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Abstract

Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which 

electrons are transferred from the cytosol to the exterior of the cell.1 Mineral-respiring bacteria 

employ elaborate heme-based electron transfer mechanisms,2–4 but the existence or basis of other 

EETs remains largely unknown. In this study, we show that the foodborne pathogen Listeria 

monocytogenes utilizes a distinctive flavin-based EET mechanism to deliver electrons to iron or an 

electrode. A forward genetic screen to identify L. monocytogenes mutants with diminished 

extracellular ferric iron reductase activity led to the characterization of an 8-gene locus responsible 

for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from 

aerobic respiration by channeling electrons to a discrete membrane-localized quinone pool. Other 

proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with 

free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system 

thus establishes a simple electron conduit compatible with the single-membrane gram-positive cell 

structure. Activation of EET supports growth on non-fermentable carbon sources and a EET 

mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologs of the 

identified EET genes are present in hundreds of species across the Firmicutes phylum, including 

multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET 
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activity in assayed strains. These findings suggest a surprising prevalence of EET-based growth 

capabilities and establish new relevance for electrogenic bacteria across diverse environments, 

including host-associated microbial communities and infectious disease.

Listeria monocytogenes is a fermentative gram-positive bacterium that is frequently 

associated with decaying plant matter in the environment, but which transforms into an 

intracellular pathogen upon encountering a mammalian host.5 Despite lacking a lifecycle or 

genes conventionally associated with EET, a 25-year-old observation of extracellular ferric 

iron reductase activity6 led us to question whether L. monocytogenes possessed a novel EET 

mechanism. Since electrons transferred out of the cell can be captured by an electrode, 

electrochemical measurements provide a useful tool for assaying EET.7 Chronoamperometry 

experiments showing that L. monocytogenes produces a robust electric current in the 

presence of growth substrate thus provided evidence of EET (Fig. 1a, Extended Data Fig. 

1a). Moreover, cyclic voltammetry experiments, which monitor electric current while the 

electrochemical potential is systematically varied, revealed a distinctive catalytic wave 

reminiscent of other electrochemically active bacteria (Extended Data Fig. 1b).8,9

To address the genetic basis of EET activity, ~50,000 colonies of a pooled L. 

monocytogenes himar1 transposon library were grown on Fe3+-containing agar plates. 

Mutants with decreased colorimetric change following an Fe2+-indicator overlay were 

visually identified and the location of their transposon insertion was mapped to the genome 

(Fig. 1b). From this screen, thirty-four independent transposon insertions that localized to a 

largely uncharacterized 8.5-kilobase locus were identified – with at least one insertion 

disrupting each of the 8 genes in this region (Fig. 1c). Based on the putative function of 

protein products, genes in the EET locus were assigned names (dmk-, eet-, and fmn- 

prefixes) that are used hereafter. The only transposon insertions outside the identified locus 

disrupt ribU, the substrate-binding subunit of a riboflavin transporter (Fig. 1c).10 After 

confirming that the mutants had diminished ferric iron reductase (Fig. 1d) and 

electrochemical activity (Fig. 1e, Extended Data Fig. 1b), we turned to the molecular basis 

of EET.

Type II NADH dehydrogenase, or Ndh1 in L. monocytogenes, catalyzes electron exchange 

from cytosolic NADH to a lipid-soluble quinone derivative, the first step in the respiratory 

electron transport chain.11 One of the genes in the EET locus, ndh2, encodes a protein with 

an N-terminal type II NADH dehydrogenase domain and a unique transmembrane C-

terminal domain that is absent from functionally characterized enzymes (Fig. 2a). Consistent 

with ndh2 encoding a novel NADH dehydrogenase, we observed that EET activation 

correlated with cellular NAD+ levels (Extended Data Fig. 2). Furthermore, proteins encoded 

by two other genes in the EET locus, DmkA and DmkB, are homologous to enzymes MenA 

and HepT, which catalyze terminal steps in the production of the quinone 

demethylmenaquinone (Fig. 2b). In E. coli, the different quinones demethylmenaquinone, 

menaquinone, and ubiquinone are employed to selectively channel electrons to different 

electron acceptors.12 By analogy, we reasoned that a distinct quinone derivative and NADH 

dehydrogenase might functionally segregate electron fluxes for EET and aerobic respiration.
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To clarify the relationship between EET and aerobic respiration, we formulated an “aerobic 

respiration medium” that contained non-fermentable glycerol as the sole carbon source. 

Despite exhibiting wildtype levels of ferric iron reductase activity (Extended Data Fig. 3a), a 

positive control that lacked terminal cytochrome oxidases (ΔcydAB/ΔqoxA), ΔmenA, 

hepT::tn, and Δndh1 strains failed to grow on aerobic respiration medium (Fig. 2c). By 

contrast, EET mutants grew similarly to wildtype under these conditions (Fig. 2c). 

Moreover, menG, which encodes the enzyme that converts demethylmenaquinone to 

menaquinone, is contained on an operon with hepT and is essential for growth on aerobic 

respiration medium, but not ferric iron reductase activity (Fig. 2c, Extended Data Fig. 3). 

Collectively, these results support the conclusion that a demethylmenaquinone derivative 

used by Ndh2 and a menaquinone derivative used by Ndh1 are selective for downstream 

enzymes that function in EET and aerobic respiration, respectively (Fig. 2d).

