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AbstractÐThe exploration of heterogenous information spaces requires suitable mining methods as well as effective visual interfaces.

Most of the existing systems concentrate either on mining algorithms or on visualization techniques. This paper describes a flexible

framework for Visual Data Mining which combines analytical and visual methods to achieve a better understanding of the information

space. We provide several preprocessing methods for unstructured information spaces such as a flexible hierarchy generation with

user controlled refinement. Moreover, we develop new visualization techniques including an intuitive Focus+Context technique to

visualize complex hierarchical graphs. A special feature of our system is a new paradigm for visualizing information structures within

their frame of reference.

Index TermsÐInformation visualization, multidimenisional information modeling, hierarchies, focus+context techniques, clustering,

maps, information analysis.
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1 INTRODUCTION

EXPLORATION of complex information spaces has become
one of the ªhot topicsº in many research fields,

including computer graphics, data mining, pattern recogni-
tion, and learning, and other areas of statistics, as well as
data bases and data warehousing. A variety of novel mining
techniques, visualization paradigms, and frameworks have
been developed in recent years. Nevertheless, extracting
useful knowledge or models from observed data is still a
complicated nontrivial process.

In this context, visualization offers a powerful means of
analysis that can help to uncover patterns and trends
hidden in unknown data. Additionally, visualization
provides a natural method of integrating multiple data sets
and has been proven to be reliable and effective across a
number of application domains. Still, visual methods
cannot entirely replace analytic nonvisual mining algo-
rithms. Rather, it is useful to combine multiple methods
during data exploration processes [31].

The new area of visual data mining focuses on this
combination of visual and nonvisual techniques as well as
on integrating the user in the exploration process. Integrat-
ing visual and nonvisual methods in order to support a
variety of exploration tasks, such as identifying patterns in
large unstructured heterogeneous information or display-
ing information context (e.g., frame of spatial or domain
references), requires sophisticated mining, visualization
and interaction techniques. This carries over entirely new
qualities of problems. Some of the most important ones can
be summarized as follows:

. Extracting patterns and controlling the mining: The
exploration of large unstructured information spaces
requires information preprocessing. In this regard

ªfiltering out uninteresting itemsº and merging
similar objects into groups are necessary in order
to reveal hidden patterns. Suitable metrics have to be
applied for obtaining similarities and structures in
high-dimensional feature space. Furthermore, the
degree of abstraction has to be controlled interac-
tively in order to supervise and steer the search for
patterns during the mining process. This interaction
is of outstanding importance to support explorations
at arbitrary levels of detail.

. Visualizing information sets: The success of visual data
analysis depends very much on its ability to support
a variety of exploration tasks such as overview,
zoom in on items of interest or details on demand.
Different visualization methods are required for
revealing information structure and information
contents such as attribute values. Furthermore, novel
interaction techniques are needed for controlling the
degree of abstraction within visual representations
and for providing navigational aids in information
space.

. Visualizing the frame of reference: Effective explora-
tions of spatially referenced information (e.g., health
data in certain areas) require the combination of an
adequate display of the spatial frame of reference
with the visualization of complex information
structures. It is necessary to find an appropriate
mapping between information and frame of refer-
ence. In particular, we address the problem of
displaying complex graphs over geographical maps,
a problem that has not been widely studied.

Ankerst [4] classifies current visual data mining
approaches into three categories. Methods of the first group
apply visualization techniques independent of data mining
algorithms. The second group uses visualization in order to
represent patterns and results from mining algorithms
graphically. The third category tightly integrates both
mining and visualization algorithms in such a way that
intermediate steps of the mining algorithms can be
visualized. Furthermore, this tight integration allows users
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to control and steer the mining process directly based on the
given visual feedback.

A variety of visualization methods which have been
developed in different domains can be classified into the
first group referring to the classification given above.
Among these are techniques for visualizing multidimen-
sional information. These methods try to map correlations
of objects in high-dimensional information space to spatial
correlations in a 2D or 3D presentation space. Among these
are approaches like IVORY [10], VR-VIBE [6], and Narcissus
[12], which exploit spring models to place objects according
to their similarities, whereby similar objects are placed
spatially close together. Other systems, like Lyberworld [11]
and SPIRE [33], use different visual metaphors like
Relevance Spaces [11], Information Galaxies, or Themes-
capes [33] in order to visualize document collections or
results from data base retrieval. FOCUS [25] is an inter-
active table viewer which supports the exploration of
complex object-attribute tables by a combination of a
focus+context technique, a hierarchical outliner for large
attribute sets and a general easy-to-use dynamic query
mechanism.

Other visual interfaces have been developed for visualiz-
ing and interacting with hierarchies, like Cone Trees [8] or
Disc Trees [16], which use horizontal and vertical cones or
discs to layout hierarchies. FSN [28] and Information
Pyramids [2] exploit the metaphor of 3D information
landscapes to depict large hierarchical information spaces.
Other approaches, such as Treemaps [17] and CHEOPS [7],
are well-known 2D techniques which use available screen
space very effectively.

The visualization of mining models (category 2 of the
classification of visual data mining approaches) can be
found in [26], where hierarchical cluster structures are
discovered and visualized based on implicit surfaces. Other
examples are WebSOM [1], which applies color coded
planes to visualize results of a Self-Organizing Map
algorithm, or OPTICS [4], which displays hierarchical
clusterings.

Systems like Descartes [3] or Devise [9] provide solutions
for visualizing geographically related information. Different
types of icons, diagrams, colored faces, and maps are used
for depicting data within their spatial frame of reference.
These systems, however, do not support the visualization of
rather complex information structures, as, for instance,
abstract node link graphs or hierarchies.

Most of the systems mentioned above solve, each in its
own manner, some of the single problems introduced
earlier in this section. Up to now, there are still open
questions of how to provide a flexible framework for
solving those problems in a more general way.

