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Abstract

We propose a modal logic programming language called MProlog, which is as expressive as
the general modal Horn fragment. We give a fixpoint semantics and an SLD-resolution calculus
for MProlog in all of the basic serial modal logics KD , T , KDB , B , KD4, S4, KD5, KD45,
and S5. For an MProlog program P and for L being one of the mentioned logics, we define an
operator TL,P , which has the least fixpoint IL,P . This fixpoint is a set of formulae, which may
contain labeled forms of the modal operator 3, and is called the least L-model generator of P .
The standard model of IL,P is shown to be a least L-model of P . The SLD-resolution calculus
for MProlog is designed with a similar style as for classical logic programming. It is sound and
complete. We also extend the calculus for MProlog in the almost serial modal logics KB , K5,
K45, and KB5.

1 Introduction

Modal and temporal logic programming is a field that extends classical logic programming by
adding modal and temporal operators (e.g. 2 and 3) to the language in order to reason about
belief, knowledge, dynamic changes, etc. A number of systems have been developed for modal
and temporal logic programming: Molog [10] is based on modal logics, Pathlog [13] is based on
multimodal logics; Templog [1], METATEM [8, 14], Temporal Prolog (Gabbay) [16], and Chronolog
[34, 33] are based on temporal logics; Tokio [3], Tempura [27, 18], and Temporal Prolog (Hrycej)
[20, 21] are based on interval logics; MTL [9] is based on metric temporal logic.

One of pioneer works on declarative semantics for modal logic programs is the work by Balbiani
et al [5]. In that work, the authors gave a declarative semantics and an SLD-resolution calculus for
a class of modal logic programs in the logics KD , T , and S4. However, there is a restriction on the
form of programs (the connective 2 is disallowed in bodies of program clauses and goals), and the
SLD-resolution calculus is formulated in a way not close to the style of classical logic programming
(as in Lloyd’s book [24]). Akama [2] and Debart et al [13] applied a technique of translation
to classical logic for (multi)modal logic programming. The technique is similar to the one used
in Ohlbach’s resolution calculus for modal logics [31]. Extra parameters are added to function
symbols and predicate symbols to represent paths in the Kripke model, and special unification
algorithms are developed to deal with them. The SLD E-resolution given in [13] is quite efficient,
while the minimal model semantics is less declarative. The minimal Herbrand model defined in
[13] for a program is not a Kripke model, and it is not shown how a minimal Kripke model can be
constructed from the minimal Herbrand model.

The goal of this work is to develop the least model semantics, a fixpoint semantics, and an
SLD-resolution calculus, in a “direct” way and closely to the style of classical logic programming,
∗This is a revised version of “L.A. Nguyen. A Fixpoint Semantics and an SLD-Resolution Calculus for Modal
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for modal logic programs in the basic serial modal logics KD , T , KDB , B , KD4, S4, KD5, KD45,
and S5. We will also extend the SLD-resolution calculus for modal logic programs in the almost
serial modal logics KB , K 5, K 45, and KB5. We do not require any restriction on occurrences of 2

and 3 in program clauses.
To illustrate the idea of this work, let us consider an example. Let the base logic be KD ,

G = ← 2p4(x) be a goal and P a program that consists of the following formulae:

φ1 = 3p1(a)←
φ2 = 2( 2p2(x)← p1(x) )
φ3 = 2( p3(x)← p1(x),2p2(x) )
φ4 = 2p4(x)← 3p3(x)

When building a KD-model graph M for P , to realize φ1 at the actual world τ we connect τ to
a world w and add p1(a) to w. Thus w can be identified by τ and the atom p1(a). At the same time
we want to represent the model corresponding to M by a set I of atoms. To keep the information
that p1(a) is true at w, we add the atom 〈p1(a)〉 p1(a) to I, where 〈p1(a)〉 is 3 labeled by p1(a). To
realize φ2 at τ , 2p2(x)← p1(x) is added to w, and then 2p2(a) is also added to w. To keep the fact
that 2p2(a) belongs to w, we add 〈p1(a)〉2p2(a) to I. Now take another view, just leave M and
concentrate only on I. Note that I contains 〈p1(a)〉 p1(a) and 〈p1(a)〉2p2(a). Apply the rule φ3 to I,
then I should contain also 〈p1(a)〉 p3(a). Apply the rule φ4 to I, then I should contain also 2p4(a).
In general, instead of building a model graph for P we can build such a set I of atoms, which is
called a model generator. The set IKD,P = {〈p1(a)〉 p1(a), 〈p1(a)〉2p2(a), 〈p1(a)〉 p3(a),2p4(a)} is
the least set of ground atoms which can be derived from P in KD . This set is obtained as the least
fixpoint of a certain operator TKD,P and is called the least KD-model generator of P .

Given a model generator I, we can construct the standard KD-model for it by building a model
graph. During the construction, to realize a formula 〈E〉φ at a world w, where E is a ground
classical atom, we connect w to the world identified by w and E (in the form w〈E〉) and add φ to
that world. We realize a formula 2φ at a world w by adding φ to every world reachable from w.
To guarantee the constructed model graph to be the smallest, each new world is connected to an
empty world at the time of its creation. It can be shown that the standard model of IKD,P is a
least KD-model of P .

Now let us give an SLD-refutation of P ∪ {G} in KD . By the content of IKD,P , the computed
answer should be {x/a}. The SLD-refutation should trace back the process of deriving the atom
2p4(a) of IKD,P from P . As a KD-resolvent of G and φ4, we derive a new goal G1 = ← 3p3(x).
As a KD-resolvent of G1 and φ3, we derive the goal G2 = ← 3(p1(x) ∧ 2p2(x)). This goal is not
desired, as it contains a formula but not atoms in its body. To overcome this problem, the goal
atom 3p3(x) in G1 is first labeled as 〈X〉 p3(x), where X is a fresh variable for classical atoms.
Suppose G1 is transformed to G′1 = ← 〈X〉 p3(x) and G2 is now a KD-resolvent of G′1 and φ3.
Then G2 = ← 〈X〉 p1(x), 〈X〉2p2(x). Now resolve G2 with φ1. As explained in the construction of
IKD,P , the atom 3p1(a) in the head of φ1 can be treated as 〈p1(a)〉 p1(a). Thus, resolving G2 with
φ1 results in G3 = ← 〈p1(a)〉2p2(a) and an mgu {x/a,X/p1(a)}. Resolving G3 with φ2, we obtain
G4 = ← 〈p1(a)〉 p1(a). Finally, resolving G4 with φ1, we obtain the empty clause (denoted by �).
Note that for simplicity we have ignored renaming variables. The refutation is summarized in the
following table.

Goals Input Clauses Mgu′s
G = ← 2p4(x)
G1 = ← 3p3(x) φ4 ε
G′1 = ← 〈X〉 p3(x)
G2 = ← 〈X〉 p1(x), 〈X〉2p2(x) φ3 ε
G3 = ← 〈p1(a)〉2p2(a) φ1 {x/a,X/p1(a)}
G4 = ← 〈p1(a)〉 p1(a) φ2 ε
G5 = � φ1 ε

In this work, we propose a modal logic programming language called MProlog, which is as
expressive as the general modal Horn fragment. We give a fixpoint semantics and an SLD-resolution
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calculus for MProlog in all of the basic serial modal logics KD , T , KDB , B , KD4, S4, KD5, KD45,
and S5. For an MProlog program P and for L being one of the mentioned logics, we define an
operator TL,P , which has the least fixpoint IL,P . This fixpoint is a set of formulae, which may
contain labeled forms of the modal operator 3, and is called the least L-model generator of P .
The standard model of IL,P is shown to be a least L-model of P . The SLD-resolution calculus
for MProlog is designed with a similar style as for classical logic programming. It is sound and
complete. We also extend the calculus for MProlog in the almost serial modal logics KB , K 5, K 45,
and KB5.

This work is organized as follows: In Section 2 we give basic definitions for fixed-domain first-
order modal logics with rigid terms. MProlog programs are interpreted in such logics. In that
section we also introduce labeled modal operators and their semantics. In Section 3 we define
the MProlog language and show that it is as expressive as the general modal Horn fragment.
In Section 4 we study model generators and their standard models. The fixpoint semantics and
the least model semantics for MProlog programs are given in Section 5, while the SLD-resolution
calculus for MProlog is given in Section 6. Soundness and completeness of the calculus is proved
in Section 7. In Section 8 we extend the SLD-resolution calculus for MProlog programs in the
almost serial modal logics KB , K 5, K 45, and KB5. Some related works are discussed in Section 9.
Section 10 concludes this work.

2 Preliminaries

In this section, we first give definitions for fixed-domain first-order modal logics with rigid terms.
We then define an order between Kripke models. In the last subsection, we give a list of notations
that will be used in this work and introduce labeled modal operators.

2.1 First Order Modal Logics

An alphabet for modal logics consists of variables, constant symbols, function symbols, predicate
symbols, the classical connectives ∧, ∨, ¬, →, the modal operators 2, 3, the quantifiers ∀, ∃, and
the punctuation symbols “(”, “)”, “,”.

The symbols ¬, ∧, ∨ and →, respectively, stand for logical negation, logical conjunction, logical
disjunction and logical implication. The symbols 2 and 3 can take various meanings but tradition-
ally stand for “necessity” and “possibility”. The symbol ∀ is called the universal quantifier and ∃
the existential quantifier.

To enable us to omit parentheses, we adopt the convention that the connectives ¬, 2, 3 and
the quantifiers ∀, ∃ are of equal binding strength but bind stronger than ∧, which binds stronger
than ∨, which binds stronger than →.

Definition 2.1 A term is defined inductively as follows: a variable is a term; a constant symbol is
a term; if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

Definition 2.2 A (well-formed modal) formula is defined inductively as follows:

• If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is a formula,
called a classical atom.

• If φ and ψ are formulae, then so are (¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (2φ), and (3ψ).

• If φ is a formula and x is a variable, then (∀x φ) and (∃x φ) are formulae.

We also write φ ≡ ψ for (φ→ ψ) ∧ (ψ → φ).
The modal depth of a formula φ is the maximal nesting depth of modalities occurring in φ. For

example, the modal depth of 2(3p(x) ∨2q(y)) is 2.
The scope of ∀x (resp. ∃x) in ∀x φ (resp. ∃x φ) is φ. A bound occurrence of a variable in a

formula is an occurrence immediately following a quantifier or an occurrence within the scope of a
quantifier, which has the same variable immediately after the quantifier. Any other occurrence of
a variable is free.

3



A closed formula is a formula without free occurrences of any variable. If φ is a formula, then
∀(φ) denotes the universal closure of φ, which is the closed formula obtained by adding a universal
quantifier for every variable having a free occurrence in φ. Similarly, ∃(φ) denotes the existential
closure of φ, which is obtained by adding an existential quantifier for every variable having a free
occurrence in φ.

A ground term is a term without variables. A ground formula is a formula without quantifiers
and variables. The Herbrand universe U is the set of all ground terms. The Herbrand base B is the
set of all ground classical atoms.

We now define Kripke models, model graphs, and the satisfaction relation.

Definition 2.3 A Kripke frame is a triple 〈W, τ,R〉, where W is a nonempty set of possible worlds,
τ ∈ W is the actual world, and R is a binary relation on W , called the accessibility relation. If
R(w, u) holds then we say that the world u is accessible from the world w, or that u is reachable
from w.

Definition 2.4 A fixed-domain Kripke model with rigid terms, hereafter simply called a Kripke
model or just a model, is a tuple M = 〈D,W, τ,R,m〉, where D is a set called domain, 〈W, τ,R〉
is a Kripke frame, and m is an interpretation of constant symbols, function symbols and predicate
symbols. For a constant symbol a, m(a) is an element of D, denoted also by aM . For an n-ary
function symbol f , m(f) is a function from Dn to D, denoted also by fM . For an n-ary predicate
symbol p and a world w ∈W , m(w)(p) is a n-ary relation on D, denoted also by pM,w.

Definition 2.5 A model graph is a tuple 〈W, τ,R,H〉, where 〈W, τ,R〉 is a Kripke frame and H is
a function that maps each world of W to a set of formulae.

Every model graph 〈W, τ,R,H〉 corresponds to a Herbrand model M = 〈U ,W, τ,R,m〉 specified
by: cM = c, fM (t1, . . . , tn) = f(t1, . . . , tn), and pM,w(t1, . . . , tn) ≡ (p(t1, . . . , tn) ∈ H(w)), where
t1, . . . , tn are ground terms. We will sometimes treat a model graph as its corresponding model.

Definition 2.6 Let M be a Kripke model. A variable assignment (w.r.t. M) is a function that maps
each variable to an element of the domain of M . The value of a term t w.r.t. a variable assignment
V is denoted by V (t) and defined as follows: If t is a constant symbol a then V (t) = aM ; if t is a
variable x then V (t) = V (x); if t is f(t1, . . . , tn) then V (t) = fM (V (t1), . . . , V (tn)).

Definition 2.7 Given some Kripke model M = 〈D,W, τ,R,m〉, some variable assignment V , and
some world w ∈W , the satisfaction relation M,V,w � ζ for a formula ζ is defined as follows:

M,V,w � p(t1, . . . , tn) iff pM,w(V (t1), . . . , V (tn));
M,V,w � ¬φ iff M,V,w 2 φ;
M,V,w � φ ∧ ψ iff M,V,w � φ and M,V,w � ψ;
M,V,w � φ ∨ ψ iff M,V,w � φ or M,V,w � ψ;
M,V,w � φ→ ψ iff M,V,w 2 φ or M,V,w � ψ;
M,V,w � 2φ iff for all v ∈W such that R(w, v), M,V, v � φ;
M,V,w � 3φ iff there exists some v ∈W such that R(w, v) and M,V, v � φ;
M,V,w � ∀x φ iff for all a ∈ D, (M,V ′, w � φ),

where V ′(x) = a and V ′(y) = V (y) for y 6= x;
M,V,w � ∃x φ iff there exists a ∈ D such that M,V ′, w � φ,

where V ′(x) = a and V ′(y) = V (y) for y 6= x.

