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Abstract. Fisher linear discriminant analysis (LDA) and its kernel extension—
kernel discriminant analysis (KDA)—are well known methods that consider di-
mensionality reduction and classification jointly. While widely deployed in prac-
tical problems, there are still unresolved issues surrounding their efficient imple-
mentation and their relationship with least mean squared error procedures. In this
paper we address these issues within the framework of regularized estimation.
Our approach leads to a flexible and efficient implementation of LDA as well as
KDA. We also uncover a general relationship between regularized discriminant
analysis and ridge regression. This relationship yields variations on conventional
LDA based on the pseudoinverse and a direct equivalence to an ordinary least
squares estimator. Experimental results on a collection of benchmark data sets
demonstrate the effectiveness of our approach.

1 Introduction

In this paper we are concerned with the supervised dimensionality reduction problem,
an enduring issue in data mining and machine learning. Fisher linear discriminant anal-
ysis (LDA) provides a classical example of supervised dimension reduction. LDA es-
timates an effective dimension reduction space defined by linear transformations by
maximizing the ratio of between-class scatter to within-class scatter.

The LDA formulation reduces to the solution of a generalized eigenproblem [6]
that involves the pooled between-class scatter matrix and total scatter matrix of the in-
put vectors. To solve the generalized eigenproblem, LDA typically requires the pooled
scatter matrix to be nonsingular. This can become problematic when the dimensionality
is high, because the scatter matrix is likely to be singular. In applications such as infor-
mation retrieval, face recognition and microarray analysis, for example, we often meet
undersampled problems which are in a “small n but large p” regime; i.e., there are a
small number of samples but a very large number of variables. There are two main vari-
ants of LDA in the literature that aim to deal with this issue: the pseudoinverse method
and the regularization method [7, 19].
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Another important family of methods for dealing with singularity is based on a
two-stage process in which two symmetric eigenproblems are solved successively. This
approach was pioneered by Kitter and Young [12]. Recently, Howland et al. [10] used
this approach to introduce the generalized singular value decomposition (GSVD) [14]
into the LDA solution by utilizing special representations of the pooled scatter matrix
and between-class scatter matrix. A similar general approach has been used in the de-
velopment of efficient approximate algorithms for LDA [2, 21]. However, the challenge
of developing an efficient general implementation methodology for LDA still remains.

It is well known that LDA is equivalent to a least mean squared error procedure in
the binary classification problem [3]. It is of great interest to obtain a similar relationship
in multi-class problems. A significant literature has emerged to address this issue [7, 16,
20]. However, the results obtained by these authors are subject to restrictive conditions.
The problem of finding a general theoretical link between LDA and least mean squares
is still open.

In this paper we address the issues within a regularization framework. We propose
a novel algorithm for solving the regularized LDA (RLDA) problem. Our algorithm is
more efficient than the GSVD-based algorithm [10], especially in the setting of “small
n but large p” problems. More importantly, our algorithm leads us to an equivalence
between RLDA and a ridge estimator for multivariate linear regression [8]. This equiv-
alence is derived in a general setting and it is fully consistent with the established result
in the binary problem [3].

Our algorithm is also appropriate for the pseudoinverse variant of LDA. Indeed,
we establish an equivalence between the pseudoinverse variant and an ordinary least
squares (OLS) estimation problem. Thus, we believe that we completely solve the open
problem concerning the relationship between the multi-class LDA problem and multi-
variate linear estimation problems.

LDA relies on the assumption of linearity of the data manifold. In recent years,
kernel methods [18] have aimed at removing such linearity assumptions. The kernel
technology can circumvent the linearity assumption of LDA, because it works by non-
linearly mapping vectors in the input space to a higher-dimensional feature space and
then implementing traditional versions of LDA in the feature space. Many different
approaches have been proposed to extend LDA to kernel spaces in the existing litera-
ture [1, 13, 17].

The KDA method in [13] was developed for binary problems only, and it was solved
by using the relationship between KDA and the least mean squared error procedure. A
more general method, known as generalized discriminant analysis (GDA) [1], requires
that the kernel matrix be nonsingular. Unfortunately, centering in the feature space will
violate this requirement. Park and Park [15] argued that this might break down the theo-
retical justification for GDA and proposed their GSVD method to avoid this requirement
for nonsingularity. The approach to LDA that we present in the current paper also han-
dles the nonsingularity issue and extends naturally to KDA, both in its regularization
and pseudoinverse forms.

