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Abstract— The uncontrolled charging of electric vehicles
(EVs) imposes additional stresses on the grid. These stresses
are set to increase due to the predicted increase in penetration
of EVs. However, EV charging loads offer opportunities for
controlling the actual demand to limit the peak demand or track
variable generation to support the grid. This also can facilitate
the integration of intermittent renewable energy generation in
the near future. In this paper a learning automaton is proposed
to manage EVs capable of on/off charging. We propose a new
algorithm for distributed control of charging based on the
broadcast of a congestion signal to regulate the aggregated
demand. We show that the proposed algorithm converges to
steady state operation, and analyse its implications on the
distribution of power demand amongst the EVs. The potential of
the proposed algorithm is illustrated by simulations for capping
the aggregate demand of the EVs, and for tracking of slowly
varying power generation signals.

I. INTRODUCTION

Growing concerns about greenhouse gases drive the de-

ployment of renewable energy generation. In particular, wind

and solar power are expected to become a significant part

of the energy mix in many countries. For example, Ireland

aims to produce 40% of their energy from renewables by

2025, of which 86% are planned to be wind generation

[1]. The electricity generated by such plants fluctuates with

weather conditions, which imposes new challenges on the

grid. Load management is regarded as a key strategy to

deal with such variability by controlling demand to match

fluctuations in electricity generation, an application referred

to as load tracking [1]–[3]. In addition, load management

has the potential to reduce generation costs and transmission

losses by reducing the demand of controllable loads at peak

times, an application referred to as peak shaving [3].

It is well recognised that electric vehicles, among other

controllable loads, are able to provide such services to the

grid [2], [3]. This capability arises due to their expected

high penetration levels [4]–[8] and their high flexibility in

charging time. For example, [9] assumes that EVs are parked

for 90% of the time. Hence, various algorithms have been

developed to manage and control their demand. For instance

[4], [5], [10], [11] developed algorithms to schedule the

charging of electric vehicles. While [12], [13] went further

and allowed the electric vehicles to inject power into the

grid during peak demands. [9] also allowed reactive power

balancing by the EVs.
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This paper expands on previous work of the authors

[14], [15] and suggests a new learning automata game for

distributed control of charging demand based on a congestion

control algorithm. In previous works, our focus lay on load

management using EVs with continuously adaptable charge

rates. In the interest of incremental deployment and in

regard to other loads, we believe it is important to employ

load management with minimal requirements for the electric

vehicles. In this context, we limit the abilities of the EV

chargers to be only capable of on/off operation, namely,

between a maximum charging rate when on, and not charging

when off (the effects of on/off constraints on EV charging

are investigated in [10]).

While other studies rely on day-ahead forecasts [4], [5],

pricing signals [4], [12], [16], or employ a centralised control

unit [5], [6], in this paper we suggest a distributed algo-

rithm that shows reasonable performance without requiring

any forecasts. We acknowledge that customers need to be

encouraged to participate in load management programs,

and that this encouragement can take the form of electricity

price incentives. The control method proposed in this paper

does not rely directly on such pricing signals or incentives.

However, it may give indirect financial benefits to the users

by constraining the power available to the EVs when price

is high during peak demand, shifting charging to off-peak.

The proposed control strategy relies on the broadcast

of a congestion signal that places a cap on the aggregate

demand of the EVs. The problem considered is defined in

Section II. Section III explains the automaton proposed as

a distributed algorithm for EV charging. This algorithm is

analysed in Section IV, and shown to converge to stationary

distribution independent of the chosen starting distribution

and the parameters. This analysis is performed by interpret-

ing the algorithm as a Markov Chain and then showing its

ergodicity. The Matlab simulation examples in Section V

illustrate the promising performance of the approach for

controlling aggregate demand to track constant and slowly

varying reference signals, as applied in peak shaving and

load tracking scenarios. Finally, Section VI presents some

concluding remarks and discussion of further research ques-

tions.

II. PROBLEM DESCRIPTION

We consider two main scenarios for load management.