If M,V,w � φ then we say that φ is true at w in M w.r.t. V . We write M,w � φ to denote that
M,V,w � φ for every V . We say that M satisfies φ, or φ is true in M , and write M � φ, if M, τ � φ.
For a set Γ of formulae, we call M a model of Γ and write M � Γ if M � α for every α ∈ Γ.

A logic can be defined by a set of well-formed formulae, a class of admissible interpretations,
and a satisfaction relation. The class of admissible interpretations for a modal logic L is often
specified by restrictions on Kripke frames admissible for L. We refer to such restrictions by L-frame
restrictions and call frames with such properties L-frames.
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Definition 2.8 We call a model M with L-frame an L-model. We say that φ is L-satisfiable if there
exists an L-model of φ, i.e. an L-model satisfying φ. A formula φ is said to be L-valid and called
an L-tautology if φ is true in every L-model. For a set Γ of formulae, we write Γ �L φ and call φ a
logical consequence of Γ in L if φ is true in every L-model of Γ.

If we define the class of admissible interpretations to be the class of all Kripke models (without
restrictions on the accessibility relations) then we obtain the fixed-domain first-order modal logic
with rigid terms K. This logic is axiomatized by the following system:

• axioms for the classical predicate logic (without identity)

• the K-axiom: 2(φ→ ψ)→ (2φ→ 2ψ)

• the Barcan formula axiom: ∀x2φ→ 2 ∀xφ

• the axiom defining 3 : 3φ ≡ ¬2¬φ

• the modus ponens rule: φ φ→ ψ
ψ

• the generalization rule: φ
∀xφ

• and the modal generalization rule: φ
2φ

Note that the converse Barcan formula 2∀xφ → ∀x2φ is a consequence of this axiomatization
system. It is known that this system is sound and complete.

Every logic whose axiomatization is an extension of the K system is called a normal modal logic.
Some additional axioms like D, T, B, 4, 5 given in Table 2.1 correspond to certain conditions on
the accessibility relation in the sense that by adding some of them to the system K we obtain
an axiomatization system which is sound and complete with respect to the class of admissible
interpretations that satisfy the corresponding restrictions on the accessibility relation. Some of the
most popular normal modal logics together with their additional axioms and frame restrictions are
listed in Table 2.1. For a survey on axiomatization systems for first-order modal logics and methods
for proving their soundness and completeness, we refer the reader to Garson’s work [17].

2.2 Ordering Kripke Models

A formula is in the negative normal form if it does not contain the connective →, and each of its
negations occurs immediately before a classical atom. Every formula can be transformed to the
equivalent negative normal form in the usual way.

Definition 2.9 A formula is called positive if its negative normal form does not contain negation.
A formula is called negative if its negation is a positive formula.

Definition 2.10 A model M is said to be less than or equal to N , write M ≤ N , if for any positive
ground formula φ, if M satisfies φ then N also satisfies φ.

The relation ≤ in the above definition is a pre-order1.

Definition 2.11 Let M = 〈D,W, τ,R,m〉 and N = 〈D′,W ′, τ ′, R′,m′〉 be Kripke models. We say
that M is less than or equal to N w.r.t. a binary relation r ⊆ W ×W ′, and write M ≤r N , if the
following conditions hold:

1. r(τ, τ ′)

2. ∀x, x′, y R(x, y) ∧ r(x, x′)→ ∃y′ R′(x′, y′) ∧ r(y, y′)

3. ∀x, x′, y′ R′(x′, y′) ∧ r(x, x′)→ ∃y R(x, y) ∧ r(y, y′).
1i.e. a reflexive and transitive binary relation
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Axiom Schema Corresponding Condition on R
D 2φ→ 3φ ∀w ∃u R(w, u)
T 2φ→ φ ∀w R(w,w)
B φ→ 23φ ∀w, u R(w, u)→ R(u,w)
4 2φ→ 22φ ∀w, u, v R(w, u) ∧R(u, v)→ R(w, v)
5 3φ→ 23φ ∀w, u, v R(w, u) ∧R(w, v)→ R(u, v)

Logic Axioms Frame Restriction
K no restriction
KD D serial
T T reflexive
KB B symmetric
KDB DB serial and symmetric
B TB reflexive and symmetric
K 4 4 transitive
KD4 D4 serial and transitive
S4 T4 reflexive and transitive
K 5 5 euclidean
KD5 D5 serial and euclidean
K 45 45 transitive and euclidean
KD45 D45 serial, transitive and euclidean
KB5 B5 symmetric and euclidean
S5 T5 reflexive and euclidean

Table 1: Modal logics and frame restrictions

4. For any x ∈W , x′ ∈W ′ such that r(x, x′), for any ground classical atom E, if M,x � E then
N, x′ � E.

In the above definition, the first three conditions state that r is a bisimulation of the frames of
M and N . Intuitively, r(x, x′) states that the world x is less than or equal to x′.

Lemma 2.1 If M ≤r N then M ≤ N .

The proof of this lemma is straightforward; see [29] for the propositional case.

2.3 Notations, Labeled Modal Operators, and Unification

Throughout this work, we will use the following notations:

• > – the truth symbol, with the usual2 semantics;

• D, E, F – classical atoms or >;

• X, Y – variables for classical atoms or >, called atom variables;

• 〈E〉 – 3 labeled by E;

• 〈X〉 – 3 labeled by X;

• ∇ – 2, 3, 〈E〉, or 〈X〉, called a modal operator;

• 4 – a sequence of modal operators, which can be empty and is called a modality;

• A, B – formulae of the form E or ∇E, called simple atoms;

• α, β – formulae of the form 4E, called atoms;
2i.e. it is always true that M,V,w � >
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• φ, ψ – labeled formulae (i.e. formulae that may contain 〈E〉 and 〈X〉), which will be simply
called formulae.

A ground formula is redefined to be a formula without variables and atom variables. A closed
formula is redefined to be a formula without atom variables and free occurrences of variables. A
labeled modal operator is a modal operator of the form 〈E〉 or 〈X〉. A modal operator is said to be
ground if it is 2, 3, or 〈E〉 with E being > or a ground classical atom. A ground modality is a
modality that contains only ground modal operators.

Denote EdgeLabels = {〈E〉 | E ∈ B ∪ {>}}. The semantics of 〈E〉 for E being > or a ground
classical atom is specified by the following definition.

Definition 2.12 Let M = 〈D,W, τ,R,m〉 be a Kripke model. A 3-realization function on M is
a partial function σ : W × EdgeLabels → W such that if σ(w, 〈E〉) = u, then R(w, u) holds and
M,u � E. Given a 3-realization function σ, a world w ∈ W , and a ground (labeled) formula φ,
the satisfiability relation M,σ,w � φ is defined in the usual way, except that M,σ,w � 〈E〉ψ iff
σ(w, 〈E〉) is defined and M,σ, σ(w, 〈E〉) � ψ. We write M,σ � φ to denote that M,σ, τ � φ. For a
set of ground atoms I, we write M,σ � I to denote that M,σ � α for all α ∈ I. We write M � I,
and call M a model of I, if M,σ � I for some σ.

We now give definitions for substitution and unification.

Definition 2.13 A substitution θ is a (finite or infinite) set of the form {x1/t1, x2/t2, . . . ,
X1/E1, X2/E2, . . . , Y1/Z1, Y2/Z2, . . .}, where x1, x2, . . . are distinct variables, t1, t2, . . . are terms,
X1, X2, . . . , Y1, Y2, . . . are distinct atom variables, and for any element v/s of the set, s is dis-
tinct from v. The set {x1, x2, . . ., X1, X2, . . . , Y1, Y2, . . .} is called the domain of θ and denoted
by Dom(θ). θ is called a ground substitution if the set {Y1, Y2, . . .} is empty, t1, t2, . . . are ground
terms, and E1, E2, . . . are ground classical atoms. The substitution given by the empty set is called
the identity substitution and denoted by ε.

An expression is either a term or a formula. Let θ = {v1/s1, v2/s2, . . .} be a substitution (where
vi/si is of the form x/t, X/E, or Y/Z) and Φ be an expression. Then Φθ, the instance of Φ by
θ, is the expression obtained from Φ by simultaneously replacing each occurrence of vi in Φ by si.
For example, if Φ = p(x, y, a) and θ = {x/y, y/f(x, b)}, then Φθ = p(y, f(x, b), a). If S is a set of
expressions, then by Sθ we denote the set {Φθ | Φ ∈ S}.

Let θ and γ be substitutions. Let δ = {v/(sγ) | v/s ∈ θ} ∪ {v/s | v/s ∈ γ and v /∈ dom(θ)}.
Then the composition θγ is the substitution obtained from δ by deleting every element v/s with
s = v. Here are some properties of substitutions: if θ, γ, δ are substitutions and Φ is an expression,
then θε = εθ = θ, (Φθ)γ = Φ(θγ), and (θγ)δ = θ(γδ).

Definition 2.14 Let Φ and Ψ be expressions. We say that Φ is a variant of Ψ if there exist
substitutions θ and γ such that Φ = Ψθ and Ψ = Φγ.

Definition 2.15 Let S be a finite set of expressions. A substitution θ is called a unifier for S if
Sθ is singleton. A unifier θ for S is called a most general unifier (mgu) for S if, for each unifier γ
of S, there exists a substitution δ such that γ = θδ. If there exists a unifier for S then S is said to
be unifiable.

The well-known unification theorem says that if S is a finite unifiable set of expressions, then
there exists an mgu for S, which can be effectively computed (see e.g. [24]).

Atom variables in modal operators of the form 〈X〉 are mainly interpreted by substitutions.
When a formula φ is taken to be semantically considered, all modal operators 〈X〉 in φ are treated
as3 〈>〉, which is formalized by the following definition.

3Atom variables appear only in goal bodies. In the negation of a goal (i.e. a query) they are existentially quantified.
Hence it is sufficient to choose some concrete values for them. Furthermore, as we will see, the modal operator 〈>〉
plays the role of 2; and if X remains at the end as an unsubstituted atom variable then 〈X〉 intuitively also plays
the role of 2.
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Definition 2.16 Given a Kripke model M , a 3-realization function σ, and a labeled formula φ
without quantifiers, we write M,σ � ∀c(φ) to denote that for any substitution θ which substitutes
every variable by a ground term and does not substitute atom variables, M,σ � φ θ δ>, where
δ> = {X/> | X is an atom variable}. By M � ∀

c
(φ) we denote M,σ � ∀

c
(φ) for some σ. For a

formula set Γ and a formula φ (maybe in the form ∀
c
(ψ)), we write Γ �L φ to denote that for any

L-model M , if M � Γ then M � φ.

The quantifier ∀c is introduced because 3-realization functions are defined using Herbrand base
and we do not want to restrict only to Herbrand models. Let L be one of the logics given in Table 2.1.
Suppose that there are enough constant symbols not occurring in Γ, for example, infinitely many.
Then, because L has a complete axiomatization, for Γ being a formula set and φ a formula - both
without labeled modal operators, Γ �L ∀(φ) iff Γ �L ∀c(φ).

3 The MProlog Language

In this section we define a class of modal logic programs and goals, which specify a language called
MProlog. Despite its simple form, the language is as expressive as its extension called eMProlog.
This section is free from labeled modal operators, hereby we assume that formulae in this section
do not contain labeled modal operators.

In logic programming, it is convenient to adopt a special clausal notation. Throughout, by

2s(φ1, . . . , φm ← ψ1, . . . , ψn)

we denote the formula

∀x1 . . . ∀xk 2s(φ1 ∨ . . . ∨ φm ∨ ¬ψ1 ∨ . . . ∨ ¬ψn)

where s ≥ 0 and 2s is a sequence with length s of 2, φ1, . . . , φm, ψ1, . . . , ψn are positive formulae
not containing quantifiers, and x1, . . . , xk are all variables occurring in the formula. Thus, in
the clausal notation, all variables are assumed to be universally quantified, the commas in the
antecedent ψ1, . . . , ψn denote conjunction and the commas in the consequent φ1, . . . , φm denote
disjunction.

Definition 3.1 A program clause is a formula of the form

2s(A← B1, . . . , Bn)

where s ≥ 0, n ≥ 0, and A, B1, . . . , Bn are formulae of the form E, 2E, or 3E with E being a
classical atom. 2s is called the modal context, A is called the head, and B1, . . . , Bn is called the
body of the program clause.

Definition 3.2 A unit clause is a clause of the form 2s(A←), i.e. a program clause with an empty
body. The clause with empty head and empty body is called the empty clause and denoted by �.

Definition 3.3 An MProlog program is a finite set of program clauses4.

Definition 3.4 An MProlog goal atom is a formula of the form 2sE or 2s3E, where s ≥ 0. An
MProlog query is a formula of the form ∃(α1 ∧ . . .∧αk), where α1, . . . , αk are MProlog goal atoms.
An MProlog goal is the negation of an MProlog query.

In the clausal notation, the goal ¬∃(α1∧. . .∧αk) is presented as← α1, . . . , αk. If P is an MProlog
program, Q = ∃(α1 ∧ . . . ∧ αk) is an MProlog query and G = ← α1, . . . , αk is the corresponding
goal, then P �L Q iff P ∪ {G} is L-unsatisfiable. For the proof of this statement, just note that
G = ∀(¬(α1 ∧ . . . ∧ αk)).

In the logic KD5, we have a tautology 4∇1∇2φ ≡ ∇1∇2φ. This equivalence was given in
[12]. In KD5, we also have 3∇φ ≡ 2∇φ. Furthermore, in the logics KD45 and S5, we have
∇1∇2φ ≡ ∇2φ. So, for these logics we refine the definitions of MProlog programs and goals as
follows.