We next sought to address downstream steps responsible for electron transfer from the 

quinone pool to extracellular electron acceptors. FmnB is a predicted lipoprotein that is 

annotated as possessing flavin mononucleotide (FMN) transferase activity. Homologous 

FMN transferases catalyze a posttranslational modification in which an FMN moiety is 

covalently linked to a threonine sidechain of substrate proteins (Fig. 3a).13,14 To identify 

protein substrates of FmnB, wildtype and fmnB::tn cells were subjected to a comparative 

mass spectrometric analysis. Only two L. monocytogenes peptides met the criteria of 

selective FMNylation in the wildtype sample and both of these mapped to distinct regions in 

the protein product of the neighboring gene in the EET locus, PplA (Supplementary Table 

1).

Like FmnB, PplA is a predicted lipoprotein and a trypsin-shaving experimental approach, in 

which extracellular surface-associated proteins liberated through a partial digestion of the 

cell wall are identified by mass spectrometry, confirmed that PplA is associated with the 

surface of the cell (Supplementary Table 2). The N-terminal lipidation site on PplA is 

followed by ~30 amino acids that are predicted to be unstructured. N-terminal unstructured 

regions are a common feature of bacterial lipoproteins and are thought to provide a loose 

tether that allows the active portion of the protein to diffuse further from the membrane and 

to partially or fully penetrate the cell wall.15 Thus, this property coupled with the covalently 

bound redox-active FMNs is consistent with PplA representing the extracellular component 

of the EET machinery that facilitates electron transfer, via its FMNs, to extracellular electron 

acceptors.

Following its unstructured N-terminal region, PplA has sequential domains that share 59% 

sequence identity with each other. From the proteomic analysis, it is evident that the 

FMNylated threonines on PplA assume equivalent positions on each of these related 

domains (Fig. 3b). To further clarify the mechanism of FMNylation, FmnB substrate 

specificity was tested using recombinant FmnB and PplA. These assays confirm that FmnB 

catalyzes FMNylation of PplA and demonstrate that the enzyme specifically uses flavin 

adenine dinucleotide (FAD) as substrate (Fig. 3c, Extended Data Fig. 4).

Considering that both FmnB and PplA are membrane-anchored lipoproteins, FmnB must 

require a mechanism of acquiring FAD substrate in order to modify PplA. The only 
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transposon insertions identified outside the EET locus disrupt ribU, which has previously 

been shown to encode the substrate-binding subunit of an ECF (energy-coupling factor) 

transporter that functions in riboflavin uptake.10 In addition to a substrate-binding subunit, 

ECF transporters contain a transmembrane subunit and two distinct ATPase subunits, which 

drive transport of substrate across the membrane (Extended Data Fig. 5a).10 FmnA in the 

EET locus shares 50% sequence identity with EcfT, the transmembrane subunit of the RibU-

ECF riboflavin transporter, and this led us to hypothesize that it might interact with RibU to 

promote FAD secretion (Extended Data Fig. 5b). Consistent with this interpretation, 

proteomic analysis of ribU::tn and fmnA::tn strains revealed a dramatic decrease in PplA 

FMNylation (Supplementary Table 1). Furthermore, addition of FAD to the growth medium 

specifically restored ferric iron reductase activity to the ribU::tn and fmnA::tn strains 

(Extended Data Fig. 5c). Based on these findings, we propose that RibU and FmnA establish 

a transporter that secretes the FAD required for FmnB-catalyzed FMNylation of PplA.

The term “extracellular electron shuttle” refers to redox-active small molecules that are 

cyclically reduced by cells and oxidized by extracellular electron acceptors.16,17 The 

relevance of shuttles for EET is exemplified by Shewanella species, which use an efflux-type 

transporter to secrete flavins that can shuttle electrons to acceptors that are not directly 

contacting the cell.18–20 In contrast to Shewanella, L. monocytogenes is a flavin auxotroph 

and thus, by definition, environmental flavins must be present in its replicative niche. 

Indeed, micromolar flavin concentrations are typical of nutrient-rich environments, like the 

plant/animal biomass and mammalian host where L. monocytogenes proliferates.21,22 To 

determine whether flavins could be used as electron shuttles, we tested the effect of 

exogenous riboflavin, FMN, and FAD on EET activity. Injection of FMN into an L. 

monocytogenes-inoculated electrochemical chamber resulted in a pronounced increase in 

electric current (Extended Data Fig. 6a). Moreover, while flavins caused a marked 

concentration-dependent enhancement in the reduction of insoluble ferric (hydr)oxide, cells 

immersed in soluble ferric iron exhibited a high baseline level of activity that was 

unresponsive to flavins (Extended Data Fig. 6b). These data thus support the conclusion that 

L. monocytogenes can use environmental flavins to shuttle electrons to outlying acceptors.

Integrating insight into the role of the components of the EET apparatus, we arrive at a 

molecular model of electron travel from intracellular NADH, to membrane-confined 

quinone, to extracellular flavoprotein/shuttles, and ultimately to a kinetically favorable 

terminal electron acceptor (Fig. 3d). Next, to determine whether EET established a bona fide 

growth-supporting activity, we screened a library of common microbial growth substrates 

and found that the inclusion of ferric iron or an electrode was required for anaerobic growth 

on the sugar alcohols xylitol and D-arabitol (Fig. 4a, Extended Data Fig. 7). Moreover, while 

genes for aerobic respiration, but not EET, were essential for aerobic growth on xylitol, this 

pattern was reversed under anaerobic conditions, with the EET genes being essential and 

aerobic respiration genes dispensable (Fig. 4a, Extended Data Fig. 7). These data thus 

demonstrate that the distinct electron transport chains that segregate aerobic respiration and 

EET promote aerobic and anaerobic growth, respectively.