The first is peak shaving, where the demand of the controlled

loads is reduced during periods of high total demand. This in

essence encompasses a defined period of time during which

the total load should be capped. An example of this scenario

is the imposition of a limit to the maximum aggregate power
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consumption of EVs during the daily evening demand peak.

The second scenario considered is load tracking, where the

controllable loads track an externally specified varying power

level. This latter scenario could be useful in situations such

as where a group of EVs is set to charge their batteries with

rates matching the output of a wind power plant.

In both of these scenarios the aim is to share a known

limited power P̄ among a group of loads. In the case of peak

shaving P̄ is a constant power cap during the peak time,

while for load tracking the available power is the varying

output of a variable power output generator. Note also that

in the first case the aim is to be as close to the cap as possible

to minimise impacts to the customers.

In this initial work we make two simplifying assumptions

to focus the analysis on the fundamental properties of the

proposed algorithm. Firstly, we neglect any deadlines for

the EV charging. Whilst deadlines are not always necessary,

there are important cases where neglecting deadlines can

lead to undesired consequences, such as customers without

enough charge. Secondly, we assume that the available

power and the aggregated demand of the EVs are known

by the infrastructure operator without errors. The relaxation

of these assumptions and the consideration of other practical

constraints and robustness issues are left for future work.

In contrast to previous work [14], [15], here the EV

chargers have binary (on/off) control. Although in practice

the power drawn might not be constant during the complete

charging cycle, it will be subject to slow changes and remain

constant during a long period. For simplicity therefore, we

take ‘on’ as equivalent to a fixed power consumption, whilst

off is taken as zero power drain. In practice, there will be a

small fractional power overhead when the charger is off.

In the following, p̄i refers to the power consumption by EV

i if turned on and pi(t) refers to its actual power consumption

at time t. Therefore the power limiting constraint can be

written
∑

i

pi(t) ≤ P̄ (t) ∀t, (1)

and the objective is set to maximise the power delivered to

the participating EVs without violating this constraint.

III. AUTOMATON

Considering the similarities of the above load managing

problems and problems encountered in communication net-

works [17], the authors in [14], [15] previously suggested the

use of an AIMD (additive increase/multiplicative decrease)

algorithm for managing the load of EVs. Based on this idea,

we suggest here an automata game [18], to cope with EVs

with discrete charging, in that their demand can assume only

one of two possible states: on or off. Each EV repeatedly

cycles the execution of a series of commands according to

a broadcast signal, by the infrastructure operator, and then

waits for the next cycle. Depending on whether a singal has

been received or not, we identify two phases: turn-on, when

no signal has been received, and turn-off, when a broadcast

signal has been received. In comparison with the AIMD

algorithm, the turn-on phase corresponds to additive increase.

The agent remains in this mode as long as no capacity

signal is received. The turn-off phase is entered upon receipt

of a signal and corresponds to the multiplicative decrease

phase of the AIMD algorithm. A complete flow chart of the

proposed charging algorithm is shown in Figure 1.
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Fig. 1: Diagram depicting the algorithm executed by each

agent.

The turn-on phase only affects EVs that are currently off.

Two variables are associated with this phase: a probability

λi ∈ [0, 1], and an additive factor αi ∈ [0, 1]. During this

phase the EV increases its probability of turning on λi by

adding αi giving λ+
i

. Afterwards, it turns on with probability

λ+
i

, or stays off. When the EV turns on, λ+
i

is reset to 0.

Similarly, the turn-off phase only influences EVs currently

turned on. Associated with this phase, there is a probability

µi and a second additive factor βi. In the same way as for

the turn-on phase, the EV determines stochastically whether

to turn off using the increased probability µ+
i
= µi + βi. In

case the agent turns off, it resets its µ+
i

to 0.

At a final step each EV checks whether it is fully charged.

If charging is incomplete, it waits for the next time step for

which it sets λi = λ+
i

and µi = µ+
i

.

