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(Communicated by Joseph A. Ball)

Abstract. An analogue of Banach’s fixed point theorem in partially ordered
sets is proved in this paper, and several applications to linear and nonlinear
matrix equations are discussed.

1. Introduction

In this paper we discuss an analogue of Banach’s fixed point theorem in partially
ordered sets and several applications. The key feature in this fixed point theorem
is that the contractivity condition on the nonlinear map is only assumed to hold on
elements that are comparable in the partial order. However, the map is assumed
to be monotone. We show that under such conditions the conclusions of Banach’s
fixed point theorem still hold.

It should be noted that there are many fixed point theorems for order-preserving
or order-reversing maps on lattices. See [12], [1], [2]. However, for order-preserving
maps the assumption is usually that the lattice is complete, which implies, for in-
stance, that there is a maximal element in the lattice. Since the applications we
have in mind concern the lattice of Hermitian matrices or the cone of positive def-
inite matrices, this does not hold for some of our applications. For order-reversing
maps there are usually conditions that imply that there cannot be a periodic orbit
of period two. For our applications such assumptions are either not true or hard to
check.

In Sections 3 and 4 we discuss several applications. Section 3 concerns linear
matrix equations of the type

X −A∗1XA1 − · · · −A∗mXAm = Q

and
X +A∗1XA1 + · · ·+A∗mXAm = Q,

where Q is a positive definite matrix and A1, . . . , Am are arbitrary n× n matrices.
Our main result in this section gives a condition under which these equations have
a unique Hermitian solution. In this way we derive by totally different means some
of the main results of [7]. Compare also [11].
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1436 ANDRÉ C. M. RAN AND MARTINE C. B. REURINGS

Section 4 concerns general nonlinear matrix equations of the type

X = Q±
m∑
j=1

A∗jF(X)Aj ,

where again Q is a positive definite matrix and A1, . . . , Am are arbitrary n × n
matrices, and where F is a continuous and monotone map from the set of positive
definite matrices to itself. As a particular case we study an equation originat-
ing from Chapter 7 in [10], which closely resembles the discrete algebraic Riccati
equation.

2. A fixed point theorem on partially ordered sets

In this section we will prove the following fixed point theorem, which, to the best
of our knowledge, is new.

Theorem 2.1. Let T be a partially ordered set such that every pair x, y ∈ T has
a lower bound and an upper bound. Furthermore, let d be a metric on T such
that (T, d) is a complete metric space. If F is a continuous, monotone (i.e., either
order-preserving or order-reversing) map from T into T such that

∃ 0 < c < 1 : d(F(x),F(y)) ≤ cd(x, y), ∀ x ≥ y,(1)

∃ x0 ∈ T : x0 ≤ F(x0) or x0 ≥ F(x0),(2)

then F has a unique fixed point x̄. Moreover, for every x ∈ T,
lim
n→∞

Fn(x) = x̄.

Proof. Let x0 ∈ T be such that x0 ≤ F(x0) or x0 ≥ F(x0). The monotonicity of F
implies that either Fn(x0) ≤ Fn+1(x0) or Fn(x0) ≥ Fn+1(x0) for n = 0, 1, 2, . . . .
So from (1) it follows that

d(Fn+1(x0),Fn(x0)) ≤ cd(Fn(x0),Fn−1(x0)).

Hence, induction gives

d(Fn+1(x0),Fn(x0)) ≤ cnd(F(x0), x0).

At this point we follow the proof of Banach’s fixed point theorem. So now we will
prove that {Fn(x0)}∞n=0 is a Cauchy sequence. Let n < m. Then

d(Fn(x0),Fm(x0)) ≤
m∑

i=n+1

d(F i(x0),F i−1(x0))

≤ (cn + cn+1 + · · ·+ cm−n−1)d(F(x0), x0)

= cn
1− cm−n−1

1− c d(F(x0), x0).

So {Fn(x0)}∞n=0 is indeed a Cauchy sequence. Since T is complete, it follows that

lim
n→∞

Fn(x0) = x̄

for some x̄ ∈ T. Because F is continuous, x̄ is a fixed point of F .
It remains for us to show that x̄ is the unique fixed point of F . We will do this

by showing that limn→∞ Fn(x) = x̄ for every x ∈ T. Thus, for x ≤ x0 and x ≥ x0

it is obvious, because in both cases Fn(x) ≤ Fn(x0) or Fn(x) ≥ Fn(x0). Hence,
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with (1) we see that d(Fn(x),Fn(x0)) ≤ cnd(x, x0). Note that the right-hand side
tends to 0 if n→∞. So

lim
n→∞

Fn(x) = lim
n→∞

Fn(x0) = x̄.

