
Esnaola et al. BMC Bioinformatics 2013, 14:254

http://www.biomedcentral.com/1471-2105/14/254

METHODOLOGY ARTICLE Open Access

A flexible count data model to fit the wide
diversity of expression profiles arising from
extensively replicated RNA-seq experiments
Mikel Esnaola1,6, Pedro Puig2, David Gonzalez3, Robert Castelo4,5* and Juan R Gonzalez1,2,5,6*

Abstract

Background: High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real

dynamics of gene expression. Experimental designs with extensive biological replication present a unique

opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis

methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the

best performance under this constraint. These methods are based on two well-known count data distributions: the

Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for

the non-expert bioinformatics user.

Results: Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a

rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse

Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the

Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large

expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter.

We provide a software package for R called tweeDEseq implementing a new test for differential expression based

on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq

yields P-values that are equally or more accurate than competing methods under different configuration parameters.

By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also

show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with

improved performance and reproducibility over the previously compared methodologies. Finally, we compared the

results with those obtained from microarrays in order to check for reproducibility.

Conclusions: RNA-seq data with many replicates leads to a handful of count data distributions which can be

accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the

underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly

different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available

for download at http://www.bioconductor.org.
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Background
High-throughput gene expression profiling across sam-

ples constitutes one of the primary tools for character-

izing phenotypes at molecular level. One of the main

advantages of the rapidly evolving massive scale cDNA

sequencing assay for this purpose (RNA-seq [1]), over

the hybridization-based microarray technology, is a much

larger dynamic range of detection. However, the extent to

which this feature is fully exploited depends entirely on

the way the resulting data is analyzed when addressing a

particular biological question. For instance, in the identi-

fication of genes that significantly change their expression

levels between groups of samples, also known as differen-

tial expression (DE).

For DE analysis, after some pre-processing steps that

include the alignment of the sequenced reads to a ref-

erence genome and their summarization into features of

interest (e.g., genes), raw RNA-seq data is transformed

into an initial table of counts. This table should then be

normalized [2-4] in order to adjust for both technical

variability and the expression properties of the samples,

such that the estimated normalization factors and offsets

applied to the RNA-seq count data describe as accurately

as possible the relative number of copies of each feature

throughout every sample. As opposed to the continu-

ous nature of log-scale fluorescence units in microarray

data, RNA-seq expression levels are defined by discrete

count data, and therefore, require specific DE analysis

techniques.

Detection of DE genes using RNA-seq data was firstly

based on using models assuming a Poisson distribution

[5] with one single parameter, the mean, which simulta-

neously determines the variance of the distribution. Given

that the observed variation in read counts is much larger

than the mean (overdispersion), researchers have pro-

posed the use of negative binomial (NB) distributions

[6-8] which are defined by two parameters: the mean and

the dispersion. However, the larger power of RNA-seq

to capture biological variability can potentially introduce

into count data not only overdispersion, but also oddities

such as zero-inflation (i.e., in lowly expressed genes, the

proportion of zero counts may be greater than expected

under an NB distribution) and heavy tail behavior (i.e., a

large dynamic range within the same expression profile),

specially when many biological replicates are available.

Under these circumstances even a two-parameter NB dis-

tribution may not provide an adequate fit to the data (see

Figure 1). In turn, this may lead to incorrect statistical

inferences resulting in lists of DE genes with a potentially

increased number of false positive calls and poor repro-

ducibility. To overcome this problem, methods based on

the NB distribution [6-11] use sophisticated moderation

techniques that borrow information across genes and

exploit the mean-variance relationship in count data to

improve the estimation of the NB dispersion parameter.

This requires, however, that the parameter configuration

is calibrated for the most appropriate moderation regime

which may depend on features such as sample size, the

magnitude of the fold-change, the variability of expres-

sion levels, the fraction of genes undergoing differential

expression and the overall expression level.