The work reported in this paper was inspired by the
research stated above. In Section 2, we briefly sketch our
approach for modeling information space. We suggest a
scalable visualization framework (cf. Section 3) in order to
address the introduced problems. Basically, our framework
integrates a scalable preprocessing pipeline for organizing large
unstructured high-dimensional information spaces (see
Section 4) with several new scalable visualization techniques
(cf. Section 5) for visualizing information structure along

with information contents, as well as displaying and

interacting with mining results. We propose a new

paradigm for integrating the visualization of information

structures and their spatial frame of reference in Section 6.

Future work and conclusions are covered in Section 7.

2 INFORMATION MODEL

The design of a scalable visualization framework requires a

formal and easily adaptable information model for describ-

ing information units and the general characteristics of the

information space. It's our goal to define a general model

which is suitable for different domains and a variety of

visualization applications.
References [30] and [31] use objects to represent

information. In order to formalize this information repre-

sentation, we introduces the concept of information objects

IOi to describe the information space. The term ªinformation

objectº denotes a necessary abstraction of the data which

represent the information. Information objects are concrete

objects (e.g., documents, files, or real world objects like cars,

houses, or cities) which may contain other information

objects.
The information set IM is a discrete set of information

objects.

IM � fIO1; . . . ; IOng �1�

with IOi � IOj , i � j i; j; n 2 IN:

Information objects are characterized by a set of

attributes. Those attributes can have arbitrary continuous

or categorical ranges of values in order to describe object

properties and the characteristics of the information. The

function attr provides all attributes of a set of information

objects.

attr�fIO1; IO2; . . . IOng� � fA1; A2; . . . ; Akg �2�

with Ai � Aj , i � j i; j; k; n 2 IN:

The attribute set AM is the set of all attributes Ai of the

set of information objects.

AM � attr�fIO1; . . . ; IOng� n 2 IN: �3�

Those attributes define dimensions and span the

information space IR, whereas the ranges of attribute values

define the scaling of the related axes of the information

space.
The dimensionality of the information space IR is

defined as the cardinality of the attribute set AM.

dim�IR� � jAMj: �4�

In other words, the attributes and their ranges of values

represent the dimensions of the information space in our

model. Thus, information objects IOi can be understood as

points within multidimensional information space.
In order to model arbitrary relations between IOi

which might either be given explicitly or obtained

implicitly, we introduce the information structure IS.
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The information structure IS is defined as a relation on
the information set IS:

IS � IM� IM: �5�

The absolute value of IS may be 0, i.e., in some cases
there may be no description of the relation between
information objects.

Summarizing our model, the information space IR is
defined by means of the information set IM, attributes
which describe the information properties and represent the
dimensions of IR and the information structure IS.

The information definition given above allows modeling
of complex information spaces. Arbitrary visualization
scenarios can be handled due to the use of attributes for
characterizing information objects and the use of relations
for describing connections between pieces of information.
Spatially referenced information spaces can be described as
well when treating the spatial frame of reference as a special
attribute.

3 BASIC CONCEPT OF A SCALABLE FRAMEWORK

In order to solve the problems addressed in Section 1, we
propose a framework which integrates a scalable prepro-
cessing pipeline and different visualization modules.
Basically, our preprocessing pipeline implements several
algorithms, such as interactive filters, clustering, dynamic
hierarchy computation, and neural networks for analyzing
unstructured information spaces. Combining different
techniques within a flexible framework helps to scale
preprocessing with respect to the characteristics of the
information space and users' exploration tasks. In order to
display preprocessing results and to explore information
space graphically, the framework offers several new
visualization techniques as well.

3.1 Scalable Preprocessing

Preprocessing large information spaces often requires
reducing the active data size to processible levels without
losing relevant information. Other preprocessing tasks,
such as gaining structure, identifying groups of related
information objects, or forming meaningful subsets of the
given data, are nontrivial because there is no general
mathematical framework or paradigm on how to build
those groups or subsets.

In order to address these problems and to achieve
flexibility in the exploration process, we propose two major
methods for preprocessing information spaces within our
framework. Interactive user-driven approaches are used for
selecting dimensions or subsets of the information space
manually. Algorithmic computational procedures are
applied for obtaining structures and patterns in the data
automatically.

3.1.1 Interactive Preprocessing

The objective of interactive preprocessing is user-driven
information structuring and reduction in order to determine
the information which is relevant for the visualization. This
is achieved by user controlled filtering out of nonrelevant
information. Our framework provides several interaction
methods, such as sliders, mouse-based visual selections,

etc., in conjunction with different visual previews onto the

data set in order to support information selection processes.

These interactive procedures are useful because they allow

direct considerations of users' domain knowledge and

exploration tasks during the preprocessing. Basically our

framework offers the following three interactive preproces-

sing methods:

. Interactive reduction of the number of dimensions
ÐVisual previews on multidimensional information
sets are used for supporting the selection of those
dimensions which might be most relevant for the
visualization. These previews are created with a
technique which we called Data-Table-View. The
Data-Table-View reveals ranges of values, value
distributions and correlations between dimensions
in order to support a qualified selection of dimen-
sions (see Section 4.1).

. User-driven filtering of data rangesÐIn conjunction
with the preview, interactive sliders can be utilized
for specifying value intervals such that only those
information objects which fulfill predetermined
value conditions are shown in the visualization.

. Interactive hierarchy specificationÐBased on the
user-defined hierarchy approach introduced in [32],
users can impose arbitrary hierarchical organiza-
tions on a given information set even if it is not a
natural hierarchy. Due to this interactive strategy,
users can bring domain-specific and task-specific
knowledge to the hierarchy specification that can be
utilized for obtaining structures and revealing
patterns in the data.

