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Abstract

This paper extends the useful concept of open sys-
tems proposed by Liu, et al. [2, 3] in scheduling real-
time applications and non-real-time applications, where
the schedulability of each real-time application can be
validated independently of other applications in the sys-
tem. We replace the underlying earliest-deadline-�rst
OS scheduler of the open system architecture in [2, 3]
with a rate-monotonic OS scheduler. The motivation
behind this work is that many existing operating sys-
tems may not support the earliest deadline �rst schedul-
ing very well. We propose to use the idea of sporadic
servers [14] to preserve CPU cycles for applications.
We also develop schedulability tests for real-time ap-
plications which adopt the rate monotonic scheduling
algorithm, the earliest deadline �rst scheduling algo-
rithm [11], the priority ceiling protocol [18], and the
stack resource policy [1]. We allow tasks in each ap-
plication to share local and global non-preemptable re-
sources. A global resource synchronization mechanism
is proposed. This paper provides a �xed-priority-based
alternative for the important open system architecture.

1 Introduction

Rate-based scheduling has been an active research
topic in the past few years. Researchers proposed var-
ious rate-based scheduling algorithms for periodic and
sporadic tasks based on the notion of General Processor
Sharing (GPS) [7, 9, 16, 19, 20]. The idea of GPS-based
scheduling is very di�erent from common disciplines
such as priority-driven scheduling [1, 11, 12, 18] and
time-driven scheduling [5]. The GPS-based schedul-
ing is a work-conserving scheduling mechanism. The
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schedulability of each task in GPS-based systems is
guaranteed with an assigned CPU service rate, inde-
pendent of the demands of other tasks. The enforce-
ment of a guaranteed CPU service rate for a task must
rely on certain admission control mechanism to manage
the total workload of the system [15].

In the past decades, there was an increasing de-
mand for application systems with response-time re-
quirements. Complex application systems may be de-
veloped independently and then run together on a com-
puter with any combination. The notion of open sys-
tem is proposed by Liu, et al. [2, 3] in scheduling
real-time applications and non-real-time applications
such that the schedulability of each real-time applica-
tion can be validated independently of other applica-
tions in the system. A two-level hierarchical scheduling
scheme which resembles the GPS scheduling scheme in
[19] is proposed to provide fair sharing of a processor
among applications running on the processor. Applica-
tions are executed by either a total bandwidth server
[16] or a constant utilization server [2, 3], depending
on their characteristics. Servers are then scheduled
by an earliest-deadline-�rst (EDF) OS scheduler [11]
with the reserved CPU capacity. Schedulability tests
for real-time applications which share global resources
are proposed [3].

This paper is to develop a new two-level hierarchical
scheduling scheme for an open system with the motiva-
tion that many existing operating systems may not sup-
port the earliest deadline �rst (EDF) scheduling very
well. We shall follow the important open system archi-
tecture developed by Liu, et al. [2, 3] and replace the
underlying OS scheduler with a �xed-priority sched-
uler, such as the rate monotonic (RM) scheduler [11].
We propose to use sporadic servers [14] to execute ap-
plications in the open system because of the incom-
patibility of the constant utilization (and total band-
width) servers and the underlying RM OS scheduler.
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We shall show that the schedulability of any real-time
applications which adopt EDF, RM, the priority ceil-
ing protocol (PCP) [18], or the stack resource policy
(SRP) [1] can be validated independently of other ap-
plications. We develop a global resource synchroniza-
tion mechanism for the two-level hierarchical schedul-
ing scheme such that tasks in di�erent applications
can share global non-preemptable resources. E�cient
schedulability tests for applications which adopts EDF,
RM, PCP, and SRP scheduling algorithms are devel-
oped. The scheme can also be extended by incorpo-
rating the idea of the rate monotonic analysis (RMA)
proceedure [10, 17] and the concept of fundamental fre-
quency [8] in developing more accurate schedulability
tests.

There are two major contributions in this paper: (1)
We propose a �xed-priority-based alternative for the
powerful open system architecture proposed by Liu, et
al. [2, 3]. An entire scheduling framework is proposed
to execute real-time and non-real-time applications in
the open system. A rate-monotonic OS scheduler and
the idea of sporadic servers [14] are used to preserve
CPU cycles for applications. (2) We develop schedula-
bility tests for real-time applications which adopt the
rate monotonic scheduling algorithm, the earliest dead-
line scheduling algorithm, the priority ceiling protocol,
and the stack resource policy. We allow tasks in each
application to share local and global non-preemptable
resources. A global synchronization mechanism is pro-
posed.

The rest of this paper is organized as follows: Sec-
tion 2 describes the open system architecture and the
proposed scheduling hierarchy. Section 3 develops the
schedulability tests for real-time applications which
adopt RM and EDF scheduling. Section 4 considers
the synchronization of local resources. We develop
the schedulability tests for real-time applications which
adopt PCP and SRP scheduling. Section 5 proposes a
global resource synchronization mechanism and devel-
ops the schedulability tests for real-time applications
which adopt PCP and SRP scheduling. Section 6 is
the conclusion.