In this paper we propose to approach this problem

by using other count data distributions that fit expres-

sion profiles better than the NB without the need to

alter configuration parameters. The rest of the paper is

organized as follows. Using a large RNA-seq data set of

HapMap lymphoblastoid cell lines (LCLs) derived from

n = 69 unrelated Nigerian (YRI) individuals [12], we

start by assessing the goodness of fit of extensively repli-

cated expression profiles to the NB distribution, show-

ing a lack of fit for an important fraction of genes. We

illustrate how a more flexible family of count-data prob-

ability distributions, called the Poisson-Tweedie, provides

a better fit to these expression profiles. We provide data

supporting the hypothesis that the lack of fit to NB distri-

butions may be related to the dynamics of gene expression

unveiled by RNA-seq technology. We then introduce a

new test for differential expression analysis in RNA-seq

data based on the Poisson-Tweedie family of distribu-

tions. We demonstrate with simulations on synthetic and

real RNA-seq data how a single run of our approach pro-

vides P-values that are equally or more accurate than

NB-based competing methods calibrated with a variety

of configuration parameters. Finally, by surveying the tiny

fraction of sex-specific gene expression changes in LCL

samples, we approach the problem of assessing accu-

racy in DE analysis with real RNA-seq data and show

that, in the context of extensively replicated RNA-seq

experiments, tweeDEseq yields better performance than

competing NB-based methods without the need to make

an informed decision on the configuration of parameters.

This improvement is reported in terms of precision and

recall of DE genes and reproducibility of the significance

levels with respect to matching microarray experiments.

Results and discussion
The results we provide in this paper are based on data

from a previously published large RNA-seq experiment

[12] and on our own simulated count data. We down-

loaded and pre-processed the HapMap LCL raw RNA-seq

data, consisting of n = 69 samples from unrelated YRI

individuals, with our own pipeline (see Methods). The

resulting table of counts consists of 38,415 genes by 69

samples. We filtered out genes with very low expres-

sion levels and used different normalization methods

[2,4] (see Methods) to ensure that the results described

below do not depend on this fundamental step. In fact,

we have observed that normalized counts can lead to
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Figure 1 Fit of different count data distributions to diverse RNA-seq gene expression profiles. Fit of different count data distributions to the

female (a, c, e) and male (b, d, f) RNA-seq expression profiles of genes EEF1A2 (a, b), SCT (c, d) and NLGN4Y (e, f). All plots show the empirical

cumulative distribution function (CDF) of counts (black dots) and the CDF estimated by a pure negative binomial model (black dashed line), a

Poisson-Tweedie model (red line) obtained with tweeDEseq and several moderated negative binomial models obtained with different parameter

configurations of DESeq and edgeR. Estimated dispersions, and shape in the case of tweeDEseq, are indicated in the legend. Above the legend,

the P-value of the test of goodness-of-fit to a negative binomial distribution is shown. According to this test, expression profiles in panels (a, b, c

and e) do not follow a negative binomial distribution. Female samples display non-negative binomial features such as a heavy-tail (a, c) and

zero-inflation (c, e). Gene NLGN4Y is documented in the literature as a gene with sex-specific expression, while the other two are not (EEF1A2 is a

housekeeping gene and SCT is an endocrine hormone peptide in chromosome 11 that controls secretions in the duodenum).



Esnaola et al. BMC Bioinformatics 2013, 14:254 Page 4 of 22

http://www.biomedcentral.com/1471-2105/14/254

quite different MA-plots depending on the normalization

method, thus potentially affecting DE detection power

and accuracy (Figure 2).

The statistical methods proposed in this paper are

implemented in a package for the statistical software

R, called tweeDEseq which forms part of the Biocon-

ductor project [13] at http://www.bioconductor.org. We

have also created an experimental data package, called

tweeDEseqCountData, which contains the previously

described data set and is also available at the same URL.

All results presented in the paper were obtained using

these and other packages from R version 2.15.1 and Bio-

conductor version 2.11, and can be reproduced through

the scripts available as Additional file 1 to this article.

Review of competing methods

There is currently a large body of literature on DE anal-

ysis methods for RNA-seq data [5-11,14], nearly all of

them based on the NB distribution and developed to

deliver their best performance with few replicates. Anders

et al. (2010) [7] argued that for large number of individ-

uals “... questions of data distribution could be avoided

by using non-parametric methods, such as rank-based

permutation tests”. However, rank-based methods require

similar count data distributions between sample groups.

Due to the large variability across groups [15] captured

by RNA-seq data, this assumption will most likely be

broken in this context. For example, panels e-f in Figure 1

illustrate the case of gene NLGN4Y (ENSG00000165246),

a gene located in the male-specific region of chromo-

some Y and reported to have sex-specific expression,

which shows remarkably different count data distribu-

tions betweenmale and female samples. Permutation tests

are also underpowered since distribution tails are not

well estimated (due to the large dynamic range), which is

important when correcting for multiple testing.

