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Abstract Patterns of coordination result from the interaction

between (at least) two oscillatory components. This interac-

tion is typically understood by means of two variables: the

mode that expresses the shape of the interaction, and the

stability that is the robustness of the interaction in this mode.

A potent method of investigating coordinated behaviors is to

examine the extent to which patterns of coordination arise

spontaneously. However, a prominent issue faced by re-

searchers is that, to date, no standard methods exist to fairly

assess the stability of spontaneous coordination. In the present

study, we introduce a new method called the index-of-stability

(IS) analysis. We developed this method from the phase-cou-

pling (PC) analysis that has been traditionally used for exam-

ining locomotion–respiration coordinated systems. We com-

pared the extents to which both methods estimate the stability

of simulated coordinated behaviors. Computer-generated time

series were used to simulate the coordination of two rhythmic

components according to a selected mode m:n and a selected

degree of stability. The IS analysis was superior to the PC

analysis in estimating the stability of spontaneous coordinated

behaviors, in three ways: First, the estimation of stability itself

was found to be more accurate and more reliable with the IS

analysis. Second, the IS analysis is not constrained by the

limitations of the PC analysis. Third and last, the IS analysis

offers more flexibility, and so can be adapted according to the

user’s needs.
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Coordination is ubiquitous in our daily-life actions (Kelso,

1995; Nourrit-Lucas, Zelic, Deschamps, Hilpron, &

Delignières, 2013; Turvey, 1990). Research in the human

movement sciences has shown entrainment between breathing

and locomotion (Bramble & Carrier, 1983; McDermott, Van

Emmerik, & Hamill, 2003), between the movements of our

limbs (Kelso, 1995; Zelic, Mottet, & Lagarde, 2012, 2016),

between speech and gesture (Shockley, Baker, Richardson, &

Fowler, 2007; Zelic, Kim, & Davis, 2015), between the pos-

tures of people (Lagarde, 2013; Varlet, Marin, Lagarde, &

Bardy, 2011), and between a person’s movements and external

cues (Repp & Su, 2013; Zelic, Varlet, Kim, & Davis, 2016).

One elegant approach for understanding the formation and

evolution of such coordinated behaviors was developed in the

early eighties on the basis of dynamic-systems theory and the

principle of self-organization. According to this view, the

emergence and change of coordination patterns in biological

systems result from the functional interactions of the system’s

components to ensure the system’s robustness (Haken, 2013;

Haken, Kelso, & Bunz, 1985; Kelso, 1995; Turvey, 1990).

These interactions are constrained both by the intrinsic prop-

erties of the system’s components and by its tolerance to per-

turbations, either those internal to the system—for example,

biological noise—or those due to environmental influences.

This approach provides a potent method to investigate coor-

dination dynamics by measuring the extent to which patterns

of coordination arise spontaneously. Spontaneous coordinated

patterns are indeed characterized by a lack of intentional
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forcing, which minimizes the strength of the interaction

established within the coordinative system. That is, spontane-

ous patterns of coordination are more likely to respond to

minimal changes and constraints—for example, those manip-

ulated in experimental protocols.

Despite this advantage of spontaneous coordination for ex-

perimentation, the bulk of research has investigated intention-

al patterns of coordination (e.g., in human movement re-

search); we argue that a reason for this may be the lack of a

proper method to estimate with accuracy the mode and stabil-

ity of spontaneous coordinated behaviors. In the following

sections, we will briefly consider what the mode and stability

are and why these are more challenging to estimate for spon-

taneous than for intentional coordination patterns.

The mode, or frequency-locking, can be thought of as the

shape of the coordination. It consists in the rational ratio m:n

in which the fundamental frequencies ω and Ω of two rhyth-

mic components spontaneously lockwhen interacting within a

coordinative system, such as nω =mΩ (Guevara & Glass,

1982; Pikovsky, Rosenblum, & Kurths, 2003). It reflects the

mutual entrainment of the coupled components, the so-called

resonance response of the coordinative system that occurs

whenever the frequency of a harmonic of one component

(nω) approaches some harmonic of the other (mΩ), where n

and m are positive integers.

Stability refers to the strength of the interaction—that is,

how robust the coordinative system is within a mode. It re-

flects the strength of the intrinsic coupling within the coordi-

native system: the stronger the coupling, the more stable the

coordination. A typical measure of coordination stability is

given by the fluctuations over time of the relative phase—that

is, the difference between the phase of one component and that

of the other. When coordination is established, it is established

in a particular mode of coordination m:n in which the phases

of the coupled components are locked together. In this case,

the relative phase is bounded such that:

�

�

� mθB−nθA

�

�

� < constant; ð1Þ

where θA and θB are the phases of the components A and B

that are coupled within the m:n mode of coordination

(Pikovsky et al., 2003; Tass et al., 1998). The degree of fluc-

tuation of the relative phase then indicates the extent to which

the coordinated system is stable within this mode of coordi-

nation: the less variable the relative phase, the more stable the

coordination. Note that in the absence of coupling, the phases

of the components evolve independently from each other—

that is, diverge, and thus the relative phase grows indefinitely.

From the definitions above andEq. 1, it is clear that stability is

estimated with respect to themode of the coordination. That is, a

requirement for estimating stability is to determine a priori in

which m:n mode the coordination has been established. Within

an intentional coordination paradigm in which participants are

instructedtoproduceaparticularpatternofcoordination, theusual

procedure is to estimate stability with respect to the mode

instructed to be performed in the experimental task. The problem

is that for spontaneous coordination patterns, by definition, no

mode of coordination is instructed to be performed. That is, no

m and n integers are identified prior to the calculations of relative

phase and the estimation of its fluctuations. To date, no standard

methods exist for estimating stability in such scenarios. Previous

research has typically estimated the stability of spontaneous co-

ordinatedbehaviorsbyextractingthemodeofcoordination,or the

mandn integers, by trial anderror (Kelso&Jeka,1992;Pikovsky

et al., 2003). In general terms, the following procedure would be

applied: (1) A relative phase time series would be computed re-

gardless of themode of coordination—that is, a standard relative

phase time series; (2) the fluctuations of this standard relative

phase would be estimated with respect to different modes m:n

arbitrarily selectedaccording to the expectationsof the researcher

as towhatmodesmight occur in the dataset; and (3) themode for

which the fluctuations of this standard relative phase were mini-

malwouldbe identified as themodeof coordination, and stability

would be estimated from the fluctuations of the relative phase

with respect to this mode.