4For the logics KD5, KD45, and S5, we will adopt some restrictions on the form of program clauses.
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Definition 3.5 Let L be one of the logics KD5, KD45, S5. An MProlog program in L is a finite
set of program clauses of the form

2s(A← B1, . . . , Bn)

where s ≤ 2 for L = KD5, and s ≤ 1 for L ∈ {KD45,S5}. An MProlog goal atom in L is a formula
of the form 2kE or 2h3E, where 0 ≤ k ≤ 2 and 0 ≤ h ≤ 1 for L = KD5, and 0 ≤ k ≤ 1 and h = 0
for L ∈ {KD45,S5}. MProlog queries and MProlog goals in L are defined as usual.

When the base logic is one of KD5, KD45, and S5, we implicitly adopt the above-mentioned
conditions for MProlog programs and goals.

We now give an extension of MProlog, which is called eMProlog and stands for the general
modal Horn fragment.

Definition 3.6 A formula φ without quantifiers is called a non-negative modal Horn formula (with-
out quantifiers) if one of the following conditions holds:

• φ is a classical atom;

• φ = ψ ← ζ, where ψ is a non-negative modal Horn formula and ζ is a positive formula (in the
negative normal form);

• φ = 2ψ, or φ = 3ψ, or φ = ψ ∧ ζ, where ψ and ζ are non-negative modal Horn formulae.

Definition 3.7 An eMProlog program is a finite set of formulae of the form ∀(φ), where φ is a
non-negative modal Horn formula without quantifiers. An eMProlog query is a formula of the form
∃(φ), where φ is a positive formula without quantifiers. An eMProlog goal is the negation of an
eMProlog query.

To show that MProlog is as expressive as eMProlog, we first define correct answers.

Definition 3.8 Let P be an MProlog (resp. eMProlog) program and G an MProlog (resp. eMPro-
log) goal. An answer for P ∪{G} is a substitution for variables of G (i.e. a substitution θ such that
Dom(θ) is a set of variables occurring in G).

Definition 3.9 Let L be a modal logic, P an MProlog (resp. eMProlog) program, Q = ∃(φ) an
MProlog (resp. eMProlog) query and G the corresponding goal (i.e. G = ¬Q). Let θ be an answer
for P ∪ {G}. We say that θ is a correct answer in L for P ∪ {G} if P �L ∀(φ θ).

The following proposition states that MProlog has the same expressiveness as eMProlog.

Proposition 3.1 For any eMProlog program P and any eMProlog goal G, there exist an MProlog
program P ′ and an MProlog goal G′ such that every correct answer in L for P ∪ {G} is a correct
answer in L for P ′ ∪ {G′} and vice versa.

Proof. For any formula φ with n variables and no quantifiers, by pφ we denote a fresh n-ary predicate
symbol, and by Eφ we denote the classical atom pφ(x1, . . . , xn), where x1, . . . , xn are the variables
occurring in φ. In this proof we will use Γ and ∆ to denote sequences of formulae.

Let P be an eMProlog program and G = ← ξ an eMProlog goal. Let P ′′ = P ∪ {Eξ ← ξ}
and G′ = ← Eξ. We apply Mints translation5 to P ′′ in order to obtain an MProlog program. The
translation rules are given in the below list, in which each row contains a formula to be replaced
in the left, and the replacing ones in the right. The formula φ in the rules (1), (3) and (4), and ψ
in the rules (7) and (8) are required not to be a classical atom. The rules (5) and (9) are designed

5This translation technique for modal logics was probably used the first time in the Mints’ work [26].
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to shorten the result. We apply the translation rules to P ′′ until no further changes can be made.
Let P ′ be the resulting set.

∀(2k3φ) ∀(2k3Eφ), ∀(2k+1(φ← Eφ)) (1)
∀(2k(φ ∧ ψ)) ∀(2kφ), ∀(2kψ) (2)

∀(2k(2φ← Γ)) ∀(2k(2Eφ ← Γ)), ∀(2k+1(φ← Eφ)) (3)
∀(2k(3φ← Γ)) ∀(2k(3Eφ ← Γ)), ∀(2k+1(φ← Eφ)) (4)

∀(2k(φ ∧ ψ ← Γ)) ∀(2k(Eφ∧ψ ← Γ)), ∀(2k(φ← Eφ∧ψ)), ∀(2k(ψ ← Eφ∧ψ)) (5)
∀(2k((φ← ψ)← Γ)) ∀(2k(φ← ψ,Γ)) (6)
∀(2k(φ← Γ,2ψ,∆)) ∀(2k(φ← Γ,2Eψ,∆)), ∀(2k+1(Eψ ← ψ)) (7)
∀(2k(φ← Γ,3ψ,∆)) ∀(2k(φ← Γ,3Eψ,∆)), ∀(2k+1(Eψ ← ψ)) (8)
∀(2k(φ← Γ, ψ ∨ ζ,∆)) ∀(2k(φ← Γ, Eψ∨ζ ,∆)),∀(2k(Eψ∨ζ ← ψ)),∀(2k(Eψ∨ζ ← ζ)) (9)
∀(2k(φ← Γ, ψ ∧ ζ,∆)) ∀(2k(φ← Γ, ψ, ζ,∆)) (10)

It is easily seen that P ′ is an MProlog program, and the translation is done in O(n2) steps,
where n is the size of P ′′.

Suppose that θ is a correct answer in L for P ′ ∪ {G′}. Let M be an arbitrary L-model of P .
We show that M � ∀(ξθ). Let M ′ be an L-model with the same frame as M such that the content
of each world w in M ′ is the least extension of the content of w in M with the property that for
any formula φ with Eφ occurring in P ′, M ′, w � ∀(Eφ ← φ). Thus M ′ is an L-model of P ′ and
M ′ � ∀(Eξ → ξ). Since θ is a correct answer in L for P ′ ∪ {G′}, we have M ′ � ∀(Eξθ), and hence
M ′ � ∀(ξθ). It follows that M � ∀(ξθ) (because M ′ differs from M only on the semantics of new
predicate symbols). Therefore every correct answer in L for P ′ ∪ {G′} is a correct answer in L for
P ∪ {G}.

For the conversion, suppose that θ is a correct answer in L for P ∪ {G}. Let M ′ be an L-model
of P ′. Thus M ′ is also an L-model of P and M ′ � ∀(Eξ ← ξ). Since θ is a correct answer in L for
P ∪ {G}, we have M ′ � ∀(ξθ), and hence M ′ � ∀(Eξθ). Therefore every correct answer in L for
P ∪ {G} is a correct answer in L for P ′ ∪ {G′}. 2

4 Model Generators

Throughout this work, if not stated otherwise, L is one of the logics KD , T , KDB , B , KD4, S4,
KD5, KD45, S5. In this section, we investigate a structure called a model generator, which is a set
representation of a Kripke model. We show that for every model generator I there exists a model
called the standard L-model of I which is a least L-model of I.

Definition 4.1 A model generator is a set of ground atoms not containing 3, 〈>〉, >. A model
generator I is called an L-normal model generator if L /∈ {KD5,KD45,S5}, or L = KD5 and I
contains only atoms of the form E, ∇E, or 2∇E, or L ∈ {KD45,S5} and I contains only atoms of
the form E or ∇E.

Given an L-normal model generator I, we can construct a least L-model for it by building an
L-model graph realizing I (cf. [29]). Formulae of the form 2α are realized in the usual way; a
formula of the form 〈E〉α is realized at a world w by connecting w to a world identified by w〈E〉
and adding α to that world. To guarantee the constructed model graph to be the smallest, each
new world is connected to an empty world at the time of its creation. Sometimes the accessibility
relation is extended to satisfy all of the L-frame restrictions. In this section we want to define a
least L-model graph for I rather than giving a procedure to construct it. We simulate the process
of constructing a least L-model graph for a model generator I by the two following definitions.

Definition 4.2 Let I be a model generator. The L-extension of I, denoted by ExtL(I), is the least
(w.r.t. ⊆) model generator J such that I ⊆ J and:

• if L ∈ {T,B,S4} and 42α ∈ J then 4α ∈ J ;
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• if L ∈ {KDB,B} and 4∇2α ∈ J then 4α ∈ J ;

• if L ∈ {KD4,S4} and 42α ∈ J then 422α ∈ J ;

• if L = KD5 and 22E ∈ J then 2E ∈ J ;

• if L = S5 and 2E ∈ J then E ∈ J .

Note that ExtKD45(I) = I, and if 42α ∈ ExtL(I) then it is not neccessary that 4〈E〉α ∈
ExtL(I). It can be shown that for any L-model M , M � ExtL(I) iff M � I.

Definition 4.3 Let I be an L-normal model generator. The standard L-model of I is de-
fined as follows. Let J be the set specified by: J = ExtL(I) ∪ {〈>〉>} for L ∈ {KD45,S5},
J = ExtL(I) ∪ {〈>〉>,2〈>〉>} for L = KD5, and J = ExtL(I)∪{2k〈>〉> | k ≥ 0} for other cases.
Let W0 = EdgeLabels∗ (i.e. the set of finite sequences of elements of {〈E〉 | E ∈ B ∪ {>}}), τ = ε,
H(τ) = J . Let R0 ⊆W0 ×W0 and H(u), for u ∈W0, u 6= τ , be the least sets such that:

• if 〈E〉α ∈ H(w), then R0(w,w〈E〉) and {E,α} ⊆ H(w〈E〉);

• if 2α ∈ H(w) and R0(w,w〈E〉), then α ∈ H(w〈E〉).

Let R ⊆W0×W0 be the least extension of R0 that satisfies all L-frame restrictions except seriality6,
and let W be W0 without worlds not reachable directly nor indirectly from τ (w.r.t. R). We call
the model graph 〈W, τ,R,H〉 the standard L-model graph of I, and its corresponding model M the
standard L-model of I. We call R0 the skeleton of M . By the standard 3-realization function on
M we call the 3-realization function σ defined as follows: if R0(w,w〈E〉) then σ(w, 〈E〉) = w〈E〉,
else σ(w, 〈E〉) is undefined.

Note that a world (being a sequence of labeled modal operators) in a standard L-model has
length 0 or 1 for L ∈ {KD45,S5}, and has length bounded by 2 for L = KD5.

Definition 4.4 An atom ∇1 . . .∇nE is called an instance of an atom ∇′1 . . .∇′nE′ if there exists
a substitution θ such that E = E′θ, and for 1 ≤ i ≤ n, ∇′i = 2, or ∇i = 3, or ∇i = 〈F 〉 and
∇′i = 〈F ′〉 and F = F ′θ. A modality 4 is called an instance of 4′, and we also say that 4′ is equal
to or more general than 4 (hereby we define a pre-order between modalities), if 4E is an instance
of 4′E for some ground classical atom E.

We give below an auxiliary lemma.

Lemma 4.1 Let I be an L-normal model generator and M = 〈W, τ,R,H〉 the standard L-model
graph of I. Let w = 〈E1〉 . . . 〈Ek〉 be a world of M and 4 = w be a modality. Then for α not
containing >, α ∈ H(w) iff 4α is an instance of some atom from ExtL(I).

This lemma can be proved by induction on the length of w in a straightforward way.
The following lemma states that Definition 4.3 is admissible (i.e. the standard L-model of I is

really an L-model of I).

Lemma 4.2 Let I be an L-normal model generator, M the standard L-model of I, and σ the
standard 3-realization function on M . Then M is an L-model and M,σ � I.

Proof. Clearly, M is an L-model. Let R0 be the skeleton of M . We prove by induction on the
length of α that, for any w ∈W , if α ∈ H(w) then M,σ,w � α. Let 4 = w = 〈E1〉 . . . 〈Ek〉.

The cases when α is a classical atom or α = 〈E〉β are trivial.
Suppose that α = 2β. Let u be a world such that R(w, u) holds. We show that β ∈ H(u).

There are the following cases to consider:

• Case u = w〈E〉 and R0(w,w〈E〉) : The assertion holds by the definition of M .

6Note that the condition about seriality is guaranteed by the set (J−ExtL(I)), and the other L-frame restrictions
are Horn clauses.
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• Case u = w and L ∈ {T,B,S4} : Since 2β ∈ H(w), by Lemma 4.1, 42β is an instance of
some atom from ExtL(I). By the definition of ExtL(I), it follows that 4β is an instance of
some atom from ExtL(I). Hence β ∈ H(u).

• Case w = u〈Ek〉 and L ∈ {KDB,B}: Since 2β ∈ H(u〈Ek〉), either 22β or 〈Ek〉2β belongs
to H(u). By Lemma 4.1, 〈E1〉 . . . 〈Ek−1〉32β is an instance of some atom from ExtL(I). By
the definition of ExtL(I), it follows that 〈E1〉 . . . 〈Ek−1〉β is an instance of some atom from
ExtL(I). Hence β ∈ H(u).

• Case Rh0 (w, u), h ≥ 1, and L ∈ {KD4,S4}: Since 2β ∈ H(w), by Lemma 4.1, 42β is an
instance of some atom from ExtL(I). By the definition of ExtL(I), it follows that 42hβ is
an instance of some atom from ExtL(I). Hence β ∈ H(u).

• Case L = KD5, w = 〈E1〉, and (u = 〈E〉 or u = 〈E〉〈F 〉) for some E, F : Since 2β ∈ H(w),
we have 22β ∈ H(τ). By the definition of ExtL, we have 2β ∈ H(τ). Hence β ∈ H(u).

• Case L = S5 and w = u = τ : This case is trivial.

Note that the case L = KD45 and other cases for L ∈ {KD5,S5} are included in the first case
of the list. Since R(w, u) holds, the above list contains all of the cases that can occur. 2

Here is the main theorem of this section:

Theorem 4.3 Let I be an L-normal model generator. Then the standard L-model of I is a least
L-model of I.

