be an isometry of X. We assume that F
is semi-simple, i.e. Min(F ) 6= ∅. Then Min(F ) is a closed convex subset of X.

2.2.1. The translation vector of F is an element ν = ν(F ) ∈ C (∂X) which is
de�ned as follows. If F is elliptic, i.e. min(F ) = 0, then ν = 0. Otherwise F is
hyperbolic, i.e. min(F ) > 0, in which case Min(F ) is the union of the F -stable
geodesic lines in X, any two of these lines are asymptotic, and F acts on them by
a translation of lenght min(F ). Then ν = (ζ, `) where ` = min(F ) and ζ is the
asymptotic class of any F -stable geodesic ray in any of these F -stable geodesic
lines. In both cases, one checks that ν is the unique element of C (∂X) whose
restriction to Min(F ) equals F |Min(F ).

2.2.2. A Cli�ord translation of X is an isometry Φ of X such that Min(Φ) = X,
i.e. such that x 7→ dist(x,Φx) is constant. The map Φ 7→ ν(Φ) identi�es the group
of all Cli�ord translations of X with a closed, convex subspace C0(∂X) of C (∂X),
namely the Euclidean factor of the pointed CAT(0)-space C (∂X). For a Cli�ord
translation Φ ∈ C0(∂X), the function 〈Φ,−〉 of Proposition 4 is also convex, since
more precisely 〈Φ,−〉+ 〈Φ′,−〉 ≡ 0 on C (∂X) where Φ′ is the inverse (or opposite)
Cli�ord translation. The latter formula easily follows from 2.1.5 or [2, II.6.15].

Returning to our semi-simple isometry F of X, we see that its restriction to
Min(F ) is a Cli�ord translation of this CAT(0)-subspace of X, corresponding to
the translation vector ν ∈ C0(∂Min(F )) ⊂ C (∂Min(F ) ⊂ C (∂X).

2.2.3. We still denote by F the induced isometries of ∂X and C (∂X). We have

F (x+ tξ) = F (x) + tF (ξ) and BFξ(Fx,Fy) = Bξ(x, y).

Suppose ξ ∈ ∂Min(F ). Then F (ξ) = ξ and (x, y) 7→ Bξ(x, y) is F -invariant. Also

Bξ (Fx, x) = Bξ (Fx,Fy) +Bξ (Fy, y) +Bξ(y, x) = Bξ(Fy, y)

for any x, y ∈ X, i.e. the function x 7→ Bξ(Fx, x) is actually constant. Its value is
easily computed on Min(F ) 6= ∅, where F = ν, using e.g. 2.1.5. We obtain

∀x ∈ X : Bξ (Fx, x) = 〈ν, ξ〉 .

2.2.4. Using 2.1.5 and 2.2.3, we �nd that for any ξ ∈ ∂Min(F ) and Φ ∈ C (∂X),

(2.2) µ(F ,Φ; ξ) = inf {Bξ (F ◦ Φ(x), x) : x ∈ X} = 〈Φ, ξ〉+ 〈ν, ξ〉 .

This allows us to extend µ(F ,Φ;−) from ∂Min(F ) to C (∂Min(F )) as follows:

µ(F ,Φ;−) : C (∂Min(F ))→ R, µ(F ,Φ; Ψ) = 〈Φ,Ψ〉+ 〈ν,Ψ〉 .

Proposition 6. This function is homogeneous and concave on C (∂Min(F )).

Proof. This follows from Proposition 4. �

2.3. Euclidean buildings.



A FIXED POINT THEOREM IN EUCLIDEAN BUILDINGS 6

2.3.1. Some de�nitions. Let A = En be a �nite dimensional Euclidean space. A
subgroup W of Isom(A) is an a�ne Weyl group if and only if it is generated by
a�ne re�ections and the image Ω = ∂W of W in Isom(∂A) = O(A) is �nite. A
Euclidean building modelled on (A,W ) (in the sense of [9, 4.1]) is a CAT(0)-space
X equipped with an atlas of isometrical embeddings A = {ι : A ↪→ X}. These
embeddings are called charts, and their images appartments. Among various other
conditions, it is required that any geodesic segment, ray or line is contained in some
appartement, and that for any pair of charts ι1, ι2 in A, the change of coordinate