In this paper we will focus our comparisons on the

two most widely used methods for DE analysis of RNA-

seq data, edgeR [6,8,10] (version 3.0.8) and DESeq [7]

(version 1.10.1) and explore those parameter configu-

rations in these methods that we found most relevant

for large RNA-seq data sets, according to the available

documentation. Both, edgeR and DESEq, assume that

expression profiles from RNA-seq data follow an NB

distribution and borrow information across genes to

first estimate a common dispersion parameter. Then,

for each gene, they estimate its genewise dispersion and

moderate it towards the common one. The way in which

this moderation takes place depends on the method and

its configuration parameters. DESeq [7] allows switch-

ing between common (sharingMode="fit-only")

and genewise (sharingMode="gene-est-only")

dispersions. It provides a straightforward strategy

(sharingMode="maximum", default configuration) to
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Figure 2 Count data normalization.MA-plots of the count data corresponding to the YRI samples from Pickrell [12] et al. (2010) after applying the

following normalization methods: (a) raw count data without any normalization; (b) normalization with the edgeR [2] package; and (c)

normalization with the cqn [4] package. The x-axis (A) shows the average expression throughout female and male samples in log2 scale and the

y-axis (M) shows the magnitude of the log2-fold change between female and male samples.

http://www.bioconductor.org
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choose between common and genewise dispersions by

taking the largest value for each gene. edgeR allows one

to calibrate, using the prior.df parameter, the transi-

tion from a purely genewise dispersion estimate (small

values of prior.df) to the common one (large values

of prior.df) by using an empirical Bayes approach. By

default prior.df=20 which implies that a large weight

is given to the common dispersion. However, accord-

ing to the documentation, if the number of samples is

large, the common dispersion becomes less important

in the moderation step. Additional options in DESeq

and edgeR that may be relevant in the context of large

RNA-seq data sets are, in the case of DESeq, whether

dispersions are estimated from the entire pool of sam-

ples (method="pooled", its default) or separately per

sample group (method="per-condition"). In the

case of edgeR, whether the DE test is performed using

a likelihood ratio test (glmLRT() function) or a quasi-

likelihood F-test [8] (glmQLFTest() function), after

dispersions are estimated. Table 1 summarizes these eight

combinations of methods and parameter configurations

and contains the key to the terms used in some figures to

distinguish among them.

Different gene expression dynamics require different

distributional assumptions on count data

We assessed the goodness-of-fit of every expression pro-

file in the LCL RNA-seq data to an NB distribution

(see Methods) by means of quantile-quantile (Q-Q) plots

(Figure 3) and about 10% of the genes show a substantial

discrepancy with respect to the NB distribution in the

counts (see right y-axis in Figure 3). Such a discrepancy

is absent from data simulated from NB distributions with

a similar number of genes including a small fraction of

them changing between two conditions (Additional file 2:

Figure S1).

This result suggests that NB distributions may be too

restrictive for an important fraction of expression pro-

files in large RNA-seq data sets. Among the possible

causes underlying the lack of fit of those genes to an

NB distribution, a clear candidate is that the presence of

many samples can potentially introduce features such as

zero-inflation or heavy-tails (see Figure 1). So far, exten-

sive biological replication in RNA-seq experiments has

been the exception rather than the rule. However, it is

becoming increasingly clear [15] that in the coming years

larger RNA-seq data sets will be required to justify scien-

tific conclusions and provide reproducible results. There-

fore, we can expect to see more often gene expression

profiles with emerging features, such as zero-inflation and

heavy tails, that challenge RNA-seq methods based on the

NB distribution.

We propose to address this problem by adopting the

Poisson-Tweedie (PT) family of distributions [16] to

model RNA-seq count data directly. PT distributions are

described by a mean (μ), a dispersion (φ) and a shape

(a) parameter (see Methods) and include Poisson and NB

distributions, among others, as particular cases [16]. An

important feature of this family is that, while the NB dis-

tribution only allows a quadratic mean-variance relation-

ship, the PT distributions generalizes this relationship to

any order [17]. We have implemented a maximum likeli-

hood procedure for the estimation and simulation of these

parameters from count data. These procedures are avail-

able in the tweeDEseq package through the functions

mlePoissonTweedie(), dPT() and rPT().