IV. SYSTEM ANALYSIS

In this section, we first analyse the behaviour of a single

agent (EV) during both phases. From this analysis it becomes

clear that the algorithm implements a fixed-structure automa-

ton and that the overall system represents a game between

multiple automata, as defined in [18]. Using this fact, we

are able to interpret the overall system as a Markov Chain

for which we show ergodicity. This means that the system

converges to a steady state distribution independent of the
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initial conditions. This is particularly relevant to examining

simulation results, since it is important to know that the

simulation represents on average the behaviour of the system

and it does not depend on the initial states of the EVs. For

example, it obviates any need for Monte Carlo simulations.

A. Behaviour of a single EV

Let ni and mi be integer values larger than 1 and choose

αi = 1
ni

and βi =
1
mi

. In this case λi = kαi, where k is

an integer in the interval [0, ni − 1] and similarly µi = lβi,

where l is an integer in the interval [0,mi − 1]. Further, it

is clear that at all times at least one of the probabilities λi

or µi is 0. In particular, whenever the agent is on, λi is set

to 0 (that is the probability of changing to the on state is

zero). Conversely, when the agent is off, µi is set to zero.

This means that agent i can occupy ni + mi states. In the

following, β(l) denotes the state where the agent is turned on

and its internal values are µi = lβi and λi = 0. Analogously,

α(k) denotes the states where the agent is turned off and its

internal values are λi = kαi and µi = 0.

The transitions between the states depend on whether the

overall system is congested, namely, whether the overall

power demand is too high, or not. Hence, the behaviour of the

agent is identical to a fixed-structure automaton, as defined in

[18], where the input is the congestion/no congestion signal,

the state set is the collection of ni+mi states above, and the

action is the power demanded by the EV. Figure 2 depicts the

automaton for the two possible inputs from the environment:

congested or not congested. The action of the automaton is

p̄i for the states β(l) with l ∈ [0,mi − 1] and 0 for the

remaining states.

In the following let In denote the identity matrix of size

n × n and 0n×m the n × m matrix containing all zeros.

Define a vector z such that zk is the probability that EV i is

in state α(k) if k ≤ ni and in state β(k−ni) if k > ni. Then

z evolves according to the transition matrix

Āi =

[

B̄i C̄i

0mi×ni
Imi

]

(2)

with B̄i is a matrix of zeros with the first off diagonal above

the main diagonal taking the values 1−αi , 1−2αi, . . ., 1−
(ni−1)αi and C̄i a zero matrix with the first column taking

the values αi , 2αi, . . ., 1, if the system is not congested.

In the case of congestion the transition matrix becomes

Âi =

[

Ini
0ni×mi

Ĉi B̂i

]

(3)

with the matrices identical as before but now taking the

values 1−βi , 1− 2βi, . . ., 1− (mi− 1)βi and βi , 2βi, . . .,

1, respectively. Note that the above matrices are both row

stochastic.

B. Game between N automata

As the behaviour of the single EV is identical to a fixed-

structure automaton, the system with N participating EVs

is a game between such automata, where the output of the

environment depends deterministically on the actions of each

(a) congested

(b) non-congested

Fig. 2: The transition graph of a single agent’s behaviour.

automaton. As in [18], it is therefore possible to describe the

complete game by a Markov Chain. First, we consider the

simple case where there is only one EV. We assume that

whenever this EV is on, the system is congested.

Let IA be a diagonal matrix of size (n +m) × (n +m)
containing 1 if the state is congested and 0 otherwise, i.e.

IA =

[

0 0
0 Im

]

. (4)

From that the transition matrix can be constructed by

A = (In+m − IA)Ā + IAÂ, (5)

which simplifies to

A =

[

B̄ C̄

Ĉ B̂

]

. (6)

The Markov Chain associated with the single EV system is

then

x(τ) = x(τ − 1)A = x(τ − 1)

[

B̄ C̄

Ĉ B̂

]

. (7)

Next, consider the system where N EVs participate. From

[18], we know that the states of the Markov Chain are all

combinations of the states the single automata can be in, so

the total number of states is
∏N

i=1(ni +mi). Each of those

states has a defined power consumption and hence defines

whether the EVs receive a congestion signal or not depend-

ing on the available power. For instance
[

α(0), β(0), α(0)
]

consumes in total
∑

i
pi(t) = p̄2, as only agent 2 is on.