We next asked whether EET played a role in host colonization. Consistent with EET being 

dispensable for aerobic growth, EET-deficient mutants resembled wildtype L. 
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monocytogenes in an intracellular macrophage growth assay and an intravenous infection 

model (Extended Data Fig. 8). Since anaerobic growth mechanisms are important for 

microbial proliferation within the intestinal lumen,23,24 we hypothesized that the foodborne 

pathogen might utilize EET in this context. Consistent with the hypothesis, the fecal burden 

of the ndh2::tn strain was decreased ~6-fold in a streptomycin-pretreated model of L. 

monocytogenes intestinal colonization (Fig 4b). These results thus suggest a role for EET 

within the dysbiotic gut and raise the possibility that EET establishes a generally significant 

metabolic activity within the mammalian gastrointestinal tract.

We next turned to the phylogenetic distribution of the identified EET genes. BLAST 

searches revealed that homologs of the genes are widespread in hundreds of species that 

span the Firmicutes phylum (Extended Data Fig. 9a, Supplementary Table 3). Many of these 

genes likely encode functional EET systems, as the identified locus is typically conserved, 

though noteworthy distinctions are evident in some genomes (Extended Data Fig. 9b). 

Microbes that possess a locus with EET genes adopt a wide range of different lifestyles, 

including within thermophilic (Caldanaerobius, Thermoanaerobacter, etc.) and halophilic 

(Halolactibacilli, Halothermothrix, etc.) habitats. Orthologs of the identified EET genes are 

found in a number of human pathogens (Clostridium perfringens, Enterococcus faecalis, 

Streptococcus dysgalactiae, etc.), members of the human microbiota (Clostridia, 

Enterococci, Streptococci, etc.), and lactic acid bacteria that have commercial applications in 

food fermentation or probiotics (Lactococci, Lactobacilli, Oenococci, Tetragenococci, etc.) 

(Supplementary Table 3). Functionality of identified loci could explain previous reports of 

EET-like activity in a number of species25–35 and assays of ferric iron reductase activity of a 

panel of Firmicutes provided additional evidence that the presence of necessary genetic 

components correlates with EET activity (Fig. 4c).

In conclusion, the studies presented here establish a novel electron transport chain that 

supports growth on extracellular electron acceptors. This mechanism lacks an elaborate 

multi-heme apparatus and, partly by taking advantage of the single-membrane gram-positive 

cell architecture, is characterized by significantly fewer electron transfer steps than 

comparable systems in mineral-respiring gram-negative bacteria.1 Interestingly, the 

identified EET genes are present in a wide-ranging group of microorganisms that occupy a 

diverse array of ecological niches. Defying conventional views of EET, this distinctive 

system is abundant in bacteria that prioritize fermentative metabolic strategies and reside in 

nutrient-rich environments, including the lactic acid bacteria. Within this context, 

environmental flavins seems to represent a feature of the ecological landscape that can be 

exploited to promote EET activity. These observations suggest that, rather than a specialized 

process confined to mineral-respiring bacteria, utilization of extracellular electron acceptors 

represents a fundamental facet of microbial metabolism relevant across diverse 

environments. In addition to obvious bioenergetic applications, characterization of flavin-

based EET mechanism thus establishes new avenues for the study of electrochemical 

activities throughout the microbial world.
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Methods

L. monocytogenes strains and growth conditions.

All L. monocytogenes strains used in this study were derived from wildtype 10403S 

(Supplementary Table 4). Transduction methods were used to introduce transposons into 

distinct genetic backgrounds, as previously described.37,38 L. monocytogenes cells were 

grown at 37 °C and spectrophotometrically measured by optical density at a wavelength of 

600 nm (OD600). Anaerobic conditions were achieved with the BD GasPak™ EZ pouch 

system or an anaerobic chamber (Coy Laboratory Products) with an environment of 2% H2 

balanced in N2.

Filter-sterilized brain-heart infusion medium (Difco) or variants of chemically defined 

Listeria synthetic medium (LSM)39 were used in all studies. “Aerobic respiration medium” 

replaced the glucose in LSM with 50 mM glycerol. The requirement of an electron acceptor 

to support L. monocytogenes growth on xylitol was identified by comparing aerobic versus 

anaerobic (absent an alternative electron acceptor) growth on carbon sources, using PM1 and 

PM2A plates of the Phenotype MicroArray (Biolog). “Xylitol medium” replaced the glucose 

in LSM with 50 mM xylitol.

Gene name assignment.

The identified EET locus is widely conserved in L. monocytogenes isolates and 

encompasses the genes lmrg_02179-lmrg_02186 in L. monocytogenes 10403S (which 

correspond to lmo2634-lmo2641 in L. monocytogenes EGD-e). Identified EET genes were 

assigned dmk or fmn prefixes based on putative roles in demethylmenaquinone biosynthesis 

or PplA FMNylation, respectively. The eet prefix was assigned to the remaining genes, 

which at present lack high-confidence functional assignments. The only previously named 

gene, pplA, was so called based on the role of its cleaved signal peptide as a signaling 

pheromone (a function that seems unrelated to the mature protein).40

Bioelectrochemical characterization and measurements.

Chronoamperometry and cyclic voltammetry were carried out using a Bio-Logic Science 

Instruments potentiostat model VSP-300. All measurements were performed using double 

chamber electrochemical cells (Extended Data Fig. 1a) and consisted of an Ag/AgCl 

reference electrode (CH Instruments), a Pt wire counter electrode (Alfa Aesar), and a 6.35 

mm-thick graphite felt working electrode with a 16-mm radius (Alfa Aesar).