On the basis of the procedure above, a method known as

phase-coupling (PC) analysis was developed. Importantly,

this method proposed a more principled way to select the

m:n modes, which had to be chosen arbitrarily in the original

procedure (see PC Step 2 in S1 Appendix). Under the PC

analysis, potential m:n modes are selected according to the

successive levels of the Farey tree (Cvitanovic, Shraiman, &

Söderberg, 1985; Hardy & Wright, 1979; see Fig. 1). The

Farey tree ranks all potential modes of coordination from

lower-order modes—that is, modes with small integers m:n,

such as 1:1 (Level 1 of the Farey tree)—to higher-order

modes—that is, modes with larger integers m:n, such as 2:5

(Level 4 of the Farey tree; see Fig. 1). It provides a general

structure for understanding the dynamics of the mode-locking

Fig. 1 Representation of the first five levels of the Farey tree. From

BSound Stabilizes Locomotor–Respiratory Coupling and Reduces

Energy Cost,^ by C. P. Hoffmann, G. Torregrosa, and B. G. Bardy,

2012, PLoS ONE, 7, e45206. Copyright 2012 by Hoffmann et al.

Reprinted with permission
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behavior of a coordinative system, as predicted by a nonlinear-

dynamics model known as the circle map model (Jensen, Bak,

& Bohr, 1984; Kelso, 1991, 1995; Pikovsky et al., 2003;

Treffner & Turvey, 1993; see S4 Appendix). Briefly, this

mathematical model anticipates the extent to which a mode

of coordination can be performed, given the initial conditions

of two coupled components and the strength of their interac-

tion. In particular, the model favors lower-order modes with

larger regions of attraction, and therefore with greater chances

to be spontaneously performed, in comparison to higher-order

modes. Research on human coordinated behavior has provid-

ed support for the circle map model, since it is classically

observed that lower-order ratios are more frequently produced

and are more stable (Kelso & de Guzman, 1988; Peper, Beek,

& van Wieringen, 1995; Treffner & Turvey, 1993).

The PC analysis has been used extensively over the last

two decades, mostly to examine coordination between the

locomotory and respiratory systems (Hamill, McDermott, &

Haddad, 2000; Hoffmann, Torregrosa, & Bardy, 2012; Kiefer,

Riley, Shockley, Villard, & Van Orden, 2009; McDermott

et al., 2003; O’Halloran, Hamill, McDermott, Remelius, &

Van Emmerik, 2012; Peper et al., 1995; Van Emmerik,

Rosenstein, McDermott, & Hamill, 2004; Villard, Casties, &

Mottet, 2005; see S1 Appendix). In this respect, the PC anal-

ysis can be seen as the default standard in the area.

However, to date, no study has been conducted to empiri-

cally validate the use of the PC analysis for estimating the

mode and stability of spontaneous coordination. That is, the

extent to which the stability score that is given by the PC

analysis relates to the stability of the actual coordination is

still poorly understood. In addition, a close examination of

the PC analysis indicated that its calculations are based on

assumptions that are unlikely to apply in many instances of

spontaneous coordination. We determined three limitations to

the generalization of the PC analysis to spontaneous coordi-

nation. First, the PC analysis is asymmetric: The calculations

require identifying the coupled components either as target or

as reference. This necessary selection is arbitrary in the case

of spontaneous coordination, and this is problematic because

the stability score given via the PC analysis depends on this

selection. Second, the PC analysis is not sensitive to changes

in the mode of coordination. That is, stability is estimated with

respect to one mode of coordination only, the one most dom-

inant within the period of observation. This is another issue for

nonintentional coordination tasks in which more than one

mode of coordination is likely to be performed. Third, the

PC analysis is not sensitive to small phase drift—that is, a

minimal and constant change in the relative phase values.

This last limitation is not specific to spontaneous coordination,

and is directly related to the return map method used to esti-

mate the dispersion of relative phase. In the S2 Appendix, we

detail the extent to which each of these limitations can affect

the stability score estimated with the PC analysis.

In the present study, we aimed to establish and to empirically

validate a method for accurately estimating the mode and the

stability of spontaneous coordinated behaviors. To do so, we de-

veloped the index-of-stability (IS) analysis as an alternative ap-

proach that overcomes the above limitations of the PC analysis

(S3Appendix). That is, the IS analysis proposes an estimation of

the stability of spontaneous coordinated behaviors that is not

constrained by any of the highlighted limitations of the PC

analysis.

Both methods fundamentally differ in the ways that the

mode of coordination is used in the calculations of stability.

The PC analysis computes a standard relative phase time se-

ries that is independent of the mode of coordination, then

estimates stability by assessing the fluctuations of this stan-

dard relative phase with respect to a mode of coordination. A

range of modes are tried out, and the one leading to the highest

stability score is selected as the mode of the coordination (S1

Appendix). The IS analysis, in contrast, computes a mode-

related relative phase time series that takes into account the

modes of coordination produced locally. That is, the mode

produced at the instant t is used to calculate the relative

phase value at the instant t. Here, there is no need to select a

mode of coordination to assess the fluctuations of the relative

phase; stability is derived directly from the circular dispersion

of the relative phase values (see S3 Appendix).

Given this difference in calculations between the two

methods, the question arises of whether the IS analysis would

perform aswell as the PC analysis for cases that do not involve

any of the three limitations identified for the PC analysis (see

above). To examine this question, we used a computer-

generated time series to simulate the coordination of two

rhythmic components A and B and compared the extents to

which the two methods can estimate the stability of chosen

m:n modes performed at chosen degrees of stability. This in-

vestigation is important for two reasons: (1) It is essential to

determine whether the modifications that enable the IS analy-

sis to be more general than the PC analysis come at a cost, and

(2) any future research will require the empirical validation of

the proposedmethod to determine the extent to which it is able

to accurately estimate coordination stability.

Materials and method

Data simulation

The data simulation procedure is outlined in Fig. 2. The figure

illustrates the procedure used for the creation of the simulated

time series data. The vertical bars represent the simulated time

onsets for the coupled components A and B. At first, the time

onsets of the component A and the component B were deter-

mined to simulate in-phase coordination on a givenm:nmode.