The paper is organized as follows. Section 2 reviews LDA and KDA. In Section 3
we propose a new algorithm for LDA as well as KDA. An equivalence between LDA
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and multivariate linear regression problems is presented in Section 4. We conduct the
empirical comparisons in Section 5 and conclude in Section 6.

2 Problem Formulation

We are concerned with a multi-class classification problem. Given a set of n p-dimensional
data points, {x1, . . . ,xn} ∈ X ⊂ Rp, we assume that the xi are to be grouped
into c disjoint classes and that each xi belongs to one and only one class. Let V =
{1, 2, . . . , n} denote the index set of the data points xi and partition V into c disjoint
subsets Vj ; i.e., Vi ∩ Vj = ∅ for i 6= j and ∪c

j=1Vj = V , where the cardinality of Vj is
nj so that

∑c
j=1 nj = n. We also make use of a matrix representation for the partitions.

In particular, we let E = [eij ] be an n×c indicator matrix with eij = 1 if input xi is in
class j and eij = 0 otherwise.

In this section we review LDA and KDA solutions to this multi-class classification
problem. We begin by presenting our notation.

2.1 Notation

Throughout this paper, Im denotes the m×m identity matrix, 1m the m×1 of ones, 0
the zero vector or matrix with appropriate size, and Hm = Im − 1

m1m1′m the m×m
centering matrix. For an m×1 vector a = (a1, . . . , am)′, diag(a) represents the m×m
diagonal matrix with a1, . . . , am as its diagonal entries. For an m×m matrix A = [aij ],
we let A+ be the Moore-Penrose inverse of A, tr(A) be the trace of A, rk(A) be the
rank of A and ‖A‖F =

√
tr(A′A) be the Frobenius norm of A.

For a matrix A ∈ Rp×q with p ≥ q, we always write the the singular value decom-
position (SVD) of A as A = UΓV′ where U ∈ Rp×q and V ∈ Rq×q are orthogonal,
and Γ = diag(γ1, . . . , γq) is arrayed in descending order of γ1 ≥ γ2 ≥ · · · ≥ γq

(≥ 0). Let the rank of A be r ≤ min{p, q} (denoted rk(A) = r). The thin SVD [6] of
A is then A = UAΓ AV′

A where UA ∈ Rp×r and VA ∈ Rq×r are orthogonal, and
Γ A = diag(γ1, . . . , γr) satisfies γ1 ≥ γ2 ≥ · · · ≥ γr > 0.

Given two matrices Φ and Σ ∈ Rp×p, we refer to (Λ,B) where Λ = diag(λ1, . . . , λq)
and B = [b1, . . . ,bq] as q eigenpairs of the matrix pencil (Φ,Σ) if ΦB = ΣBΛ,
namely,

Φbi = λiΣbi, for i = 1, . . . , q.

The problem of finding eigenpairs of (Φ, Σ) is known as a generalized eigenproblem.

2.2 Linear Discriminant Analysis

Let m = 1
n

∑n
i=1 xi be the sample mean, and mj = 1

nj

∑
i∈Vj

xi to the jth class mean
for j = 1, . . . , c. We then have the pooled scatter matrix St =

∑n
i=1(xi−m)(xi−m)′

and the pooled between-class scatter matrix Sb =
∑c

j=1 nj(mj − m)(mj − m)′.
Conventional LDA solves the generalized eigenproblem as

Sbaj = λjStaj , λ1 ≥ λ2 ≥ · · · ≥ λq > λq+1 = 0 (1)
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where q ≤ min{p, c−1} and refers to aj as the jth discriminant direction. Note that
we ignore a multiplier 1/n in these scatter matrices for simplicity.

Since St = Sb + Sw where Sw is the pooled within-class scatter matrix, LDA is
equivalent to finding a solution to

Sba = λ/(1−λ)Swa.

We see that LDA involves solving the generalized eigenproblem in (1), which can be
expressed in matrix form:

SbA = StAΛ, (2)

where A = [a1, . . . ,aq] and Λ = diag(λ1, . . . , λq). If St is nonsingular, it may be
shown that

S−1
t SbA = AΛ.