Electrochemical cells were prepared with 120 mL of modified LSM (containing 0.8 μM 

FMN as the sole flavin) and an open circuit potential was performed in the absence of 

bacteria. Once the current stabilized, the electrochemical cell was inoculated to a final 

OD600 of ~0.1. The medium in the electrochemical chamber was mixed with a magnetic stir 

bar for the course of the experiment. For current acquisition, the applied potential was set at 

+0.4 V vs Ag/AgCl. To maintain anaerobic conditions, electrochemical cells were 

continuously purged with N2 gas. Cyclic voltammetry measurements in the potential region 

of −0.8 to +0.4 V vs Ag/AgCl and a scan rate of 10 mV s−1 were conducted immediately 

prior to inoculation and 3 hours later. Electric currents are reported as a function of the 
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geometric surface area of the electrode. To test the effect of flavins on electrochemical 

activity, FMN was injected into the L. monocytogenes-inoculated electrochemical chamber 

to a final concentration of 1 μM.

For S. oneidensis experiments, the glucose in LSM was replaced with sodium lactate and S. 

oneidensis was inoculated to an OD600 of 0.1. Growth-supporting L. monocytogenes 

experiments on xylitol medium were conducted in a similar fashion, but the electrochemical 

cell was inoculated to an OD600 of ~0.002 and the medium from the electrochemical 

chamber was sampled at regular intervals for the enumeration of CFU.

Screen of mutants with diminished ferric iron reductase activity.

A previously described method was adapted to screen for L. monocytogenes mutants with 

diminished ferric iron reductase activity.6 Approximately 250 colony-forming units/plate of 

a pooled himar1 transposon library, generated as previously described,38 were grown on 

brain-heart infusion agar supplemented with 0.1 mg/mL ferric ammonium citrate. After 24 

hours at 37 °C, plates were removed from the incubator and a 10-mL overlay (0.8% agarose 

and 2 mM ferrozine) was applied. Colorimetric change resulting from ferrozine binding to 

Fe2+ was visually tracked for ~10 minutes. Colonies with diminished colorimetric change 

were selected and the location of the transposon insertion identified by Sanger sequencing, 

as previously described.41

Ferrozine assay of ferric iron reductase activity.

L. monocytogenes cells grown to mid-log phase were washed twice, normalized to an OD600 

of 0.5, and resuspended in fresh medium supplemented with 4 mM ferrozine. Experiments 

were initiated by adding 100 μL of cells to an equivalent volume of 50 mM ferric 

ammonium citrate or ferric (hydr)oxide and were conducted in triplicate at 37 °C in 96-well 

format using a plate reader. OD562 measurements were made every 30 seconds for up to an 

hour. Maximal rates (typically over 2 minutes) calculated from a Fe2+ standard curve are 

reported. Assays were generally performed in LSM, with glucose serving as the electron 

donor. However, because some of the respiratory mutants grew poorly in these conditions, 

these strains were assayed in brain-heart infusion medium (with glucose remaining as the 

electron donor). For FAD complementation studies, prior to washing steps, strains grown to 

mid-log were split and, after adding 0.5 mM FAD to one aliquot, incubated for 1 hour at 

37 °C. To test the effect of flavins, riboflavin, FMN, or FAD was titrated into cells 

resuspended in a LSM base that lacked flavins.

To prepare other species (detailed in Supplementary Table 4) for the ferric iron reductase 

assay, cells were grown anaerobically in brain-heart infusion medium for 36 hours. Sub-

cultures in brain-heart infusion medium supplemented with 25 mM ferric ammonium citrate 

were then grown to mid-log phase. Cells were washed twice, resuspended in fresh brain-

heart infusion medium, and cell densities were normalized to wildtype L. monocytogenes. 

Next, ferrozine was added to a final concentration of 2 mM and 100 μL of cells were 

dispensed in a 96-well plate. The experiment was initiated by adding 100 μL of brain-heart 

infusion medium supplemented with 10 mM ferric ammonium citrate and OD562 

measurements were made as described for the L. monocytogenes ferric iron reductase assay.
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L. monocytogenes growth on xylitol and ferric iron.

To test electron acceptor usage capabilities, xylitol medium was inoculated with L. 

monocytogenes and incubated at 25° C in an anaerobic chamber. Conditions testing putative 

electron acceptors contained 50 mM ferric ammonium citrate or ferric (hydr)oxide, prepared 

as previously described.42 For the ferric ammonium citrate experiments, 50 mM sodium 

citrate was included in the ferric ammonium citrate-lacking control condition and CFU were 

enumerated following overnight incubation in a 96-well plate (Greiner Bio-One). Ferric 

(hydr)oxide experiments were conducted in 6-well plate (Costar) and CFU were enumerated 

6 days after inoculation.

NAD+/NADH measurements.

L. monocytogenes cells grown overnight in LSM were washed and resuspended in 500 μL of 

medium. Cells were then split and 50 mM ferric ammonium citrate was added to one 

aliquot. To test aerobic conditions, 14-mL tubes were placed in a shaking (200 RPM) 

incubator. To achieve microaerophilic conditions, the headspace in the tube was purged with 

argon gas and the tightly capped tube was placed in a stationary incubator. After 1.5 hours at 

37°C, bacteria were harvested by centrifugation, resuspended in PBS, and lysed by vortexing 

with 0.1 mm-diameter zirconia-silica beads. NAD+/NADH measurements were performed 

using the NAD/NADH-Glo Assay (Promega).