We maintained the time onsets of the component A across the

184 Behav Res (2018) 50:182–194



different modes tested; only the time onsets of the component

B varied as a function of the mode of the coordination (see the

next section). Second, the time onsets of the component A

were manipulated to simulate a certain degree of stability of

the coordination (see the following sections on periodicity and

the jitter function).

In-phase coordination on an m:n mode The time series ti
and tj were determined by considering the perfect in-phase

coordination of the oscillators A and B according to one

targetedm:nmode. Sevenmodes were targeted, all taken from

Level 1 to Level 3 of the Farey tree: 1:1, 1:2, 2:1, 1:3, 2:3, 3:2,

and 3:1. The oscillator A was considered to oscillate at the

same rate, Fr, for M = 1, 000 cycles, regardless of what the

targeted m:n mode was. That is, only the time onsets tj of the

oscillator B varied as a function of the targeted mode (see

Fig. 2). For instance, B would complete N = 1, 000 cycles at

the same rate Fr as A for a 1:1 mode, or N = 2, 000 cycles at

twice the Fr rate for a 1:2 mode. At this stage, we can write:

θA tið Þ ¼ θB t j
� �

¼ 0þ i; j 2π½ �; ð2Þ

with i: 0→M = 1, 000 and j : 0→N, where θA(ti) and θB(tj)

are the phases of the coupled oscillators A and B at the times ti
and tj, respectively, and M and N are the total numbers of

complete cycles for the oscillators A and B over a trial.

Constraints in manipulating coordination stability:

Periodicity of the relative phase The variability of the time

onsets of component A, ti, was then manipulated to simulate

the degree of stability of the coordination. The jitter Ji was

defined such that the resultant time onset ti
' was defined as

t
0

i ¼ ti þ J i: ð3Þ

Whereas the time series {ti; tj} simulated a perfect in-phase

coordination of A and B within a certain mode m:n, charac-

terized by a relative phase distributed Dirac-like around 0, the

time series {ti
'; tj} simulated the less stable m:n coordination

characterized by a relative phase uniformly distributed within

a [−k * π; k * π] range, k ∈ [0; 1].

One particular constraint in manipulating coordination sta-

bility is related to the jitter Ji, because the same jitter Ji will

differently shift the relative phase value RP(ti
') depending on

the mode m:n of the coordination. Consider, for instance, the

perfect in-phase coordination within the modes 1:1 and 1:2;

that is, component A completes one cycle while component B

completes, respectively, one and two cycles. Regardless of the

mode, the time onsets tj of component B occur systematically

at the same time as some time onset ti of component A. That is,

the phase of the oscillator B at the time onsets ti is

θB(ti) = θB(tj) = 0[2π], and as a consequence, RP(ti) = 0[2π].

Now applying the jitter Ji = period(A)/2, the resultant time

onset ti
' reads ti

' = ti + period(A)/2. For a 1:1 mode, the resultant

Fig. 2 Data simulation. The time onsets of the oscillators A and B were

first determined to simulate perfect in-phase coordination on chosen m:n

modes (1:1, 1:2, 2:1, 1:3, 2:3, 3:2, and 3:1). The stability of the

coordination was then manipulated by adding a temporal jitter Ji to the

time onsets ti of the oscillator A: the larger Ji the less stable the

coordination. Ji is defined as a random value taken from a uniform

distribution whose base is function of the chosen m:n mode

and of coordination stability (see the text for details)
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time onset ti
' is perfectly interposed between tj and tj + 1—that

is, the phase of the oscillator B at ti
' is θB(ti

') = π[2π], and

RP(ti
') = θB(ti

') − θA(ti
') = π[2π]. In comparison, for a 1:2 mode,

the resultant time onset ti
' becomes perfectly aligned with tj+1.

In this case, θB(ti
') = θB(tj + 1) = 2π [2π], and as a consequence,

RP(ti
') = θB(ti

') − 2 * θA(ti
') = 2π [2π]. In other words, at the time

onset ti, the same jitter Ji leads to phase shifts of π and 2π in

the relative phase distributions, respectively, for a 1:1 and a

1:2 mode. These differences in phase shift for the same tem-

poral deviation result from the difference in periodicity of the

relative phase as a function of the mode of coordination m:n.

For 1:1, the relative phase completes one revolution for

T1 : 1 = period(A) = period(B), whereas for 1:2, T 1:2 ¼
period Að Þ

2

¼ period Bð Þ. A general expression to capture the periodicity

of the relative phase when A and B are locked into an m:n

mode is

Tm:n ¼
period Að Þ

n
¼

period Bð Þ

m
: ð4Þ

The jitter function Tm : n expresses the maximal time window

in which the time onsets of the component A can be jittered.

That is, for each targeted m:n mode, we can vary the time

onsets ti of the component A within the

ti−k*
Tm:n

2
; ti þ k*Tm:n

2

� �

range, such that the resultant relative

phase at the time onsets ti is uniformly distributed within a

[−k * π; k * π] range, k ∈ [0; 1]. In other words, we can define

the jitter Ji in Eq. 3 as a random value from the uniform

distribution bounded within the −k*Tm:n

2
; k*Tm:n

2

� �

range. Ji

was therefore determined such that the resultant time onset ti
'

reads ti
' = ti + Ji(m : n, k), with

J i m : n; kð Þ ¼ Ri* k*
Tm:n

2

� �

; ð5Þ

i : 1→M. Ri corresponds to the ith value of a uniform distri-

bution ofM elements bounded within the [−1; 1] range. Note

that Ri is consistent for whatever mode m:n and k considered.

Tm : n is the period of the relative phase for the targeted

m:n mode, and Tm:n

2
represents the maximal amplitude of the

jitter. k varies from 0 to 1 in order to vary the maximal jitter

amplitude from 0 to Tm:n

2
. As a result, the resultant relative

phase time series at the jittered time onsets ti
', regardless of

the targeted m:nmode, is distributed within the [−k * π; k * π]

range. For k = 0, ti
' = ti, and the relative phase is distributed

Dirac-like such that the phase coupling is maximal and the

coordination perfectly stable. In contrast, for k = 1, ti
' is distrib-

uted within the maximum range ti−
Tm:n

2
; ti þ

Tm:n

2

� �

. As a con-

sequence, the resultant relative phase is uniformly distributed

on a 2π interval, reflecting a no-phase-locking scenario—that

is, no coordination.