3.1.2 Algorithmic Preprocessing

The algorithmic-based preprocessing approach exploits

similarities between information objects in high-dimen-

sional information space. Therefore, we have to provide

adequate measures sij � s�IOi; IOj� for calculating simila-

rities between information objects IOi and IOj.
As stated in [5], computing similarity measures is rather

complicated because similarity can be defined in various

ways and, often, domain specific expertise is required for

determining appropriate measures. Furthermore, the deci-

sion if two objects are similar or not is specific to user goals.

Let's consider an example. A number of firms are described

by the volume of sales over a period of several years. As it is

the objective to group those firms with similar sales rates

within this time period, Euclidean Distance or some

Minkowski Distances [18] are sufficient measures. In

contrast to that, the Dot product or a Correlation coefficient

[18] are appropriate if it is the intention to group firms with

similar sales growth within that period of time. Thus, any of

the different measures might be appropriate in certain

cases.
Furthermore, the applicability of a specific similarity

measure depends on the basic data types of the information

object's attribute values. Thus, similarities might have to be

computed from variables that are binary, nominal, ratio

scaled, or a combination of these (cf. [18] for further

information about these data types).

KREUSELER AND SCHUMANN: A FLEXIBLE APPROACH FOR VISUAL DATA MINING 41



Summarizing the discussion above, we conclude that
providing a single similarity measure is not sufficient for a
flexible preprocessing of complex information spaces.
Therefore, our preprocessing pipeline offers a variety of
different metrics and similarity measures: Euclidean distance,
Lp-metric, Mahalonobis distance, Dot product, Normalized dot
product, Correlation coefficient, General M-coefficient, and
M-coefficient. Moreover, the pipeline can easily be extended
by additional measures. In addition to flexibility regarding
similarity measures, our pipeline supports different algo-
rithms for preprocessing information. Depending on ex-
ploration tasks, the user can choose one of the following
techniques:

. Self-Organizing Maps [19], which are suitable for
determining an overview of the entire collection and
revealing the overall similarity structure between
information objects in information space,

. dynamic hierarchy computation, which can be
controlled interactively in order to achieve sophisti-
cated organizations of complex data sets and to
reveal patterns and relationships among the data.

3.2 SCALABLE VISUALIZATION

An effective presentation of different aspects of a given
information set including visualization of information
structure or display of concrete attribute values requires
the combination of different scalable visualization methods
which can be adopted to specific exploration goals. Our
scalable visualization framework provides several visuali-
zation techniques. Besides the Data-Table-View (cf. Fig. 1),
Highfields and Icons (cf. Fig. 2), KOAN [21], and Parallel
Coordinates [15], we introduce the new techniques Magic-
Eye-View for displaying complex graphs and ShapeVis for
depicting multidimensional information sets. Furthermore,
we propose a new approach, which we named Marching
Sphere, for visualizing complex information structures with
spatial dependencies.

4 STRUCTURING AND PREPROCESSING

INFORMATION

Exploring information collections becomes increasingly
difficult as the volume of information grows. Major
problems arise due to visual clutter and the limited screen

space as the number of objects exceeds some limits. Hence,
it is indispensable to apply suitable preprocessing for
gaining structures, extracting relevant subsets of the
information, and reducing both the dimensionality and
the active data size to manageable levels. In this section, we
will discuss some of the preprocessing techniques of our
framework.

4.1 Interactive Reduction of the Information Space
Supported by Visual Previews

A preview of the data in order to support qualified
decisions as to whether a dimension of a multidimensional
information set should be included into the visualization or
not can be generated. We created a visual tool for this
preview which we named the Data-Table-View. This
method is very similar to the Table Lens introduced by
Rao and Card [22]. The Table Lens integrates a common
table, where information objects are arranged in lines, with
graphical representations for depicting patterns and out-
liers in multidimensional information sets. It offers several
graphical mapping schemes, along with a focus+context
technique for exploring large tables effectively.

The Data-Table-View extends the Table Lens by introdu-
cing improved features for organizing the information
objects within the table. This extended ordering mechanism,
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which is based on Self-Organizing Maps [19] (cf. Section 4.2
for a brief discussion of the basic SOM algorithm), enables
the analysis of correlations among table columns (dimen-
sions of the information set). Our ordering approach does
not sort the information objects within the table with respect
to a particular dimension. Instead, all attributes are
considered for the ordering process. Since our goal is to
arrange information objects linearly for the data-table-view
instead of organizing them on a two-dimensional grid, we
are using the one-dimensional case of SOMs, which is
proven (see [19]) to provide correct orderings as well. Thus,
we obtain a sequence of information objects depending on
their overall similarity in information space, i.e., similar
objects are placed in successive table rows.

In order to reveal correlations among dimensions
graphically, a bar representation is used where data values
within table cells are mapped onto the length of a small bar.
This principle is illustrated in Fig. 1. In our example, the
table contains a car information set with 392 information
objects and six dimensions. The left picture of Fig. 1 shows
the data table without similarity arrangement of the
information objects. The focus is set to a particular
information object in order to reveal detailed data values.
The similarity arrangement is applied in the right picture.
Correlations among dimensions can be obtained very easily.
Using this similarity arrangement reveals higher order
correlations, i.e., correlations between more than two
dimensions. This is shown in Fig. 1, where the first five
dimensions are correlated.

This preview reveals valuable information for selecting
relevant dimensions. Thus, a flexible interactive and
qualified reduction of the dimensionality of arbitrary
information sets is supported graphically.