2 Open System Architecture

2.1 System Architecture

This section is meant to propose a new two-level
hierarchical scheme for scheduling independently de-
veloped real-time and non-real-time applications in an
open environment. We shall follow the de�nitions and
the open system architecture in [2, 3]. Distinct from

the previous work, we are interested in a �xed-priority-
based hierarchical scheduling scheme in supporting the
open system architecture. We propose to adopt a
�xed-priority scheduling algorithm RM for the underly-
ing OS scheduler in the two-level hierarchical scheme,
where Liu, et al. adopts a dynamic-priority schedul-
ing algorithm EDF for the underlying OS scheduler in
the previous work [2, 3]. This research is motivated
by the observation that many existing operating sys-
tems can support �xed-priority scheduling, such as the
rate monotonic (RM) scheduling, better than dynamic-
priority scheduling, such as EDF, where RM is an op-
timal �xed-priority scheduling algorithm which assigns
tasks priorities inversely proportional to their periods,
and EDF is an optimal dynamic-priority scheduling
algorithm which schedules tasks in the order of their
deadlines.
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Figure 1: An Open system Architecture

Figure 1 provides the open system architecture
supported by the two-level �xed-priority hierarchical
scheme. The system has a single processor whose speed
is one. There are real-time and non-real-time applica-
tions executing in the open environment. Each ap-
plication Ai is executed by a sporadic server Si [14]
with a CPU budget ci and a period pi

1, where a spo-
radic server was originally proposed by Sprunt, Sha,
and Lehoczky [14] to execute sporadic task requests.
Each sporadic server is associated with a ready queue
contains ready tasks of the application executing on
the server. Each server has a scheduler associated with
it. The server scheduler uses the scheduling algorithmP

i, such as EDF or RM, chosen for the application Ai

to schedule tasks and order tasks in the ready queue of
sporadic server Si. Figure 1 shows that server S0 uses a
time sharing algorithm to schedule tasks in application

1The open system architecture supported by the two-level hi-
erarchical scheme proposed by Liu, et al. [2, 3] services applica-
tions by either a total bandwidth server [16] or a constant utiliza-
tion server [2, 3], depending on the characteristics of applications.



A0.
The scheduler provided by the operating system is

called the OS scheduler. The OS scheduler maintains
all servers in the system [2, 3]. The OS scheduler re-
plenishs the server budget for every server according
to the de�nitions of sporadic server [14]. A server is
ready if its ready queue is not empty. The OS sched-
uler schedules all the ready servers according to a �xed-
priority scheduling algorithm. Since the rate mono-
tonic (RM) scheduling algorithm is an optimal �xed-
priority scheduling algorithm, we shall use RM as the
scheduling algorithm for the underlying OS scheduler
in this paper. Tasks of the scheduled ready server can
execute until they run out of the budget of the server,
or a higher-priority ready server arrives. Tasks of the
scheduled ready server execute in the order de�ned by
the chosen scheduling algorithm

P
i of the server.

The selection of a CPU budget ci and a period pi
for a new application Ai and the admission control will
be discussed in the next section. The operations of the
OS scheduler are de�ned as follows:

Initiation of an application:

� Create a sporadic server Si with a CPU budget ci
and a period pi for a new application Ai if Ai

passes the admission control.
Maintenance of each server Si:

� The budget replenishment mechanism is done
according to the de�nitions of sporadic server [14].
/* The budget replenishment mechanism will be
summarized in the next section */

Interaction between tasks and server scheduler:

� The scheduler of each server Si schedules tasks
according to the chosen algorithm

P
i
.

� The scheduled task of each server Si executes
under the CPU budget of Si.

Scheduling of servers:

� The OS scheduler schedules the ready server with
the highest priority in the system.
/* global resource synchronization will be discussed
in Section 5. */

Termination of an application:

� Destroy the corresponding sporadic server.

2.2 Scheduling Hierarchy and Admission
Control

2.2.1 Sporadic Servers

Sporadic servers were originally proposed for servicing
sporadic task requests [14]. In this paper, a sporadic
server is used to execute periodic or sporadic tasks in
an application. The budget replenishment mechanism
of a sporadic server is summarized as follows:

Each sporadic server is associated with a CPU bud-
get ci and a period pi. Suppose that the system is

scheduled by a �xed-priority scheduler. Let Ps denote
the priority of the task which is executing. A priority
level Pi is active if Ps � Pi. A priority level is idle if it
is not active. Let RTi denote the replenishment time
for a sporadic server executing at priority level Pi. The
repleshment time RTi of server Si (with priority level
Pi and period pi) is set as follows:

� If Si has a non-zero remaining CPU budget, and
Pi becomes active at time t, then RTi = t+ pi.

� If the CPU budget of Si is exhausted, and the
CPU budget of Si is replenished at time t, then
RTi = t+ pi.

The replenishment amount is determined when Pi be-
comes idle, or when the remaining CPU budget of Si
becomes zero. The replenishment amount is equal to
the amount of server execution time consumed since the
last time at which the status of Pi changes from idle
to active. As shown in [14], a periodic task set that is
schedulable with a periodic task �i is also schedulable
if �i is replaced with a sporadic server with the same
period and CPU budget. The schedulability analysis of
sporadic servers is equivalent to that of periodic tasks.
We refer interested readers to [14] for details.