Thus, (λj ,aj) is eigenpair of S−1
t Sb and the eigenvectors corresponding to the largest

eigenvalues of S−1
t Sb are used for the discriminant directions. Since rk(Sb) is at most

c− 1, the projection will be onto a space of dimension at most c−1 (i.e., q ≤ c−1).
In applications such as information retrieval, face recognition and microarray anal-

ysis, however, we often meet a “small n but large p” problem. Thus, St is usually ill-
conditioned; that is, it is either singular or close to singular. In this case, S−1

t Sb cannot
be computed accurately.

Let Π = diag(n1, . . . , nc), Π
1
2 = diag(

√
n1, . . . ,

√
nc), π = (n1, . . . , nc)′,√

π = (
√

n1, . . . ,
√

nc)
′ and Hπ = Ic− 1

n

√
π
√

π
′. It follows that 1′nE = 1′cΠ = π′,

E1c = 1n, 1′cπ = n, E′E = Π , Π−1π = 1c, and

M = Π−1E′X, (3)

where X = [x1, . . . ,xn]′ and M = [m1, . . . ,mc]′. In addition, we have

EΠ− 1
2 Hπ = HnEΠ− 1

2 (4)

due to EΠ− 1
2 Hπ = EΠ− 1

2 − 1
n1n

√
π
′ and HnEΠ− 1

2 = EΠ− 1
2 − 1

n1n

√
π
′.

Using these results and the idempotency of Hn, we reexpress St as

St = X′HnHnX = X′HnX.

We also have

Sb = M′
[
Π− 1

n
ππ′

]
M

= M′
[
Π

1
2− 1

n
π
√

π
′
] [

Π
1
2− 1

n

√
ππ′

]
M

= X′EΠ−1Π
1
2 HπHπΠ

1
2 Π−1E′X

= X′HnEΠ−1E′HnX.

Utilizing the above representations of St and Sb, Howland et al. [10] proved that the
GSVD method can be used to solve the problem in (2).
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There are also two variants of conventional LDA in the literature that aim to han-
dle this problem [19]. The first variant involves replacing S−1

t by S+
t and solving the

following eigenproblem:
S+

t SbA = AΛ. (5)

Note that S+
t exists and is unique [6]. Moreover, S+

t is equal to S−1
t whenever St is

nonsingular. Thus, we will use (5) when St is either nonsingular or singular.
The second variant is referred to as regularized discriminant analysis (RDA) [4]. It

replaces St by St + σ2Ip and solves the following eigenproblem:

(St + σ2Ip)−1SbA = AΛ. (6)

It is a well known result that LDA is equivalent to a least mean squared error pro-
cedure in the binary classification problem (c = 2) [3]. Recently, similar relationships
have been studied for multi-class (c > 2) problems [7, 16, 20]. In particular, Park and
Park [16] proposed an efficient algorithm for LDA via a least mean squared error pro-
cedure in the multi-class problem.

We can see that the solution A for (5) or (6) is not unique. For example, if A is
the solution, then so is AD whenever D is a q×q nonsingular diagonal matrix. Thus,
constraint A′(St + σ2Ip)A = Iq is typically imposed in the literature. In this paper
we concentrate on the solution of (6) with or without this constraint, and investigate the
connection with ridge regression problems in the multi-class setting.

2.3 Kernel Discriminant Analysis

Kernel methods [18] work in a feature space F , which is related to the original input
space X ⊂ Rp by a mapping,

ϕ : X → F .

That is, ϕ is a vector-valued function which gives a vector ϕ(s), called a feature vector,
corresponding to an input s ∈ X . In kernel methods, we are given a reproducing kernel
K : X ×X → R such that K(s, t) = ϕ(s)′ϕ(t) for s, t ∈ X . The mapping ϕ(·) itself
is typically not given explicitly.

In the sequel, we use the tilde notation to denote vectors and matrices in the feature
space. For example, the data vectors and mean vectors in the feature space are denoted
as x̃i and m̃j . Accordingly, X̃ = [x̃1, . . . , x̃n]′ and M̃ = [m̃1, . . . , m̃n]′ are the data
matrix and mean matrix in the feature space.