Finally, let x ∈ T be arbitrary and let x1, resp. x2, be an upper bound, resp. a
lower bound, of x and x0. Then

(3) x1 ≥ x ≥ x2 and x1 ≥ x0 ≥ x2.

From (3) it follows that

(4) Fn(x1) ≥ Fn(x) ≥ Fn(x2) or Fn(x1) ≤ Fn(x) ≤ Fn(x2)

and

(5) lim
n→∞

Fn(x1) = lim
n→∞

Fn(x2) = x̄.

By combining (4) and (5) we get limn→∞Fn(x) = x̄. This proves the theorem. �

Recall that Banach’s fixed point theorem states that F has a unique fixed point
if F maps a complete metric space S into itself and satisfies

∃0 < c < 1 : d(F(x),F(y)) ≤ cd(x, y), ∀x, y ∈ S.

Observe that this condition is slightly stronger than condition (1) of Theorem 2.1.

3. Application to linear matrix equations

We shall apply this fixed point theorem to linear matrix equations of the type

(6) X −A∗1XA1 − · · · −A∗mXAm = Q

and

(7) X +A∗1XA1 + · · ·+A∗mXAm = Q,

where Q is a positive definite matrix and A1, . . . , Am are arbitrary n× n matrices.
We are particularly interested in (unique) positive definite solutions. These equa-
tions were studied in detail in [7]. The results we shall derive below were obtained
there by two methods which are totally different from the method we will use in
this paper. The first method in [7] is based on the fact that (6) is equivalent to
the matrix equation Gx = q, where G =

∑m
j=1 A

T
i ⊗ A∗i and where q is a vector

constructed from the elements of Q; see Chapter 12 in [6]. The second method
involves results from the theory of operators mapping a positive cone into itself. To
be precise, the results can be deduced from the main result in [11].

We shall use the following notation: M(n) denotes the set of all n× n matrices,
H(n) ⊂M(n) the set of all n×n Hermitian matrices and P(n) ⊂ H(n) is the set of
all n× n positive definite matrices. Instead of X ∈ P(n) we will also write X > 0.
Furthermore, X ≥ 0 means that X is positive semidefinite. As a different notation
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1438 ANDRÉ C. M. RAN AND MARTINE C. B. REURINGS

for X − Y ≥ 0 (X − Y > 0) we will use X ≥ Y (X > Y ). If X,Y ∈ H(n) such
that X ≤ Y, then [X,Y ] will be the set of all Z ∈ H(n) satisfying X ≤ Z ≤ Y. We
denote by ‖ · ‖ the spectral norm, i.e., ‖A‖ =

√
λ+(A∗A) where λ+(A∗A) is the

largest eigenvalue of A∗A. The n× n identity matrix will be written as In.
Define maps G and K on H(n) by

G(X) = Q+
m∑
j=1

A∗jXAj, K(X) = Q−
m∑
j=1

A∗jXAj.

Note that the fixed points of G are the solutions of (6), while the fixed points of K
are the solutions of (7).

Most of the conditions of Theorem 2.1 are satisfied for G and K. Indeed, G
and K both are monotone and continuous. The set H(n) is partially ordered and
for every X,Y ∈ H(n) there is a greatest lower bound and a least upper bound.
Condition (2) is satisfied for x0 = 0, since G(0) = K(0) = Q > 0. So we only have
to derive a condition on G and K such that (1) is fulfilled. For this we also have
to specify which metric we shall use on H(n). It turns out that it is convenient
here to use the metric induced by the trace norm ‖ · ‖1. Recall that this norm is
given by ‖A‖1 =

∑n
j=1 sj(A), where sj(A), j = 1, . . . , n are the singular values of

A. In fact, we shall use a slight modification of this norm. For Q ∈ P(n) we define
‖A‖1,Q = ‖Q 1

2AQ
1
2 ‖1. This again defines a norm, and from Theorem IX.2.2 in

[4] we know that H(n) equipped with the metric induced by ‖ · ‖1,Q is a complete
metric space for any positive definite Q.

The following lemma is useful for our application.

Lemma 3.1. Let A ≥ 0 and B ≥ 0 be n × n matrices. Then 0 ≤ tr(AB) ≤
‖A‖ · tr(B).