ι−1
2 (ι1(A))

ι2−→ ι1(A) ∩ ι2(A)
ι−1
1−→ ι−1

1 (ι2(A))

is equal to the restriction of some element w in W . This yields a well-de�ned map

d : X ×X → C (X) where C (X) = Ω\A
sending (x1, x2) to the class of y2 − y1 ∈ A if xi = ι(yi) for some ι ∈ A. Note
that C (X) = Ω\A may be identi�ed with any closed Weyl chamber C ⊂ A. It is a
polysimplicial cone and a partially ordered set (for the usual dominance order ≤),
and A. Parreau shows in [13, Proposition 3.5] that for every x, y, z in X,

d(x, z) ≤ d(x, y) + d(y, z).

The initial CAT(0)-distance on X is retrieved by dist(x, y) = |d(x, y)|, where
|−| : C (X)→ R≥0

is the obvious length function on C (X). There is also a type map

t : C (∂X)→ C (X)

such that for every Φ ∈ C (∂X) and x ∈ X,

d(x,Φ(x)) = t(Φ).

We refer to [12, �1 and 2] for a detailed comparison of various de�nitions of Eu-
clidean buildings, including some non-complete generalisations. The rank of X is
the dimension of A. The building is essential (resp. trivial) if and only if AΩ = {0}
(resp. Ω = {1}, in which case X = A). Every Euclidean building has a unique
decomposition X = Xe ×X0 with Xe essential and X0 trivial [12, Corollaire 2.4].
The semi-simple rank s(X) of X is the dimension of its essential part Xe.

2.3.2. Rigidity of angles. Given nonzero vectors a, b in A, let D(a, b) be the �nite
set of angles between elements of Ω · a and elements of Ω · b. A key property of
Euclidean buildings is the following axiom: for every x 6= y, z in X,

∠x(y, z) belongs to D(a, b) where a = d(x, y) and b = d(x, z).

2.3.3. Parreau's theorem. A subset of X is a Weyl chamber if and only if it equals
ι(a+ C) for some ι ∈ A, some a ∈ A and some (vectorial) Weyl chamber C ⊂ A.

Theorem 7. (Parreau, [12, Th. 4.1]) Suppose AΩ = {0}. There exists α ∈]0, π]
such that for every Euclidean building X modelled on (A,W ), every isometry F of
X which preserves the Weyl chambers is semi-simple and moreover satis�es

∀x ∈ X : dist(x,Fx) ≥ sin(α2 ) · dist(x,Min(F )).

Corollary 8. For any Euclidean building X, every isometry F of X which pre-
serves the Weyl chambers is semi-simple and satis�es (1.1):

∀c > 0,∃c′ > 0 s.t. ∀x ∈ X : dist(x,Fx) ≤ c =⇒ dist(x,Min(F )) ≤ c′.
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Proof. Use [12, Prop 2.8] to reduce to either the trivial case � which is easy, see
section 3.1 below � or to the essential case, which follows from the theorem. �

Remark 9. If the spherical building ∂X is thick, then every isometry of X preserves
the Weyl chambers, and therefore satis�es (1.1). See [12, Proposition 2.27].

3. Proof of theorem 1

3.1. The a�ne case. LetX be a Euclidean a�ne space with underlying Euclidean
vector space V . Then V ' C (∂X) and Φ ∈ V acts on X by x 7→ x+ Φ. Moreover,
every isometry F of X is decent [2, II.6.5]: if G = ∂F ∈ O(V ) is the rotational
part of F , then Min(F ) is an a�ne subspace of X with underlying vector space
ker(G − Id). The translation vector ν = ν(F ) belongs to ker(G − Id) and

∀(x, v) ∈ Min(F )× V : F (x+ v) = x+ ν + G (v).