Fisher kernel discriminant analysis (KDA) seeks to solve the following generalized
eigenproblem:

S̃bÃ = S̃tÃΛ̃, (7)

where S̃t and S̃b are the total scatter matrix and the between-class scatter matrix in F ,
respectively:

S̃t =
n∑

i=1

(x̃i − m̃)(x̃i − m̃)′,

S̃b =
c∑

j=1

nj(m̃j − m̃)(m̃j − m̃)′.
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The KDA problem is to solve (7), doing so by working solely with the kernel matrix
K = X̃X̃′. This is done by noting [13, 15] that the eigenvectors ãj are in the space
spanned by x̃1, . . . , x̃n and Ã can be expressed as

Ã =
n∑

i=1

(x̃i − m̃)β′i = X̃′HnB,

where B = [β1, . . . , βn] is an n×q coefficient matrix. Hence, (7) is equivalent to

X̃′HnEΠ−1E′HnX̃X̃′HnB = X̃′HnHnX̃X̃′HnBΛ̃.

Pre-multiplying the equation by HnX̃, we have a new generalized eigenvalue problem

CEΠ−1E′CB = CCBΛ̃, (8)

which involves only the kernel matrix K = X̃X̃′. Here C = HnKHn is the centered
kernel matrix. Moreover, given a new input vector x, we can compute the projection z
of its feature vector x̃ onto Ã through

z = Ã′(x̃− m̃) = B′HnX̃
(
x̃− 1

n
X̃′1n

)

= B′Hn

(
kx − 1

n
K1n

)
, (9)

where kx =
(
K(x,x1), . . . , K(x,xn)

)′
. This shows that the kernel trick can be used

for KDA.
The concern then becomes that of solving the problem (8). Although K can be

assumed to be nonsingular, C is positive semidefinite but not positive definite because
the centering matrix Hn is singular. In fact, the rank of C is not larger than n−1 because
the rank of Hn is n−1. In this case, the method devised by [1] cannot be used for
the problem (8). Thus, [15] proposed a GSVD-based algorithm to solve problem (8).
Running this algorithm requires the complete orthogonal decomposition [6] of matrix
[CEΠ− 1

2 ,C]′, which is of size (n+c)×n. Thus, this approach is infeasible for large
values of n.

Another treatment is based on the following regularized variant of (8):

CEΠ−1E′CB = (CC + σ2In)BΛ̃. (10)

This RKDA problem can be equivalently expressed as

(S̃t + σ2Id)−1Ã = S̃bÃΛ̃, (11)

where d is the dimension of the feature space. Although d is possibly infinite, we here
assume that it is finite but not necessarily known.

3 RR-SVD Algorithms for RDA

In this section, we propose a novel approach to solving the RLDA problem in (6). We
then extend this approach for the solution of the RKDA problem in (11).
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3.1 The Algorithm for RLDA

We reformulate the eigenproblem in (6) as

GΠ− 1
2 E′HnXA = AΛ, (12)

where

G = (X′HnX + σ2Ip)−1X′HnEΠ− 1
2 (13)

= (X′HnX + σ2Ip)−1M′Π
1
2 Hπ

due to (3) and (4). We also have

G = X′Hn(HnXX′Hn + σ2In)−1EΠ− 1
2 (14)

due to (X′HnX+ σ2Ip)−1X′Hn = X′Hn(HnXX′Hn + σ2In)−1. This implies that
if n < p, we may wish to use (14) to reduce the computational cost. More importantly,
we will see that (14) plays a key role in the development of an efficient algorithm for
KDA to be presented shortly.

Let R = Π− 1
2 E′HnXG. Since GΠ− 1

2 E′HnX (p×p) and R (c×c) have the
same nonzero eigenvalues [9], the λj , j = 1, . . . , q, are the nonzero eigenvalues of R.
Moreover, if (Λ,V) is the nonzero eigenpair of R, (Λ,GV) is the nonzero eigenpair
of GΠ− 1

2 E′HnX. Note that

R = Π− 1
2 E′HnX(X′HnX + σ2Ip)−1X′HnEΠ− 1

2

= HπΠ
1
2 MG. (15)

This shows that R is positive semidefinite. Thus, its SVD is equivalent to the eigenvalue
decomposition.

We thus develop an algorithm for solving the RLDA problem in (6). This is a two-
stage process, which is presented in Algorithm 1. We will prove that the first stage is
equivalent to the solution to a ridge regression (RR) problem in Section 4. Thus, we
refer to this two-stage process as an RR-SVD algorithm. It is easily obtained that

A′(St + σ2Ip)A = Γ R and A′SbA = Γ 2
R.