4.2 Self-Organizing Maps

Self-organizing maps (SOM), as introduced by Kohonen
[19], provide an effective mechanism for preprocessing and
organizing unstructured data. SOMs are able to extract
groups of similar information objects and can be described
as nonlinear projection from n-dimensional input space
onto two-dimensional visualization space. A self-organizing
map consists of a two-dimensional network of neurons,
typically arranged on a regular lattice. Each cell is
associated with a single randomly initialized n-dimensional
reference vector. In the basic SOM algorithm, the map is
trained with a set of input vectors several times. For each
input vector, the map is searched for the most similar
reference vector, called the winning vector. The winning
vector is updated such that it more closely represents the
input vector. Along with that, the reference vectors in the
neighborhood around the winning vector are also adjusted
in response to the actual input vector. After the training
phase, reference vectors in adjacent cells represent input
vectors which are close (i.e., similar) in information space.
Thus, SOMs provide a useful topological arrangement of
information objects in order to display clusters of similar
objects in information space.

Fig. 2 illustrates the use of SOMs for structuring
unorganized information spaces in our framework. The
picture was generated from the information set of Fig. 2.
Each peak in the map displays a cluster of similar objects.

The number of objects within a single cluster is mapped
onto the height of the peak. Color is used for displaying
similarities between adjacent clusters, where bright inten-
sities denote a higher degree of similarity.

Moreover, we introduce cylinder icons (cf. Fig. 2) for
visualizing cluster properties, i.e., a small opaque cylinder
is used for displaying the concrete value for each single
variable of the map vectors. The height of the outer
transparent cylinder corresponds to the maximum attribute
value of the related dimension. Color is used to distinguish
between the different dimensions. The different cylinders
are composed into a single icon that is mapped on top of
selected cluster peaks within the graphical representation.

Thus, SOMs are suitable for providing an overview of
the entire information space by revealing clusters and
cluster properties.

4.3 Dynamic Hierarchy Computation

The dynamic hierarchy computation is another possible
method to achieve predictable presentations of unstruc-
tured information spaces, even if the given data set is not a
ªnaturalº hierarchy. If an abstraction is used to organize
data, it is important to remember that users may have
different requirements when merging objects into groups.
Thus, we do not compute a fixed number of static groups.
Instead, a nested sequence of groups is determined and
organized into a hierarchy whereby the requirements
according to the similarity of the objects within those
groups increase as the hierarchy is descended.

Dynamic hierarchy computation is carried out by
adapted agglomerative clustering algorithms [18]. Based
on one of the algorithms, Single Linkage, Complete
Linkage, Average Linkage, Ward, Median, Flexible Strat-
egy, and Zentroid [18], information objects IO are merged
into groups according to their similarities in information
space. Therefore, a symmetric �n by n� similarity matrix S is
computed (with n number of information objects IO in
information space) based on a single or on a combination of
the similarity measures enumerated in Section 3.1.

S �

s1;1 � � � sn;1

� � � � � � � � �

sn;1 � � � sn;n;

2

6

4

3

7

5
where

si;j � sj;i 8 i; j � 1; � � � ; n and

si;i � 1 8 i � 1; � � � ; n:

The similarity matrix serves as a basis for a bottom up
creation of a binary dendrogram (cf. Fig. 3 left).

We create the first group by merging the two most
similar information objects. That is, we combine IOi; IOj for
i; j, where si;j � max. Subsequently, a new �nÿ 1 by nÿ 1�
similarity matrix is calculated and the next two closest
objects (groups) are merged. This process continues until all
information objects IOi are processed and the binary
dendrogram is determined completely. A heterogeneity
value, which denotes the average dissimilarity within a
single group of objects, is calculated for each node in the
binary dendrogram.

The hierarchy computation within our framework is
scalable in terms of several similarity measures (cf.
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Section 3.1) and clustering algorithms. Furthermore, it is our
objective to generate dynamic hierarchies under different
aspects from the same information set. Therefore, we need a
basis which can be used effectively for a user-driven
dynamic refinement of the hierarchy. The binary dendro-
gram (cf. Fig. 3) which was computed previously provides
such a basis. If the binary dendrogram has been deter-
mined, the final hierarchy tree, which represents the
similarity structure of the information space, is derived
from it (cf. Fig. 3). Therefore, heterogeneity values have to
be assigned with each level of the final hierarchy tree. These
values denote the allowed average dissimilarities of the
clusters at the levels in the final hierarchy tree (e.g., the
maximum heterogeneity value Hmax is attached with the
root node). These heterogeneity values can either be
specified interactively by the user or determined automa-
tically by our system in order to achieve effective clustering
of the data. Once the number of desired hierarchy levels
and the heterogeneity values are specified, the final
hierarchy is derived from the dendrogram according to
the following algorithm:

1. Create the root node of the final hierarchy tree (RHT)
according to the dendrograms root node (RD).

2. Test if the heterogeneity of RD's children (max. 2)
are less then the first (current) element in the
heterogeneity list.

a. If not, proceed with the node's children at Step
2.

b. If yes, i.e., the heterogeneity of a child node in
the binary dendrogram is less than the current
value in the list, insert this node into the final
hierarchy. The belonging dendrogram's node
position of the inserted node is stored.

3. All new inserted nodes form new subtrees within
the final hierarchy. Execute Steps 1-2 for all those
stored nodes with the next value in the hetero-
geneity list.

4. Iterate Steps 1-3 until the heterogeneity list is
processed completely.

Using the binary dendrogram is very efficient. Once the
dendrogram is created, we do not need time-consuming
recomputations of the similarity matrices for refining the
hierarchy tree.

Thus, complex information spaces can be browsed
interactively in a top-down-like fashion by starting with

an overview with only a few hierarchy levels and refining
embodiments by increasing the number of hierarchy levels
for determining more subtle patterns in the data. The final
hierarchy tree contains information objects IO at its leaves.
The remaining nodes represent clusters which fulfill the
heterogeneity conditions associated with each hierarchy
level. The principle of hierarchy refinement is depicted in
Fig. 4 and Fig. 5. As the number of levels is increased,
bigger clusters are split up into smaller subclusters. Thus,
a stepwise exploration at arbitrary levels of detail is
supported.