It follows that XF (Φ) 6= ∅ if and only if Φ belongs to Im(G − Id) − ν. If this is
indeed the case, i.e. Φ = G (w)− w − ν for some w ∈ V , then

XF (Φ) = Min(F )− G (w) and ∂XF (Φ) = ∂Min(F ).

On the other hand, C (∂Min(F )) = ker (G − Id) is the orthogonal complement of
Im(G −Id) inside V , thus Φ belongs to Im(G −Id)−ν if and only if 〈Φ, ξ〉 = −〈ν, ξ〉
for every ξ ∈ C (∂Min(F )). The Busemann functions are given by

∀(x, y, ξ) ∈ X2 × ∂X : Bξ(x, y) = 〈x− y, ξ〉 .

One checks easily that for every ξ ∈ ∂Min(F ) and x ∈ X,

Bξ(F ◦ Φ(x), x) = 〈Φ + ν, ξ〉 = µ(F ,Φ; ξ).

We now have three cases. If ker(G − Id) = 0, then µ(F ,Φ) = −∞ for every Φ
and XF (Φ) is a singleton. If ker(G − Id) 6= 0 and Φ belongs to Im(G − Id) − ν,
then µ(F ,Φ) = 0, XF (Φ) is an a�ne subspace of X with underlying vector space
ker(G − Id) and Max(F ,Φ) = ∂XF (Φ) = ∂Min(F ) = ker(G − Id). Finally if Φ
does not belong to Im(∂F − Id) − ν, then XF (Φ) is empty, µ(F ,Φ) > 0 is the
length of the orthogonal projection µ(F ,Φ)ξ0 6= 0 of Φ + ν to ker(G − Id) and
Max(F ,Φ) = {ξ0}. This completes the proof of the theorem in the a�ne case.

3.2. Products. Suppose that X = X1 × X2 is a product of Euclidean buildings
with F = F1×F2. Then C (∂X) = C (∂X1)×C (∂X2) and thus also Φ = (Φ1,Φ2)
and XF (Φ) = XF1

(Φ1)×XF2
(Φ2). Moreover Min(F ) = Min(F1)×Min(F2) and

C (∂MinF ) = C (∂MinF1)× C (∂Min(F2)) with ν(F ) = (ν(F1), ν(F2)) and

∀(xi, yi) ∈ C (∂MinFi)
2 : 〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉+ 〈x2, y2〉 .

For ξ = (x1, x2) in ∂Min(F ) with xi = |xi| ξi in C (∂Min(Fi)), we �nd

µ(F ,Φ; ξ) = |x1|µ(F1,Φ1; ξ1) + |x2|µ(F2,Φ2; ξ2).

It follows that the theorem holds for (X,F ,Φ) if it holds for (Xi,Fi,Φi), i ∈ {1, 2}.
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3.3. The case µ(F ,Φ) = −∞. Since Min(F ) is an F -stable subbuilding of X,

µ(F ,Φ) = −∞ ⇐⇒ ∂Min(F ) = ∅ ⇐⇒ Min(F ) = Fix(F ) = {?}.

Assuming this, �x some x in X and put xn = αn(x) where α = F ◦ Φ. Since

dist (Fxn, xn) = dist (xn,Φxn−1)

≤ dist (xn, xn−1) + dist (xn−1,Φxn−1)

≤ dist (x1, x0) + |Φ|

and F satis�es (1.1), xn remains at bounded distance from Min(F ) = {?}. There-
fore α has bounded orbits and XF (Φ) = Fix(α) 6= ∅ by Remark 2. Since

∀x ∈ XF (Φ) : dist (Fx, x) = dist(x,Φx) = |Φ| ,

the same argument shows that XF (Φ) is bounded.

3.4. Unbounded orbits. Let again α = F ◦ Φ. For (?, x) ∈ X2, de�ne

N(?, x) =
{
n ∈ N : dist (?, αn(x)) > dist

(
?, αn−1(x)

)}
L(?, x) = {ξ ∈ ∂X : ∃(ni) ∈ N (?, x) with αni(x)→ ξ} .