This implies that AΓ
− 1

2
R is also a solution of problem (6) such that Γ

− 1
2

R A′(St +

σ2Ip)AΓ
− 1

2
R = Iq .

The first stage calculates G by either (13) or (14). The computational complexity
is O(m3) where m = min(n, p). The second stage makes use of the thin SVD of R
and the computational complexity is O(c3). If both n and p are large, we recommend to
use the incomplete Cholesky decomposition of HnXX′Hn (or X′HnX) and then the
Sherman-Morrison-Woodbury formula [6] for calculating (HnXX′Hn + σ2In)−1 (or
(X′HnX + σ2Ip)−1). Compared with the GSVD-based algorithm [15], the RR-SVD
algorithm is more efficient for a “small n but large p” problem.

When σ2 = 0, we can solve the problem in (5) by simply adjusting the first stage in
the RR-SVD algorithm. In particular, we calculate G by

G = (X′HnX)+M′Π
1
2 Hπ

(or)
= X′Hn(HnXX′Hn)+EΠ− 1

2 . (16)
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Algorithm 1 RR-SVD Algorithm for RLDA problem (6)
1: procedure RLDA(X,E, Π, σ2)
2: Calculate G by (13) or (14) and R by (15);
3: Perform the thin SVD of R as R = VRΓ RV′

R;

4: Return A = GVR or GVRΓ
− 1

2
R as the solution of RLDA problem (6).

5: end procedure

3.2 The Algorithm for RKDA

We now apply Algorithm 1 to the RKDA problem in (11), which is the kernel extension
of RLDA in (6).

It immediately follows from (14) that

G̃ = X̃′Hn(HnX̃X̃′Hn + σ2In)−1EΠ− 1
2

from which, using (15), we can calculate R̃ by

R̃ = Π− 1
2 E′C(C+σ2In)−1EΠ− 1

2 .

Moreover, given a new input vector x, we can compute the projection z of its feature
vector x̃ onto Ã through

z = Ã′(x̃− m̃) = Ṽ′
R̃

Π− 1
2 E′(C + σ2In)−1HnX̃

(
x̃− 1

n
X̃′1n

)

= Ṽ′
R̃

Π− 1
2 E′(C + σ2In)−1Hn

(
kx − 1

n
K1n

)
. (17)

This shows that we can calculate R̃ and z directly using K and kx. We thus obtain a
RR-SVD algorithm for RKDA, which is given in Algorithm 2. Also, when σ2 = 0, we
can calculate R̃ by

R̃ = Π− 1
2 E′CC+EΠ− 1

2

and exploit the RR-SVD algorithm to solve the following variant of KDA:

S̃+
t S̃bÃ = ÃΛ̃.

We see that the RR-SVD algorithm is more efficient than the GSVD-based algo-
rithm [15] for the RKDA problem in (11). Recall that problem (11) is not equivalent
to that in (10). Moreover, it is not feasible to develop a GSVD-based algorithm for
solving problem (11). However, we also have an RR-SVD algorithm for solving (10),
by replacing C by CC in calculating R̃ and (17) by (9) in calculating z. The result-
ing algorithm may be less computationally efficient, however, because it involves more
matrix computations.

4 Relationships Between RFDA and Ridge Regression

It is a well known result that LDA (or KDA) is equivalent to a least mean squared error
procedure in the binary classification problem (c = 2) [3, 13]. Recently, relationships
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Algorithm 2 RR-SVD Algorithm for RKDA problem (11)
1: procedure RKDA(K,E,kx, Π, σ2)
2: Calculate R̃ = Π− 1

2 E′C(C+σ2In)−1EΠ− 1
2 ;

3: Perform the thin SVD of R̃ as R̃ = ṼR̃Γ̃ R̃Ṽ′
R̃

;
4: Calculate z by (17);
5: Return z as the q-dimensional representation of x.
6: end procedure

between LDA and a least mean squared error procedure in multi-class (c > 2) problems
were discussed by [7, 16, 20].

Motivated by this line of work, we investigate a possible equivalency between
RLDA and ridge regression [8]. We then go on to consider a similar relationship be-
tween RKDA and the corresponding ridge regression problem.

Let Y = [y1, . . . ,yn]′ = EΠ− 1
2 Hπ . That is, yi = (yi1, . . . , yic) is defined by

yij =

{
n−nj

n
√

nj
if i ∈ Vj ,

−
√

nj

n otherwise.