5 VISUALIZATION

Supporting a variety of different exploration tasks (e.g.,
displaying different aspects of given information sets) as
well as processing different types of information, such as
hierarchical information structures or unstructured multi-
dimensional information spaces, requires several visuali-
zation methods or a combination of these methods.
Therefore, our framework provides a range of different
techniques. Besides known techniques (cf. Section 3.2), we
propose the new Focus+Context technique Magic-Eye-View
for displaying complex hierarchy graphs and an adapted
version of our ShapeVis for visualizing multidimensional
information sets.

5.1 Hierarchy Visualization

Visualizing the computed hierarchies becomes complicated
as the number of levels and nodes increases. Standard
2D hierarchy browsers can typically display about 100
nodes [20]. Exceeding this number makes perceiving details
difficult. Zooming and panning do not provide a satisfying
solution to this drawback due to loss of context information.
In order to solve these problems, several Focus+Context
techniques have been developed, including Graphical
Fisheye Views [24] or the Hyperbolic Browser [20], which
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the binary dendrogram.

Fig. 4. Overview with three hierarchy levels.

Fig. 5. Hierarchy refinement with seven levels.



exploit distortion to enlarge a focus area while preserving
context information. In order to achieve an additional
degree of freedom for focusing arbitrary areas of the
hierarchy graph in conjunction with providing orientation
support, we propose the new Focus+Context technique
Magic Eye View. Our approach maps a hierarchy graph onto
the surface of a hemisphere. We then apply a projection in
order to change the focus area interactively by moving the
center of projection.

5.1.1 Graph Mapping onto the Hemisphere

Laying out the hierarchy tree is done with a simple
2D algorithm which is similar to the algorithm of Reingold
and Tilford [23]. Thus, we determine (x, y)-coordinates for
each node of the hierarchy within a Cartesian coordinate
system. The graph is then mapped onto the surface of a
hemisphere. Each point on a sphere can be described
uniquely by two angles ��; ��. Thus, the determined
Cartesian coordinates can be mapped directly to spherical
coordinates.

5.1.2 Change of Focus

The objective of change of focus is to enlarge those parts of the
graph which are in or near the focus region while the size of
the remaining part is reduced. We introduce a projection in
order to achieve this and to enable a smooth transition
between the focus and context region. Therefore,we compute
a raySi from the center of projection,which is initially located
at the origin p0 � �0; 0; 0�, through each of the n nodal-points
pi (cf. Fig. 7 left), i.e., the directions of these rays are
determined by the nodes' initial positions, which were
ascertained by the layout algorithm. In order to change focus,
the center of projection p0 can bemoved arbitrarily, whereby
the directions of the rays Si are retained (cf. Fig. 7middle and
right). New positions of the graph's nodes are obtained by
computing the new intersection points of the rays Si with the
hemisphere. Thus, the distances betweennodes are increased
or decreased, depending on the position of p0. By increasing
the distance between nodes in the focus area, we obtainmore
space to view the details while maintaining context informa-

tion. As well as moving p0 along the X, Y, Z-axis, the
hemisphere can also be rotated, translated, and zoomed.
Compared to the Hyperbolic View [20], we introduce
additional degrees of freedom for browsing hierarchies since
we use change of focus along with conventional 3D
navigation. Fig. 6 demonstrates change of focus. Fig. 6 left
shows a complex hierarchy graph mapped onto a hemi-
sphere. The center of projectionhas beenmoved right in Fig. 6
in order to set the focus to the marked subgraph. We
introduce colored rings for minimizing the amount of
confusion introduced by the distortion.

5.1.3 Enhancements of the Magic-Eye-View

Despite depicting computed hierarchical abstractions, many
visualization applications require the display of natural
hierarchies as well (e.g., file systems, company structures,
etc.). Therefore, one goal of our research is focused on
enhancements of the Magic-Eye-View, especially with
respect to scalability and a general usability of the
approach. Basically, we have explored two major directions:

. Integration of adaptive features into our Focus+
Context technique in order to achieve effective Level
of Detail strategies and navigational aids for the
exploration of large graphs. We apply the research
reported in [13] for enhancing the Magic-Eye-View.
The basic idea here is to provide visual clues for
navigating graphs by either interactive or automatic
folding and unfolding subtrees in combination with
mapping of so-called Strahler numbers. Strahler
numbers, which denote the complexity of a node's
subtree, are computed for all nonleaf nodes and
mapped onto color and width of the incoming edges
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of these nodes. Thus, the visual mapping of the
Strahler numbers indicates in which direction a tree
really grows, i.e., where the user should go to
explore interesting subtrees [13]. We found that the
introduction of the features described above in-
creases the number of manageable nodes by about
three to four times.

. Adaptation of the enhanced Magic-Eye-View for
visualizing hierarchies on pocket-sized devices with
small displays such as PDAs (Personal digital assis-
tant) or wireless web browsers. Currently, we are
investigating methods for adapting our technique to
PDAs. Since real interactive 3D visualizations of large
graphs exceeds the capability of PDAs, we use a 2D
representation of theMagic-Eye-View by projecting it
ontoa circulardisplay region.At this early stageof our
research, we believe that the extensions of the Magic-
Eye-View stated above are valuable mechanisms for
adapting our technique to very small screens. Ad-
dressing the problems of limited input facilities, we
will provide additional support for navigating hier-
archies by utilizing an interaction technique called the
event horizon suggested in [27]. The key idea of this
model is that the display can be compressed and
expanded by moving objects radially farther away or
closer to an event horizon in the middle of the screen.
Using this principle in conjunction with a hierarchy
tree, we obtain an intuitive method for showing only
certain hierarchy levels, such as upper levels or lower
levels.