Method

Procedure One simulation as described above creates X = 357

simulated time series {ti
'(k,m : n); tj(m : n)}—that is, one for

each of the seven modes targeted (1:1, 1:2, 2:1, 1:3, 2:3, 3:2,

3:1) crossed with each of the 51 levels of k, such that k : 0→ 1

by 0.02 steps. We performed 50 simulations, each one using a

different R vector. Each of the time series {ti
'(k,m : n); tj(m : n)}

was then analyzed by using the PC analysis and the IS analysis.

Both methods require selecting a level in the Farey tree at which

the analysis is stopped.We selected Level 10 of the Farey tree—

that is, the analysis was performed for both methods from F1 to

F10. Since the modes of coordination simulated in the present

experiment where taken from Level 1 to Level 3 of the Farey

tree, we could have selected any level from Level 3 (Fig. 1).

Level 10 was selected arbitrarily, but this selection had no im-

pact on the present comparative study since it was selected for

both analyses. A detailed description of the Farey tree is given in

S1 Appendix. We examined whether and to what extent each

technique could retrieve the correct mode m:n and the correct

degree of stability chosen for simulating the time series.

Comparison to the predicted PC and the predicted IS As

wementioned in the description above, the degree of stability of

the coordination was simulated by using the parameter k, such

that whatever the mode of the coordination m:n chosen in the

simulation, the resultant relative phase was uniformly distribut-

ed within the [−k * π; k * π] range, k ∈ [0; 1]. That is, the esti-

mation of stability did not depend on the chosen m:nmode, but

only on the parameter k. It was therefore possible to predict the

correct stability score that should be estimated by the PC anal-

ysis and by the IS analysis as a function of k by considering θ

uniformly distributed on a [−k * π; k * π] range with k : 0→ 1,

increasing by steps of 0.02. The prediction made from the PC

analysis, PCpred(k), was given by the estimation of the fluctua-

tions of θ distributed on [−k * π; k * π] with the return map

technique (PC Step 3 in S1 Appendix). This prediction should

match the stability score PC(k) estimated when processing the

simulated time series {ti
'(k,m : n); tj(m : n)} with the PC analysis.

Similarly, the prediction made from the IS analysis, ISpred(k),

was given by the estimation of the fluctuations of θ distributed

on [−k * π; k * π] with the mean resultant length technique (IS

Step 3 in S3 Appendix). This prediction should match the sta-

bility score IS(k) estimated when processing the simulated time

series {ti
'(k,m : n); tj(m : n)} with the IS analysis. That is, what-

ever the mode m:n chosen for the simulation, we should have

PC(k) =PCpred(k) and IS(k) = ISpred(k).

To determine PCpred(k) and ISpred(k), we computed 10,000

simulations of θ uniformly distributed on [−k * π; k * π] with

Nθ = 1, 000, where Nθ is the number of values in θ. PCpred(k)

and ISpred(k) were computed as the average estimations of the

dispersion of θ(k) by using the return map technique (PC Step

3 in S1 Appendix) and the mean resultant length technique (IS

186 Behav Res (2018) 50:182–194



Step 3 in S3 Appendix), respectively. The results are shown in

Fig. 3. Note in Fig. 3 the difference in the stability scores

estimated by the two methods. Both methods aim to estimate

the fluctuations of the exact same distribution θ, yet they do so

in different ways.

Results

Estimation of coordination stability

As predicted, the stability scores estimated as a function of k

when processing the simulated time series {ti
'(k,m : n); tj(m :

n)} differed depending on the method used. The stability

scores estimated via the PC analysis show similar shapes

across the m:n modes tested (Fig. 4, left panel). As expected,

PC = 1 when k = 0—that is, when no jitter was applied to ti
and the m:n coordination was simulated with perfect phase

coupling. Then a linear drop occurs within the [k; k'] interval,

where the estimated PC drops below the predicted PCpred.

Note that the sizes of the drop differ across the m:n modes

tested. Finally, the estimated PC function is characterized by

an asymptotic regime from k = k' to k = 1.

The stability scores estimated via the IS analysis also show

similar shapes across the m:n modes tested, with an apparent

better match to the prediction ISpred (Fig. 4, right panel).

Accordingly, we found that IS(k) was a better fit with ISpred(k)

than was PC(k) with PCpred(k) (Fig. 5). First, for any value of k,

the absolute error between the IS stability scores estimated by IS

analysis and those predicted (ISpred) was systematically smaller

than the absolute error between the stability scores from the PC

analysis—that is, between estimated PC and predicted PCpred

(Fig. 5, left panel). The absolute error between the estimated and

predicted stability scores was on average systematically smaller

than 0.1 for the IS analysis. In contrast, for the PC analysis, the

absolute error between the estimated and predicted stability

scores was on average greater than 0.1 for k > 0. Second, the

correlation between the functions of the stability scores estimat-

ed and predicted across the seven m:n modes is on average

higher with the IS analysis (mean [M] = .99, 95% confidence

interval [CI] = .004) than with the PC analysis (M = .92, CI =

.054; see Fig. 5, right panel).

In addition, the results showed that the stability scores es-

timated as a function of k across the differentm:nmodes tested

were more consistent with the IS analysis than with the PC

analysis. Accordingly, the standard deviation of the PC(k)

values estimated at each k for the seven m:n modes tested

via the PC analysis was found to be greater than the standard

deviation of the IS(k) values estimated at each k for the seven

m:n modes tested via the IS analysis (Fig. 6).

Recognition of the m:n mode chosen for the data

simulation

Table 1 presents, in percentages, the ratios of correct identifi-

cation of the m:n mode used for the time series over the 50

simulations performed for each k. The PC analysis can sys-

tematically identify the mode used for the simulated data as

the dominant mode of the coordination, even for extreme

values as k tends to 1. The IS analysis can also identify the

m:n mode chosen for the simulated data as the dominant one

from k = 0 to k = 0.88, but it is not 100% correct for larger

value of k in the case of the highest-order modes of the se-

ries—that is, 3:1, 3:2, 1:3, and 1:2. Note that for each k, the

percentage is still greater than 50%, which means that the

mode chosen for the data simulation was always identified

for more than half of the 50 simulations.