Regarding {(xi,yi), i = 1, . . . , n} as the training samples, we fit the following multi-
variate linear function:

f(x) = w0 + W′x

where w0 ∈ Rc and W ∈ Rp×c. We now find ridge estimates of w0 and W. In
particular, we consider the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2F +
σ2

2
tr(W′W). (18)

The solution W∗ for (18) is

W∗ = (X′HnX + σ2Ip)−1M′Π
1
2 Hπ. (19)

The derivation is given in Appendix A. It then follows from (13) that W∗ = G. More-
over, when σ2 = 0, W∗ reduces to the ordinary least squares (OLS) estimate of W,
which is the solution of the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2F . (20)

In this case, if X′HnX is singular, a standard treatment is to use the Moore-Penrose
inverse (X′HnX)+ in (19). Such a W∗ is identical with G in (16).

Consequently, we have found a relationship between the ridge estimation problem
in (18) and the RLDA problem in (6). This is summarized in the following theorem.

Theorem 1. Let W∗ be the solutions of the ridge estimation problem in (18) (resp. the
OLS estimation problem in (20)) and A be defined in Algorithm 1 for the solution of
the RLDA problem in (6) (resp. the LDA problem in (5)). Then,

A = W∗VR
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where the columns of VR are the eigenvectors of R associated with its q nonzero eigen-
values.

Theorem 1 provides a connection between A and W∗. Recall that the eigenvector
matrix VR (c×q) is orthogonal. This leads us to the following main result of this paper.

Theorem 2. Under the conditions in Theorem 1, we have

AA′ = W∗(W∗)′.

Accordingly, we have

(xi − xj)′AA′(xi − xj) = (xi − xj)′W∗(W∗)′(xi − xj)

for any xi and xj ∈ Rp.

The proof of this theorem is given in Appendix A. Theorem 2 shows that when ap-
plying a distance-based classifier such as the K-nearest neighbor (KNN) in the reduced
dimensional space, the classification results obtained by multi-class LDA and multi-
variate linear estimators are the same. Theorem 2 holds in general. Thus we obtain a
complete solution to the open problem concerning the relationship between multi-class
LDA problems and multivariate linear estimators.

Similar results have been obtained by [16, 20], but under restrictive conditions. The
key difference between our work and that of [16] revolves around a different definition
for the label scores Y. Ye [20] used the same definition of Y as ours, but they aimed
to establish a connection of the solution W∗ with a matrix A defined differently from
ours.

5 Experimental Study

To evaluate the performance of the proposed algorithm for LDA and KDA, we con-
ducted experimental comparisons with other related algorithms for LDA and KDA on
several real-world data sets. In particular, the comparison was implemented on four
face datasets 3, two gene datasets, the USPS dataset, the “letters” dataset and the We-
bKB dataset. Table 1 summarizes the benchmark datasets we used. All algorithms were
implemented in Matlab on a PC configured with an Intel Dual Core 2.53GHz CPU and
2.06GB of memory. Matlab code to implement the algorithms can be obtained from the
first author.

In our experiments, each dataset was randomly partitioned into disjoint training and
test data sets, according to the percentage n/k listed in the last column of Table 1. Ten
random partitions were obtained for each data set, and several evaluation criteria were
reported, including average classification accuracy rate, standard deviation and average
computational time.

In the linear setting, we compared our method to the LDA/GSVD method [11]
and the LDA/MSE method [16]. In the kernel setting, we compared our method to
the KDA/GSVD method [15] and the KDA/MSE, i.e., the kernel-based extensions

3 The YaleB(+E) dataset was collected from the YaleB database and its extension.
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Table 1. Summary of the benchmark datasets: c−the number of classes; p−the dimension of the
input vector; k−the size of the dataset; n−the number of the training data.

Data set c p k n/k

ORL 40 1024 400 40%
Yale 15 1024 165 50%
YaleB(+E) 38 1024 2414 30%
PIE 68 1024 6800 20%
11 Tumors 11 12533 174 31%
14 Tumors 25 15009 305 41%
USPS 10 256 2007 10%
Letters 3 17 2341 5%
WebKB 4 300 4192 10%

of the two linear methods in above. All of the hyperparameters (such as σ2) were
selected by cross-validation [5]. In the kernel setting, the RBF kernel K(xi,xj) =
exp(−‖xi−xj‖2/θ2) was employed, and θ was set to the mean Euclidean distance be-
tween training data points. After having obtained the q-dimensional representations zi

of the xi from each dimensionality reduction method, we used a simple nearest neigh-
bor classifier to evaluate the classification accuracy.