Summarizing the discussion above, we suggest the
combination of three different categories for interacting
and navigating hierarchies on PDAs, which are: focusing
arbitrary areas of the graph, as introduced with the Magic-
Eye-View, navigational aids based on visual mappings,
along with folding/unfolding of complex subtrees, and the
utilization of the event horizon paradigm.

Due to these extended features, it is possible to support
explorations at different levels of detail in order to facilitate
top-down-like visualization scenarios such as:

. Start with an initial display of the graph with folded
(hidden) subtrees for providing a first overview of
the whole hierarchy. At this point, visual mappings
of the Strahler numbers indicate the directions the
graph really grows.

. Refine the embodiments interactively according to
users' exploration tasks by unfolding ªsubtrees of
interestº for revealing more subtle structures of the
hierarchy.

. Reveal precise information details while maintaining
context information by applying change of focus
operations or event horizon interactions.

The principles of applying the adapted Magic-Eye-View
on an HP Journada PDA are illustrated in Fig. 8.

5.2 Visualization of Multidimensional Information

We developed the new technique ShapeVis1 for further
exploration of multidimensional information sets (e.g.,

revealing attribute values of the data or determining object
similarities within a cluster or at certain hierarchy levels).
ShapeVis exploits an enhanced spring model for arranging
n-dimensional information objects in two(three)-dimen-
sional visualization space according to their attribute
values. For reasons of readability, we briefly sketch the
basics of our model in this section.

5.2.1 Enhanced Spring Model

Information objects IO are described by a set of n attributes
which have continuous ranges of values. Thus, each IO in
the n-dimensional information space is an n-tuple
�c1; . . . ; cn� 2 IR

n with �c1; . . . ; cn� > 0. The ci with i �
1; . . . ; n can be considered as the coordinates of the IO in
information space. (As an example, consider the IO as text
documents and the attributes as certain keywords. Then,
the coordinates �c1; . . . ; cn� of an IO are the frequencies of
appearance of the key words in the document.)

Several approaches (e.g., [14]) use a classical spring
model for mapping objects from n-dimensional information
space onto two(three)-dimensional visualization space. In
the classical spring model, every dimension of the informa-
tion space is related to a point di 2 IR

2�IR3�; �i � 1; . . . ; n� in
the visualization space. An information object IO �
�c1; . . . ; cn� is mapped to a point p in visualization space
using n springsÐfrom each dimension point di to p. The
stiffness of the springs are set to the values c1; . . . ; cn. Then,
the location of p is searched where the spring model is in
balance. For fixed di, this location can be computed
explicitly:

p �

Pn
i�1

ci � di
Pn

i�1
ci

: �6�

The location of p gives spatially intuitive information about
the information objects, i.e., the bigger the value of a certain
attribute (ci), the closer p moves toward di. Furthermore,
objects with similar properties are spatially close in the
visualization. Despite these advantages the classical spring
model introduces two major drawbacks.

1. Ambiguity: Objects with different properties (coordi-
nates �c1; . . . ; cn� in information space) may collapse
to the same point in visualization space (cf. [29]).

2. Insensitivity against coordinate scalings: The informa-
tion objects �c1; . . . ; cn� and �c1 � k; . . . ; cn � k� with
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Fig. 8. Adapted Magic-Eye-View for hierarchy visualization on PDAs

without and with focused subgraph.

1. We use an adapted version of our technique introduced in [29] within
the framework.



k > 0 cannot be distinguished in the visualization
because they are mapped to the same point.

In order to solve the problems mentioned above, we
assign an information object IO not only with a point, but
with a small shape which is composed of basic geometric
primitives. Size, location, and orientation of these primitives
are determined based on the following enhanced spring
model. As in the classical spring model, we place a fixed
point di 2 IR

2�IR3� for every dimension of the information
space. We attach n springs with the constant stiffness c > 0

to p. The other ends of the springs are named p1; . . . ;pn.
Now, we consider n more springsÐfrom pi to di with the
stiffness ci. The points p;p1; . . .pn are free moveable, the
points d1; . . . ;dn are fixed. Then, we search for the state of
balance of this spring system. Fig. 9 illustrates this principle.
Applying this model, an information object IO �
�c1; . . . ; cn� is described by the n� 1 points p;p1; . . . ;pn,
which can be computed explicitly by solving the linear
system of equations (7)-(9):

p �

Pn
i�1

wi � di
Pn

i�1
wi

�7�

with

wi �
ci

c� ci
for i � 1; . . . ; n: �8�

Then, p1; . . . ;pn are obtained by:

pi �
c � p� ci � di

c� ci
i � 1; . . . ; n: �9�

Obviously, the locations of p;p1; . . . pn depend on the
attribute values �c1; . . . ; cn� of the information object and on
the value of constant c. Thus, the points p;p1; . . . ;pn

describe an information object IO � �c1; . . . ; cn� uniquely.
Thus, we solve the problems introduced by the classical
spring model.

5.2.2 Obtaining Geometric Objects

Even if the points p;p1; . . . ;pn describe an object uniquely,
n� 1 points are not suitable for visualizing information
objects. We studied the use of small closed free-form-
surfaces (cf. [29]) for obtaining an intuitive imagination of
the locations of p;p1; . . . ;pn. Approximating point locations
using free-form-surfaces becomes rather difficult when the
number of information objects is increased to several
hundreds or thousands because of the large number of
polygons required for generating smooth surfaces (e.g, the

geometric complexity of the visualization exceeded a

million polygons when approximating 500 objects with a
satisfying geometric resolution).