2.2.2 Scheduling and Admission Control

Since the rate monotonic (RM) scheduling algorithm
is an optimal �xed-priority scheduling algorithm, we
adopt RM for the underlying OS scheduler with the
requirements that each server has a distinct priority:
The priorities of servers are inversely proportional to
their periods. The server with the smallest period has
the highest priority in the system. Every server is asso-
ciated with a distinct priority level. When two servers
have the same period, their priority order is determined
arbitrarily. That is, if Si and Sj are two sporadic
servers in the system, and the period of Si is larger
than the period of Sj , then the priority of Si is smaller
than the priority of Sj . If the period of Si is equal to
the period of Sj , then the priority order of Si and Sj
is arbitrary.

process
request deadline

��
Timep p

�
Figure 2: The relationship between timing constraints
and server budget



When a sporadic server is used to execute a non-
real-time application, the period and the CPU bud-
get of the server can be set arbitrarily. However, the
period should be a small number to make the appli-
cation responsive to user requests. The amount of the
CPU budget determines the amount of the CPU capac-
ity reserved for the non-real-time application. When a
sporadic server is used to execute a real-time applica-
tion, the period of the server must be no larger than
di=(2 + d cic e) for any task �i with CPU requirement ci
and relative deadline di in the real-time application,
where c is the CPU budget of the server. It is because
the sporadic server is only guaranteed to receive c units
of CPU cycles within every p units of time, as shown
in Figure 2.

In order to better utilize the CPU cycles, we as-
sume that the periods of all sporadic servers in the
system are harmonically related. In other words, if a
period of a server can not divide the period of another
server, then the later can divide the former. As shown
in [14], a periodic task set that is schedulable with a
periodic task �i is also schedulable if �i is replaced with
a sporadic server with the same period and CPU bud-
get. The schedulability analysis of sporadic servers is
equivalent to that of periodic tasks. Since Kuo and
Mok [8] shows that the achievable utilization factor of
any periodic task set with periods being harmonically
related is 100%, the achievable utilization factor of a
collection of sporadic servers with periods being har-
monically related is 100%. Note that our requirement
in assigning each sporadic server with a distinct pri-
ority level does not invalidate the above schedulability
test because servers with the same period have consec-
utive priority levels. The admission control mechanism
is as follows:

Let U be the sum of utilization factors of all sporadic
servers in the system, where the utilization factor of a
server is the ratio of its CPU budget and period. A new
application Ai with a sporadic server Si is admitted to
enter the system if U + Ui � 100%, where Ui is the
utilization factor of Si.

The considerations of global resource utilization will
be made in Section 5.

3 Independent Applications over Spo-

radic Servers

3.1 Overview

This section is meant to derive the achievable uti-
lization factor for the schedulability analysis of inde-
pendent applications in the open environment, where

tasks in independent applications do not share global
or local non-preemptable resources. We will derive a
su�cient condition for tasks in a real-time application
which adopts the rate monotonic (RM) scheduling al-
gorithm and a su�cient and necessary condition for
tasks in a real-time application which adopts the ear-
liest deadline �rst (EDF) scheduling algorithm [11].
The schedulability of each application Ai with a re-
served CPU capacity C

P can be validated independently
of other applications, where the CPU budget and the
period of the corresponding server Si are C and P , re-
spectively. We shall delay the discussions of local and
global resource sharing to Sections 4 and 5, respec-
tively.

As assumed in [11], let a real-time application Ai

consist of n independent periodic tasks �1; �2; � � � ; �n,
where each task �j has a CPU requirement cj and a
period pj , and the relative deadline dj of each task �j
be equal to its period pj . Tasks share only preemptable
resources such as CPU.

Suppose that a sporadic server Si with a CPU bud-
get C and a period P is used to execute application Ai,
and the reserved capacity of Ai is

C
P . Let the period P

of the server be the greatest common divisor (GCD) or
a divisor of the GCD of all of the periods of tasks in the
application, and the initial phase of each task occur at
a time point which is a multiple of P . Note that the
CPU requirements of each periodic task in Ai can still
be much less than P . P will be at least no less than
the time granularity of the system timer. For example,
in many modern operating systems such as Microsoft
Windows, the timer granularity is usually set as 10ms,
and the granularity of CPU requirements/consumption
can be much much less than 10ms.

In the following sections, we shall derive a su�cient
condition for tasks in a real-time application which
adopts the rate monotonic (RM) scheduling algorithm
and a su�cient and necessary condition for those which
adopt the earliest deadline �rst (EDF) scheduling al-
gorithm [11].

3.2 RM Server Scheduler

Let a real-time application Ai consist of n indepen-
dent periodic tasks �1; �2; � � � ; �n, where each task �j
has a CPU requirement cj and a period pj , and a spo-
radic server Si with a CPU budget C and a period P
be used to execute application Ai. We shall follow and
revise the terminologies and the main theorems in [11]
in deriving the achievable utilization factor for tasks in
Ai, independently of other applications in the open en-
vironment. Note that Ai only reserves C

P of the entire
system CPU cycles (the system speed is equal to one).



The CPU requirement cj of each task �j is measured
in terms of the system with speed equal to one. Let
server Si adopt the RM scheduling algorithm.

De�nition 1 A critical instant for a task is de�ned as
an instant at which a request for the task will need to
take the maximum number of sporadic server periods
to complete.

Note that Liu and Layland [11] de�ned that a crit-
ical instant for a task is an instant at which a request
for the task will have the largest response time, where
tasks run on a system whose speed is one. Since tasks in
each application Ai now execute under the CPU bud-
get of a sporadic server Si, and a sporadic server is
only guaranteed to receive C time units of CPU cycles
within every P time units which may happen near the
beginning or the end of a server's period, the de�ni-
tion of critical instant must be re-de�ned according to
the scheduling behavior of sporadic servers by the OS
scheduler.

De�nition 2 [11] A real number � is the achievable
utilization factor of a scheduling algorithm

P
if any

task set with a utilization factor no larger than � is
schedulable by

P
.

Theorem 1 A critical instant for any task in Ai oc-
curs whenever the task is requested simultaneously with
requests for all higher priority tasks in Ai.