Proof. It is well known (see Exercise 3 on p. 468 in [5]) that the eigenvalues of
the product of two positive semidefinite matrices are nonnegative. In particular,
tr(AB) ≥ 0. Furthermore, since A ≤ ‖A‖In, we have

0 ≤ tr((‖A‖ −A)B) = tr(‖A‖B −AB) = ‖A‖tr(B)− tr(AB),

which completes the proof. �

Theorem 3.1. Let Q ∈ P(n) and let K(Q̃) > 0 for some Q̃ ∈ P(n). Then

(1) G and K have a unique fixed point in H(n).
(2) For any X0 ∈ H(n), the sequence {Gj(X0)}∞j=0 converges to the solution of

(6) which is positive definite, while the sequence {Kj(X0)}∞j=0 converges to
the solution of (7).

(3) If, in addition, K(Q) > 0, then the unique solution of (7) is in the set
[K(Q), Q]. In particular, it is positive definite.
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Proof. We will only consider G. The proof for K is the same. Let X,Y ∈ H(n) such
that X ≤ Y. Then G(X) ≤ G(Y ). Therefore,

‖G(Y )− G(X)‖1,Q̃ = tr(Q̃
1
2 (G(Y )− G(X))Q̃

1
2 )

= tr(
m∑
j=1

Q̃
1
2A∗j (Y −X)AjQ̃

1
2 ) =

m∑
j=1

tr(Q̃
1
2A∗j (Y −X)AjQ̃

1
2 )

=
m∑
j=1

tr(AjQ̃A∗j (Y −X)) =
m∑
j=1

tr(AjQ̃A∗j Q̃
− 1

2 Q̃
1
2 (Y −X)Q̃

1
2 Q̃−

1
2 )

=
m∑
j=1

tr(Q̃−
1
2AjQ̃A

∗
j Q̃
− 1

2 Q̃
1
2 (Y −X)Q̃

1
2 )

= tr(
m∑
j=1

Q̃−
1
2AjQ̃A

∗
j Q̃
− 1

2 Q̃
1
2 (Y −X)Q̃

1
2 )

= tr((
m∑
j=1

Q̃−
1
2AjQ̃A

∗
j Q̃
− 1

2 )(Q̃
1
2 (Y −X)Q̃

1
2 ))

≤ ‖
m∑
j=1

Q̃−
1
2AjQ̃A

∗
j Q̃
− 1

2 ‖ · ‖Y −X‖1,Q̃.

The inequality follows from Lemma 3.1. Because of the assumption that 0 ≤∑m
j=1 AjQ̃A

∗
j < Q̃, condition (1) of Theorem 2.1 is satisfied with

c = ‖
m∑
j=1

Q̃−
1
2AjQ̃A

∗
j Q̃
− 1

2 ‖.

So we can apply that theorem to get the first part of the theorem.
To show that the solution of (6) is positive definite, just observe that G maps

P(n) into the set {X ∈ H(n) | X ≥ Q}. So the solution must be in this set, and
hence it is positive definite.

Next we consider the solution of (7) under the additional assumption thatK(Q) >
0. Note that K is order-reversing. Also, we have that 0 < K(Q) ≤ Q. It is then
easily seen that K maps the compact convex set [K(Q), Q] into itself. Since K is
continuous, it follows from Schauder’s fixed point theorem that K has at least one
fixed point in this set. However, fixed points of K are solutions of (7), and we
proved already that (7) has a unique Hermitian solution. Thus this solution must
be in the set [K(Q), Q]. �

4. Applications to nonlinear matrix equations

In this section we study the following class of nonlinear matrix equations:

(8) X = Q±
m∑
j=1

A∗jF(X)Aj .

Here, again Q is positive definite and the Aj are abitrary n × n matrices, and F
is a continuous map, mapping P(n) into P(n). We shall also assume that F is
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1440 ANDRÉ C. M. RAN AND MARTINE C. B. REURINGS

either order-preserving or order-reversing. The map X → Q±
∑m

j=1 A
∗
jF(X)Aj is

denoted by G.
In total this gives us four cases to consider, some of which will require extra

assumptions, mainly because the map G may end up giving nonpositive values for
some positive definite matrices X .

For the case m = 1, see [3].
The present case is motivated by Chapter 7 of [10], where the following matrix

equation appears:

(9) X = Q−A∗(D − X̃)−1A.