Let IA be again a diagonal matrix, containing 1 if the

state is congested and 0 otherwise, then the row stochastic

transition matrix of the complete system with N EVs is

A = (I − IA)(Ā1 ⊗ . . .⊗ ĀN ) + IA(Â1 ⊗ . . .⊗ ÂN ), (8)

where ⊗ denotes the Kroenecker product.

3568



Example 1: Assume that two EVs are participating in the

load management procedure and that the system is congested

only when both EVs are on. Then the transition matrix is

A = (I − IA)(Ā1 ⊗ Ā2) + IA(Â1 ⊗ Â2), (9)

where IA = v1 ⊗ v2 and

vi =

[

0 0
0 Imi

]

. (10)

C. Ergodicity of the Markov Chain

We now show that the Markov Chain derived above is

ergodic independent of the number of participating agents

and their parameters.

Theorem 1: If N EVs are participating and the following

assumptions are true

1) the states
[

β(k1), β(k2), . . . , β(kN )
]

for any existent ki
give rise to congestion, and

2) the states
[

α(k1), α(k2), . . . , α(kN )
]

for any feasible ki
are not congested,

then the Markov Chain associated with the system defined

in (8) is ergodic.

Note that the steady state of the system can be trivially

computed given the initial conditions if one of the above

assumptions is violated. The proof of Theorem 1 follows

directly from Lemma 3, Lemma 4, and Theorem 2, below.

Theorem 2 (Ergodic Theorem [19]): If the stochastic ma-

trix A is regular, then

Aτ → 1y (11)

where y is the stochastic eigenvector of A belonging to the

eigenvalue 1.

Hartfiel [19] defines a stochastic matrix to be regular if it

corresponds to precisely one essential class of vertices, and

the sub-matrix corresponding to this essential class, A1 in

the canonical form, is primitive. This means that there exists

a k such that every vertex is reachable from every vertex in

exactly τ steps.

Fact 1: The states
[

α(0), . . . , α(0)
]

and
[

β(0), . . . , β(0)
]

are reachable from any other state.

Proof: Every time an EV turns off it goes into the

state α(0), similarly whenever an EV turns on it reaches the

state β(0). Further, we know that the agent stays in state

α(0) as long as congestion events occur, otherwise it enters

state α(1). Also, the EV stays in β(0) until a congestion event

arises, upon which it switches to state β(1). Below, the proof

of reachability is given for the state
[

α(0), . . . , α(0)
]

, as the

proof for state
[

β(0), . . . , β(0)
]

is analogous.

First, choose any congested state j. From this state, there

is a non-zero probability that all agents turn off. This state

is clearly not congested as all the agents are off. Therefore,

there exists a positive probability that all the agents turn on

in the next time step. This leads to the state
[

β(0), . . . , β(0)
]

,

which is congested, according to our assumption. From this

state the probability to reach
[

α(0), . . . , α(0)
]

is positive,

showing that this state is reachable from any congested state.

Secondly, choose any non-congested state j. The proba-

bility that all remaining states turn on in the next time step is

larger than 0. This leads to a congested state, where all agents

are turned on. Hence the possibility exists that all agents turn

off at the same time, leading to the state
[

α(0), . . . , α(0)
]

.

Thus the state
[

α(0), . . . , α(0)
]

is reachable from any non

congested state and the fact is proven.

From the above results we derive the following Lemma.

Lemma 3: The Markov Chain associated with the system

from Theorem 1 contains only one essential class.

Proof: Assume there are two essential classes and lets

take one vertex from each class, vertex i and j. Both of

these vertices are essential and not communicating with each

other, i.e. there is no path from vertex i to vertex j. However

from Fact 1, it is clear that vertex i communicates with state
[

α(0), . . . , α(0)
]

. Further, vertex j also communicates with

state
[

α(0), . . . , α(0)
]

, because of Fact 1. This means that

there exists a path from vertex i to j and from j to i. This

contradicts the assumption that they are from two different

essential classes.