Figure 1 presents comparative classification results on the four face datasets. We im-
plemented our Algorithm 1 with both A and AΓ

− 1
2

R . We found that the result with A

was slightly better than that with AΓ
− 1

2
R . Moreover, a similar result was found for ker-

nel leaning. The results reported here were based on the setting with A. From Figure 1,
it is clear that in the linear and kernel settings, our method has better classification ac-
curacy than that of the LDA/GSVD and LDA/MSE methods over a range of choices of
number of discriminant covariates. Moreover, an appealing characteristic of our method
is its effectiveness when q (i.e., the number of discriminant covariates) is small.

We also compared the computational time of the different methods in the linear and
kernel settings on the four face datasets. Figure 2 shows the comparisons with respect to
the training percentage n/k on the four face datasets. We can also see that our method
has an overall low computational time in comparison with the other methods on the
four face datasets. As the training percentage n/k increases, our method yields more
efficient performance.

Finally, Tables 2 and 3 summarize the different evaluation criteria on all the data
sets. As these results show, our method yields accurate and computationally efficient
performance in both the linear and kernel settings. Additionally, it should be mentioned
here that the data sets in our experiments range over small sample and large sample
problems.

6 Conclusion

In this paper we have provided an appealing solution to an open problem concerning
the relationship between multi-class LDA problems and multivariate linear estimators,
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Fig. 1. Comparison of the three different methods on the four face datasets, where (a)∼(d)
denote the results in the linear setting and (e)∼(h) denote the results in the kernel setting:
(a) ORL−linear; (b) Yale−linear; (c) YaleB(+E)−linear; (d) PIE−linear; (e) ORL−kernel; (f)
Yale−kernel; (g) YaleB(+E)−kernel; (h) PIE−kernel. Here “No. of features” is equal to q.

both in the linear setting and the kernel setting. Our theory has yielded efficient and ef-
fective algorithms for LDA and KDA within both the regularization and pseudoinverse
frameworks. The favorable performance of our algorithms has been demonstrated em-
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Fig. 2. Comparison of the computational times for the three different methods as the training
percentage k/n increases on the four face datasets, where (a)∼(d) denote the results in the linear
setting and (e)∼(h) denote the results in the kernel setting: (a) ORL−linear; (b) Yale−linear; (c)
YaleB(+E)−linear; (d) PIE−linear; (e) ORL−kernel; (f) Yale−kernel; (g) YaleB(+E)−kernel;
(h) PIE−kernel.
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Table 2. Experimental results of the three methods on different datasets in the linear setting: acc−
the best classification accuracy percentage; std− the corresponding standard deviation; q− the
corresponding number of discriminant covariates; time− the corresponding computational time
(s).

LDA/GSVD LDA/MSE Ours
Dataset acc (±std) q time acc (±std) q time acc (±std) q time

ORL 91.54 (±1.98) 39 2.059 91.58 (±2.00) 39 0.316 93.13 (±2.00) 39 0.077
Yale 78.56 (±2.29) 14 1.370 78.44 (±2.47) 14 0.084 79.56 (±3.75) 14 0.025
YaleB(+E) 59.54 (±11.8) 37 43.62 65.19 (±8.36) 34 10.17 90.20 (±1.09) 31 1.422
PIE 77.00 (±0.81) 67 88.51 77.01 (±0.81) 67 23.01 90.91 (±0.55) 45 2.681
11 Tumors 92.35 (±1.51) 10 0.652 90.25 (±2.10) 10 0.877 92.44 (±1.43) 10 0.495
14 Tumors 66.33 (±1.82) 24 2.808 64.94 (±1.69) 24 4.499 66.39 (±1.91) 24 2.035
USPS 52.23 (±3.02) 9 0.979 52.24 (±3.02) 9 0.579 86.84 (±1.31) 9 0.114
Letters 89.16 (±0.81) 2 0.129 89.16 (±0.81) 2 0.021 89.27 (±0.86) 2 0.102
WebKB 65.92 (±1.77) 3 2.348 65.92 (±1.77) 3 1.635 81.76 (±0.87) 3 0.225

Table 3. Experimental results of the three methods on different datasets in the kernel setting:
acc− the best classification accuracy percentage; std− the corresponding standard deviation; q−
the corresponding number of discriminant covariates; time− the corresponding computational
time (s).