Lemma 10. Suppose that the orbits of α are unbounded. Then for every (?, x) ∈
X2, the subset L(?, x) of ∂X is non-empty, contained in ∂Min(F ) and

∀ξ ∈ L(?, x) : µ (F ,Φ; ξ) ≥ 0 and ∀z ∈ X : Bξ (?, αn(z))→ −∞.

Proof. Let yn be the orthogonal projection of xn = αn(x) to Min(F ). Since again

dist(Fxn, xn) ≤ dist(x1, x0) + |Φ|

also dist(xn, yn) is bounded by (1.1). Since dist(?, xn) is unbounded, there exists
a sequence (ni) in N(?, x) with dist(?, xni

) → ∞, and then also dist(?, yni
) → ∞.

Upon passing to a subsequence, we may assume that yni → ξ for some ξ ∈ ∂Min(F )
since Min(F )∪ ∂Min(F ) is compact in the cone topology. Then also xni → ξ, i.e.
L(?, x) 6= ∅. For any ξ ∈ L(?, x), with xni

→ ξ also xni−1 → ξ and yni
→ ξ,

therefore ξ belongs to ∂Min(F ). Moreover for any z ∈ X,

Bξ (?, α(z)) = limi (dist (α(z), xni
)− dist (?, xni

))
≤ limi (dist (z, xni−1)− dist (?, xni−1)) = Bξ (?, z) .

Therefore Bξ (α(z), z) ≥ 0 and µ(F ,Φ; ξ) ≥ 0. The above inequality also shows
that for zn = αn(z), the sequence n 7→ Bξ (?, zn) is non-increasing. If it were
bounded, then Bξ (?, xn) would also be bounded since

|Bξ (?, zn)−Bξ (?, xn)| = |Bξ (xn, zn)| ≤ dist (xn, zn) ≤ dist (x, z) .

However xni → ξ, therefore Bξ(?, xni)→ −∞ and thus also Bξ(?, zn)→ −∞. �

Corollary 11. If µ(F ,Φ) < 0, then XF (Φ) 6= ∅.
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3.5. Unbounded XF (Φ).

Lemma 12. Every unbounded sequence xn in XF (Φ) has a subsequence which
converges to a point ξ in ∂Min(F ) with µ(F ,Φ; ξ) = 0.

Proof. Let yn be the orthogonal projection of xn to Min(F ). Since

dist(Fxn, xn) = dist(xn,Φxn) = |Φ|

also dist(xn, yn) is bounded by (1.1), therefore yn is also unbounded. Passing to a
subsequence, we may assume that yn → ξ for some ξ ∈ ∂Min(F ), in which case
also xn → ξ. Since XF (Φ) is closed and convex, it thus contains zt = x0 + tξ for
every t ≥ 0. If t is su�cently large, we �nd using 2.1.5 and 2.2.3 that

〈Φ, ξ〉 = Bξ(Φ(zt), zt) = Bξ(zt,F (zt)) = −〈ν, ξ〉 .

Therefore µ(F ,Φ; ξ) = 〈Φ, ξ〉+ 〈ν, ξ〉 = 0. �

Corollary 13. If XF (Φ) is unbounded, then

µ(F ,Φ) = 0 and ∂XF (Φ) ⊂ Max(F ,Φ).

3.6. Subbuildings. Let (ξ+, ξ−) be a pair of antipodal points in ∂Min(F ). Let
X ′ be the union of all appartments A in X whose boundary ∂A contains ξ+ and
ξ−. This is an F -stable, full-rank subbuilding of X. Put F ′ = F |X ′.

Lemma 14. F ′ is a decent isometry of X ′.

Proof. Let d be a geodesic line from ξ+ to ξ− in Min(F ). Then X ′ is the parallel
set of d in X. Let Y be the parallel set of d in Min(F ), so that Y is a non-empty,
locally compact, full-rank subbuilding of Min(F ) [9, 4.8.1]. Clearly

Y ⊂ Min(F ) ∩X ′ = Min(F ′).