Fact 2: Every path through
[

α(0), . . . , α(0)
]

can be en-

larged as often as wanted by two or three steps.

Proof: From
[

α(0), . . . , α(0)
]

the possibility exists to

reach state
[

β(0), . . . , β(0)
]

. Then the possibility exists to

return to state
[

α(0), . . . , α(0)
]

, which corresponds to a cycle

of length 2. From
[

β(0), . . . , β(0)
]

it is also possible to reach

first
[

β(1), . . . , β(1)
]

and then return to
[

α(0), . . . , α(0)
]

,

which corresponds to a cycle of length 3, which proves the

fact above.

Lemma 4: The essential class associated with the system

in Lemma 3 is primitive.

Proof: Generate a path from vertex i to vertex j through
[

α(0), . . . , α(0)
]

for i, j any essential vertex. It follows from

Fact 1 that such a path exists for every essential vertex. Then

choose the longest of those paths and set k its length plus

2. As from Fact 2 all paths can be enlarged by 2 or 3 steps,

it is possible to reach every essential vertex from any other

in k steps. Note that the generated k is not necessarily the

smallest step length to reach any other vertex.

D. Accumulated Behaviour

Since the Markov Chain is ergodic, the probability distri-

bution of which states are occupied converges to a steady

state θy, where y is the Perron eigenvector corresponding to

the eigenvalue 1 and θ is a scalar to normalise the vector. This

vector can be computed numerically, for example by using

Matlab, and contains useful information about the overall

power consumption by the agents, which we show next.

From the power consumption of each agent it is simple to

construct a matrix containing the total power consumption

from each state in its diagonal:

P = p̄1v1 ⊕ p̄2v2 ⊕ . . .⊕ p̄NvN , (12)

where ⊕ stands for the Kronecker sum and vi is defined as

in Example 1. Additionally, the Perron eigenvector contains

the steady state probability distribution of the states, which

is identical to the expected fraction of time that a state
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occurs. Therefore, by summing over the entries of the Perron

eigenvector which corresponds to states with the same power

consumption defined in P , a histogram of the expected total

power consumption distribution can be constructed.

Figure 3 shows such a diagram for five agents, all with a

power consumption of 3.7kW and a total energy allowance

of 10kW . The dark blue bar chart occurs when the EVs use

the parameters α = β = 0.2. The second largest eigenvalue,

which is a measure for the convergence rate, in this case

is 0.624 + 0.438ı with magnitude 0.763. By changing these

parameters, the distribution can be modified. For example,

the dark green bars of Figure 3 are computed when the EVs

use α = 0.1 and β = 0.3̄. As the bars are higher for lower

power consumption values (0−7kW ), it is expected that the

system stays longer in states with low power consumption

than in the example where the EVs are using the identical

values for α and β. In this example the second largest

eigenvalue computes to 0.661+0.409ı with magnitude 0.777.
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Fig. 3: Histogram of the expected power consumption in

dark colors and the averaged power consumption from sim-

ulations, see Section V, in light colors. The x-axis shows the

power consumed in kW and the y-axis shows the ratio of

time that this power is consumed. The blue bar charts is for

the parameter values α = β = 0.2 and the green bars for

the parameter values α = 0.1 and β = 0.3̄. The black lines

show the standard deviation for the simulated cases.

V. SIMULATION RESULTS

In this section, the analytic results gained from the pre-

vious section are confirmed in a simulation setting using

Matlab. Further simulations are conducted using more par-

ticipating agents, to illustrate the usefulness of the algorithm.

Figure 3 shows the histogram of power usage, light colour,

compared to the analytical computed values, dark colour. As

for the analytic result, five agents are participating and their

parameters are α = β = 0.2 for the blue graphs and α = 0.1
and β = 0.3̄ for the green graphs. A comparison of this

histogram with Figure 3 shows that the simulated asymptotic

power distribution matches well that computed analytically.