KDA/GSVD KDA/MSE Ours
Dataset acc (±std) q time acc (±std) q time acc (±std) q time

ORL 93.75 (±1.95) 39 0.339 93.75 (±1.89) 39 0.198 93.75 (±1.73) 39 0.031
Yale 76.33 (±2.67) 14 0.025 76.44 (±2.67) 14 0.023 77.78 (±2.87) 14 0.007
YaleB(+E) 44.74 (±24.6) 17 7.751 48.95 (±25.4) 35 5.477 89.80 (±1.02) 27 0.844
PIE 91.04 (±0.49) 67 46.84 91.04 (±0.49) 67 36.44 91.77 (±0.43) 26 8.811
11 Tumors 88.74 (±2.94) 10 0.031 89.16 (±2.36) 10 0.022 89.58 (±2.10) 10 0.011
14 Tumors 59.56 (±2.76) 24 0.170 60.56 (±2.73) 10 0.108 66.33 (±1.51) 24 0.035
USPS 85.13 (±3.57) 9 0.697 85.15 (±3.57) 9 0.493 89.22 (±1.42) 9 0.082
Letters 95.25 (±0.99) 2 0.120 95.24 (±0.99) 2 0.071 99.36 (±1.20) 2 0.024
WebKB 74.79 (±2.78) 3 4.285 74.79 (±2.77) 3 3.255 83.35 (±1.31) 3 0.499

pirically on a collection of benchmark data sets. In future work we plan to extend our
algorithms to a broader class of generalized eigenproblems.

A Proof of Theorem 1

Proof. The first-order derivatives of L(w0,W) with respect to w0 and W are given by

∂L

∂w0
= nw0 + W′X′1n −Y′1n,

∂L

∂W
= (X′X + σ2Ip)W + X′1nw′

0 −X′Y.
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Letting ∂L
∂w0

= 0, ∂L
∂W = 0 and x̄ = 1

n

∑n
i=1 xi = 1

nX′1n, we obtain

{
w0 + W′x̄ = 0
nx̄w′

0 + (X′X + σ2Ip)W = M′Π
1
2 Hπ

due to Y′1n = 0 and X′Y = M′Π
1
2 Hπ . Further, it follows that w0 = −Wx̄, and

hence,
(X′HnX + σ2Ip)W = M′Π

1
2 Hπ

because X′X−nx̄x̄′ = X′HnX. We thus obtain W∗ in (19). It then follows from (13)
that W∗ = G. Moreover, when σ2 = 0, W∗ reduces to the solution of the minimization
problem in (20). In this case, if X′HnX is singular, a standard treatment is to use the
Moore-Penrose inverse (X′HnX)+ in (19). Such a W∗ is identical with G in (16).

Consequently, we have the relationship between the ridge estimation problem in
(18) and the RLDA problem in (6). This is summarized in Theorem 1.

B Proof of Theorem 2

Proof. Since VR is an c×q orthogonal matrix, there exists an c×(c−q) orthogonal
matrix V2 such that V = [VR,V2] is an c×c orthogonal matrix. Noting that R =
VRΓ RV′

R, we have RV2 = 0 and V′
2RV2 = 0. Let Q = M′Π

1
2 HπV2. Then we

obtain Q′(X′HnX+σ2Ip)−1Q = 0. This implies Q = 0 because (X′HnX+σ2Ip)−1

is positive definite. Hence, W∗V2 = (X′HnX+σ2Ip)−1Q = 0. As a result, we have

W∗(W∗)′ = W∗VV′(W∗)′

= W∗VRV′
R(W∗)′ + W∗V2V′

2(W
∗)′

= AA′.

Note that if σ2 = 0 and X′HnX is nonsingular, we still have W∗(W∗)′ = AA′. In
the case that X′HnX is singular, we have Q′(X′HnX)+Q = 0. Since (X′HnX)+

is positive semidefinite, its square root matrix (denoted F) exists. It thus follows from
Q′(X′HnX)+Q = QFFQ′ = 0 that FQ′ = 0. This shows that W∗V2 = (X′HnX)+Q =
0. Thus, we also obtain W∗(W∗)′ = AA′. The proof is complete.
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