Proof. The proof of this theorem follows the same
argument of the corresponding theorem, i.e., Theorem
1, in [11]. That is, any advancing of the request of
a higher-priority task toward the request time of any
task �j will not speed up the completion of �j in terms
of the number of sporadic server periods. 2

Theorem 2 Let the ratio between any two task periods
in Ai be less than 2. The achievable utilization factor
of the RM scheduling algorithm for tasks in Ai is U =
C
P n(2

1=n � 1).
Proof. The proof of the corresponding theorem,

i.e. Theorem 4, in [11] can be revised to prove this
theorem. The main idea is to show that the achievable
utilization factor of the n tasks in application Ai is
minimized when the CPU requirement cj of each task
�j in Ai is set as

C
P (pj+1 � pj), for j < n, and cn =

C
P (pn � 2(c1 + c2 + � � �+ cn�1)). 2

Theorem 3 The achievable utilization factor of the
RM scheduling algorithm for server Si is U =
C
P n(2

1=n � 1).
Proof. The correctness of this proof directly follows

from the arguments of the corresponding theorem in
[11], i.e., Theorem 5 in [11]: Suppose that for some j,

pn = q � pj + r; q > 1 and r � 0. Let us replace task �j
with a new task � 0j such that p0j = q � pj and c0j = cj ,
and increase cn by the amount needed to again fully
utilize the CPU budget of the server. This increase is
at most cj(q�1). Similar to the arguments in Theorem
5 in [11], the replacement of �j with � 0j will decrease
the achievable utilization factor. Thus, this theorem
follows directly from Theorem 2. 2

Example 1 RM Server Scheduler:
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Figure 3: RM server schedulers

Let a system consist of two real-time applications
which adopt a RM scheduler. The CPU budget and
the period of the �rst sporadic server S1 are 4 and 5,
respectively. Two periodic tasks �1 and �2 execute on
S1. The CPU requirements and the period of �1(/�2)
are 3 and 10 (6 and 15), respectively. The CPU budget
and the period of the second sporadic server S2 are
2 and 10, respectively. Two periodic tasks �3 and �4
execute on S2. The CPU requirements and the period
of �3(/�4) are 1 and 10 (/ 2 and 20), respectively. Since
the OS scheduler adopts RM scheduling, the priority
P1 of S1 is higher than the priority P2 of S2. Since S1
and S2 also adopt RM scheduling, the priority of �1 is
higher than the priority of �2, and the priority of �3 is
higher than the priority of �4.

Figure 3 shows the executions of �1, �2, �3, and �4
on servers S1 and S2 from time 0 to time 30. At time
0, all tasks arrives. �1 on server S1 starts execution.
Since the priority levels P1 and P2 both become active,
the replenishment time RT1 of S1 is set as 5, and the
replenishment time RT2 of S2 is set as 14. Since the
CPU budget of S1 is 4, �2 starts execution at time 3



after �1 �nishes its execution. At time 4, the CPU bud-
get of S1 is exhausted, and �3 on S2 starts execution.
At time 4, the priority level P1 becomes idle, and the
priority level P2 becomes active. The replenishment
amount of S1 is set as 4.

At time 5, the CPU budget of S1 is replenished such
that S1 preempts S2. �2 on S1 resumes its execution.
The replenishment time RT1 of S1 is set as 10. At time
9, the CPU budget of S1 is exhausted again. Although
�2 has not �nished its execution, �2 must stop. �4 on
S2 starts its execution. At time 10, the CPU budget
of S1 is replenished such that S1 preempts S2. Since
the second request of �1 arrives, �1 starts its execution
at time 10 although S2 has not �nished its execution.
Note that S1 adopts RM scheduling. 2

Example 1 provides an interesting insight in the
schedulability analysis of independent tasks of a real-
time application: The total utilization factor of the �rst
application is 0:7 which is higher than the achievable
utilization factor 0:8 � 2(21=2 � 1) = 0:664, as shown
in Theorem 3. Apparently, the �rst application which
consists of �1 and �2 is schedulable. As astute readers
may point out, with the same arguments adopted in the
proofs of Theorem 1 and 3, the rate monotonic analysis
(RMA) procedure [10, 17] can be applied here. When
a RMA schedulability test is used, the schedulability of
each application must be veri�ed in an o�-line fashion.
Furthermore, the total utilization factor of the second
application is 0:2 which is higher than the achievable
utilization factor 0:2 � 2(21=2 � 1) = 0:166, as shown
in Theorem 3. Since �3 and �4 are belonging to the
same fundamental frequency, their achievable utiliza-
tion factor should be 0:2�1(21=1�1) = 0:2 according to
the fundamental-frequency-based schedulability analy-
sis proposed in [8] and the arguments in the proofs of
Theorem 1 and 3. In other words, the schedulability
analysis of RM server schedulers in this paper can be
further generalized by incorporating the ideas of RMA
and fundamental frequency.

3.3 EDF Server Scheduler

Let a real-time application Ai consist of n indepen-
dent periodic tasks �1; �2; � � � ; �n, where each task �j
has a CPU requirement cj and a period pj , and a spo-
radic server Si with a CPU budget C and a period P
be used to execute application Ai. The CPU require-
ment cj of each task �j is measured in terms of the
system with speed equal to one. Let server Si adopt
the EDF scheduling algorithm. We shall follow and re-
vise the terminologies and the main theorems in [11]
in deriving the achievable utilization factor for tasks
in Ai independently of other applications in the open

environment.