Assay of FmnB FMN transferase activity

Constructs of fmnB and pplA that truncated the signal peptide were subcloned into the 

pMCSG58 vector. Protein overexpression and purification followed previously described 

protocols.43 Purified PplA and FmnB were incubated overnight at a 10:1 molar ratio in assay 

buffer (0.5 M NaCl and 10 mM Tris, pH 8.3) with putative flavins substrates. Since 

homologous FMN transferases require a magnesium cofactor,13 the effect of the chelator 

ethylenediaminetetraacetic acid (EDTA) on activity was tested. Samples were analyzed by 

SDS-PAGE and protein bands with covalent flavin modifications were visualized by UV 

illumination.

To identify the basis of posttranslational modifications, intact protein mass measurements of 

PplA were made using a Synapt G2-Si mass spectrometer that was equipped with an 

electrospray ionization (ESI) source and a C4 protein ionKey (inner diameter: 150 μm, 

length: 50 mm, particle size: 1.7 μm), and connected in-line with an Acquity M-class ultra-

performance liquid chromatography system (UPLC; Waters, Milford, MA). Acetonitrile, 

formic acid (Fisher Optima grade, 99.9%), and water purified to a resistivity of 18.2 MΩ·cm 

(at 25 °C) using a Milli-Q Gradient ultrapure water purification system (Millipore, Billerica, 

MA) were used to prepare mobile phase solvents. Solvent A was 99.9% water/0.1% formic 

acid and solvent B was 99.9% acetonitrile/0.1% formic acid (v/v). The elution program 

consisted of a linear gradient from 1% to 10% B (v/v) over 1 min, a linear gradient from 

10% to 90% B over 4 min, isocratic flow at 90% B for 5 min, a linear gradient from 90% to 

1% B over 2 min, and isocratic flow at 1% B for 18 min, at a flow rate of 2 μL/min. The 

ionKey column and the autosampler compartment were maintained at 40 °C and 6 °C, 

respectively. Mass spectra were acquired in the positive ion mode and continuum format, 

operating the time-of-flight (TOF) analyzer in resolution mode, with a scan time of 0.5 s, 
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over the range m/z = 400 to 5000. Mass spectral deconvolution was performed using 

ProMass software (version 2.5 SR-1, Novatia, Monmouth Junction, NJ).

L. monocytogenes protein trypsinization.

One milliliter of L. monocytogenes cells grown in LSM to mid-log phase was washed, 

resuspended in 100 μL of 100 mM NH4HCO3 (pH 7.5), and incubated at 100 °C for 10 

minutes. Cells were lysed by bead beating for 15 minutes at 4 °C. RapiGest SF (Waters) was 

added to lysed cells at a final concentration of 0.1% and the sample was incubated at 100 °C 

for 5 minutes. After adding 5 μL of 100 mM dithiothreitol, samples were incubated at 58 °C 

for 30 minutes. Next, 15 μL of 100 mM iodoacetamide was added and sample were 

incubated for an additional 30 minutes. Samples were then digested overnight with 10 μL 

Trypsin Gold (Promega). The following morning, 10 μL of 5% trifluoroacetic acid was 

added and samples were incubated at 37 °C for 90 minutes. Samples were centrifuged for 30 

minutes, to remove hydrolyzed RapiGest, and supernatant was collected.

L. monocytogenes intracellular growth assays.

Bone marrow-derived macrophages prepared from 6- to 8-week-old female mice were plated 

overnight on coverslips and infected with L. monocytogenes strains at a multiplicity of 

infection of 0.1. Macrophage monolayers were washed with PBS and fresh medium was 

added thirty minutes after infection. At 1 hour post-infection, 50 μg/mL gentamicin was 

added to kill extracellular bacteria. To enumerate L. monocytogenes CFU, macrophages 

were lysed by transferring coverslips to 10 mL of water, as previously described.44

L. monocytogenes intravenous infections.

Eight-week-old female C57BL/6 mice (The Jackson Laboratory) were infected with 1 × 105 

CFU in 200 μL of PBS by tail vein injection. Forty-eight hours post-infection, spleens and 

livers were harvested, homogenized, and plated for the enumeration of CFU.

L. monocytogenes oral infections.

Previously described models of L. monocytogenes oral infection were adapted to address the 

role of EET in the intestinal lumen.45,46 Prior to infection, 5 mg/mL of streptomycin sulfate 

was added to the drinking water of 8-week-old female C57BL/6 mice (The Jackson 

Laboratory). After 24 hours, mice were transferred to fresh cages and chow was removed to 

initiate an overnight fast. Forty-eight hours after streptomycin addition to the water, mice 

were isolated, fed a small piece of bread with 3 μL of butter and an inoculum with 108 CFU 

of L. monocytogenes, and returned to cages containing standard drinking water and chow. 

To confine L. monocytogenes to the intestinal lumen, a Δhly parental strain (which have 

greatly reduced intracellular growth and spread) was used in these experiments. Inoculums 

were prepared with a 1:1 ratio of Δhly and an erythromycin-resistant Δhly strain (Δhly/ermR, 

derived as previously described47) or Δhly and Δhly/ndh2::tn. Following infection, stools 

were collected, homogenized, and dilutions were plated. Because total parental strain CFU 

did not statistically differ between conditions, results are simply reported as a competitive 

index (i.e., the ratio of streptomycin to erythromycin-resistant CFU). This study was carried 

out in strict accordance with the recommendations in the Guide for the Care and Use of 
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Laboratory Animals of the National Institutes of Health. All protocols were reviewed and 

approved by the Animal Care and Use Committee at the University of California, Berkeley 

(AUP-2016–05-8811).

Identification of protein substrates of FmnB.