Figure 1 illustrates the flexibility of the PT distribu-

tion to accurately fit different gene expression profiles

obtained from the un-normalized LCL RNA-seq data

set. Left and right panels correspond to female and

male samples, respectively and each row corresponds

to a different gene: EEF1A2 (ENSG00000101210), SCT

(ENSG00000070031) andNLGN4Y (ENSG00000165246),

respectively. Among these three genes, only NLGN4Y

has been reported in the literature to have sex specific

expresssion, while the other two are likely to lack such

property since EEF1A2 is a housekeeping gene and SCT

is an endocrine hormone peptide in chromosome 11 that

controls secretions in the duodenum. Each plot shows the

empirical cumulative distribution of observed counts as

Table 1 Methods and parameter configurations compared in this paper

Key Software Configuration parameters

DESeqPgO DESEq method="pooled", sharingMode="per-condition"

DESeqPmax DESEq method="pooled", sharingMode="maximum"

DESeqCgO DESEq method="per-condition", sharingMode="per-condition"

DESeqCmax DESEq method="per-condition", sharingMode="maximum"

edgeRdf20 edgeR common/trended/tagwise moderation regime with prior.df=20 (default)

edgeRdf1 edgeR common/trended/tagwise moderation regime with prior.df=1

edgeRqlfDf20 edgeR common/trended/tagwise moderation regime with prior.df=20 (default) and quasi-likelihood
F-tests

edgeRqlfDf1 edgeR common/trended/tagwise moderation regime with prior.df=1 and quasi-likelihood F-tests
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Figure 3 Goodness of fit to the negative-binomial distribution. Quantile-quantile (Q-Q) plots of the goodness-of-fit of RNA-seq expression

profiles from Pickrell [12] et al. (2010) to a negative-binomial (NB) distribution. The right y-axis indicates the quantile of the observed distribution.

Columns correspond to different normalization methods where (a, d) correspond to raw un-normalized counts, (b, e) normalization with edgeR

and (c, f) normalization with cqn. The top row (a, b, c) contains the Q-Q plots of the χ2 goodness-of-fit statistic while the bottom row (d, e, f)

contains the same Q-Q plot mapped to a normalized Z-statistic to improve the visibility of the left tail of the distribution. Independently on how

count data are normalized, about 10% of the expression profiles show a substantial discrepancy to the NB distribution.

well as the parametric cumulative distributions obtained

through the estimation of parameters of the methods

compared in this paper under different configurations.

Note that the estimated dispersion parameter φ is identi-

cal between the two sample groups for edgeR and DESeq

(pooled) as these approaches estimate φ irrespective from

the sample groups. The P-value for testing whether the

data follow an NB distribution (H0 : a = 0), indicated

above the legend, reveals that in several sample groups

(panels a-c, e) this hypothesis is rejected (P < 0.05). In

those cases, methods based on the NB distribution pro-

duce dispersion parameters that do not fit the data as

accurately as the PT distribution. More concretely, heavy-

tails present in panels a,c severely hamper the estimation

of the pure NB and the common dispersion. These can be

improved using a parameter configuration more suited to

large sample sizes. However, this results in a poor estimate

of zero-inflation in panels c-e.

The main difference between the PT and NB distri-

butions lies in the additional “shape” parameter a of

the PT distribution which provides further flexibility

(see Methods). Using the LCL data processed with

different normalization methods, we show in Figure 4

all values of the shape parameter a for every gene as

function of its mean expression level, illustrating the

huge variability of this parameter in RNA-seq count

data. This wide range of values involves distinct possi-

ble distributional assumptions [16] beyond Poisson and

NB, such as Poisson-Inverse Gaussian, Pólya-Aeppli or

Neyman type A. Similarly to the MA-plots of Figure 2,

the cqn normalization method seems to make the largest

impact on count data and, in this case, on the shape

parameter.

We have investigated whether this diversity of count

distributions underlying RNA-seq data is related to

different expression dynamics in genes. Using the

test for the goodness of fit to an NB distribution

(see Methods) we have considered as NB those genes that

do not reject the null hypothesis at P > 0.2 and as clear-

cut non-NB genes those with P < 2−16. By mapping

all these genes to the Gene Expression Barcode catalog

[18] (see Methods) we obtained an independent and unbi-

ased estimation of their expression breadth. The results

in Figure 5 suggest that the expression breadth of non-
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Figure 4 Distribution of the Poisson-Tweedie shape parameter as function of the mean expression level. Estimated Poisson-Tweedie shape

parameter a as function of the mean expression level for each gene. Red dashed lines indicate the value of a corresponding to each specific

distribution within the Poisson-Tweedie family, denoted by Pois (Poisson), PIG (Poisson-Inverse Gaussian), NB (negative binomial), PA (Pólya-Aeppli)

and NtA (Neyman type A). The right y-axis indicates the percentage of genes around specific a values bounded by dotted grey lines. Data from

Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeR [2] (b), and normalized with cqn [4] (c).