Discussion

In the present study, we compared the extents to which the PC

analysis and the IS analysis estimate the mode and stability of

spontaneous coordinated behaviors. We tested the accuracy—

that is, how precise the estimation is—and the reliability—that

is, how consistent the estimation is as a function of the mode

m:n—using computer-generated time series that simulated the

coordination of two rhythmic components according to a se-

lected mode m:n and a selected degree of stability. Note that

the simulation was set up so that it did not involve the limita-

tions identified for the PC analysis (i.e., changes in

coordination mode were not simulated, nor was phase drift;

Fig. 3 Predicted stability scores with the IS analysis (ISpred) and the PC

analysis (PCpred) as a function of the chosen degree of stability (k). The

figure illustrates the predicted stability scores estimated from the

fluctuations of θ uniformly distributed on the interval [−k * π; k * π]

with the IS analysis (solid line) and with the PC analysis (dotted line)
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see Limitations 2 and 3 in the S2 Appendix and S3 Appendix)

as including such would have clearly disadvantaged the PC

analysis. The results showed that even in these conditions, the

IS analysis provides a more accurate and a more reliable esti-

mate of the coordination stability. First, the IS analysis resulted

in a more precise estimate of stability than the PC analysis—

that is, the estimated stability was a better fit to the model.

Second, the IS analysis gave more consistent estimates of sta-

bility across the different m:n modes tested than did the PC

analysis. This is important, since a method dedicated to estima-

tion of the stability of a coordination pattern should not be

affected by the mode m:n in which the coordination is locked.

In the following sections, we first attempt to identify the sources

of the lack of accuracy and reliability of the PC analysis. Then

we propose an extension of the IS analysis using optional inputs

parameters that enable an even better estimate of stability.

Finally we discuss how to improve the flexibility of the IS

analysis and how to adjust it depending on the user’s needs.

A lack of accuracy and reliability of the PC analysis

for estimating coordination stability

Our simulation allows for comparing the extent to which the

different calculations used by the PC analysis and the IS

Fig. 4 Stability scores as a function of k for eachm:nmode chosen in the

simulated time series {ti
'(k,m : n); tj(m : n)}. The stability score was

estimated by either the PC analysis (left panel) or the IS analysis (right

panel). The black dotted and solid lines represent the stability scores

predicted by the PC analysis (PCpred) and the IS analysis (ISpred),

respectively

Fig. 5 Differences between the stability scores predicted and estimated

for the PC analysis and for the IS analysis. The left panel presents the

absolute errors computed for chosen values of k (0, 0.2, 0.4, 0.6, 0.8, and

1) between the predicted and estimated stability scores with the PC

analysis (dotted line, white circles) and the IS analysis (solid line, white

squares). The right panel shows the average computed correlation

coefficients between the stability score functions predicted and

estimated by the PC analysis (white circle) and by the IS analysis

(white square) for each m:n mode tested. Error bars represent the 95%

confidence intervals
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analysis affect the estimate of coordination stability. In con-

trast to the IS analysis, the PC analysis first considers the

computation of a standard relative phase time series that is

independent of the mode of the coordination. That is, regard-

less of the mode of coordination produced, the relative phase

time series is determined the same way (Eq. 8 in S1

Appendix). The mode of coordination is only used when es-

timating stability by assessing the fluctuations of the relative

phase time series. Here, the mode is essential, because it de-

termines the lag at which the relative phase values are com-

pared in the return map (see Eqs. 9 and 10; PC Step 3 in S1

Appendix). One possibility for the lack of accuracy and reli-

ability of the PC analysis in comparison to the IS analysis is

that the computation of the standard relative phase time series

was affected by our manipulations of the time onsets of the

component A in the simulation. Figure 7 shows the influence

of the jitter used in the data simulation on computation of the

relative phase time series, as calculated using the PC analysis

and the IS analysis.

From Fig. 7, it is clear that if a jitter Ji is applied at the time

onset ti of component A, the resultant relative phase computed

via the PC analysis is influenced by the sign of the jitter. That

is, the effects of the jitter are not symmetric: The relative phase

computed for the jittered time onset ti
' differs depending on

whether the jitter Ji applied is positive or negative. Consider,

for example, the jitter α applied on the time onset ti of com-

ponent A in a 1:1 mode of coordination. It is clear that the

resultant relative phase computed via the PC analysis is dif-

ferent if α is negative—that is, RP ti−αð Þ ¼ α

Tþα
*2π —or

positive—that is, RP(ti + α) = 2π—where T is the current

cycle duration between ti and ti + 1. In contrast, the sign of α

has no influence on the relative phase computed via the IS

analysis: RP ti−αð Þ ¼ RP ti þ αð Þ ¼ α

Tþα
*2π.

Another limitation shown in Fig. 7 is that for the PC anal-

ysis, the same jitter Ji will have a different influence on the

computation of the resultant relative phase, depending on the

mode of the coordination. In comparison, the IS analysis pro-

vides a symmetric and consistent computation of the relative

phase for any m:n mode. To further understand the role of the

computation of the relative phase on the lack of accuracy and

reliability of the PC analysis in estimating coordination stabil-

ity, we retested the PC analysis with the simulated data by

modifying the computation of the standard relative phase

time series in Eq. 8 (S1 Appendix), keeping only the funda-

mental requirement for the PC analysis to compute the relative

phase independently of the coordination mode. To do so, we

used the following expression instead of Eq. 8 (see S1

Appendix):

RP ¼ θB−θA: ð6Þ

This corresponds to the calculation of the relative phase

employed in the IS analysis when a 1:1 mode of coordination

is considered (Eq. 13; S3 Appendix). The results are shown in

Fig. 8. The estimation of the PC analysis clearly benefits from

this change in relative phase computation, and it actually

matches the prediction for the modes 1:1, 1:2, and 1:3.

However, it noticeably overestimates the prediction for modes

m:n where m ≠ 1. That is, the PC analysis still does not result

in a correct estimate, even when we change the expression of

relative phase to a more standard form.