However, the results above represent a relatively “bad”

load management, since for approximately 38% of the time

the demand is lower or higher than the available power, while

only in the remaining 62% of time the demanded power

is close to the available power, i.e. one agent’s behaviour

determines whether congestion or no congestion occurs. This

is due to the small number of participating agents and large

parameters α and β, which show the behaviour well, but are

not suitable for real world applications.

To avoid variability due to a small number of participat-

ing agents and to illustrate the effects of connecting and

disconnecting vehicles, we conducted a simulation with 75
agents. The simulation uses a constant available power of

100kW to show the usefulness of the algorithm in peak

shaving tasks. Note that the total consumption of fifty electric

vehicles uncontrolled would be 185kW , which corresponds

to a reduction of 45%. Naturally such a reduction increases

the necessary charging time, and could not be imposed for

a long period without causing inconvenience for the owner.

The agents disconnect as soon as they finished charging

or after a predefined charging time. The energy requirement

is randomly selected between 12kW and 24kW and the

charging time between 8 and 14 hours. The connection time

is randomly chosen in the first 8 hours of the simulation,

which is running for 16 hours, with ten vehicles, which

are connected from the start. Further, we assume that all

EVs use the same parameters p̄ = 3.7kW , α = 10−5, and

β = 10−4. Those parameters have been chosen manually. We

conjecture that those parameters could selected by solving

an optimisation problem to achieve the desired accumulated

behaviour. However, this is beyond the scope of this paper.

Figure 4 shows the available power and the aggregate

demand of the vehicles. Mostly, the overshoot is caused by

one vehicle, which means that by proper selection of the

cap the aggregated power can be kept below a certain value

with high probability. At the beginning and the end of the

simulation the aggregated demand is less than the available

power, this behaviour is due to the small number of vehicles

connected during those times, as either a lot of them are

not yet connected or most are already finished charging,

respectively. During those times all connected vehicles are

on and no capacity signal is sent.
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Fig. 4: Available and aggregated power consumption during

simulation where a total of 75 vehicles connect and discon-

nect during the simulation.

The second simulation conducted uses a variable power

in time steps of 10 minutes and runs for a total of 3 hours.
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We neglect here the connecting, disconnecting, or completing

charging throughout the simulation period, due to the short

length of the simulated period. In total 50 EVs participate,

all of which use identical parameters p̄ = 3.7kW , α = 10−5,

and β = 10−4. Figure 5 shows the available power and the

power demanded by the agents. The demanded power is able

to follow such a power signal very well. Clever adjustment

of the parameters allows also tracking of rapidly changing

power outputs as shown in Figure 6, where the available

power changes every 10 seconds. The parameters are chosen

manually as α = 0.0003, and β = 0.0005. Further tuning of

the variables may improve the outcome.
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Fig. 5: Available and demanded power during a 3 hours long

simulation period, where the power varies every 10minutes.
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Fig. 6: Available and demanded power during a short period

extracted from a 3 hours long simulation period, where the

power varies every 10seconds.

VI. CONCLUSION

In this paper, we suggested a game between multiple fixed

structure automata for load management of electric vehicles,

with binary (on/off) actions available. The algorithm sug-

gested is based on the AIMD algorithm, used in previous

papers by the authors [14], [15]. We used Markov theory to

show that the game forms an ergodic Markov Chain. Using

this it is possible to compute a power histogram to which

the system converges independent of the initial conditions.

Simulations show the usability of the algorithm for peak

shaving tasks, as well as for slow varying load tracking.

Further studies are necessary to find a method for optimal

parameter selection, as well as to investigate the possibility

to deal with more realistic and different scenarios, similar

to the ones in [14]. Current work also applies the algorithm

to thermostatically controlled loads, such as fridges, water

heaters, and air conditioners. Future work, should then look

at the interaction if both algorithms, the one presented here,

as well as the one presented in [14], [15], are applied at the

same time to different loads.
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