Conversely, let x be a point in Min(F ′). Since x belongs to X ′, there is a unique
line d′ in X ′ passing trough x and parallel to d. Since F is an isometry, Fd′ is
parallel to Fd which is parallel to d since d is contained in Min(F ) on which F
acts by translation. Therefore Fd′ is parallel to d′, which implies that the function
y 7→ dist(y,Fy) is constant on d′. Since it equals min(F ) for y = x, the whole of d′

is contained in Min(F ). Thus x belongs to the parallel set Y of d in Min(F ). �

Lemma 15. There is a retraction r : X � X ′ given by the following formula:

r(x) = lim
t→∞

e(tξ−) ◦ e(tξ+)(x).

It is F -equivariant, non-expanding, and induces an isometry on any appartment A
of X such that ξ+ ∈ ∂A. It induces non-expanding, F -equivariant retractions

r : ∂X � ∂X ′ and r : C (∂X)� C (∂X ′).

For any Φ ∈ C (∂X), the action of r(Φ) = Φ′ ∈ C (∂X ′) on X ′ is given by

Φ′(x) = lim
t→∞

e(tξ−) ◦ Φ ◦ e(tξ+)(x).

Moreover, for all x ∈ X, Φ′(x+ tξ+) = Φ(x+ tξ+) for all t� 0.
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Proof. For x ∈ X, the function t 7→ f(t) = ∠x+tξ+(ξ−, ξ+) is non-decreasing, takes
�nitely many values, and converges to ∠(ξ−, ξ+) = π. Let [tx,∞[= f−1(π). The
geodesic rays from y = x + txξ+ to ξ− and ξ+ form a geodesic line d in X. The
latter is contained in an appartement A of X whose boundary ∂A contains ξ+ and
ξ−, thus d ⊂ A ⊂ X ′. For every t ≥ tx, we have e(tξ−) ◦ e(tξ+)(x) = y + txξ−.
Therefore also r(x) = y + txξ−, and this belongs to d ⊂ X ′. If x already belongs
to X ′, then tx = 0 and x = y = r(x), so that r is a retraction of X ′ ↪→ X. Since
F ◦e(tξ±) = e(tξ±)◦F for every t, also r◦F = F ′◦r. For x, y in X and t ≥ tx, ty,

dist (r(x), r(y)) = dist (e(tξ−) ◦ e(tξ+)(x), e(tξ−) ◦ e(tξ+)(y)) ≤ dist(x, y).

If x and y both belong to an appartment A of X with ξ+ ∈ ∂A, the above inequality
becomes an equality since e(tξ+) is an isometry on A and e(tξ−) is an isometry on
X ′. Our retraction thus maps germs of geodesic rays to germs of geodesic rays and
being non-expanding, it induces a map r : ∂X → ∂X ′ which is an F -equivariant
retraction of ∂X ′ ↪→ ∂X. For x in X and ξ1, ξ2 in ∂X, one checks that for t� 0,

dist (r(x+ tξ1), r(x+ tξ2))
2 ∼ 2t2 (1− cos∠ (r(ξ1), r(ξ2)))

≤ dist (x+ tξ1, x+ tξ2)
2 ∼ 2t2 (1− cos∠ (ξ1, ξ2))

therefore ∠ (r(ξ1), r(ξ2)) ≤ ∠ (ξ1, ξ2). The induced retraction r : C (∂X)� C (∂X ′)
is also F -equivariant and non-expanding. We have r(x+ tζ) = r(x) + tr(ζ) for all
t ≥ 0 and all x in any appartment A of X such that ζ and ξ+ belong to ∂A. In
other words: for Φ ∈ C (∂X) and r(Φ) = Φ′ ∈ C (∂X ′), we have r ◦ Φ = Φ′ ◦ r on
any appartement A of X such that ζ = Φ(∞) and ξ+ belong to ∂A. It follows that
for any x ∈ X, there exists t′x ≥ 0 such that for all t ≥ t′x, Φ(x+ tξ+) = Φ′(x+ tξ+),
which equals Φ′(x) + tξ+ whenever x ∈ X ′. �

Lemma 16. With notations as above, there exists a constant κ > 0 such that

∀ξ ∈ ∂X ′ : ∠(ξ, ξ+) ≤ κ =⇒ 〈Φ, ξ〉 = 〈Φ′, ξ〉 .