Fig. 6 Variability of the estimated stability scores across the seven m:n

modes tested as a function of k. The figure represents the standard

deviations of the stability scores estimated at certain values of k (0, 0.2,

0.4, 0.6, 0.8, and 1) for the m:n modes tested, by the PC analysis (dotted

line, white circles) and the IS analysis (solid line, white squares)

Table 1 Percentages of correct identifications of the chosen m:n mode

by the PC analysis and the IS analysis

Chosen m:n mode Analysis k

0 0.04 … 0.88 0.92 0.96 1

1:1 PC 100 100 … 100 100 100 100

IS 100 100 … 100 100 100 100

1:2 PC 100 100 … 100 100 100 100

IS 100 100 … 100 100 100 84

2:1 PC 100 100 … 100 100 100 100

IS 100 100 … 100 100 100 100

1:3 PC 100 100 … 100 100 100 100

IS 100 100 … 100 100 100 76

2:3 PC 100 100 … 100 100 100 100

IS 100 100 … 100 100 100 100

3:2 PC 100 100 … 100 100 100 100

IS 100 100 … 100 94 86 80

3:1 PC 100 100 … 100 100 100 100

IS 100 100 … 100 98 84 54
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Improving the estimate of stability in the IS analysis

For the IS analysis, the calculated scores of stability did not

completelymatch the score ISpred predicted by the method (the

prediction of the dispersion of θ(k) using the mean resultant

length technique; see Fig. 4, right panel). In the following

paragraphs we discuss the influence of two factors with re-

spect to their contributions to errors of estimation.

The first factor is related to the IS analysis itself, which con-

sidersmultiple rational ratiosp:q for computing the relativephase

time series (see IS Steps 2 and 3 in S3 Appendix). Each relative

phasevalueat the timeonsets tiand tj is computed in relation to the

p:q rational ratio that is locally identified. This definition of the

relative phase is useful when no assumption is made about the

mode of the coordination. In particular, it has the advantage of

estimating an accurate phase coupling when two or more modes

are performedwithin a dataset (Limitation 2 of the PC analysis in

S2 Appendix). However, the analysis loses precision when only

one mode is performed (as in the simulation above). To under-

stand the role of this factor in the estimation of stability by the IS

analysis,we recalculated it usingonly themost dominant rational

ratio (e.g., KR = 1 in Fig. 9). Figure 9 clearly shows an

Fig. 7 Influences ofvariations in the timeonset of componentAon the relative phase calculations for thePCanalysis and the IS analysis (see the text for details)

Fig. 8 Stability estimated with the PC analysis with RP t j
� �

¼ Δt
T
*2π (left panel; see Eq. 8 in S1 Appendix) or with RP(tj) = θB(tj) − θA(tj) (right panel;

see Eq. 6 above). Note that the stability scores are given as a function of k for each m:n mode tested
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improvement in the estimateof stability, since the estimated score

is closer to thepredicted score ISpred (top right panel,KR = 1) than

in the original analysis (top left panel,KR = 0).

The second factor is related to our simulations, in which the

variability of the time onsets ti was manipulated such that the

relative phase computed for the time onsets ti was distributed

over the [−k * π; k * π] interval. Note that a characteristic of

the IS analysis is to systematically compute the relative phase

time series for time onsets ti and tj. A problem with this is that,

in contrast to the relative phase values computed for the time

onsets ti that were controlled to be distributed on the

[−k * π; k * π] interval, the relative phase values computed

for the time onsets tj of component B were not controlled,

and therefore were not necessarily distributed on such an in-

terval. A second problem is that the number of time onsets tj

changes as a function of the mode m:n chosen for the simula-

tion (see Fig. 2). That is, the number of tj onsets is greater for

the mode 1:3 than for 1:2, 2:3, 1:1, 3:2, 2:1, and 3:1. Note that,

accordingly, this ranking corresponds to the ranking of the

modes by considering the maximal error between the estimat-

ed stability forKR = 1 and the predicted ISpred (Fig. 9, top right

panel). We tested the influence of the time onsets tj of oscilla-

tor B in the estimation of stability by testing the IS analysis

while only considering the ti time onsets of the oscillator A (A

only in Fig. 9). The results showed a perfect fit between the

estimated stability and the predicted stability ISpred for all m:n

modes tested in the simulation (Fig. 9, bottom right panel).

Given the factors above, an optional input parameter KR

was included in the final version of the IS analysis for the case

in which the user has a priori knowledge about the number of

Fig. 9 Stability estimated with the IS analysis using the mean resultant

length technique. Stability scores are given as a function of k for eachm:n

mode tested. Each graph plots the stability score IS(k) estimated when

processing the simulated time series using the IS analysis with different

input parameters. KR is the number of modes known a priori to be

produced in the simulated data: 0 (No a priori knowledge; standard IS

analysis) or 1 (only one mode produced). BA & B^ indicates that the

relative phase was considered for all time onsets ti and tj (standard IS

analysis). BA only^ means that the relative phase was considered for the

time onsets ti only. The black lines represent the stability scores predicted

by the IS analysis
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modes produced in the dataset (S5 Appendix). As we demon-

strated above, knowing a priori the number of modes pro-

duced in the dataset enables the IS analysis to be more accu-

rate. For KR = 0, no assumption is made about the number of

modes performed, and the mode and stability of the coordina-

tion are estimated as we explained in the standard description

of the method (S3 Appendix). For KR = x, the analysis is ap-

plied by computing the relative phase time series according to

the xmost dominant modes in the time series of rational ratios

RRn. For instance, if x = 2, two modes are postulated to have

been produced in the dataset, so for each RRn considered, the

analysis computes a relative phase time series according to

only the two most dominant modes. In other words, all real

quotients RQ(ti,j) are assigned to one of these two most dom-

inant modes. If RQ(ti,j) does not belong to a region of

attraction of one of these two modes (for details, see PC

Step 2 in S1 Appendix), it is automatically assigned to the

closest one.

The return map technique applied with the IS analysis

The IS analysis uses the mean resultant length technique to

assess the dispersion of the relative phase time series. This

allows Limitation 3 of the PC analysis to be overcome (S2

Appendix). It should be noted, however, that this technique

for estimating angular data dispersion is much less efficient if

transitions occur in the mode in which the phases are

coupled—for example, if the phases are locked in-phase and

then switch to an antiphase phase-locking: The technique fails

to identify such transitions, which results in an inexact

Fig. 10 Stability estimated with the IS analysis using the return map

technique. Stability scores are given as a function of k for each m:n

mode tested. Each graph plots the stability score estimated when

processing the simulated time series using the IS analysis with the

return map technique. KR is the number of modes known a priori to be

produced in the simulated data: 0 (No a priori knowledge; standard IS

analysis) or 1 (only one mode produced). BA & B^ indicates that the

relative phase was considered for all time onsets ti and tj related to the

components A and B (standard IS analysis). BA only^ means that the

relative phase was considered for the time onsets ti only. The black

dotted lines represent the stability scores predicted with the return map

technique
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estimation of stability. Interestingly, the return map technique

used in the PC analysis for estimating the fluctuations of rel-

ative phase is sensitive to such a phenomenon. Therefore, an

alternative for the IS analysis would be to use the return map

technique to assess the fluctuations of the relative phase time

series that have been computed in Step 2 of the IS analysis.