Therefore, we propose basic primitives (n cylinders) for
composing geometric objects out of p;p1; . . . ;pn. These n

cylinders tie up p and pi in order to build the geometric
shape which is assigned with the according information
object. Location, orientation, and length of each cylinder

depend on p;p1; . . . ;pn and the constant c. Thus, the geo-
metric objects describe the information objects IO �

�c1; . . . ; cn� uniquely. This principle and the influence of
parameter c are illustrated in Fig. 10. The strength of the

deformation (length of cylinders) decreases if parameter c is
increased. If the length of all cylinders of a geometric object
is less than a certain threshold, we replace this object with a

small sphere around p. In this case, we have the classical
spring model.

The parameter controlled deformation is very useful for
visualizing a higher number of objects. First, we obtain a

global impression by visualizing all objects with a high
parameter c. The objects are small points and we try to
detect clusters. If we find a cluster, we zoom into it and

decrease c such that the deformation of the cylinders
provides more information about the object properties (i.e.,
a long cylinder in the direction of a certain di denotes a

large data value of the corresponding ci of this object).
Fig. 11 illustrates this principle. Our approach is applied to
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Fig. 9. Enhanced spring model for an information object IO in four-

dimensional information space.

Fig. 10. Visualizing an object (1, 2, 1, 1, 2) with different parameters c.

Fig. 11. Visualization of a demographic data set with six dimensions and

deformable geometric objects.



an information set which measures six demographic

parameters of 106 countries. We placed one point di for
each dimension of the information space in an equidistant

way on the surface of a sphere. The global clustering of the
data can be obtained within the sphere. The objects in the
upper right, which have big values in the dimensions Baby

mortality and Birthrate move toward the corresponding
dimension points di. Furthermore, we can verify the

assumption that these objects have big values in the
dimensions Baby mortality and Birthrate by applying the

deformation to the geometric objects. The cylinders which
point toward the Baby mortality and Birthrate dimension

points are much longer than the cylinders which point
toward the remaining di (cf. Fig. 11 magnification of the

upper cluster). In contrast to that, the cluster in the lower
left is characterized by countries with much bigger values

with respect to the dimensions Literacy and Gross Domestic
Product, while the values of Baby mortality and Birthrate are

rather small.

5.3 Combination of Techniques

The techniques introduced above are combined in our
framework in order to support flexible visualizations at

arbitrary levels of detail. Therefore, arbitrary subsets of the
hierarchy can be selected for further exploration.

. Selection of cluster nodesÐEach cluster node of the
hierarchy tree can be selected. Color is used to
distinguish between cluster nodes and object nodes
whereby the size of a cluster, i.e., the number of
objects is mapped to the intensity of the node's color.
All objects of a selected cluster are visualized with
ShapeVis in a separate display area.

. Selection of hierarchy levelsÐA representative is
determined for each cluster which resides at the
selected level by calculating mean values of the data
of all cluster members. ShapeVis is used to visualize
those representatives and all remaining objects at the
selected level.

Exploring clusters and levels with ShapeVis reveals basic

information about attribute values and similarities between
clusters and information objects. In order to identify

concrete information contents such as real attribute values,

arbitrary objects can be selected and visualized with parallel
coordinates [15]. Labeling the coordinate axis and display-
ing the data values provides more detailed information
about each information object.

Fig. 12 illustrates the combination of ShapeVis, Magic-
Eye-View, and Parallel Coordinates applied to an informa-
tion set which describes 2,440 houses with five attributes.
The left picture shows the 2,440 houses with ShapeVis and
reveals three visual clusters. Exploration of single objects is
rather complicated because of the dense object cloud.
Reducing the size of the objects and zooming into the
cluster is possible with ShapeVis, but makes analysis
difficult due to the vanishing points at the surface of the
sphere. In this case, it is more meaningful to preprocess the
data, as introduced in Section 4, in order to form manage-
able subsets. The picture in the middle of Fig. 12 depicts the
hierarchical representation of the information set. The three
major clusters are represented by the hierarchy nodes at the
first level. Furthermore, the tree shows that these clusters
are split up into smaller subclusters at the following levels.
These subclusters can be selected for further exploration.

We selected the first level of the hierarchy tree and
obtained the picture on the upper right, which shows one
representative for each of the three major clusters. Thus, we
can explore the relationships between the three clusters
very easily by size, location, and deformation of its
graphical objects.

The picture on the lower right shows the use of parallel
coordinates. In our example, we selected a single informa-
tion object (Haus_516) which belongs to the cluster CN.1.
The diagram displays the concrete attribute values of
(Haus_516) compared to the data values of the object which
represents the whole cluster CN.1.

6 MARCHING SPHERE

In many application domains (such as demographic
research, health monitoring, etc.), complex information
structures are given within a spatial frame of reference. In
general, the usability of visual representations of given
information can be enhanced significantly by displaying
these frames of reference. Geographic Information Systems
(GIS) provide various functions for displaying this spatial
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Fig. 12. Combination of Hierarchies, ShapeVis, and Parallel coordinates.



frame of reference, but do not offer the functionality for
depicting information structures like complex graphs or
hierarchy trees.

We propose, in our framework, the Marching Sphere as a
new approach for solving these drawbacks. The Marching
Sphere combines the visualization of complex information
structures and the display of the spatial frame of reference
within the same visual representation. In order to achieve
this, we had to solve a range of problems:

. The visualization of spatially referenced information
structures is rather complicated because of the high
display complexity since the information structures
have to be visualized along with the spatial frame of
reference.

. Techniques which generate compact embodiments
of the given information set have to be applied such
that the visual representation of the information can
be easily displayed within the geographical frame of
reference.

. Suitable graphical representations have to be pro-
vided for the spatial (geographical) frame of refer-
ence. Furthermore, an appropriate function has to be
specified for mapping graphical representations of
the information objects into the virtual frame of
reference (e.g., onto the appropriate positions over
the geographic maps).

. Interaction techniques are necessary for manipulat-
ing both embodiments of the geographical frame of
reference and information structure in order to
support a variety of exploration tasks.