Proof. We may assume that Φ 6= 0. For x ∈ X ′, xt = x+ tξ+ and t� 0, we have

Bξ (Φ′(x), x) = Bξ (e(tξ−) ◦ Φ ◦ e(tξ+)(x), x) = Bξ (Φ(xt), xt) .(3.1)

Therefore 〈Φ, ξ〉 ≤ 〈Φ′, ξ〉 for every ξ. Choose κ > 0 such that for any appartement
A of X, ∂A ∩ {ξ : ∠(ξ, ξ+) ≤ κ} 6= ∅ implies ξ+ ∈ ∂A. For ξ ∈ ∂X ′ with
∠(ξ, ξ+) ≤ κ, choose an appartment A of X such that ξ and Φ(∞) belong to ∂A.
Then also ξ+ ∈ ∂A and X ′∩A 6= ∅ since for any element x of A, x+ tξ+ belongs to
X ′ ∩ A for t� 0. Thus for x ∈ X ′ ∩ A, Bξ (Φ(xt), xt) = 〈Φ, ξ〉 for all t ≥ 0. Then
(3.1) shows that also 〈Φ′, ξ〉 ≤ 〈Φ, ξ〉. �

Lemma 17. Suppose that ξ+ ∈ Max(F ,Φ) and µ(F ,Φ) ≥ 0. Then

ξ+ ∈ Max(F ′,Φ′) and µ(F ′,Φ′) = µ(F ,Φ).

Proof. The previous lemma implies that µ(F ,Φ;−) = µ(F ′,Φ′;−) in a neigh-
bourghood of ξ+ in ∂Min(F ′). Since ξ+ is a non-negative global maximum of
µ(F ,Φ;−), it is also a non-negative local maximum of µ(F ′,Φ′;−) on ∂Min(F ′).
But µ(F ′,Φ′;−) is concave and homegeneous on C (∂Min(F ′)). Therefore ξ+ is a
global maximum of µ(F ′,Φ′;−) on ∂Min(F ′), which proves the lemma. �
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3.7. End of the proof. The formula 2.2 shows that µ(F ,Φ) ≤ |ν| + |Φ| < ∞.
If µ(F ,Φ) > 0, then XF (Φ) = ∅ by remark 2 and Max(F ,Φ) is a singleton by
Proposition 6. Given the corollaries 11 and 13, it remains to show that

µ(F ,Φ) = 0 =⇒ XF (Φ) 6= ∅ and Max(F ,Φ) ⊂ ∂XF (Φ).

We prove this by induction on the semi-simple rank s(X) of X. Using 3.1 and
3.2, we may assume that X is semi-simple with s(X) > 0. Since µ(F ,Φ) = 0,
Max(F ,Φ) 6= ∅. Pick ξ+ ∈ Max(F ,Φ). Since Min(F ) is a subbuilding of X, there
exists an antipodal point ξ− in ∂Min(F ). De�ne (X ′,F ′,Φ′) as above with respect
to (ξ−, ξ+). Then s(X ′) < s(X) by [9, 4.8] and µ(F ′,Φ′) = µ(F ,Φ) = 0 by the
previous lemma and XF ′(Φ

′) 6= ∅ by induction. For x ∈ XF ′(Φ
′) and t� 0,

Φ(x+ tξ+) = Φ′(x+ tξ+) = Φ′(x) + tξ+ = F ′−1(x) + tξ+ = F−1(x+ tξ+)

therefore x+ tξ+ ∈ XF (Φ). Thus XF (Φ) 6= ∅ and ξ+ ∈ ∂XF (Φ).

This work grew out of a collaboration with Marc-Hubert Nicole on G-isocrystals
and a related question of Jean-François Dat: what about �ltrations? Bruno Klingler
provided the enlightening reference [9], Anders Karlsson the proof of his remark, and
Guy Rousseau the proof of Proposition 4. Grant: ANR-10-BLAN-0114 ArShiFo.
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