Results from using such a procedure are shown in Fig. 10.

Here, a perfect fit was found between the estimated stability

scores and those predicted by the IS analysis using the return

map technique for KR = 1 and when only the time onsets of

the component Awere considered (see above for details). This

perfect fit occurred no matter what m:n mode was chosen for

the simulation (Fig. 10, bottom right panel). Taking this into

consideration, the implemented IS analysis provides the op-

tion of assessing the fluctuations of the relative phase time

series with the return map technique.

Flexibility in using the IS analysis

An additional advantage of the IS analysis as compared to the

PC analysis is that it is relatively simple to provide the user

with different strategies for estimating the mode and stability,

depending on his or her needs. The version described above

considers stability as the variability of the phase coupling over

the whole dataset. That is, the fluctuations of the phase cou-

pling are examined without considering to which mode the

phase coupling is related. Some researchers might disagree

with this way of characterizing the dynamics of spontaneous

coordinated behaviors, and might prefer, for instance, to ex-

amine the fluctuations of the phase coupling with respect to

the mode performed. The IS analysis allows for such an esti-

mate, because it is possible to select and estimate the fluctua-

tions of the relative phase values related to one specific mode

only. A global score can then be calculated by, for instance,

weighting the stability scores computed for each mode as a

function of the proportion of occurrences of the mode in the

dataset.

Conclusion

The present work has introduced a new method, called the IS

analysis, to estimate the mode and stability of spontaneous

coordination. We showed that this method gives a more accu-

rate and reliable estimate of stability than does the method

currently most used in the area, the PC analysis. In addition,

whereas the PC analysis is limited due to the assumptions it

needs to make about the nature of the coordination, the IS

analysis is not, because it does not require these condi-

tions—that is, the IS analysis is balanced (in contrast to

Limitation 1 of PC analysis), it is sensitive to changes in co-

ordination modes (in contrast to Limitation 2 of PC analysis),

and it is sensitive to phase drifts (in contrast to Limitation 3 of

PC analysis). The IS analysis is alsomore flexible, because the

user can adapt the final calculations depending on her or his

needs and on the way that she or he likes to characterize the

dynamics of spontaneous coordinated behaviors. Finally, the

IS analysis can also be optimized with little a priori knowledge

about the dataset—for example, if the number of modes per-

formed is known (parameter KR in the final version in S5

Appendix). The flexibility and accuracy of the IS analysis in

estimating the stability of spontaneous coordinated behaviors

open up new avenues for studying the weak coordinated be-

haviors produced in ecological situations.

References

Bak, P., Bohr, T., & Jensen, M. H. (1985). Mode-locking and the transi-

tion to chaos in dissipative systems. Physica Scripta, 1985, 50–58.

Beek, P. J., Peper, C. E., & van Wieringen, P. C. W. (1992). Frequency

locking, frequency modulation, and bifurcations in dynamic move-

ment systems. In Tutorials in motor behavior II (pp. 599–622).

Amsterdam, The Netherlands: Elsevier.

Bramble, D. M., & Carrier, D. R. (1983). Running and breathing in

mammals. Science, 219, 251–256.

Cvitanovic, P., Shraiman, B., & Söderberg, B. (1985). Scaling laws for

mode lockings in circle maps. Physica Scripta, 32, 263–270.

Fisher, N. I. (1995). Statistical analysis of circular data. Cambridge, UK:

Cambridge University Press.

Guevara, M. R., & Glass, L. (1982). Phase locking, period doubling

bifurcations and chaos in a mathematical model of a periodically

driven oscillator: A theory for the entrainment of biological oscilla-

tors and the generation of cardiac dysrhythmias. Journal of

Mathematical Biology, 14, 1–23.

Haken, H. (2013). Synergetics: Introduction and advanced topics. New

York, NY: Springer Science & Business Media.

Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase

transitions in human hand movements. Biological Cybernetics, 51,

347–356.

Hamill, J., McDermott, W. J., & Haddad, J. M. (2000). Issues in quanti-

fying variability from a dynamical systems perspective. Journal of

Applied Biomechanics, 16, 407–418.

Hardy, G. H., & Wright, E. M. (1979). An introduction to the theory of

numbers. Oxford, UK: Oxford University Press.

Hoffmann, C. P., Torregrosa, G., & Bardy, B. G. (2012). Sound stabilizes

locomotor–respiratory coupling and reduces energy cost. PLoS

ONE, 7, e45206. doi:10.1371/journal.pone.0045206

Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular

statistics. River Edge, NJ: World Scientific.

Jensen, M. H., Bak, P., & Bohr, T. (1984). Transition to chaos by inter-

action of resonances in dissipative systems: I. Circle maps. Physical

Review A, 30, 1960–1969.

Kelso, J. A. S. (1991). Multifrequency behavioral patterns and the phase

attractive circle map. Biological Cybernetics, 64, 485–495.

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain

and behavior. Cambridge, MA: MIT Press.

Kelso, J. A. S., & de Guzman, G. C. (1988). Order in time: How the

cooperation between the hands informs the design of the brain. In

Neural and synergetic computers (pp. 180–196). Berlin, Germany:

Springer.

Kelso, J. A. S., & Jeka, J. J. (1992). Symmetry breaking dynamics of

human multilimb coordination. Journal of Experimental

Psychology: Human Perception and Performance, 18, 645–668.

doi:10.1037/0096-1523.18.3.645

Behav Res (2018) 50:182–194 193

http://dx.doi.org/10.1371/journal.pone.0045206
http://dx.doi.org/10.1037/0096-1523.18.3.645


Kelso, J. A. S., DeGuzman, G. C., & Holroyd, T. (1991). Synergetic

dynamics of biological coordination with special reference to phase

attraction and intermittency. In H. P. Koepchen & H. Haken (Eds.),

Rhythms in physiological systems (pp. 195–213). Berlin, Germany:

Springer.