Wildtype and fmnB::tn strains grown in LSM were prepared for proteomic analysis as 

described in the protein trypsinization section. Peptides with >50% FMNylated peptide 

relative ion abundance in the wildtype sample and <5% in the fmnB::tn sample were 

identified using Progenesis QI for Proteomics software (version 4.0, Waters) and validated 

by manual inspection of the data. To address the FMNylation status of PplA, ribU::tn and 

fmnA::tn mutants were prepared in the same manner.

Trypsin-shaving analysis of surface-associated proteins.

Trypsin-shaving experiments adapted a previously described method.4 Cells grown in brain-

heart infusion medium were washed twice and resuspended in a shaving buffer (1 M sucrose 

+ 1 mM HEPES, pH 7). Lysozyme from chicken egg white (Sigma) was added to a 

concentration of 0.1 mg/mL. Cells were incubated at 37 °C for 60 minutes and released 

surface-associated components were separated from the cell by centrifugation. The 

supernatant (surface-associated protein fraction) was dialyzed overnight in digestion buffer 

(100 mM NH4HCO3, pH 7.5) and the pellet (total protein fraction) was resuspended in 

digestion buffer. Samples were prepared for proteomic experiments as described in the 

protein trypsinization section. A label-free relative quantification approach48,49 implemented 

in Progenesis QI for Proteomics software (version 4.0, Waters) identified proteins 

disproportionately abundant in the surface-associated fraction.

Liquid chromatography-mass spectrometry analysis of trypsin-digested proteins.

Samples of trypsin-digested proteins were analyzed in triplicate using the Acquity M-class 

UPLC and Synapt G2-Si mass spectrometer, as follows. The mass spectrometer was 

equipped with a nanoelectrospray ionization (nanoESI) source that was connected in-line 

with the UPLC. The UPLC was equipped with trapping (Symmetry C18, inner diameter: 

180 μm, length: 20 mm, particle size: 5 μm) and analytical (HSS T3, inner diameter: 75 μm, 

length: 250 mm, particle size: 1.8 μm, Waters) columns. Solvent A was 99.9% water/0.1% 

formic acid and solvent B was 99.9% acetonitrile/0.1% formic acid (v/v). The elution 

program consisted of a linear gradient from 1% to 10% B (v/v) over 2 min, a linear gradient 

from 10% to 35% B over 90 min, a linear gradient from 35% to 90% B over 1 min, isocratic 

flow at 90% B for 6 min, a linear gradient from 90% to 1% B over 1 min, and isocratic flow 

at 1% B for 20 min, at a flow rate of 300 nL/min. The column and autosampler 

compartments were maintained at 35 °C and 6 °C, respectively. Ion mobility-enabled HD-

MSE data50,51 were acquired in the positive ion mode and continuum format, operating the 

TOF analyzer in resolution mode, with a scan time of 0.5 s, over the range m/z = 50 to 2000. 

An optimized wave velocity of 850 m/s was used for the traveling wave ion mobility cell. 

Collision-induced dissociation was performed in the ion transfer cell with a collision energy 

ramp from 30 to 78 V. Data acquisition was controlled using MassLynx software (version 

4.1), and tryptic peptides were identified using Progenesis QI for Proteomics software 

(version 4.0, Waters).
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Bioinformatics analysis of identified EET genes.

Ndh2 homologs were identified by searching the sequence of the unique C-terminal domain 

of Ndh2 on the PSI-BLAST server.52 To perform a phylogenetic analysis, representative 

homologs were selected and aligned by ClustalW.53 The maximum likelihood method was 

used to infer the evolutionary history of identified sequences in Mega 7.0.26 and confidence 

limits of branch points were estimated by 1,000 bootstrap replications.54,55 The information 

about EET genetic loci summarized in Supplementary Table 3 was acquired by analyzing 

genomic context of identified genes in the PATRIC 3.5.1 (https://www.patricbrc.org) 

database.

Statistics and reproducibility.

No statistical methods were used to pre-determine sample size. The investigators were not 

blinded to allocation during experiments and outcome assessment. Statistical analyses were 

performed in Prism 5 for Mac OS X (GraphPad Software) and Progenesis QI for Proteomics 

version 4.0.

Data availability statement.

The datasets generated during the current study are available from the corresponding author 

on reasonable request.

Extended Data

Extended Data Figure 1. Electrochemical analyses of L. monocytogenes.
(a) The double chamber cell used for electrochemical experiments. Abbreviations stand for: 

working electrode (WE), reference electrode (RE), counter electrode (CE), cation exchange 

membrane (CEM). Inlets and outlets for N2 gas are labeled. (b) Cyclic voltammograms of 

wildtype and ndh2::tn L. monocytogenes strains. “Abiotic” refers to an uninoculated control. 

Arrows highlight the initiation of the catalytic wave. Results are representative of three 

independent experiments (n = 3).
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Extended Data Figure 2. EET activity maintains cellular redox homeostasis.
NAD+/NADH ratio in wildtype and ndh2::tn strains supplemented with ferric ammonium 

citrate under aerobic or microaerophilic conditions. Results from three independent 

experiments (n = 3) are expressed as means and standard errors. A statistically significant 

difference (*, P = 0.0015 [unpaired two-sided t test]) between microaerophilic cells 

incubated with or without iron is indicated.