De�nition 3 [11] An over
ow occurs at time t if there
exists a task which misses its deadline at time t.

De�nition 4 A server is idle at time t if the priority
level of the server is idle, and the CPU budget of the
server is not exhausted.

Let Ps denote the priority of the server which is
executing. A priority level Pi is active if Ps � Pi. A
priority level is idle if it is not active.

Lemma 1 When EDF is used to schedule tasks in ap-
plication Ai, there is no idle time for server Si prior
to an over
ow.
Proof. This lemma can be proved in an analogous

way as the corresponding theorem, i.e., Theorem 6, in
[11]: The main idea is as follows: If there exists an idle
period before an over
ow, then moving all requests of
any task, after the idle period, toward the end time of
the idle period will not result in an idle period and may
only result in an over
ow. This is a contradiction to
the assumption that there is a server idle time prior to
an over
ow. 2

Theorem 4 For the set of n periodic tasks serviced by
a sporadic server Si with a period P and a CPU budget
C, EDF is feasible if and only if

P cj
pj
� C

P .

Proof. The corresponding theorem, i.e., Theorem
7, in [11] can be revised to prove this theorem. To
show the necessity, we show that the total demand of
computation time by all tasks between time 0 and time
p1p2 � � � pn, i.e.,

(p2p3 � � � pn)c1+(p1p3 � � � pn)c2+ � � �+(p1p2 � � � pn�1)cn;

should not be more than (p1p2 � � � pn)
C
P . To show the

su�ciency, similar arguments in the corresponding the-
orem, i.e., Theorem 7, in [11] are applied. The main
idea is to show that the total demand of computation
time between 0 and t being larger than tCP , if an over-

ow occurs at time t, will be a contradiction to the
assumption

P cj
pj
� C

P . 2

Example 2 EDF Server Scheduler:
Let an open system consist of two real-time applica-

tions, as illustrated in Example 1, except that the �rst
application now adopts an EDF server scheduler. The
second application still adopts a RM server scheduler.
Since the underlying OS scheduler adopts RM schedul-
ing, the priority P1 of the �rst server S1 is higher than
the priority P2 of the second server S2.

Figure 4 shows the executions of �1, �2, �3, and �4
on servers S1 and S2 from time 0 to time 30. At time
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Figure 4: RM and EDF server schedulers

0, all tasks arrives. �1 on server S1 starts execution
because it has a deadline earlier than that of �2. Since
the priority levels P1 and P2 both become active, the
replenishment time RT1 of S1 is set as 5, and the re-
plenishment time RT2 of S2 is set as 10. When �1
�nishes its execution at time 3, �2 starts its execution
since the remaining CPU budget of S1 is one. At time
4, the CPU budget of S1 is exhausted, and �3 on S2
starts execution. Note that the priority of �3 is higher
than the priority of �4 because the second application
adopts RM scheduling. At time 4, the priority level P1
becomes idle, and the priority level P2 becomes active.
The replenishment amount of S1 is set as 4.

At time 5, the CPU budget of S1 is replenished such
that S1 preempts S2 (since the underlying OS scheduler
is a RM scheduler). �2 on S1 resumes its execution.
The replenishment time RT1 of S1 is set as 10. At time
9, the CPU budget of S1 is exhausted again. Although
�2 has not �nished its execution, �2 must stop. �4 on
S2 starts its execution. At time 10, the CPU budget
of S1 is replenished such that S1 preempts S2. Since
an EDF server scheduler is adopted for S1, �2 on S1
resumes its execution, although the second request of
�1 arrives.

As shown in Theorem 4, the achievable utilization
bound of the �rst application is 4

5
= 0:8. Since the total

utilization factor of the �rst application is (0:3+0:4) =
0:7, the �rst application is schedulable, as shown in
Figure 4. 2

4 Local Resource Synchronization

The previous section provide e�cient schedulability
tests for real-time applications which adopt the RM or
EDF scheduling algorithm. The schedulability of real-
time applications which consist of independent tasks
can be validated independently of other applications in
the open environment. This section is meant to extend
the two-level hierarchical scheme proposed in the pre-
vious sections in local resource sharing among tasks of
in the same application.

Let a real-time application Ai consist of n indepen-
dent periodic tasks �1; �2; � � � ; �n, where each task �j
has a CPU requirement cj and a period pj , and the
relative deadline dj of each task �j be equal to its pe-
riod pj . Tasks in Ai may share non-preemptable re-
sources, such as semaphores, belonging to application
Ai. No non-preemptable global resources are shared
among tasks in di�erent applications, where a global
resource is a resource, such as a system data structure
or a device, which is belonging to the system and ac-
cessible to all applications. The discussion of global
resource synchronization will be delayed until Section
5.

Suppose that a sporadic server Si with a CPU bud-
get C and a period P is used to execute application
Ai, and the reserved capacity of Ai is C

P . Because
all applications and their corresponding servers only
share preemptable resources such as CPU among them-
selves, each server can still be guaranteed with the
reserved amount of CPU budget within every period.
The schedulability tests proposed in the previous sec-
tion for applications which adopt EDF and RM remain
the same.