Here A is the mn× n block matrix given by

A =

A1

...
Am

 ,

where each of the matrices Aj is an n × n matrix. Moreover, Q > 0 is an n × n
matrix, and D ≥ 0 is an nm × nm matrix, while X̃ is the m ×m block-diagonal
matrix with the n×n matrix X on each diagonal entry. In case D is block diagonal
as well with the same matrix on each block diagonal entry, i.e., D = C̃ for some C,
the equation can be rewritten as

(10) X = Q+
m∑
j=1

A∗j (X − C)−1Aj ,

which is of the form (8) with an order-reversing map F as long as X > C.

4.1. Case 1. In this subsection we consider the equation

(11) X = Q+
m∑
j=1

A∗jF(X)Aj ,

with F being order-preserving. In that case G is well defined on P(n) and order-
preserving as well. Since G(X) ≥ Q for all X ∈ P(n), it is easily seen that the
sequence {Gj(Q)}∞j=0 is an increasing sequence. In particular, G(Q) ≥ Q. So
condition (2) in Theorem 2.1 is satisfied.

Our first result discusses existence of a solution.

Proposition 4.1. Assume that there exists an X0 such that G(X0) ≤ X0. Then
G maps the set [Q,X0] into itself, the limit X− = limj→∞ Gj(Q) exists and is
the smallest solution to (11). Moreover, the sequence {Gj(X0)}∞j=0 decreases to a
solution X+, which is the largest solution in the set [Q,X0].

Proof. Since G(X0) ≤ X0, we have Q ≤ G(X0) ≤ X0. Now if Q ≤ X ≤ X0, we
easily see that Q ≤ G(Q) ≤ G(X) ≤ G(X0) ≤ X0.

Applying G repeatedly, we see that the sequence {Gj(Q)}∞j=0 is an increas-
ing sequence, bounded above by Gl(X0) for any value of l. Also, the sequence
{Gj(X0)}∞j=0 is a decreasing sequence bounded below. Thus, both sequences con-
verge.

Now let X be any solution to the equation (11). Then Q ≤ X = G(X), and by
repeatedly applying G we see that X− ≤ X . If X ∈ [Q,X0], i.e., if X ≤ X0, we see,
again by applying G repeatedly, that X ≤ X+. �
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To get uniqueness of the solution, we can follow the same line of argument as in
the proof of Theorem 3.1 to derive the following result. For the sake of completeness
we shall provide the proof in this case.

Theorem 4.1. Let Q ∈ P(n). Assume there is a positive number M for which∑m
j=1 AjA

∗
j < M · In and such that for X ≤ Y we have

|tr(F(Y )−F(X))| ≤ 1
M
|tr(Y −X)|.

Then equation (11) has a unique solution in P(n).

Proof. Let X,Y ∈ H(n) such that X ≤ Y. Then G(X) ≤ G(Y ). Therefore,

‖G(Y )− G(X)‖1 = tr(G(Y )− G(X)) = tr(
m∑
j=1

A∗j (F(Y )−F(X))Aj)

=
m∑
j=1

tr(A∗j (F(Y )−F(X))Aj) =
m∑
j=1

tr(AjA∗j (F(Y )−F(X)))

= tr(
m∑
j=1

AjA
∗
j (F(Y )−F(X))) = tr

(
m∑
j=1

AjA
∗
j )(F(Y )−F(X))


≤ ‖

m∑
j=1

AjA
∗
j‖‖F(Y )−F(X)‖1.

As before, the inequality follows from Lemma 3.1. Because of the assumptions in
the theorem we see that condition (1) of Theorem 2.1 is satisfied. So we can apply
that theorem to get the desired result. �

4.2. Case 2. Next, we consider (11) under the assumption that F is decreasing.
Then also G is decreasing, but still well defined on P(n). One easily sees that
G2(X) ∈ [Q,G(Q)] for every positive definite X . In particular, this set is mapped
into itself. As in [3] one checks that the sequence {G2j(Q)}∞j=0 increases to a limit
X−∞, while the sequence {G2j+1}∞j=0 decreases to a limit X+∞. These two matrices
form a periodic orbit of period two, and any periodic orbit (including fixed points
of G, of which there is at least one), is contained in [X−∞, X+∞]. In this case
Theorem 4.1 holds as well, but the condition can be weakened a bit, since we know
in advance that a fixed point exists and must be contained in the set [Q,G(Q)].

Theorem 4.2. Let Q ∈ P(n). Assume there is a positive number M for which∑m
j=1 AjA

∗
j < M · In and such that for Q ≤ X ≤ Y ≤ G(Q) we have

|tr(F(Y )−F(X))| ≤ 1
M
|tr(Y −X)|.

Then equation (11) has a unique solution in P(n).