Extended Data Figure 3. Evidence that a distinct menaquinone derivative functions in aerobic 
respiration.
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(a) Ferric iron reductase activity of mutants described in Fig. 2 demonstrates that genes 

essential for growth on aerobic respiration media are dispensable for EET. Results from 

three independent experiments (n = 3) are expressed as means and standard errors. (b) The 

L. monocytogenes hep/men operon. Notably, the demethylmenaquinone transferase, menG, 

which encodes the enzyme that converts demethylmenaquinone to menaquione (Fig. 2b), 

neighbors the hepT and hepS genes, which function in quinone biosynthesis and are 

essential for aerobic respiration (Fig. 2c).

Extended Data Figure 4. Recombinant FmnB FMNylates PplA at two discrete sites.
Deconvoluted mass spectra from a single experiment (n = 1) of (a) recombinant PplA and 

(b) recombinant PplA incubated with FAD + FmnB. The observed molecular weight change 

(877 Da) is consistent with two posttranslational FMNylations (2 × 438.3 Da) on PplA.
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Extended Data Figure 5. Proposed role of RibU and FmnA in FAD secretion.
(a) Simplified adaptation of a previously proposed model of L. monocytogenes riboflavin 

uptake through the RibU, EcfT, EcfA, and EcfA’ transporter.10 According to this model, 

EcfT, EcfA, and EcfA’ couple ATP hydrolysis with conformational changes that result in 

substrate bound to RibU being released into the cytosol. (b) Based on protein homology 

(FmnA shares 50% sequence identity with EcfT) and the expectation that extracellular FAD 

is required for FmnB to catalyze FMNylation of PplA, we propose the FmnA interacts with 

RibU to promote FAD secretion. (c) Ferric iron reductase activity of strains incubated with 
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0.5 mM FAD for 1 hour. The ability of exogenous FAD to specifically rescue ferric iron 

reductase activity to the fmnA::tn and ribU::tn strains is consistent with FmnA and RibU 

functioning in FAD secretion. Results from three independent experiments (n = 3) are 

expressed as means and standard errors. Statistically significant differences (*, P = 0.038 

and **, P < 0.0001 [unpaired two-sided t test]) between untreated and FAD-treated cells are 

indicated.

Extended Data Figure 6. Flavin shuttles promote EET activity.
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(a) Chronoamperometry results from L. monocytogenes-inoculated electrochemical reactors 

with 1 μM FMN injections at the indicated time points. Results are representative of three 

independent experiments (n = 3). (b) The effect of flavins on L. monocytogenes (Lm) ferric 

iron reductase activity with insoluble ferric (hydr)oxide (top) and soluble ferric ammonium 

citrate (bottom). With insoluble substrate the local iron concentration for most cells is low, 

whereas with soluble substrate the concentration of iron in the direct vicinity of cells is high 

(insets). Results from three independent experiments (n = 3) are expressed as means and 

standard errors.

Extended Data Figure 7. EET supports anaerobic growth on ferric iron.
(a) Growth following incubation of L. monocytogenes strains on xylitol media without (left) 

or with (right) ferric iron under aerobic (top) or anaerobic (bottom) conditions. Results are 

representative of three independent experiments (n = 3). Strain labels are colored based on 

attributed deficiencies (Fig. 2d) in aerobic respiration (blue) or EET (red). Ndh1 and Ndh2 

are likely functionally redundant under aerobic conditions, as a growth phenotype is only 

observed in the double mutant. Note that visual evidence of ferrous iron production in the 

agar adjoining anaerobically growing cells. (b) CFU of L. monocytogenes strains 

anaerobically incubated in xylitol media without (−) or with (+) ferric supplementation. 

Results for soluble ferric ammonium citrate (top) and insoluble ferric (hydr)oxide (bottom) 

are shown. Dashed lines denote the number of cells at the start of the of the experiment. 

Results from three independent experiments (n = 3) are expressed as means and standard 
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errors. Statistically significant differences (***, P < 0.0001 [unpaired two-sided t test]) in 

the ferric iron-supplemented condition are noted.

Extended Data Figure 8. EET genes are dispensable for L. monocytogenes intracellular growth.
(a) Murine bone-marrow-derived macrophages were infected with L. monocytogenes and 

CFU were enumerated at the indicated times. Results from three independent experiments (n 

= 3) are expressed as means and standard errors. (b) L. monocytogenes burdens in mouse 

organs 48 hours after intravenous infection. Representative results from two independent 

experiments (n = 2) are expressed as medians and standard errors.
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Extended Data Figure 9. Identified EET loci are widespread in the Firmicutes phylum.
(a) Phylogenetic tree constructed from select Ndh2 homolog sequences. A more 

comprehensive list of organisms that possess an EET locus is provided in Supplementary 

Table 3. The percentage of replicate trees that gave the depicted branch topology in a 

bootstrap test of 1,000 replicates is labeled. (b) Distinct EET loci from select genomes are 

shown. While the arrangement of genes varies, a locus with EET genes is present in many 

genomes. Some loci contain ECF transporter ATPase subunits (homologous to those 

depicted in Extended Data Fig. 5a) that likely function with RibU and FmnA subunits in 

flavin transport. The dmkA-like gene found in Caldanaerobius fijiensis (and other genomes) 

lacks homology to dmkA, but is annotated as catalyzing the same reaction. The pplA variant 

in some genomes contains a single FMNylated domain (rather than two) and this property is 

indicated by a shorter arrow. A few bacteria (including the Lactococci) lack a recognizable 

locus and distribute EET genes throughout the genome.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. An uncharacterized genetic locus associated with EET activity.
(a) Chronoamperometry results from L. monocytogenes (L.m.) or Shewanella oneidensis 

(S.o.)-inoculated electrochemical reactors. For L. monocytogenes experiments, the +/− 

signify whether electron donor (glucose) was included in the medium; lactate was used as an 

electron donor for S. oneidensis. Results are representative of three independent experiments 