When an application adopts a real-time resource
synchronization algorithm such as the priority ceiling
protocol (PCP) [18] or the stack resource policy (SRP)
[1], we shall show as follows that the schedulability tests
for PCP and SRP remain the same in terms of the CPU
capacity of the corresponding server. Sha, Rajkumar,
and Lehoczky [18] proposed PCP in which tasks can
inherit the higher priority of a task they block. The
priority ceiling of a resource is the priority of the high-
est priority task which may use the resource. A task's
resource request is blocked if its priority is no larger
than the priority ceiling of any resource which has been
grabbed by another task but has not yet been released.
SRP proposed by Baker [1] is extended from PCP based
on the same concept of implicit locking. SRP reduces
the maximum number of context switchings to no more
than twice the number of jobs in the system and can
handle certain dynamic priority assignments, such as
EDF.



The schedulability tests of PCP and SRP for a n-
task real-time application Ai executing on a sporadic
server Si with a CPU budget C and a period P are as
follows: Let tasks in application Ai scheduled by PCP
or SRP be listed in the increasing order of their pe-
riods, where PCP adopts the rate monotonic priority
assignment scheme, and SRP adopts the earliest dead-
line �rst priority assignment scheme [11].

Theorem 5 [18] A task �i scheduled by PCP on a sys-
tem with speed equal to one will always meet its dead-
line if (

P
j<i

cj
pj
) + ci+bi

pi
< i(21=i � 1), where bi is the

blocking time of �i by lower-priority tasks.

Theorem 6 A task �i in application Ai which adopts
PCP will always meet its deadline if (

P
j<i

cj
pj
) +

ci+bi
pi

< C
P i(2

1=i � 1), where bi is the blocking time of
�i by lower-priority tasks, and C and P are the CPU
budget and the period of the server for Ai, respectively.

Proof. By considering the blocking time bi as the
extra computation time for �i, the correctness of this
theorem follows directly from the same arguments in
Theorem 2, 3 and 5. 2

Theorem 7 [1] Tasks scheduled by SRP on a sys-
tem with speed equal to one are schedulable if
8k=1;���;nk; (

Pk
i=1

ci
pi
) + bk

pk
� 1, where bk is the exe-

cution time of the longest critical section of any task
whose relative deadline, i.e., period, is less than that of
�k.

Theorem 8 Tasks in application Ai which adopts
SRP are schedulable if 8k=1;���;nk; (

Pk
i=1

ci
pi
)+ bk

pk
� C

P ,
where bk is the execution time of the longest critical sec-
tion of any task whose relative deadline, i.e., period, is
less than that of �k, and C and P are the CPU budget
and the period of the server for Ai, respectively.

Proof. By considering the blocking time bk as the
extra computation time imposed on �k, the correctness
of this theorem follows directly from the same argu-
ments in Theorem 4 and 7. 2

5 Global Resource Synchronization

5.1 Scheduling Mechanism

The purpose of this section is to further extend the
two-level hierarchical scheme in global resource sharing
among tasks in di�erent applications in the open en-
vironment. The objective of this section is to provide
a uniform mechanism for global resource sharing and
propose the corresponding schedulability tests.

Let a real-time application Ai consist of n periodic
tasks �1; �2; � � � ; �n, where each task �j has a CPU re-
quirement cj and a period pj , and the relative deadline
dj of each task �j be equal to its period pj . Tasks in Ai

may share non-preemptable local or global resources,
where a local resource is belonging to Ai, and a global
resource is a resource, such as a system data structure,
belonging to the system and accessible to all applica-
tions. A critical section of a task is global if the task
is accessing a global resource in the critical section. A
critical section is local if it is not global. Suppose that a
sporadic server Si with a CPU budget C and a period
P is used to execute application Ai.

The global resource synchronization among applica-
tions is handled in a restricted way to provide a uni-
form mechanism with bounded priority inversion time
for applications sharing global resources: We assume
that critical sections are properly nested, as required
by PCP [18].

We adopt the idea of the kernelized monitor model
[12] to share global resources among applications. Let
the system have a unique sporadic server Sg which is
responsible to reserving a CPU budget in servicing all
global critical sections. The period Pg of Sg is the GCD
of all applications which might access global resources.
Since the underlying OS scheduler adopts RM schedul-
ing, let Sg have the highest priority in the system. The
decision of the CPU budget Cg of Sg will be discussed
in the next section. Pg will be at least no less than the
time granularity of the system timer.

When a task �i in applicationAi requests for a global
resource, the request is always granted, and �i is moved
to the ready queue of Sg. Sg will become ready to ex-
ecute the global critical section of �i until �i leave the
corresponding critical section. Note that Sg executes
at the highest priority level in the system and will im-
mediately start executing �i when �i enters the global
critical section. �i may lock any local and global re-
sources during the execution of the global critical sec-
tion. Since Sg executes at the highest priority level
in the system, Sg will only service global critical sec-
tions of tasks in di�erent applications one by one, and
no other servers may preempt Sg . When �i leaves the
global critical section, �i goes back to the ready queue
of the original server Si for execution, and Sg stops exe-
cution because of no further service requests. The CPU
time consumed by �i executing on Sg will also be sub-
tracted from the remaining CPU budget of Si by the
system. This double count is to prevent tasks on Si
from overrunning Sg. If the remaining CPU budget of
Si decreases to zero during subtraction, it remains zero.
Note that tasks in Ai will only consume more CPU cy-
cles than their reserved capacity. In other words, the



subtraction will not a�ect the schedulability tests in
the previous section. The replenishment procedure of
Sg follows the de�nitions of sporadic server [14]. We
assume that Sg always has a su�cient CPU budget for
executing global critical sections. The decision of the
CPU budget Cg of Sg will be discussed in Section 5.2.2.