Proof. Let M = 〈W, τ,R,H〉 be the standard L-model graph of I, σ the standard 3-realization
function and R0 the skeleton of the standard L-model of I. Let N = 〈D,W ′, τ ′, R′,m〉 be an
arbitrary L-model of I and σ′ a 3-realization function on N such that N, σ′ � I ∪

⋃ω
k=0{2k〈>〉>}

(such a σ′ exists because N is a serial model of I).
In the following, w, u ∈W , w′, u′ ∈W ′, and E, F are arbitrary.
Define r ⊆W ×W ′ to be the least relation such that:

• r(τ, τ ′);

• if r(w,w′) and R0(w,w〈E〉) hold, and σ′(w′, 〈E〉) is defined, then r(w〈E〉, σ′(w′, 〈E〉));

• if L /∈ {KD5,KD45,S5}, r(w,w′) and R′(w′, u′) hold, then r(w〈>〉, u′);

• if L ∈ {KD5,KD45,S5} and R′(τ ′, u′) holds, then r(〈>〉, u′);

• if L = KD5, and R′(τ ′, w′) and R′(w′, u′) hold for some w′, then r(〈>〉〈>〉, u′).

We first show that if r(w,w′) and R′(w′, u′) hold then there exists u such that r(u, u′) and
R(w, u) hold. For L /∈ {KD5,KD45,S5}, choose u = w〈>〉. For L ∈ {KD45,S5}, choose u = 〈>〉.
For the case L = KD5 and w = τ , choose u = 〈>〉. For the case L = KD5 and w 6= τ , choose
u = 〈>〉〈>〉. It is easy to verify that the assertion holds for the chosen u.

We now show that if r(u, u′) and α ∈ H(u), then N, σ′, u′ � α. We prove this by induction on
the length of u. Suppose that r(u, u′) holds and α ∈ H(u). The case u = τ is trivial. Let u = w〈E〉
and inductively assume that the assertion holds when u is replaced by w. There are the following
cases:

• u′ = σ′(w′, 〈E〉) (and σ′(w′, 〈E〉) is defined), r(w,w′), and R0(w,w〈E〉), for some w′;

• E = >, r(w,w′), and R′(w′, u′), for some w′;

• u = 〈>〉, L ∈ {KD5,KD45,S5}, and R′(τ ′, u′);

• u = 〈>〉〈>〉, L = KD5, and R′(τ ′, w′) and R′(w′, u′) hold for some w′.
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Consider the first case. Since α ∈ H(u), either 2α ∈ H(w) or 〈E〉α ∈ H(w). By the inductive
assumption, either N, σ′, w′ � 2α or N, σ′, w′ � 〈E〉α. Hence, N, σ′, σ′(w′, 〈E〉) � α, which means
that N, σ′, u′ � α. Consider the second case. Since α ∈ H(u), it follows that 2α ∈ H(w). By the
inductive assumption, N, σ′, w′ � 2α, and hence N, σ′, u′ � α since R′(w′, u′). Consider the third
case. Since α ∈ H(u), it follows that 2α ∈ H(τ). By the inductive assumption, N, σ′, τ ′ � 2α,
and hence N, σ′, u′ � α since R′(τ ′, u′). Consider the last case. Since α ∈ H(u), it follows that
22α ∈ H(τ). By the inductive assumption, N, σ′, τ ′ � 22α, and hence N, σ′, u′ � α since R′(τ ′, w′)
and R′(w′, u′).

We show that if r(w,w′) and R0(w,w〈E〉) hold, then σ′(w′, 〈E〉) is defined. The case E = > is
trivial. Suppose that r(w,w′) and R0(w,w〈E〉) hold, and E 6= >. There exists 〈E〉α ∈ H(w) for
some α. By the above proved assertion, N, σ′, w′ � 〈E〉α. Hence σ′(w′, 〈E〉) is defined. Therefore,
the second condition in the definition of r can be simplified to “if r(w,w′) and R0(w,w〈E〉) hold,
then r(w〈E〉, σ′(w′, 〈E〉))”.

To prove M ≤r N , it remains to show that if r(w,w′) and R(w, u) hold, then there exists
u′ ∈W ′ such that r(u, u′) and R′(w′, u′) hold. Suppose that r(w,w′) and R(w, u) hold. There are
the following cases to consider:

• Case u = w〈E〉 : Choose u′ = σ′(w′, 〈E〉).

• Case u = w and L ∈ {T,B,S4} : Choose u′ = w′.

• Case w = u〈E〉 and L ∈ {KDB,B} : It is straightforward to prove by induction on the length
of x that if r(x, x′) holds then either x = τ and x′ = τ ′ or x = y〈F 〉 for some F and there
exists y′ such that R′(y′, x′) and r(y, y′) hold. Hence, there exists u′ such that R′(u′, w′) and
r(u, u′) hold. For such chosen u′ we have R′(w′, u′) (due to symmetry).

• Case u = w〈E1〉 . . . 〈Ek〉 and L ∈ {KD4,S4} : Let u′0 = w′ and u′i = σ′(u′i−1, 〈Ei〉) for
1 ≤ i ≤ k. Choose u′ = u′k.

• Case u = τ and L = S5 : Choose u′ = τ ′.

• Case u = 〈E〉 and L ∈ {KD5,KD45,S5} : Choose u′ = σ′(τ ′, 〈E〉).

• Case u = 〈E〉〈F 〉 and L = KD5 : Choose u′ = σ′(σ′(τ ′, 〈E〉), 〈F 〉).

Since R(w, u) holds, the above list contains all of the cases that can occur. It is straightforward to
check that R′(w′, u′) and r(u, u′) hold. This completes the proof. 2

5 A Fixpoint Semantics for Modal Logic Programs

In this section, we show that for every MProlog program P there exists the least (w.r.t. ⊆) model
generator IL,P such that P �L IL,P and the standard L-model of IL,P is a least L-model of P . The
model generator IL,P is the least fixpoint of a certain operator.

Given an MProlog program P and an L-normal model generator I, we want to apply the clauses
of P to I to obtain another model generator and repeat the process for the new model generator
until obtaining a fixpoint. There are some questions related with this aim:

• What will be applied? We can use not only the program clauses of P but also their conse-
quences. For example, given a program clause 2(A← B1, . . . , Bn) in the logic T , we can use
also the clause A← B1, . . . , Bn.

• What will the program clauses be applied to? They are the atoms of I and consequences of
I. For example, suppose that P contains E ← 3F , I = {F}, and the base logic is T . We can
apply the program clause to 3F , which is a consequence of F in the logic T .

• How will the program clauses be applied? Let us give an example. Suppose that P contains
2(E ← F1, F2, F3), I contains 2F1, 〈F 〉F2 and 〈F 〉F3, and the base logic is KD . The result
of the application of the rule to the mentioned atoms is 〈F 〉E.

13



• What should be done if the resulting model generator is not in the L-normal form? The
answer is simple: normalize it.

We will give adequate answers for the above questions. As for the first one, L-instances (defined
below) of the program clauses of P are used as rules to be applied.

Definition 5.1 A program clause 2k(A ← B1, . . . , Bn) is called an L-instance of a program
clause 2h(A′ ← B′1, . . . , B

′
n) if there exists a substitution θ such that (A ← B1, . . . , Bn) =

(A′ ← B′1, . . . , B
′
n)θ and:

• case L = KD : k = h,

• case L = T : k ≤ h,

• case L = KDB : k = h− 2l, for some l ≥ 0,

• case L = B : k ≤ h,

• case L = KD4 : k ≥ h > 0 or k = h = 0,

• case L = S4 : k = 0 or (k > 0 and h > 0),

• case L = KD5 : k = h ∈ {0, 1, 2} or (k = 1 and h = 2),

• case L = KD45 : k = h ∈ {0, 1},

• case L = S5 : k = 0 or k = h = 1.

It can be shown that if a program clause φ is an L-instance of φ′, then ∀(φ′ → φ) is L-valid.
L-instances of program clauses are applied to atoms of the L-saturation (defined in the following)
of a given model generator.

Definition 5.2 Let I be an L-normal model generator. The L-saturation of I, denoted by SatL(I),
is the least set J of ground atoms such that I ⊆ J and:

• if L ∈ {T,B,S4} :

– if 42α ∈ J then 4α ∈ J ,

– if 4E ∈ J and 4 does not contain 3, then 43E ∈ J ;

• if L ∈ {KDB,B} :

– if 4∇2α ∈ J then 4α ∈ J ,

– if 4E ∈ J and 4 does not contain 3, then 423E ∈ J ;

• if L ∈ {KD4,S4} :

– if 42α ∈ J then 422α ∈ J ,

– if 4∇1∇2E ∈ J then 43E ∈ J ;

• if L = KD5 :

– if ∇E ∈ J then 23E ∈ J and 223E ∈ J ,

– if 22E ∈ J then 2E ∈ J and 222E ∈ J ,

– if 2〈F 〉E ∈ J then 223E ∈ J ;

• if L = KD45 :

– if ∇E ∈ J then 23E ∈ J ,

– if 2E ∈ J then 22E ∈ J ;

• if L = S5 :
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– the conditions as for the case L = KD45, plus

– if 2E ∈ J then E ∈ J ,

– if E ∈ J then 3E ∈ J .

Note that SatL(I) is a superset of ExtL(I).
It can be shown that for any L-model M , M � SatL(I) iff M � I.

Definition 5.3 The forward labeled form of an atom α is the atom α′ such that if α is of the form
43E then α′ = 4〈E〉E, else α′ = α.

We can “directly” apply the rules of a program using the operator T0L,P defined in the following.

Definition 5.4 Let P be an MProlog program. The operator T0L,P is defined as follows: for
I = SatL(J) with J being an L-normal model generator, T0L,P (I) is the least (w.r.t. ⊆) model
generator such that if 2k(A ← B1, . . . , Bn) is a ground L-instance of some program clause of P ,
and 4 is a maximally general7 ground modality with length k, not containing 3, such that for
every 1 ≤ i ≤ n, 4Bi is an instance of some atom from I, then the forward labeled form of 4A
belongs to T0L,P (I).

For an L-normal model generator I, T0L,P (SatL(I)) is a model generator, but not necessary in
the L-normal form (for L ∈ {KD5,KD45,S5}). We can normalize it as described below.

Definition 5.5 Let L ∈ {KD5,KD45,S5}, P be an MProlog program and I = T0L,P (SatL(I ′)) for
some L-normal model generator I ′. We define the L-normal form of I, denoted by NFL(I), to be
the least set J such that:

• Case L ∈ {KD45,S5} : J contains all atoms of the form E or ∇E of I, and if ∇∇′E ∈ I (note
that ∇′ = 2 or ∇′ = 〈E〉) then ∇′E ∈ J .

• Case L = KD5 : J contains all atoms of the form E, ∇E, or 2∇E of I, and if 2∇∇′E ∈ I
or 〈F 〉∇′E ∈ I (note that ∇′ = 2 or ∇′ = 〈E〉) then 2∇′E ∈ J .

We are now at the position to define the “direct consequences” operator TL,P , which has the
least fixpoint being the least L-model generator of P (see Definition 5.7).

Definition 5.6 Let P be an MProlog program. The operator TL,P is defined as follows: if L /∈
{KD5,KD45,S5} then TL,P (I) = T0L,P (SatL(I)), else TL,P (I) = NFL(T0L,P (SatL(I))).

Denote TL,P ↑0 = ∅, and TL,P ↑n = TL,P (TL,P ↑(n− 1)) for n > 0.
We give here a digression about fixpoints. Let T : P(U) → P(U) be an operator that maps

each subset of U to a subset of U . T is said to be monotonic if for every subsets V and V ′ of
U , if V ⊆ V ′ then T (V ) ⊆ T (V ′). T is said to be continuous if for every set V of subsets of U ,
T (

⋃
V) =

⋃
{T (V ) |V ∈ V}. T is said to be compact if for every subset V of U and for every

a ∈ T (V ), there exists a finite subset V ′ of V such that a ∈ T (V ′). It is known that if T is
monotonic and compact then T is continuous. A set V is a fixpoint of T if T (V ) = V . The fixpoint
theorem by Knaster and Tarski says that if T is monotonic and continuous, then T has the least
fixpoint specified by

⋃ω
n=0 T

n(∅).

Lemma 5.1 For P being an MProlog program, the operator TL,P is monotonic and continuous,
and it has the least fixpoint TL,P ↑ω =

⋃ω
n=0 TL,P ↑n.

The operators SatL, T0L,P , and NFL are all increasingly monotonic and compact, and so is
TL,P . It follows that TL,P is continuous and has the least fixpoint as above specified.

Notation 5.1 Denote the least fixpoint of TL,P by IL,P , and the standard L-model of IL,P by ML,P .

Lemma 5.2 Let P be an MProlog program. Then P �L IL,P

7w.r.t. the pre-order between modalities specified in Definition 4.4
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Proof. Let M = 〈D,W, τ,R,m〉 be an L-model of P . Let σ be the 3-realization function defined
as follows: if R(w, u) holds and M,u � E, then σ(w, 〈E〉) = u for such a u. It is straightforward to
prove by induction on n that M,σ � TL,P ↑n. In fact, if M,σ � TL,P ↑n, then M,σ � SatL(TL,P ↑n),
M,σ � T0L,P (SatL(TL,P ↑n)), and for L ∈ {KD5,KD45,S5} M,σ � NFL(T0L,P (SatL(TL,P ↑n))).
Therefore M,σ � IL,P what proves the lemma. 2

Definition 5.7 Let P be an MProlog program. An L-normal model generator I is called an L-
model generator of P if TL,P (I) ⊆ I.

As a property of the least fixpoint, IL,P is the least (w.r.t. ⊆) L-model generator of P .