(n = 3). (b) A representative of the thirty-six independent mutants identified from the ferric 

iron reduction screen minutes after ferrozine agar overlay (arrow). (c) Location of 

transposon insertions (triangles) in mutants identified as having decreased ferric iron 

reductase activity in the genetic screen. Arrows represent genes, with the darker gray 

signifying inclusion in a multi-gene operon. Previously uncharacterized genes on the locus 

have been assigned names based on putative functions. (d) Ferric iron reductase activity of 

transposon mutants identified from the screen. Results are expressed as means and standard 

errors from three independent experiments (n = 3). (e) Maximum electric current achieved 

from chronoamperometry experiments with representative EET mutants. Strains that 

statistically differ from wildtype (***, P < 0.001 [ANOVA with Dunnett’s posttest]) are 

indicated.
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Fig. 2. A parallel electron transfer pathway segregates EET from aerobic respiration.
(a) Domain layout of L. monocytogenes proteins Ndh1 and Ndh2. Abbreviations stand for 

type II NADH dehydrogenase domain (NDH II) and C-terminal domain (CTD). Gray 

regions represent predicted transmembrane helices. (b) Predicted reactions catalyzed by 

DmkA/DmkB and paralogous L. monocytogenes proteins MenA/HepT, as well as MenG 

(highlighted by blue arrow). Abbreviations stand for demethylmenaquinone (DMK), 

menaquinone (MK), isopentenyl pyrophosphate (IPP), and 1,4-dihydroxy-2-napthoyl-CoA 

(DHNA). The ‘x’ refers to an unknown number of isoprene repeats, which may differ 

between the two quinones. (c) Colony-forming units (CFU) after 24 hours in “aerobic 

respiration medium.” Results (n = 3) are expressed as means and standard errors. The 

ΔcydAB/ΔqoxA mutant lacks terminal cytochrome oxidases and thus provides an aerobic 

respiration-deficient control. (d) Probable electron transfer pathways inferred from mutants 

with EET (red) or aerobic respiration (blue) phenotypes. Dashed arrows highlight the path of 

electron flow and solid lines track quinone synthesis.
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Fig. 3. A surface-associated flavoprotein establishes the extracellular component of EET 
apparatus.
(a) Post-translational modification catalyzed by the FMN transferase family of enzymes, of 

which FmnB is a member.13,14 (b) Domain architecture of PplA. Abbreviations stand for: 

unstructured (US), FMNylated domain 1 (FMN1), and FMNylated domain 2 (FMN2). The 

lipidated cysteine on the N-terminus after signal peptidase processing is colored red and 

FMNylated threonines yellow. (c) Analysis of FmnB substrate specificity. SDS-PAGE of 

recombinant PplA after incubation under specified conditions. UV illumination of the gel 

(bottom) allows for visualization of protein with covalently bound flavin. Results are 

representative of three independent experiments (n = 3). See Supplementary Figure 1 for 

uncropped gel. (d) Model of the molecular basis of EET. DmkA and DmkB synthesize a 

demethylmenaquinone (DMK) derivative (lower inset). RibU and FmnA secrete FAD that is 

used by FmnB to post-translationally modify PplA (upper inset). EET is achieved by a series 

of electron transfers. Ndh2 transfers electrons from NAD to DMK. Electrons are transferred 

from DMK to FMN groups on PplA or free flavin shuttles – possibly with involvement from 

uncharacterized membrane proteins in the EET locus, EetA and EetB – and ultimately to 

terminal electron acceptor.
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Fig. 4. EET supports anaerobic growth, confers a competitive advantage in the intestinal lumen, 
and is active in multiple Firmicutes.
(a) L. monocytogenes CFU (left) and electric current (right) from chronoamperometry 

experiments conducted with xylitol growth medium. The (−) signifies a control condition 

without an electrode. Results from three independent experiments (n = 3) are expressed as 

means and standard errors. (b) Mice (n = 5) were fed bread inoculated with a 1:1 mixture of 

Δhly L. monocytogenes and Δhly/ndh2::tn strains. The competitive index at three post-

infection time points is indicated. Median values and statistically significant differences (*, 

P = 0.01 [unpaired two-sided t test]) between the Δhly/ndh2::tn mutant and a control that 

competed two Δhly strains are indicated. Results are representative of three independent 

experiments (n = 3). (c) Iron reductase activity in a panel of Firmicutes species, expressed as 

a percentage of wildtype L. monocytogenes activity. Results from at least three independent 

experiments (n = 7 for ndh2::tn, L. garviae, E. durans; n = 6 for L. innocua E. faecalis S. 

mutans; n = 5 for C. maltaromaticum, E. casseliflavus, S. gallolyticus, B. subtillis; n = 4 for 

L. lactis, E. faecium, E saccharolyticus, B. circulans, L. plantarum, E. raffinosus; n = 3 for L. 

casei, E. coli K12) are expressed in arbitrary units as means and standard errors. Strains that 

statistically differ from ndh2::tn are indicated (*, P < 0.05 [ANOVA with Dunnett’s 

posttest]). Some Lactobacillales lack the ability to synthesize 1,4-dihydroxy-2-napthoyl-
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CoA (DHNA), the precursor for demethylmenaquinone biosynthesis, and require an 

exogenous source for quinone-dependent processes.36 Organisms with EET genes and menC 

(which catalyzes an essential step in DHNA biosynthesis) are colored gray. L. casei, L. 

plantarum and E. raffinosus contain genes for EET, but not menC. The remaining species 

lack EET genes.
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