The operations of the OS scheduler de�ned in Sec-
tion 2 are revised as follows: Let the system have a
unique sporadic server Sg which is responsible to re-
serving a CPU budget in servicing all global critical
sections. Sg has the highest priority in the system.

Initiation of an application:

� Create a sporadic server Si with a CPU budget ci
and a period pi for a new application Ai if Ai

passes the admission control.
/* the corresponding admission control will be
discussed in the following section. */

Maintenance of each server Si and Sg:

� The budget replenishment mechanism is done
according to the de�nitions of sporadic server [14].

Interaction between tasks and server scheduler:

� The scheduler of each server Si schedules tasks
according to the chosen algorithm

P
i
.

� When a task �i in application Ai requests for
a global resource, the request is always granted, and
�i is moved to the ready queue of Sg.

� When a task �i in application Ai releases all of
its global resources, �i is moved back to the ready
queue of Si, and the CPU time consumed by �i on
Sg will be also subtracted from the remaining CPU
budget of Si by the system.

� The scheduled task of each server Si executes
under the CPU budget of Si.

Scheduling of servers:

� The OS scheduler schedules the ready server with
the highest priority in the system.

Termination of an application:

� Destroy the corresponding sporadic server.

Note that the global resource synchronization mech-
anism proposed in [2, 3] may require both the server
and the task executing on the server to become non-
preemptable when the task and the server accesses any
global resource. It may impose a strong impact on ap-
plications which do not share global resources. Under
the new two-level hierarchical scheme proposed in this
paper, applications which do not access global resource
will always receive its reserved CPU service indepen-
dently of other applications. However, a portion of
CPU cycles must be reserved for servicing global criti-
cal sections under the new scheme.

5.2 Schedulability Analysis, Implementa-
tion Consideration, and Admission
Control

5.2.1 Schedulability Analysis and Implemen-

tation Consideration

This section is meant to discuss the implementation
issues of servers which adopt PCP and SRP in local
and global resource synchronization in the open envi-
ronment. It is obvious that any sporadic server which
does not have any task requesting any global resource
will still receive its reserved CPU budget within every
period. The schedulability tests of applications which
adopt RM, EDF, PCP with only local resource syn-
chronization, and SRP with only local resource syn-
chronization remain the same. In the following, we
shall propose schedulability tests for applications which
adopt PCP or SRP and access global resources.
PCP with global resource synchronization:

Let Sg be a unique sporadic server with a period Pg
and a CPU budget Cg to service global critical sections
of tasks in all applications. Suppose that a real-time
application Ai adopts PCP to schedule all tasks in Ai.
Tasks in Ai may access global resources. The prior-
ity ceiling of any global resource is set as 1, i.e., the
highest possible priority level in Ai. When a task �i
locks a global resource, �i automatically inherits the
highest possible priority level 1 in the system from
a non-existing task �1, where the system can assume
that a non-existing task �1 with a priority equal to
1 also tries to lock the global resource, and the task
only consumes an in�nite small amount of CPU time.
Let a sporadic server Si be used to execute tasks in Ai,
and the CPU budget and the period of Si be C and P ,
respectively.

Lemma 2 The blocking time of �i by a lower-priority
task in application Ai can be determined based on the
tasks in Ai plus �1 independently of other applications.

Proof. The correctness of this lemma follows di-
rectly from the fact that global critical sections of ap-
plications other than Ai only consume the CPU budget
of Sg, and the global critical sections of applications
other than Ai will not impose any blocking time on
any task �i in Ai in terms of the CPU budget of Si. 2

Theorem 9 A task �i in application Ai which adopts
PCP will always meet its deadline if (

P
j<i

cj
pj
) +

ci+bi
pi

< C
P i(2

1=i � 1), where bi is the blocking time of
�i by lower-priority tasks.
Proof. The correctness of this theorem follows di-

rectly from Theorem 6 and Lemma 2. 2



SRP with global resource synchronization:

Suppose that a real-time application Ai adopts SRP
to schedule all tasks in Ai. Tasks in Ai may access
global resources. Let the preemption level dGRe0 for
any global resource GRi in the system be equal to 1,
i.e., the highest possible level, and each global resource
has only one instance.

Lemma 3 The execution time of the longest critical
section of any task whose relative deadline, i.e., period,
is less than that of �k in application Ai can be deter-
mined based on the tasks in Ai independently of other
applications.

Proof. The correctness of this lemma follows di-
rectly from the fact that global critical sections of ap-
plications other than Ai only consume the CPU budget
of Sg , and the global critical sections of applications
other than Ai will not impose any blocking time on
any task �i in Ai in terms of the CPU budget of Si. 2

Theorem 10 Tasks in application Ai which adopts
SRP are schedulable if 8k=1;���;nk; (

Pk
i=1

ci
pi
)+ bk

pk
� C

P ,
where bk is the execution time of the longest critical sec-
tion of any task whose relative deadline, i.e., period, is
less than that of �k.

Proof. The correctness of this theorem follows di-
rectly from Theorem 8 and Lemma 3. 2

In the beginning of this paper, we assume that the
period P of a sporadic server Si is the greatest com-
mon divisor (GCD) or a divisor of the GCD of all of
the periods of tasks in the application. We also as-
sume that periods of all sporadic servers in the system
are harmonically related. The assumption on the har-
monic relationship of server periods is merely to maxi-
mizing the entire system utilization. We must empha-
size that when the periods of sporadic servers in the
system are not harmonically related, the correctness of
theorems proposed in this paper remain. However, the
period P of a sporadic server Si must be the greatest
common divisor (GCD) or a divisor of the GCD of all
of the periods of tasks in the application. Otherwise,
the schedulability tests proposed in this paper must be
more conservative in including extra overheads in CPU
time because each period of the server may not �t well
into the period of any task executing on the server. The
overheads might be around two CPU budget cycles of
a server.