Lemma 5.3 Let P be an MProlog program, I an L-normal model generator of P , and M the
standard L-model of I. Then M is an L-model of P .

Proof. Let 〈W, τ,R,H〉 be the standard L-model graph of I and σ the standard 3-realization
function on M . It is sufficient to prove that for any ground L-instance 2k(A ← B1, . . . , Bn) of
some program clause of P , for any w ∈ W with |w| = k (note that w ∈ EdgeLabels∗), M,w �
(A← B1, . . . , Bn). Suppose that M,w � Bi for all 1 ≤ i ≤ n. We show that M,w � A.

Let 4 = w = 〈E1〉 . . . 〈Ek〉. We first show that for any ground simple atom B of the form E,
2E, or 3E, if M,w � B then4B is an instance of some atom from SatL(I). If B is of the form E or
2E, then by Lemma 4.1, 4B is an instance of some atom from SatL(I) (since ExtL(I) ⊆ SatL(I)).
Now consider the case when B is of the form 3E. There exists u such that R(w, u) and M,u � E.
There are the following cases to consider:

• Case u = w〈Ek+1〉 for some Ek+1 ∈ B ∪ {>} : By Lemma 4.1, 4〈Ek+1〉E is an instance of
some atom from SatL(I), hence so is 43E.

• Case u = w and L ∈ {T,B,S4}: By Lemma 4.1, 4E is an instance of some 4′E ∈ SatL(I).
Hence 43E is an instance of 4′3E, which belongs to SatL(I) by definition.

• Case u = 〈E1〉 . . . 〈Ek−1〉 and L ∈ {KDB,B}: By Lemma 4.1, 〈E1〉 . . . 〈Ek−1〉E is an instance
of some 4′E ∈ SatL(I). Hence 43E is an instance of 4′23E, which belongs to SatL(I) by
definition.

• Case u = w〈Ek+1〉 . . . 〈Ek+j〉 for some Ek+1, . . . , Ek+j ∈ B ∪ {>}, and L ∈ {KD4,S4}:
By Lemma 4.1, 4〈Ek+1〉 . . . 〈Ek+j〉E is an instance of some 4′E ∈ SatL(I). Let 4′ =
4′′∇1 . . .∇j . Thus 43E is an instance of 4′′3E, which belongs to SatL(I) by definition.

• Case u = τ and L = S5: We have E ∈ SatL(I). Hence, by the definition of SatL,
{3E,23E} ⊆ SatL(I). Therefore 43E is an instance of some atom from SatL(I).

• Case u = 〈F 〉 for some F , w 6= τ , and L ∈ {KD5,KD45,S5}: By Lemma 4.1, 〈F 〉E is an
instance of some ∇E ∈ SatL(I). By the definition of SatL, 23E ∈ SatL(I), and we also
have 223E ∈ SatL(I) if L = KD5. Hence 43E is an instance of some atom from SatL(I).

• Case u = 〈F1〉〈F2〉 for some F1 and F2, w 6= τ , and L = KD5: By Lemma 4.1, 〈F1〉〈F2〉E is
an instance of some 4′E ∈ SatL(I). From the definition of SatL, we claim that 23E and
223E are instances of some atoms from SatL(I), hence so is 43E.

Since R(w, u) holds, the above list contains all of the cases that can occur.
By Lemma 4.2, M,σ � I. Since M,w � Bi for 1 ≤ i ≤ n, it follows that 4Bi is an instance of

some atom from SatL(I). Consequently, 4A is an instance of some atom α from T0L,P (SatL(I)).
For L /∈ {KD5,KD45,S5}, we have T0L,P (SatL(I)) = TL,P (I) ⊆ I, hence M,σ � α and M,w � A.
Suppose that L ∈ {KD5,KD45,S5}. Let α = 4′A′, where A′ is the forward labeled form of A.
Since M,σ � I and α ∈ T0L,P (SatL(I)), we have M,σ � 4′>. Since TL,P (I) ⊆ I, we have
M,σ � NFL({α}). These together imply that M,σ � 4′A. Since 4 is an instance of 4′, we
conclude that M,w � A. 2

Here is the main theorem of this section:
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Theorem 5.4 For an MProlog program P , ML,P is a least L-model of P .

Proof. By Lemma 5.3, ML,P is an L-model of P . Let M be any L-model of P . By Lemma 5.2,
M � IL,P . Hence, by Theorem 4.3, ML,P ≤M . Therefore ML,P is a least L-model of P . 2

6 An SLD-Resolution Calculus for Modal Logic Programs

The fixpoint semantics can be viewed as a bottom-up method for computing answers. It repeatedly
applies clauses of a given program P in order to compute the set IL,P of facts derivable in L from
the program. Given an atom α from IL,P , the process of tracing back the derivation of α in L from
P is called top-down because it reduces the atom, treated as a goal, to subgoals. A more general
problem is finding correct answers for an MProlog goal with respect to an MProlog program. This
problem is reduced to the previous by unification and a lifting technique.

In this section, we provide a calculus called SLD-resolution for solving the problem of finding
correct answers for P ∪{G}, where P is an MProlog program and G is an MProlog goal. The main
work to do here is to specify a reverse of the operator TL,P . While TL,P acts on model generators
(with only ground atoms), the expected reverse of TL,P will act on goals (with variables). The
operator TL,P is a composition of SatL, T0L,P , and NFL (for L ∈ {KD5,KD45,S5}). So, we have to
investigate reversion of these operators. We first define (general) goals, which may contain labeled
modal operators.

Definition 6.1 A goal atom is an atom of the form 4E or 43E, where 4 is a modality without
〈>〉 and 3. A goal is a clause of the form ← α1, . . . , αk, where each αi is a goal atom.

In the definition of T0L,P , instantiating and forward labeling are used. For example, applying
the clause 3E ← 3F to 2F we obtain 〈E〉E; here 3F is an instance of 2F , and 〈E〉E is the
forward labeled form of 3E. For the reverse of T0L,P , we make these tasks explicit.

Definition 6.2 The backward labeling operator is the one that converts a goal atom 43E to
4〈X〉E, where X is a fresh atom variable. We call 4〈X〉E a backward labeled form of 43E. If an
atom α is obtainable from α′ by replacing some modal operators by 2, then we call α a 2-lifting
form of α′ and the operator that converts α′ to α the 2-lifting operator.

We now define the reverse of T0L,P . It is an operator that derives a new goal from a goal and a
program clause.

Definition 6.3 Let G = ← α1, . . . , αi, . . . , αk be a goal and φ = 2s(A ← B1, . . . , Bm) a program
clause. Then G′ is derived from G and φ in L using mgu θ if the following conditions hold:

• αi = 4A′, where 4 is a modality not containing 3, is an atom called the selected atom.

• |4| = h and 2h(A← B1, . . . , Bm) is an L-instance of φ.

• If L = KD5 and |4| = 2 then 4 is of the form 2∇.

• θ is an mgu of A′ and the forward labeled form of A.

• G′ is the goal ← (α1, . . . , αi−1,4B1, . . . ,4Bm, αi+1, . . . , αk)θ.

In resolution terminology, G′ is called an L-resolvent of G and φ.
In the bottom-up context we deal with model generators. Given a model generator we can

extend it by applying the saturation operator SatL. When an atom of some specific form belongs
to the model generator, SatL adds another one to it. In the top-down context, goals are objects to
deal with, and the reverse of SatL has the following form: a goal atom can be replaced by another
one.

Definition 6.4 The reverse of SatL, denoted by rSatL, is defined as follows. For a goal atom α,
rSatL(α) can be α or
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• case L ∈ {T,B,S4} :

– 42β if α = 4β;

– 4E if α = 43E;

• case L ∈ {KDB,B} :

– 4〈X〉2β if α = 4β;

– 4E if α = 423E;

• case L ∈ {KD4,S4} :

– 42β if α = 422β;

– 4〈X〉3E if α = 43E;

• case L = KD5 :

– 〈X〉E if α = 23E or α = 223E;

– 22E if α = 2E or α = 222E;

– 2〈X〉E if α = 223E;

• case L = KD45 :

– 〈X〉E if α = 23E;

– 2E if α = 22E;

• case L = S5 :

– as for the case L = KD45, or

– 2E if α = E;

– E if α = 3E;

where X and Y are fresh atom variables.

The operator rSatL is thus nondeterministic.
The reverse form of NFL is defined in a similar way.

Definition 6.5 For L ∈ {KD5,KD45,S5}, the reverse form of NFL, denoted by rNFL, is defined
as follows. For a goal atom α, rNFL(α) can be α or

• 〈X〉∇E if L ∈ {KD45,S5} and α = ∇E;

• 〈X〉∇E or 2〈X〉∇E if L = KD5 and α = 2∇E;

where X is a fresh atom variable.

The operator rNFL is also nondeterministic. For convenience, if L /∈ {KD5,KD45,S5} then we
assume that rNFL(α) = α. Another solution is assuming L ∈ {KD5,KD45,S5} whenever rNFL is
considered.

We now define SLD-derivation and SLD-refutation.

Definition 6.6 Let G = ← α1, . . . , αi, . . . , αk and G′ = ← α1, . . . , αi−1, α
′
i, αi+1, . . . , αk be goals.

We say that G′ is derived from G using rSatL (resp. rNFL) if α′i = rSatL(αi) (resp. α′i = rNFL(αi))
in nondeterministic meaning8. G′ is called a backward labeled form of G if α′i is a backward labeled
form of αi, and called a 2-lifting form of G if α′i is a 2-lifting form of αi. The atom αi is called the
selected atom.

8This means that α′i is one of the possible values of rSatL(αi) (resp. rNFL(αi)).
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Definition 6.7 Let P be an MProlog program and G an MProlog goal. An SLD-derivation of
P ∪ {G} in L consists of a (finite or infinite) sequence G0 = G,G1, . . . of goals, a sequence
φi1 , φi2 , . . . of variants of program clauses of P and a sequence θi1 , θi2 , . . . of mgu’s such that for
i ∈ {i1, i2, . . .}, Gi is derived from Gi−1 and φi in L using θi, and for i /∈ {i1, i2, . . .}, Gi is either a
backward labeled form or a 2-lifting form of Gi−1, or is derived from Gi−1 using rSatL or rNFL.

Each φij is a suitable variant of the corresponding program clause so that φij does not have any
variable which already appears in the derivation up to Gij−1. This can be achieved by subscripting
variables in G by 0 and variables in φi by i. This process of renaming variables is usually called
standardizing the variables apart (see [24]). Each program clause variant φi1 , φi2 , . . . is called an
input clause of the derivation.

Definition 6.8 An SLD-refutation (refutation in short) of P ∪ {G} in L is a finite SLD-derivation
of P ∪ {G} in L which has the empty clause � as the last goal in the derivation. If Gn = �, we say
the refutation has length n.

Definition 6.9 Let P be an MProlog program and G a goal. A computed answer θ in L for P ∪{G}
is the substitution obtained by restricting the composition θi1 . . . θih to the variables of G, where
θi1 , . . . , θih is the sequence of mgu’s used in an SLD-refutation of P ∪ {G} in L.

Example 6.1 Let G be the goal← 2p5(x) and P the program that consists of the following clauses

φ1 = 3p1(a)←
φ2 = 2( p2(x)← p1(x) )
φ3 = 2( 2p3(x)← p1(x), p2(x) )
φ4 = 2p4(x)← p3(x)
φ5 = 2( p5(x)← p4(x) )

Here is an SLD-refutation of P ∪ {G} in KDB with computed answer {x/a} :

Goals Input Clauses / Operators Mgu′s
← 2p5(x)
← 2p4(x1) φ5 {x/x1}
← p3(x2) φ4 {x1/x2}
← 〈X〉2p3(x2) rSatKDB
← 〈X〉p1(x4), 〈X〉p2(x4) φ3 {x2/x4}
← 〈p1(a)〉 p2(a) φ1 {x4/a,X/p1(a)}
← 〈p1(a)〉 p1(a) φ2 {x5/a}
� φ1 ε

Example 6.2 Let 2φ stand for “we believe in φ”. Since 3φ = ¬2¬φ, the formula 3φ means “we
do not believe that φ is false”. It can be also interpreted as “it is possible that φ holds”. Let P be
the program containing the following clauses:

φ1 = 2( likes football(husband(x))← woman(x), likes football(x) )
φ2 = 3likes football(x)← man(x)
φ3 = man(husband(x))← woman(x)
φ4 = 2woman(x)← woman(x)
φ5 = 2man(x)← man(x)
φ6 = 2likes football(x)← likes football(x)
φ7 = man(Tom)←
φ8 = woman(Jane)←
φ9 = woman(Mary)←
φ10 = likes football(Jane)←

Let G be the goal ← 2likes football(x) and G′ be← 3likes football(x). There are two computed
answers in KD for P ∪ {G} : {x/husband(Jane)} and {x/Jane} and four computed answers in
KD for P ∪ {G′} : {x/husband(Jane)}, {x/husband(Mary)}, {x/Tom}, and {x/Jane}. Here is
one of the SLD-refutations of P ∪ {G′} in KD :

19



Goals Input Clauses / Operators Mgu’s
← 3likes football(x)
← 〈X〉likes football(x) backward labeling
← 〈X〉woman(x2), 〈X〉likes football(x2) φ1 {x/x2}
← 2woman(x2), 〈X〉likes football(x2) 2-lifting
← woman(x4), 〈X〉likes football(x4) φ4 {x2/x4}
← 〈X〉likes football(Jane) φ8 {x4/Jane}
← 2likes football(Jane) 2-lifting
← likes football(Jane) φ6 ε
� φ10 ε

7 Soundness and Completeness of SLD-Resolution

7.1 Soundness

Every computed answer in L for P ∪ {G} is expected to be a correct answer in L for P ∪ {G}. As
we will see, this is true for G being an MProlog goal, however, in general we have a weaker result.
The reason is that, despite that 2α contains more information than 3α (in serial modal logics), it
does not contain more information than 〈E〉α.