We return to equation (10), which falls in this case. We shall assume that C < Q.
The map G is given by G(X) = Q+

∑m
j=1 A

∗
j (X − C)−1Aj .

Then we have the following theorem (compare [10], Theorem 7.1.2, which gives
a similar, but unfortunately wrong result).
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Theorem 4.3. Suppose that ‖
∑m
j=1 AjA

∗
j‖ · ‖(Q− C)−1‖2 < 1. Then (10) has a

unique solution, and for any X0 > Q the sequence {Gj(X0)}∞j=0 converges to the
unique solution.

Proof. Observe that

(X − C)−1 − (Y − C)−1 = (X − C)−1(Y −X)(Y − C)−1.

Hence

|tr((X − C)−1 − (Y − C)−1)| ≤ ‖(X − C)−1‖ · ‖(Y − C)−1‖ · |tr(Y −X)|.
In case X > Q and Y > Q we have, since C < Q, that ‖(X−C)−1‖ ≤ ‖(Q−C)−1‖
and ‖(Y −C)−1‖ ≤ ‖(Q−C)−1‖. The theorem is now a straightforward consequence
of the previous one and of Theorem 2.1. �

It turns out that equation (9) has a unique solution under much less stringent
conditions, and that the iteration of G on starting values X0 > Q will converge under
these less stringent conditions. This will be proven in a forthcoming publication
[8]. The techniques for proving this are quite different from the ones used here.

4.3. Case 3. In this and in the next subsection we consider the equation

(12) X = Q−
m∑
j=1

A∗jF(X)Aj .

In this subsection F will be taken to be order-preserving. Now we have to be careful
with iterations of G since G(X) may turn out not to be positive definite any more.
We shall assume that G(Q) > 0. Clearly, G(X) ≤ Q for all X ∈ P(n). Since G is
now order-reversing, we see that for 0 ≤ X ≤ Q we have that G(Q) ≤ G(X) ≤ Q.
In particular, again the set [G(Q), Q] is mapped into itself, and any fixed point of
G must be in this set. As in the case treated in the previous subsection we obtain a
periodic orbit of period two from limits of G2j(Q) and G2j+1(Q). As an analogue of
Theorem 4.1 we have the following result. Note that condition (2) in Theorem 2.1
is again satisfied for Q.

Theorem 4.4. Let Q ∈ P(n). Assume that G(Q) > 0. Furthermore, assume
there is a positive number M for which

∑m
j=1AjA

∗
j < M · In and such that for

G(Q) ≤ X ≤ Y ≤ Q we have

|tr(F(Y )−F(X))| ≤ 1
M
|tr(Y −X)|.

Then equation (12) has a unique solution in P(n).

4.4. Case 4. Finally, in this subsection we consider again equation (12), but with
F order-reversing. Then G is order-preserving. Clearly, again all values of G are
matrices in (0, Q]. Again, we have to be careful with the iteration of G. For this
purpose we shall assume that there is an X0 ≤ Q such that X0 ≤ G(X0). Then we
have

X0 ≤ G(X0) ≤ G(Q) ≤ Q.
One easily sees from this that [X0, Q] is mapped into itself, that {Gj(X0)}∞j=0 is an
increasing sequence, and that {Gj(Q)}∞j=0 is a decreasing sequence. Moreover, for
any j and l we have Gj(X0) ≤ Gl(Q). Hence both sequences have a limit, which we
shall denote by X− and X+, respectively. We have the following proposition, which
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is the analogue of Proposition 4.1. The proof is virtually the same, and hence will
be omitted.

Proposition 4.2. Assume that there exists an X0 such that G(X0) ≥ X0. Then
G maps the set [X0, Q] into itself, the limit X+ = limj→∞ Gj(Q) exists and is the
largest solution to (12). Moreover, the sequence {Gj(X0)}∞j=0 increases to a solution
X−, which is the smallest solution in the set [X0, Q].

As an analogue of Theorem 4.1 we have the following result. Again, the proof is
a straightforward application of Theorem 2.1, and hence will be omitted.

Theorem 4.5. Let Q ∈ P(n). Assume that there exists an X0 ≤ Q such that
G(X0) ≥ X0. Furthermore, assume that there is a positive number M for which∑m
j=1 AjA

∗
j < M · In and such that for X0 ≤ X ≤ Y ≤ Q we have

|tr(F(Y )−F(X))| ≤ 1
M
|tr(Y −X)|.

Then equation (12) has a unique solution in [X0, Q].
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