5.2.2 Admission Control

This section is meant to propose the admission control
for the open system architecture when tasks in di�erent
applications may share global resources.

The global synchronization mechanism adopts the
idea of the kernelized monitor model [12]. A unique
sporadic server Sg is responsible to reserving a CPU
budget Cg in servicing all global critical sections for
every period Pg. The period Pg of Sg is the GCD of all
applications which might access global resources. Be-
cause an open system may consist of a dynamic set of
applications in the system, we may assume that Pg is
equal to a su�ciently small number, such as the time
granularity of the system timer. Note that in many
modern operating systems, the timer granularity is usu-
ally set as 10ms.

When a real-time application Ai arrives, a sporadic
server with a CPU budget Ci and a period Pi may be
requested. Let Bi be the sum of the durations of all
global critical sections in Ai which might be possibly
requested with the reserved CPU budget Ci within a
period. Note that Pg is no larger than the periods of all
applications which might access any global resource. If
no tasks in Ai may access any global resource, Bi = 0.
Application Ai will pass the admission control if

� (
P
existing application Aj

Bj) +Bi � Cg

� (
P
existing application Aj

Cj

Pj
) +

Cg

Pg
+ Ci

Pi
� 1

Note that all Pi and Pg are belonging to the same fun-
damental frequency. Bi for an application Ai must be
determined before Ai is admitted to run. In the worst
case, Bi can be close to Ci. However, it rarely happens
that a global critical section in an application is very
long. Suppose that the duration of the global critical
section of any task in an application Ai is limited by
a small number �i, and there are ni periodic tasks in
Ai. Since the period of the sporadic server of Ai is a
multiple of Pg , Bi is no larger than ni � �i. Let the sys-
tem consist of m applications, Cg must be no less thanP
existing application Aj

nj � �j . In other words, if we

want to allow more applications which share global re-
sources to run in the open environment, Cg must be
enlarged. However, the server Sg which services global
critical sections will reserve a larger amount of CPU
budget Cg for every period Pg . It then reduces the
number of applications and the amount of CPU bud-
gets which can be reserved by the applications in the
system.

6 Conclusion

This paper proposes a �xed-priority-based alterna-
tive for the important open system architecture pro-
posed by Liu, et al. [2, 3]. We replace the underlying



earliest-deadline-�rst (EDF) OS scheduler of the orig-
inal open system architecture with a rate-monotonic
(RM) OS scheduler. The motivation behind this work
is that many existing operating systems may not sup-
port the earliest deadline �rst scheduling very well.
We propose to use the idea of sporadic servers [14] to
preserve CPU cycles for applications, where the total
bandwidth servers and constant utilization servers that
are deadline-driven GPS-based servers in the original
open system architecture can not be used with a �xed-
priority OS scheduler. An entire scheduling frame-
work is proposed in this paper to execute real-time
and non-real-time applications in the open system. We
develop schedulability tests for real-time applications
which adopt the rate monotonic scheduling algorithm,
the earliest deadline �rst scheduling algorithm, the pri-
ority ceiling protocol, and the stack resource policy. We
allow tasks in each application to share local and global
non-preemptable resources. A global synchronization
mechanism is also proposed. The schedulability of each
real-time applications can be validated independently
of other applications in the system.

The concept of open systems provides application
engineers a very useful way in developing real-time ap-
plications. Distinct from the past work [2, 3], we ex-
ploit �xed-priority-based scheduling for the open sys-
tem architecture. The schedulability tests of applica-
tions which adopt RM, EDF, PCP, and SRP are pro-
posed. Although the implementation of applications
which adopts time-driven scheduling is not discussed
in this paper, it is obvious that the open system archi-
tecture can also support time-driven applications. For
example, a time-driven application can be assigned a
sporadic server with the highest priority in the system
to have a predictable behavior on its execution. The
architecture can also support any n > 1 time-driven ap-
plications by providing them sporadic servers with the
highest n priorities in the system, where the periods of
the servers should be belonging to the same fundamen-
tal frequency to have predictable execution behaviors
(Note their priorities should be higher than the prior-
ity of the server servicing global critical sections.) The
overheads of the proposed two-level hierarchical scheme
mainly come from the maintenance of sporadic servers,
whereas the major overheads of the EDF-based two-
level hierarchical scheme might come from the under-
lying EDF OS scheduling and the maintenance of to-
tal bandwidth servers and constant utilization servers.
The server budgets and deadlines of the EDF-based
two-level hierarchical scheme may need to be main-
tained virtually for every event occurrence. We must
emphasize the budget replenishment mechanism of spo-
radic servers in this paper may not be executed more

frequently than the maintenance of server budgets and
deadlines of the two-level hierarchical scheme in [2, 3].
The evaluation of the performance and run-time over-
heads of the proposed approach is planned on RED-
Linux, an real-time embedded operating system based
on Linux [21]2

For future research, we shall further explore the open
system architecture in multiprocessor systems and de-
velop middleware to support the architecture on ex-
isting operating systems. We will also further explore
the issues of global resource sharing in open systems
to support more robust and 
exible mechanisms for
global resource synchronization. We believe that more
research in the open system architecture may be very
rewarding in the building and integration of complex
real-time applications.
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