Lemma 7.1 Let P be an MProlog program and G =← α1, . . . , αk a goal. Then for every computed
answer θ in L for P ∪ {G} there exists a goal G′ = ← α′1, . . . , α

′
k such that α′i is a 2-lifting form

of αi, for 1 ≤ i ≤ k, and P �L ∀c((α′1 ∧ . . . ∧ α′k)θ).

Proof. Let the refutation of P ∪ {G} in L consist of a sequence G0 = G,G1, . . . , Gn of goals, a
sequence φi1 , . . . , φih of variants of program clauses of P and a sequence θi1 , . . . , θih of mgu’s. Let
θ be the computed answer. We prove the result by induction on n.

Let M be an arbitrary L-model of P .
Suppose that n = 1. This means that G = ← α1, with α1 = 4A′ and |4| = s, P has a clause

φ1 = 2t(A ←) such that 2s(A ←) is its L-instance, and the empty clause � is an L-resolvent
of G and φ1, where A′ is the atom being unified with the forward labeled form of A. We have
P �L ∀(2sA). If A′ is of the form 2E or E, then A′θ1 = Aθ1, and P �L ∀(2sA′θ1). Suppose that
A′ = 〈F 〉E or A′ = 〈X〉E. Thus A is of the form 3E′. Let A′′ = 〈E′〉E′ (the forward labeled form
of A). We have A′θ1 = A′′θ1 = 〈E′′〉E′′ for some E′′. Since P �L ∀(2sA), we have P �L ∀(2s3E′′).
It follows that P �L ∀c(2s〈E′′〉E′′), hence P �L ∀c(2sA′θ1).

Next suppose that the result holds for computed answers which come from refutations of length
less than n. There are the following cases: G1 is an L-resolvent of G and some program clause of P ,
G1 is derived from G using rSatL or rNFL, or G1 is a backward labeled form or a 2-lifting form
of G. The last case (G1 is a backward labeled form or a 2-lifting form of G) is trivial.

Consider the first case. Suppose that G1 is derived in L from G and a program clause
φ = 2s(A← B1, . . . , Bm) (m ≥ 0), the selected atom is αi = 4A′, and A′ is the atom being
unified with the forward labeled form of A. We have

G1 = ← (α1, . . . , αi−1,4B1, . . . ,4Bm, αi+1, . . . , αk)θ1

By inductive assumption, there exists a goal

G′1 = ← (α′1, . . . , α
′
i−1,41B

′
1, . . . ,4mB′m, α′i+1, . . . , α

′
k)θ1

such that
P �L ∀c((α′1 ∧ . . . ∧ α′i−1 ∧41B

′
1 ∧ . . . ∧4mB′m ∧ α′i+1 ∧ . . . ∧ α′k)θ)

where α′j is a 2-lifting form of αj , for 1 ≤ j ≤ k and j 6= i, and 4jB′j is a 2-lifting form of 4Bj
with |4j | = |4|, for 1 ≤ j ≤ m. Let σ be a 3-realization function such that M,σ � φ, where
φ is the right formula in the above satisfaction. We have M,σ � ∀

c
((41B

′
1 ∧ . . . ∧ 4mB′m)θ) if

m > 0. Let 4′ be the most general instance of 41, . . . , 4m if m > 0, and be 2t otherwise,
where t = |4|. Thus 4′ is a 2-lifting form of 4, and M,σ � ∀

c
((4′B′1 ∧ . . . ∧ 4′B′m)θ) if m > 0.
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Hence M,σ � ∀
c
((4′A)θ). Let A′′ be the forward labeled form of A. The partial function σ can be

extended to σ′ such that M,σ′ � ∀c((4′A′′)θ). Since A′θ1 = A′′θ1, we have

M,σ′ � ∀c((α′1 ∧ . . . ∧ α′i−1 ∧4′A′ ∧ α′i+1 ∧ . . . ∧ α′k)θ).

Since M is an arbitrary L-model of P , we obtain

P �L ∀c((α′1 ∧ . . . ∧ α′i−1 ∧4′A′ ∧ α′i+1 ∧ . . . ∧ α′k)θ).

Next suppose thatG1 is derived fromG using rSatL or rNFL – by replacing αi by α = rSatL(αi)
or α = rNFL(αi). By the inductive assumption, there exists a goal

G′1 = ← α′1, . . . , α
′
i−1, α

′, α′i+1, . . . , α
′
k

such that
P �L ∀c((α′1 ∧ . . . ∧ α′i−1 ∧ α′ ∧ α′i+1 ∧ . . . ∧ α′k)θ)

where α′j is a 2-lifting form of αj , for 1 ≤ j ≤ k and j 6= i, and α′ is a 2-lifting form of α. There
exists a 3-realization function σ such that:

M,σ � ∀
c
((α′1 ∧ . . . ∧ α′i−1 ∧ α′ ∧ α′i+1 ∧ . . . ∧ α′k)θ)

Consider the case when α = rSatL(αi). It is sufficient to show that there exists an atom α′i being
a 2-lifting form of αi such that M,σ � ∀

c
((α′i)θ). A detailed proof should consider all possibilities

of α. Here we give only some representatives:

• Case L ∈ {T,B,S4}, αi = 4β, and α = 42β: Let α′ = 4′2β′. Since M is a T -model and
M,σ � ∀

c
(α′θ), it follows that M,σ � ∀

c
((4′β′)θ). Choose α′i = 4′β′.

• Case L ∈ {KDB,B}, αi = 4β, and α = 4〈X〉2β for a fresh atom variable X: Let α′ =
4′∇2β′. Since M is a KDB -model and M,σ � ∀

c
(α′θ), it follows that M,σ � ∀

c
((4′β′)θ).

Choose α′i = 4′β′.

• Case L = KD5, αi = 223E, and α = 2〈X〉E for a fresh atom variable X: Since M is a
KD5-model and M,σ � ∀c(α′θ), it follows that M,σ � ∀c(223Eθ). Choose α′i = 223E.

Now consider the case when L ∈ {KD5,KD45,S5} and α = rNFL(αi). It is sufficient to show
that there exist an atom α′i being a 2-lifting form of αi and a 3-realization function σ′ being an
extension of σ such that M,σ′ � ∀c(α′iθ). There are the following cases to consider:

• Case L ∈ {KD45,S5}, αi = ∇E and α = 〈X〉∇E for a fresh atom variable X: If ∇ is of the
form 2 or 3, then from M,σ � ∀c(α′θ) we can derive M,σ � ∀c(∇Eθ) and choose α′i = ∇E,
σ′ = σ. Suppose that ∇ is of the form 〈F 〉 (resp. 〈Y 〉). Let 1 ≤ j < n be the least index
such that: i) the atom in Gj corresponding to α is the selected atom of Gj and is of the form
(∇′∇E)δ, where δ is the composition of the substitutions used in the derivation of G1, . . . , Gj ;
ii) Gj+1 is not obtained from Gj by changing the selected atom to (2∇E)δ. Let θ = δγ. There
are only the following subcases:

– Case Gj+1 is a 2-lifting form of Gj and the selected atom of Gj is changed to (∇′′2E)δ:
By the inductive assumption, we can derive M,σ � ∀c((32Eδ)γ), and hence M,σ �
∀

c
(2Eθ). Choose α′i = 2E and σ′ = σ.

– Case Gj+1 is an L-resolvent of Gj and some input clause: Because (∇′∇E)δ is used as
a selected atom for deriving a resolvent in the SLD-refutation of P ∪ {Gj} in L with
computed answer γ, we have Fθ = Eθ (resp. Y θ = Eθ). Let σ′ be an extension of
σ such that if σ(τ, 〈E′〉) is not defined and M, τ � 3E′ then σ′(τ, 〈E′〉) is some world
w of M with the property that M,w � E′, where τ is the actual world of M and E′

is an arbitrary ground classical atom. Let α′ = ∇1∇2E. With so defined σ′ and the
mentioned property of θ, we derive M,σ′ � ∀

c
((∇2E)θ) from M,σ � ∀

c
((∇1∇2E)θ).

Choose α′i = ∇2E.
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• Case L = KD5, αi = 2∇E and α = 〈X〉∇E for a fresh atom variable X: If ∇ is of the form
2 or 3 then choose α′i = αi and σ′ = σ. Suppose that ∇ is of the form 〈F 〉 (resp. 〈Y 〉). Let j,
δ, γ be defined in the same way as for the case L ∈ {KD45,S5}. Let the selected atom of Gj
be the atom corresponding to α and be (∇′∇E)δ. Similarly as for the case L ∈ {KD45,S5},
there are the following subcases:

– Case Gj+1 is a 2-lifting form of Gj and the selected atom of Gj is changed to
(∇′′2E)δ: By the inductive assumption, we can derive M,σ � ∀c(32Eθ), and hence
M,σ � ∀c(22Eθ). Choose α′i = 22E and σ′ = σ.

– Case Gj+1 is an L-resolvent of Gj and some input clause: Because (∇′∇E)δ is used as
a selected atom for deriving a resolvent in the SLD-refutation of P ∪ {Gj} in L with
computed answer γ, either ∇′ = 2 or Fθ = Eθ (resp. Y θ = Eθ).
Suppose that ∇′ = 2. By the inductive assumption, there exist σ′′ and a 2-lifting form
α′i of 2∇E (note that α′iδ is then a 2-lifting form of the selected atom of Gj) such that
M,σ′′ � ∀

c
(α′iδγ). By analyzing this proof, without loss of generality we can assume that

σ is an extension of σ′′. Thus M,σ � ∀c(α′iθ). Choose σ′ = σ.
Now suppose that Fθ = Eθ (resp. Y θ = Eθ). Let σ′ be an extension of σ such that if
σ(w, 〈E′〉) is not defined and M,w � 3E′ then σ′(w, 〈E′〉) is some world u of M such
that R(w, u) and M,u � E′, where R is the accessibility relation of M and w, E′ are
arbitrary. Let α′ = ∇1∇2E. With so defined σ′ and the mentioned property of θ, we
derive M,σ′ � ∀

c
((2∇2E)θ) from M,σ � ∀

c
((∇1∇2E)θ). Choose α′i = 2∇2E.

• Case L = KD5, αi = 2∇E and α = 2〈X〉∇E for a fresh atom variable X: The assertion
holds by a similar argumentation as for the above case.

Thus we have completed the proof. 2

As a corollary of the above lemma, soundness of SLD-resolution for MProlog is established.

Theorem 7.2 (Soundness of SLD-Resolution) Let P be an MProlog program and G an MPro-
log goal. Then every computed answer in L for P ∪ {G} is a correct answer in L for P ∪ {G}.

Proof. Let G = ← α1, . . . , αk, where each αi is of the form 2hE or 2h3E, with h ≥ 0. Let θ
be a computed answer in L for P ∪ {G}. Since L is a serial modal logic, by Lemma 7.1, we have
P �L ∀c((α1 ∧ . . . ∧ αk)θ). It follows that P �L ∀((α1∧ . . .∧αk)θ) (here we assume there are enough
constant symbols, for example, infinitely many). Hence θ is a correct answer in L for P ∪ {G}. 2

7.2 Completeness

We use a standard method to prove completeness of our SLD-resolution system (cf. [24, 23]). In
general, completeness of a resolution calculus is first proved for the ground version and then lifted
to the case with variables. The flow of this subsection follows Lloyd [24]. The proofs for Lemmas
7.5, 7.6, 7.11, and Theorem 7.12 are similar to the ones given for classical logic programming in
Lloyd’s book and are presented in the Appendix.

We first give two lemmas concerning properties of rSatL and rNFL, which can be verified in a
straightforward way.

Lemma 7.3 Let β = rSatL(αθ) (resp. β = rNFL(αθ)). Then there exists an atom β′ such that
β′ = rSatL(α) (resp. β′ = rNFL(α)) and β = β′θ.

Lemma 7.4 Let α ∈ SatL({β}) or α ∈ NFL({β}). Then there exists an atom β′ and a substitution
θ such that β = β′θ, the domain of θ consists of fresh atom variables, and β′ can be derived from α
using the backward labeling operator, the 2-lifting operator, rSatL and rNFL.

We now define unrestricted SLD-refutations and give the mgu lemma and the lifting lemma,
whose proofs are given in the Appendix.
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Definition 7.1 An unrestricted SLD-refutation in L is an SLD-refutation in L, except that we drop
the requirement that the substitutions θij be most general unifiers. They are only required to be
unifiers.

Lemma 7.5 (Mgu Lemma) Let P be an MProlog program and G a goal. Suppose that P ∪ {G}
has an unrestricted SLD-refutation in L. Then P ∪ {G} has an SLD-refutation in L of the same
length and the same sequence of indexes of mgu’s such that, if θi1 , . . . , θih are the unifiers from the
unrestricted refutation and θ′i1 , . . . , θ

′
ih

are mgu’s from the refutation, then there exists a substitution
γ such that θi1 . . . θih = θ′i1 . . . θ

′
ih
γ.

Lemma 7.6 (Lifting Lemma) Let P be an MProlog program, G a goal and θ a substitution.
Suppose there exists an SLD-refutation of P ∪{Gθ} in L such that the variables of the input clauses
are distinct from the variables in G and θ. Then there exists an SLD-refutation of P ∪ {G} in L of
the same length and the same sequence of indexes of mgu’s such that, if θi1 , . . . , θih are the mgu’s
from the refutation of P ∪{Gθ} and θ′i1 , . . . , θ

′
ih

are the mgu’s from the refutation of P ∪{G}, then
there exists a substitution γ such that θθi1 . . . θih = θ′i1 . . . θ

′
ih
γ.