Kelso, J. A. S., de Guzman, G. C., Reveley, C., & Tognoli, E. (2009).

Virtual partner interaction (VPI): Exploring novel behaviors via co-

ordination dynamics. PLoS ONE, 4, e5749. doi:10.1371/journal.

pone.0005749

Kiefer, A.W., Riley, M. A., Shockley, K., Villard, S., & Van Orden, G. C.

(2009). Walking changes the dynamics of cognitive estimates of

time intervals. Journal of Experimental Psychology: Human

Perception and Performance, 35, 1532–1541.

Lagarde, J. (2013). Challenges for the understanding of the dynamics of

social coordination. Frontiers in Neurorobotics, 7, 18. doi:10.3389/

fnbot.2013.0001

Lagarde, J., Zelic, G., & Mottet, D. (2012). Segregated audio–tactile

events destabilize the bimanual coordination of distinct rhythms.

Experimental Brain Research, 219, 409–419. doi:10.1007/s00221-

012-3103-y

McDermott, W. J., Van Emmerik, R. E., & Hamill, J. (2003). Running

training and adaptive strategies of locomotor-respiratory coordina-

tion. European Journal of Applied Physiology, 89, 435–444.

Nourrit-Lucas, D., Zelic, G., Deschamps, T., Hilpron, M., & Delignières,

D. (2013). Persistent coordination patterns in a complex task after 10

years delay: subtitle: How validate the old saying Bonce you have

learned how to ride a bicycle, you never forget!^.HumanMovement

Science, 32, 1365–1378. doi:10.1016/j.humov.2013.07.005

O’Halloran, J., Hamill, J., McDermott, W. J., Remelius, J. G., & Van

Emmerik, R. E. (2012). Locomotor–respiratory coupling patterns

and oxygen consumption during walking above and below preferred

stride frequency. European Journal of Applied Physiology, 112,

929–940.

Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1991). Bifurcations

in polyrhythmic tapping: in search of Farey principles. In Tutorials

in motor neurosc ience (pp . 413–431) . Amste rdam,

The Netherlands: Springer.

Peper, C. L. E., Beek, P. J., & van Wieringen, P. C. (1995). Frequency-

induced phase transitions in bimanual tapping. Biological

Cybernetics, 73, 301–309.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A

universal concept in nonlinear sciences (Vol. 12). Cambridge, UK:

Cambridge University Press.

Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review

of recent research (2006–2012). Psychonomic Bulletin & Review,

20, 403–452. doi:10.3758/s13423-012-0371-2

Shockley, K., Baker, A. A., Richardson, M. J., & Fowler, C. A. (2007).

Articulatory constraints on interpersonal postural coordination.

Journal of Experimental Psychology: Human Perception and

Performance, 33, 201–208. doi:10.1037/0096-1523.33.1.201

Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999). Dynamics of 1:2

coordination: Generalizing relative phase to n:m rhythms. Journal of

Motor Behavior, 31, 207–223.

Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A.,

Volkmann, J., … Freund, H. J. (1998). Detection of n: m phase

locking from noisy data: application to magnetoencephalography.

Physical Review Letters, 81, 3291–3294.

Treffner, P. J., & Turvey, M. T. (1993). Resonance constraints on rhyth-

mic movement. Journal of Experimental Psychology: Human

Perception and Performance, 19, 1221–1237. doi:10.1037/0096-

1523.19.6.1221

Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–

953.

Van Emmerik, R. E., Rosenstein, M. T., McDermott, W. J., & Hamill, J.

(2004). A nonlinear dynamics approach to human movement.

Journal of Applied Biomechanics, 20, 396–420.

Varlet, M., Marin, L., Lagarde, J., & Bardy, B. G. (2011). Social postural

coordination. Journal of Experimental Psychology: Human

Perception and Performance, 37, 473–483.

Villard, S., Casties, J. F., & Mottet, D. (2005). Dynamic stability of loco-

motor respiratory coupling during cycling in humans. Neuroscience

Letters, 383, 333–338.

Zelic, G., Mottet, D., & Lagarde, J. (2012). Behavioral impact of

unisensory and multisensory audio-tactile events: Pros and cons

for interlimb coordination in juggling. PLoS ONE, 7, e32308. doi:

10.1371/journal.pone.0032308

Zelic, G., Kim, J., & Davis, C. (2015). Articulatory constraints on spon-

taneous entrainment between speech and manual gesture. Human

Movement Science, 42, 232–245.

Zelic, G., Mottet, D., & Lagarde, J. (2016). Perceptuo-motor compatibil-

ity governs multisensory integration in bimanual coordination dy-

namics. Experimental Brain Research, 234, 463–474. doi:10.1007/

s00221-015-4476-5

Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer

continuity on continuous and discontinuous visuo-motor synchroni-

sation. Acta Psychologica, 169, 61–70.

194 Behav Res (2018) 50:182–194

http://dx.doi.org/10.1371/journal.pone.0005749
http://dx.doi.org/10.1371/journal.pone.0005749
http://dx.doi.org/10.3389/fnbot.2013.0001
http://dx.doi.org/10.3389/fnbot.2013.0001
http://dx.doi.org/10.1007/s00221-012-3103-y
http://dx.doi.org/10.1007/s00221-012-3103-y
http://dx.doi.org/10.1016/j.humov.2013.07.005
http://dx.doi.org/10.3758/s13423-012-0371-2
http://dx.doi.org/10.1037/0096-1523.33.1.201
http://dx.doi.org/10.1037/0096-1523.19.6.1221
http://dx.doi.org/10.1037/0096-1523.19.6.1221
http://dx.doi.org/10.1371/journal.pone.0032308
http://dx.doi.org/10.1007/s00221-015-4476-5
http://dx.doi.org/10.1007/s00221-015-4476-5

	A...
	Abstract
	Materials and method
	Data simulation
	Method

	Results
	Estimation of coordination stability
	Recognition of the m:n mode chosen for the data simulation

	Discussion
	A lack of accuracy and reliability of the PC analysis for estimating coordination stability
	Improving the estimate of stability in the IS analysis
	The return map technique applied with the IS analysis
	Flexibility in using the IS analysis
	Conclusion

	References