6.1 Displaying Information Structure

We use abstract three-dimensional graphs for displaying
information objects and revealing structural relations
between information units. Basically, we apply a technique
called KOAN [21] (KOntext ANalysator), originated by
SIEMENS. KOAN maps information objects from high-
dimensional information space onto three-dimensional
visualization space according to the principle ªcontextual
correlation � spatial proximity,º whereas contextual correla-
tion denotes the similarity between information objects in
information space. Thus, similar objects are arranged
spatially close in the graph. KOAN uses different types of
nodes for depicting information objects (e.g., small cubes)
and attributes (e.g., small spheres). Furthermore, edges can
be displayed between graph nodes in order to show
whether objects or attributes are related to each other or
not. This approach allows an easily understandable and
compact visualization of complex information sets and
shows structural relationships between units of information
very intuitively.

6.2 Displaying the Spatial Frame of Reference

The visualization of the spatial frame of reference is based
on ordinary two-dimensional maps. Maps provide very
intuitive visualizations of geographical areas and offer
sufficient space for displaying further information.

We propose a hierarchical organization of these maps in
order to display geographic areas at different levels of
detail. This seems to be very useful because geographic

areas usually contain subareas. Imagine, for example, the
geographic structure of Germany. The country consists of
several federal states, each of which contains a number of
different counties. Counties are subdivided into zip code
areas which are further split up into communities. Hence, it
is necessary to support different geographical resolutions in
order to achieve a suitable visualization of the geographical
frame of reference. Map refinement is illustrated in Fig. 13.
The picture shows a map of the German federal state
Mecklenburg-Vorpommern in the four different resolutions
Ðstate, county, zip code area, and community.

6.3 Combination of Information Structure and
Geographical Frame of Reference

The Marching Sphere implements the combination of both
embodiments of information and spatial frame of reference.
Therefore, the two-dimensional map is rendered in a virtual
3D scene. The three-dimensional graph which represents
the related information set is mapped into the virtual
3D scene as well such that it is located above the area in
which the information is given. The information graph is
surrounded by a translucent sphere which is linked to the
related area of the geographic map. Thus, we provide
unique mapping between information representation and
frame of reference.

Placing complex graphs above each subarea of a
geographic map becomes increasingly difficult as the
number of subareas grows or the complexity of the graph
exceeds some limits. In order to avoid overlap of different
graphs, we propose the idea of the Marching Sphere.
Basically, we show only one complete graph at a time
above an area of interest which can be specified inter-
actively. In order to explore the information related to the
remaining areas of the map, the sphere can be moved to
arbitrary destination areas. The graph which was shown in
the sphere previously is faded out and replaced with the
graphical representation of the information related to the
destination area. Thus, the sphere can ªmarchº throughout
the whole geographical map driven by the user in order to
display the information related to the subareas.

Furthermore, the Marching Sphere provides a range of
visual aids and interactions techniques for supporting a
variety of exploration tasks:

. Visualize context: The information related to the areas
around the sphere's current position can be shown
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Fig. 13. Refinement of the geographical granularity.



along with the actual information graph. Therefore,
graphs with reduced complexity are determined and
placed above the belonging areas.

. Show history: The areas which have been explored
previously can be highlighted in the map along with
the navigation path of the sphere.

. Reveal details: The information graph can be enlarged
and rendered in a separate display area for revealing
details.

. Change geographical resolution: The user can refine
arbitrary areas of the map by selecting a more subtle
geographical resolution. Along with that, the visua-
lization of the related information is refined as well.
(i.e, the information set related to the area which has
been selected for refinement is split up into subsets
whereby each of these subsets is assigned to the
related subarea of the selected area.)

Fig. 14 illustrates the marching sphere applied to

spatially related health information of the federal state

Mecklenburg-Vorpommern in Germany. Geographical

overview is provided by the map, which shows the

different counties of the state. A county is selected and

the related information is visualized as a three-dimensional

graph which displays relations between certain diseases

within that area. The smaller spheres around the selected

area depict information objects related to the neighboring

counties. The line on the map depicts the exploration history.

In order to reveal further details such as node labels, the

graph is magnified and rendered in a separate display area

(cf. Fig. 14 upper right).

7 CONCLUSIONS AND FUTURE WORK

This paper proposed a general framework for information

visualization. The integration of preprocessing and visua-

lization enables exploration of large information spaces at

different levels of detail by providing an overview of the

entire information space which can be arbitrarily refined by

the user.
One of the major components of our framework is a

flexible preprocessing pipeline. Several algorithms and

similarity measures can be applied for finding patterns in

unstructured data. Especially, the user-controlled dynamic

hierarchy computation is a suitable method to achieve

predictable representations of given data and to support

data analysis at arbitrary levels of detail.
We propose several new visualization techniques for

displaying multidimensional and hierarchical information

spaces. Furthermore, our framework contains a new

paradigm for exploring spatially referenced information

structures.
However, there are still a number of challenges for future

work. First of all, further evaluation of the framework needs

to be performed to determine its effectiveness and to verify

its general applicability in different application domains.

Further work has to be done in order to enhance both the

preprocessing and the introduced visualization techniques.

In future research, we would like to speed up hierarchy

computation by improving the effectiveness of the dendro-

gram calculation. Adaptive labeling of the hierarchy tree

depending on the current focus area is desirable to avoid

visual clutter through overlap of object labels. The

3D arrangement problem of the dimension points in

ShapeVis has to be investigated as well. One idea which

we would like to study is the utilization of SOMs for solving

2D and 3D arrangement problems. Furthermore, we would

like to investigate animations for smoothly fading in and

out information graphs in the Marching Sphere.

50 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 8, NO. 1, JANUARY-MARCH 2002

Fig. 14. Marching Sphere applied to spatially related health information of the federal state Mecklenburg-Vorpommern.
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