Lemma 7.7 (Weak Lifting Lemma) Let P be an L-MProlog program, G a goal, and θ a substi-
tution. Suppose there exists an SLD-refutation of P∪{Gθ} in L. Then there exists an SLD-refutation
of P ∪ {G} in L.

Proof. Change each variable x occurring in the input clauses of the refutation of P ∪ {Gθ} by x′

that does not occur in G and θ. Then recompute the refutation. The resulting derivation will still
be an SLD-refutation for P ∪ {Gθ} (possibly with different used mgu’s and a different computed
answer). Then apply the lifting lemma 7.6 for the new refutation. 2

An essential part of the completeness proof is the following lemma, which can be viewed as a
proof of completeness for the ground version.

Lemma 7.8 Let P be an MProlog program and α ∈ IL,P . Then P ∪{← α} has an SLD-refutation
in L.

Proof. We prove by induction on n that if α ∈ TL,P ↑n then P ∪ {← α} has an SLD-refutation in
L. This assertion obviously holds for n = 0 since TL,P ↑0 = ∅.

Suppose that the assertion holds for (n − 1) in the place of n. Let α ∈ TL,P ↑n. There exist a
program clause φ = 2l(A← B1, . . . , Bk) of P with k ≥ 0, ground atoms γ1, . . . , γk ∈ TL,P ↑(n− 1)
and ground atoms β1, . . . , βk, α′ such that:

• βi ∈ SatL({γi}), for 1 ≤ i ≤ k;

• there exists a substitution θ such that Biθ is an instance of B′i and βi = 4iB′i, for 1 ≤ i ≤ k;

• 4 is the most general instance of 41, . . . ,4k, |4| = s and 2s(A ← B1, . . . , Bk) is an L-
instance of φ;

• α′ = 4A′θ, where A′ is the forward labeled form of A;

• {α} = NFL({α′}) if L ∈ {KD5,KD45,S5}, and α = α′ otherwise.

By Lemma 7.4, there exist atoms α′′, γ′1, γ
′
2, . . . , γ

′
k, and ground substitutions δ0, . . . , δk with

disjoint domains such that:

• α′′ can be derived from α using the backward labeling operator, the 2-lifting operator, rSatL
and rNFL, and furthermore, α′ = α′′δ0,

• γ′i can be derived from βi using the backward labeling operator, the 2-lifting operator, rSatL
and rNFL, and furthermore, γi = γ′iδi, for 1 ≤ i ≤ k.
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Let δ = δ1 . . . δk if k > 0, and δ = ε otherwise. By the inductive assumption, P ∪ {← γi}
has a refutation in L, for 1 ≤ i ≤ k. Since γ′iδ = γ′iδi = γi, it follows that P ∪ {← γ′iδ} has
a refutation in L. Hence P ∪ {← (γ′1, . . . , γ

′
k)δ} has a refutation in L, since γ′iδ are ground. By

the weak lifting lemma, P ∪ {← γ′1, . . . , γ
′
k} has a refutation in L. Because γ′i can be derived from

βi using the backward labeling operator, the 2-lifting operator, rSatL and rNFL, it follows that
P ∪ {← β1, . . . , βk} has a refutation in L.

For 1 ≤ i ≤ k, if B′i is of the form 〈F 〉E then let β′i = 4i〈X〉E and θi = {X/F}, where X is a
fresh atom variable; else let β′i = βi and θi = ε. Let θ′ = θ1 . . . θk if k > 0, and θ′ = ε otherwise.
Since βi = β′iθ

′, P ∪ {← (β′1, . . . , β
′
k)θ′} has a refutation in L. Hence, by the weak lifting lemma,

P ∪{← β′1, . . . , β
′
k} has a refutation in L. Therefore, by applying the backward labeling operator and

the 2-lifting operator, P ∪ {← 41B1θ, . . . ,4kBkθ} has a refutation in L. Hence, by applying the
2-lifting operator, P ∪{← 4B1θ, . . . ,4Bkθ} has a refutation in L. The goal←4B1θ, . . . ,4Bkθ is
an unrestricted L-resolvent of ← α′ and φ. Hence, by the mgu lemma, P ∪{← α′} has a refutation
in L. This means that P ∪{← α′′δ0} has a refutation in L. By the weak lifting lemma, P ∪{← α′′}
has a refutation in L. Because α′′ can be derived from α using the backward labeling operator, the
2-lifting operator, rSatL and rNFL, we conclude that P ∪ {← α} has a refutation in L. 2

Corollary 7.9 Let P be an MProlog program and α ∈ SatL(IL,P ). Then P ∪ {← α} has an
SLD-refutation in L.

Proof. There exists β ∈ IL,P such that α ∈ SatL({β}). Consequently, there exist an atom β′

and a substitution θ such that β = β′θ and β′ can be derived from α using the backward labeling
operator, the 2-lifting operator, rSatL and rNFL. Since β ∈ IL,P , by Lemma 7.8, P ∪ {← β} has
a refutation in L. This means that P ∪ {← β′θ} has a refutation in L. By the weak lifting lemma,
P ∪ {← β′} has a refutation in L. Consequently, P ∪ {← α} has a refutation in L. 2

If α is a classical atom such that ML,P � α, then α ∈ ExtL(IL,P ) ⊆ SatL(IL,P ), and hence
P ∪ {← α} has an SLD-refutation in L. This also holds for the case when α is a ground MProlog
goal atom.

Lemma 7.10 Let P be an MProlog program and α a ground MProlog goal atom such that ML,P � α.
Then P ∪ {← α} has an SLD-refutation in L.

Proof. In some cases, by Corollary 7.9, it is sufficient to show that α ∈ SatL(IL,P ). Consider the
case when α is of the form 2sE, s ≥ 0. Since ML,P � α, it follows that α ∈ ExtL(IL,P ), and hence
α ∈ SatL(IL,P ).

Now suppose that α = 2s3E, s ≥ 0. Note that s = 0 for L ∈ {KD45,S5} and s ≤ 1 for
L = KD5. Let 〈W, τ,R,H〉 be the standard L-model graph of IL,P . Let w be the world 〈>〉 . . . 〈>〉
with length s. Since ML,P � α, we have ML,P , w � 3E, and hence there are (only) the following
cases:

• Case E ∈ H(u) for some u = w〈F 〉 : By Lemma 4.1, 〈>〉s〈F 〉E is an instance of some
atom from ExtL(IL,P ). It follows that either 2s+1E or 2s〈F 〉E (with F 6= >) belongs to
ExtL(IL,P ). Denote the atom by α′. By Corollary 7.9, P ∪ {← α′} has a refutation in L.
If α′ = 2s+1E, then by applying the 2-lifting operator, P ∪ {← α} has a refutation in L. If
α′ = 2s〈F 〉E, then by the weak lifting lemma, P ∪ {← 2s〈X〉E} with X being a fresh atom
variable has a refutation in L. Hence, by applying the backward labeling operator, P ∪{← α}
has a refutation in L.

• Case L ∈ {T,B,S4,S5} and E ∈ H(w) : By Lemma 4.1, 〈>〉sE is an instance of some atom
from ExtL(IL,P ). It follows that 2sE ∈ ExtL(IL,P ), and hence α ∈ SatL(IL,P ).

• Case L ∈ {KDB,B} and E ∈ H(u), where w = u〈>〉 : By Lemma 4.1, 〈>〉s−1E is an
instance of some atom from ExtL(IL,P ). It follows that 2s−1E ∈ ExtL(IL,P ), and hence
α ∈ SatL(IL,P ).

• Case L ∈ {KD4,S4} and E ∈ H(u) for some u = w〈F1〉 . . . 〈Fk〉 : By Lemma
4.1, 〈>〉s〈F1〉 . . . 〈Fk〉E is an instance of some atom from ExtL(IL,P ). It follows that
2s〈F1〉 . . . 〈Fk〉E is an instance of some atom from ExtL(IL,P ), and hence α ∈ SatL(IL,P ).
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• Case L = KD5, s = 1, and E ∈ H(u) for some u = 〈F 〉 : By Lemma 4.1, 〈F 〉E is an instance
of some atom from ExtL(IL,P ), and hence α ∈ SatL(IL,P ).

2

For the main theorem, we need another auxiliary lemma, whose proof uses Lemma 7.10 and is
presented in the Appendix.

Lemma 7.11 Let P be an MProlog program and α an MProlog goal atom. Suppose that ∀(α) is
a logical consequence in L of P . Then there exists an SLD-refutation of P ∪ {← α} in L with the
identity substitution as the computed answer.

The following completeness theorem follows from the above lemma and the lifting lemma. Its
proof is given in the Appendix.

Theorem 7.12 (Completeness of SLD-Resolution) Let P be an MProlog program and G an
MProlog goal. For every correct answer θ in L for P ∪ {G}, there exists a computed answer γ in L
for P ∪ {G} and a substitution δ such that Gθ = Gγδ.

8 Semantics for Programs in Almost Serial Modal Logics

A Kripke frame is said to be flat if there are no worlds reachable from the actual world. A frame
is serial if for every one of its worlds there exists a world reachable from that world. A frame is
connected if every one of its worlds is reachable directly or indirectly from the actual world or is the
actual world itself. A Kripke model is said to be flat (resp. serial) if its frame is flat (resp. serial).

A modal logic L is called almost serial if every connected L-frame is either serial or flat. Given
an almost serial modal logic L, there is a serial modal logic corresponding to it, denoted by LD ,
with the property that every serial L-frame is an LD-frame. The logics KB , K 5, K 45, and KB5
are almost serial, and their corresponding serial modal logics are respectively KDB , KD5, KD45,
and S5. In this section, we investigate an SLD-resolution calculus for MProlog in the mentioned
almost serial modal logics.

In [29], we showed that every positive propositional modal logic program P can be characterized
in L ∈ {KB,K5,K45,KB5} by one or two models (a least LD-model of P and a flat model) in
the sense that a positive formula φ is a consequence of P in L iff φ is true in those models. This
assertion still holds for the first-order case.

From now to the end of this section, by L we denote one of the logics KB , K 5, K 45, and KB5.

Definition 8.1 Let P be an MProlog program. By Flat(P ) we denote the classical positive pro-
gram obtainable from P by: removing all clauses starting with 2 (i.e. the ones with non-empty
modal context), removing all clauses of the form 2E ← B1, . . . Bn (n ≥ 0), deleting all atoms of
the form 2E and replacing all atoms of the form 3E by a special atom f (which informally stands
for falsity) in the remaining clauses. By MFlat(P ) we denote the least (classical) Herbrand model
of Flat(P ).

It is easily seen that if f ∈ MFlat(P ), then P has no flat models and MLD,P is a least L-model
of P . If f /∈ MFlat(P ), then P is characterized in L by MLD,P and MFlat(P ), which means that for
every positive ground formula φ, P �L φ iff φ is true in both MLD,P and MFlat(P ).

Definition 8.2 Let G =← α1, . . . , αk be an MProlog goal. If some of αi are of the form 3E, then
by Flat(G) we denote the goal← f, else Flat(G) is the classical goal obtainable from G by deleting
all atoms starting with 2.

If P is a classical logic program and G is a classical goal, then SLD-refutation of P ∪ {G} in
the classical logic is defined in the usual way (see [24]). It can be also defined, for example, as an
SLD-refutation of P ∪ {G} in KD with no occurrences of modal operators.

We now define SLD-refutation in L ∈ {KB,K5,K45,KB5}.
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Definition 8.3 Let P be an MProlog program and G an MProlog goal. If L ∈ {K5,K45,KB5},
then let P ′ be the MProlog program in LD equivalent in LD to P , and G′ the MProlog goal in
LD equivalent in LD to G (see Definition 3.5). If L is KB then let P ′ = P and G′ = G. An
SLD-refutation of P ∪ {G} in L is either:

• a composition of an SLD-refutation of P ′∪{G′} in LD and an SLD-refutation of Flat(P )∪{←
f} in the classical logic, or

• a composition of an SLD-refutation of P ′ ∪ {G′} in LD and an SLD-refutation of Flat(P ) ∪
{Flat(G)θ} in the classical logic, where θ is the computed answer coming from the refutation
of P ′ ∪ {G′} in LD .

By a composition of two refutations we mean the ordered pair of the refutations; the concatena-
tion of the sequences of input clauses (resp. mgu’s) from the refutations is treated as the sequence of
input clauses (resp. mgu’s) for the composition. Standardizing variables apart is required through-
out the composition of refutations. The definition of computed answers is as usual. In the following
we give a soundness theorem and a completeness theorem for SLD-resolution in L.

Theorem 8.1 Let L ∈ {KB,K5,K45,KB5}, P be an MProlog program and G an MProlog goal.
Then every computed answer in L for P ∪ {G} is a correct answer in L for P ∪ {G}.

The proof of this theorem is straightforward.

Theorem 8.2 Let L ∈ {KB,K5,K45,KB5}, P be an MProlog program and G an MProlog goal.
Let θ be a correct answer in L for P ∪{G}. Then there exist a computed answer γ in L for P ∪{G}
and a substitution δ such that Gθ = Gγδ.

Proof. If L ∈ {K5,K45,KB5}, then let P ′ be the MProlog program in LD equivalent in LD to P ,
and G′ the MProlog goal in LD equivalent in LD to G. If L is KB then let P ′ = P and G′ = G.

Consider the case f ∈ MFlat(P ). Thus Flat(P ) ∪ {← f} has an SLD-refutation in the classical
logic. Besides, θ is a correct answer in LD for P ′ ∪ {G′}. Since SLD-resolution in LD is complete,
it follows that P ′ ∪ {G′} has an SLD-refutation in LD with computed answer γ and there exists a
substitution δ such that G′θ = G′γδ, which implies Gθ = Gγδ. An appropriate composition of the
two above mentioned refutations is an SLD-refutation of P ∪ {G} in L with computed answer γ.

Now suppose that f /∈ MFlat(P ). Thus θ is a correct answer in LD for P ′ ∪ {G′} and a correct
answer in the classical logic for Flat(P ) ∪ {Flat(G)}. There exist a computed answer γ1 in LD
for P ′ ∪ {G′} and a substitution θ′ such that G′θ = G′γ1θ

′, which implies Gθ = Gγ1θ
′. Since θ

is a correct answer in the classical logic for Flat(P ) ∪ {Flat(G)}, Flat(P ) ∪ {Flat(G)θ} has an
SLD-refutation in the classical logic with the identity substitution as the computed answer (see
the proof of Theorem 8.6 of [24]). We have Flat(G)θ = Flat(G)γ1θ

′. Change each variable x
occurring in the input clauses of the refutation of Flat(P ) ∪ {Flat(G)θ} by x′ that does not occur
in G, γ1 and θ′. Then recompute the refutation in the way such that when unifying {x, x′} the
substitution {x′/x} is used instead of {x/x′}. The resulting derivation will still be an SLD-refutation
for P ∪{Flat(G)γ1θ

′} with the identity substitution as the computed answer. By the lifting lemma,
Flat(P ) ∪ {Flat(G)γ1} has an SLD-refutation in the classical logic with computed answer γ2, and
there exists a substitution δ such that θ′ε = γ2δ. Hence there exists an SLD-refutation of P ∪ {G}
in L with computed answer γ = γ1γ2. Note that Gθ = Gγδ. 2

9 Related Work

In this section, we briefly discuss some related works. We refer the reader to Minker’s work [25] for a
good survey and the works by Lloyd [24] and Apt [4] for foundations of classical logic programming.
As surveys on modal and temporal logic programming, there are the works by Orgun and Ma [32],
and Fisher and Owens [15].

We have adopted from Lloyd’s book [24] the clausal notation for programs and goals. Our
presentation of SLD-resolution and the method for proving completeness are influenced by Lloyd’s
book. Leitsch’ book [23] also helps us in understanding the nature of resolution calculi.
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This work can be viewed as a continuation of our previous works [29, 30]. In [30], we introduced
the modal query language MDatalog. An MDatalog program is an MProlog program without
function symbols and with some constraints on variables. In the mentioned work, we gave algorithms
to construct least models for MDatalog programs. Given an MDatalog program P , a least L-model
for P can be effectively constructed, where L is any serial modal logic considered in this work. The
key in building a least L-model for P is the task of connecting each newly created world to an
empty world at the time of its creation. The fixpoint semantics for MProlog programs differs from
the algorithm of constructing least models for MDatalog programs on the structure of objects: in
the latter case it is model graphs, while in the former case it is model generators, which are set
representations of model graphs. Our work [29] on constructing least models for propositional modal
logic programs are influenced by the works on the complexity of (Horn) modal logics [11, 12, 19].
The Mints translation, which we studied from [22, 26], is very helpful for simplifying the form of
modal logic programs.

In [10], Fariñas del Cerro proposed a modal logic programming system called Molog. The Molog
language is similar to and as expressive as our eMProlog language. With Molog, the user can fix
a modal logic and define or choose the rules to deal with modal operators. Molog can be viewed
as a framework which can be instantiated with particular modal logics. Balbiani et al [5] gave a
declarative semantics and an SLD-resolution for a class of Molog programs in the logics Q (KD
in our notation), T and S4. To modal programs the authors associate a declarative semantics
represented by a tree which is defined as the limit of a certain transformation on modal programs.
The fixpoint represents a minimal Kripke model of the program. There is a common point between
that work and our work; in both of the works, labeled modal operators are used to convert 〈t〉(φ∧ψ)
to 〈t〉φ∧〈t〉ψ. Labeled modal operators in [5] come from Skolemization, and terms are used to label
the 3 operator. In our work, the labeling technique results from the technique of building model
graphs, and we feel convenient to use classical atoms and atom variables to label the 3 operator.
Modal programs considered in [5] require a restriction that the 2 operator does not occur in the
bodies of modal clauses. This restriction is also required for goals. In the definition of the minimal
Kripke model of a program [5], the technique of connecting each newly created world to an empty
world at the time of its creation (or a similar one) is not used, hence although the minimal Kripke
model of a program defined in [5] is minimal with respect to the restricted class of goals, in general
it is not a least Kripke model of the program in the considered logic. We think that if the technique
of using empty worlds is adopted, then the restriction on goals and bodies of modal clauses in [5] can
be dropped and the semantics can be extended for the full language. The SLD-resolution calculus
defined in [5] is not as declarative as ours, because a direct resolvent of a goal G and a program
clause φ is not specified by the syntax of G and φ but it needs inference steps.

As an extension of Molog, the Toulouse Inference Machine (TIM) [6] (together with an abstract
machine model called TARSKI for implementation [7]) makes it possible for a user to select clauses
which cannot exactly unify with the current goal, but just resemble it in some way. TIM is also a
general framework for modal logic programming.

Another approach to modal logic programming is based on the translation technique as in
Ohlbach’s resolution calculus for modal logics [31]. In Akama’s work [2], modal programs are trans-
lated into programs of a two-sorted first-order logic by introducing world paths as extra parameters
to function and predicate symbols9. A meta-interpreter is given for the execution of translated
programs. The translation method does not require the axiomatization of the accessibility relations
associated with modal operators such as 2 and 3 in modal logic programs, rather it directly en-
codes the accessibility relations into the unification algorithm. Considered modal logics are KD , T ,
KDB , B , S4, and S5. Although it is shown that a modal Herbrand property holds for translated
modal formulae, the declarative semantics of modal logic programs are not given.

Debart et al [13] also used a translation technique for multimodal logic programming. In that
work, the authors gave an automated theorem proving method called Σ–E-resolution for multimodal
logics. The logics have a finite number of modal operators 2i and 3i of any type among KD, KT,
KD4, KT4, KF, and interaction axioms of the form 2iφ → 2jφ. Multimodal formulae are first
translated into formulae of order-sorted equational theories, preserving satisfiability, and then Σ–
E-resolution is used to show satisfiability of the translated formulae. Like the work by Akama [2],

9This paragraph and the preceding one are based on the survey by Orgun and Ma [32].
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extra arguments (world paths) are added to function and predicate symbols. Translated formulae
are called path formulae. A special unification algorithm is developed to deal with path formulae
and the properties of modal operators. When path formulae are restricted to Horn clauses, a logic
programming language called Pathlog is obtained. Debart et al [13] showed that Σ–E-resolution
with the restriction to Horn clauses is a sound and complete procedure for Pathlog.

The method used by Akama [2] and Debart et al [13] speeds up the procedures of searching
answers for queries. There are, however, some problems involved with it. Firstly, it seems hard
to develop the least Kripke model semantics for Pathlog programs (even in monomodal logics).
Secondly, path formulae are less intuitive for users than modal formulae in interactive and de-
bugging modes of programming. Finally, because unification algorithms for path formulae either
are nondeterministic or may give many unifiers, adapting the depth-first search strategy is more
complicated.

10 Conclusions

In summary, we have proposed the modal logic programming language MProlog, which is as expres-
sive as the general modal Horn fragment, and have given a fixpoint semantics and an SLD-resolution
calculus for MProlog programs in the serial modal logics KD , T , KDB , B , K 4, S4, KD5, KD45,
and S5. There is a close relationship between the semantics and the calculus. Our SLD-resolution
calculus has been designed with a similar style as for classical logic programming and shown to
be sound and complete. The calculus has been extended also for MProlog programs in the almost
serial modal logic KB , K 5, K 45, and KB5.

In our technical report [28], we have justified that independence of the computation rule also
holds for our SLD-resolution calculi. In that report we have also presented another approach to
dealing with programming in the logics KD5, KD45 and S5, which is based on translating programs
in those logics into a simpler form that allows more efficient SLD-resolution calculi.

Our work brings new results and new methods for modal logic programming. It extends the
most important results of classical logic programming for modal logic programming in a modal and
systematic way. Our results have been established for a large class of monomodal logics: from the
class of logics that are obtainable from K by adding an arbitrary combination of the axioms D, T,
B, 4 and 5 only the logics K and K 4 are left10. Our results and methods can be used as a basis
for further works in modal logic programming, e.g. to develop semantics and SLD-resolution calculi
for multimodal logic programming, computing methods for (multi)modal deductive databases, or
SLDNF-resolution calculi for (multi)modal logic programs with negation.
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Appendix

Proof of the mgu lemma 7.5
Let the unrestricted refutation of P ∪ {G} consist of a sequence G0 = G,G1, . . . , Gn of goals, a
sequence φi1 , . . . , φih of variants of program clauses of P and a sequence θi1 , . . . , θih of unifiers. Let
θ be the computed answer from the unrestricted refutation. We prove the result by induction on n.

Suppose that n = 1. This means that G = ← 4A′, with |4| = s, the program has a clause
φ1 = 2t(A ←) such that 2s(A ←) is its L-instance, and the empty clause � is an L-resolvent of
G and φ1 with unifier θ1, where A′ is the atom being unified with the forward labeled form of A.
Suppose that θ′1 is an mgu of A′ and the forward labeled form of A. Then θ1 = θ′1γ for some γ.
Furthermore, P ∪{G} has a refutation in L consisting of G0 = G, G1 = � with input clause φ1 and
mgu θ′1.

Now suppose that the result holds for n− 1. The cases when G1 is a backward labeled form or
a 2-lifting form of G or is derived from G using rSatL or rNFL are trivial. Let G = ← α1, . . . , αk.
Suppose that G1 is derived from G and the input clause φ1 = 2s(A ← B1, . . . , Bm) in L, the
selected atom is αi = 4A′, and A′ is the atom being unified with the forward labeled form of A.
There exists an mgu θ′1 for A′ and the forward labeled form of A. We have θ1 = θ′1δ for some δ.
Let G′1 be the goal derived in the way as G1 but with mgu θ′1 instead of θ1. We have G1 = G′1δ.
By Lemma 7.3, the derivation with the subsequence of goals G1, . . . , Gi2−1 can be simulated by an
SLD-derivation in L with a sequence of goals G′1, . . . , G

′
i2−1 such that Gj = G′jδ, for 1 ≤ j ≤ i2− 1.

Then Gi2 can be derived from G′i2−1 and φi2 in L using the unifier δθi2 . Thus P ∪ {G} has an
unrestricted refutation in L consisting of G0 = G,G′1, . . . , G

′
i2−1, Gi2 , . . . , Gn with input clauses

φ1, φi2 , . . . , φih and unifiers θ′1, δθi2 , θi3 , . . . , θih . By the inductive assumption, P ∪ {G′1} has a
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refutation in L with mgu’s θ′i2 , . . . , θ
′
ih

such that δθi2 . . . θih = θ′i2 . . . θ
′
ih
γ, for some γ. Thus P ∪{G}

has a refutation in L consisting of G0 = G, G′1, . . . , G
′
n = � with mgu’s θ′1, θ

′
i2
. . . θ′ih such that

θ1θi2 . . . θih = θ′1δθi2 . . . θih = θ′1θ
′
i2
. . . θ′ihγ.

Proof of the lifting lemma 7.6
Let the refutation of P ∪ {Gθ} consist of a sequence G0 = Gθ,G1, . . . , Gn of goals, a sequence
φi1 , . . . , φih of variants of program clauses of P and a sequence θi1 , . . . , θih of mgu’s.

We can prove the lemma by induction on n, and with that way the case when G1 is a backward
labeled form or a 2-lifting form of G is trivial, the case when G1 is derived from G using rSatL
or rNFL is solved by Lemma 7.3. So, we assume that G1 is an L-resolvent of Gθ and φ1 using
θ1. This means that i1 = 1. Let φ1 = 2s(A ← B1, . . . , Bm), G = ← α1, . . . , αk, and the atom
corresponding to the selected atom of Gθ be αi = 4A′, where A′θ is the atom being unified with
the forward labeled form of A using θ1. Now θθ1 is a unifier for A′ and the forward labeled form
of A. The result of resolving G and φ1 using θθ1 is exactly G1. Thus we obtained an unrestricted
refutation of P ∪ {G} in L, which looks exactly like the given refutation of P ∪ {Gθ}, except the
original goal is different and the first unifier is θθ1. Now apply the mgu lemma.

Proof of the lemma 7.11
Suppose α has variables x1, . . . , xn. Let a1, . . . , an be distinct constants not appearing in P and α,
and let θ be the substitution {x1/a1, . . . , xn/an}. Then it is clear that αθ is a logical consequence
in L of P . Since αθ is ground, by Lemma 7.10, P ∪ {← αθ} has a refutation in L. Since the ai do
not appear in P or α, by replacing ai by xi (for 1 ≤ i ≤ n) in this refutation, we obtain a refutation
of P ∪ {← α} in L with the identity substitution as the computed answer.

Proof of the completeness theorem 7.12
Suppose G is the goal← α1, . . . , αk. Since θ is correct, ∀((α1∧ . . .∧αk)θ) is a logical consequence of
P in L. By Lemma 7.11, there exists a refutation of P ∪ {αiθ} in L such that the computed answer
is the identity substitution, for 1 ≤ i ≤ k. We can combine these refutations into a refutation
of P ∪ {Gθ} such that the computed answer is the identity substitution. Change each variable x
occurring in the input clauses of the refutation of P ∪ {Gθ} by x′ that does not occur in G and
θ. Then recompute the refutation in the way such that when unifying {x, x′} the substitution
{x′/x} (x′ is changed to x) is used instead of {x/x′}. The resulting derivation will still be an
SLD-refutation for P ∪ {Gθ} with the identity substitution as the computed answer. Applying the
lifting lemma, we conclude that there exists a refutation of P ∪ {G} in L with computed answer γ
such that Gθ = Gγδ, for some substitution δ.
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