NB genes approaches that of housekeeping genes closer

than NB genes do, irrespective of the normalization

method.

In fact, Fisher’s exact tests for enrichment of non-NB

genes among human housekeeping genes are significant

(P < 1.24−6) for every normalization method (see

Additional file 2: Table S1). These observations sug-

gest that genes with different expression dynamics can

produce different count data distributions, and under-

score the flexibility of the PT statistical model to capture
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Figure 5 Expression dynamics of genes with different count data distributions. Empirical cumulative distributions of the breadth of

expression estimated through the Barcode [18] database, for genes that do not reject the null hypothesis of a negative-binomial (NB) distribution in

a test for the goodness of fit at P > 0.2 (green lines), genes that do reject such a null hypothesis at P < 2−16 (blue lines) and housekeeping genes

retrieved from literature [19] (red lines). Data from Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeR [2] (b)

and normalized with cqn [4] (c). These plots show that, independently of the normalization method, non-NB genes at such significance level of

discrepancy with respect to the NB distribution approach closer the expression dynamics of housekeeping genes than genes with expression

profiles following the NB distribution.
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these dynamics revealed by extensively-replicated RNA-

seq experiments.

Accurately testing differential expression

For the purpose of a DE analysis between two groups of

samples, we have developed a two-sample PT-test for dif-

ferences in means (see Methods) implemented through

the function tweeDE() in the tweeDEseq package. We

will assess the accuracy of this PT-based test using the

LCL data as well as synthetic count data from two dif-

ferent simulation studies. The first simulation study with

synthetic data provides an assessment of the type-I error

rate under four different scenarios involving distinct count

data distributions between sample groups (see Additional

file 2: Table S2 for a description of them). Here we com-

pare tweeDEseq with the configurations of edgeR and

DESeq which are closer to a straightforward NB model.

Additional file 2: Figures S2 to S5 show that tweeDEseq

properly controls the nominal probability of a type-I

error while edgeR, DESeq and non-parametric tests

(U Mann-Withney and permutation) fail to do so

when data are not simulated from NB distributions. As

expected, these methods perform correctly when data

are generated under an NB model (see Additional file 2:

Figure S5) as expected. Additional file 2: Figure S6

also shows that in the calculation of very low P-

values, tweeDEseq clearly outperforms permutations

tests. In order to provide a practical recommendation

on the minimum sample size required by tweeDEseq

to yield accurate results we have estimated the prob-

ability of a type-I error across different sample sizes.

Additional file 2: Figure S7 indicates that 15 sam-

ples per group should be sufficient for tweeDEseq

to correctly control for a nominal significance level

α = 0.05.

In the second simulation study we have first assessed

the accuracy of the P-value distribution under the null

hypothesis of no differential expression with real RNA-seq

data by making repeatedly two-sample group compar-

isons within males and within females samples such that

we recreate the null hypothesis of no DE with real RNA-

seq data and no DE gene should be expected to be found.

The raw P-value distributions from such analysis should

ideally be uniform.

We have formally tested this hypothesis for every gene

by means of a Kolmogorov-Smirnov (KS) goodness-of-fit

test to a uniform distribution and examine the resulting

P-value distribution by means of Q-Q plots displayed in

Figure 6. Under the null hypothesis that all genes are not

DE, the KS P-values should lie along the diagonal of the

Q-Q plot. The figure, however, shows large discrepancies

to this criterion by some of themethods and configuration

parameters, indicating that they may not be adequate for

large RNA-seq data sets.

The method introduced in this paper, tweeDEseq,

is consistently closer to the diagonal than every other

method throughout the two male and female com-

parisons and the two normalization methods. More

informally, the visual inspection of the histograms of

raw P-values given in Additional file 2: Figure S8 also

reveals that tweeDEseq provides P-value distributions

closer to the uniform under the null hypothesis of no

DE simulated from extensively replicated real RNA-seq

data.

As other authors have shown, in the context of anal-

ysis of RNA-seq data with very limited sample size [8],

small deviations from uniformity of P-values under the

null hypothesis can substantially affect FDR estimates

of DE genes. We have also assessed the calibration of

P-values and false discovery rates (FDR) with synthetic

count data of similar dimensions to the RNA-seq LCL

data set, concretely with p = 20, 000 genes and n = 70

samples. Working with this type of data allows to assess

FDR estimates for a known subset of DE genes under

a variety of simulated scenarios, which we defined by

considering the combination of three different amounts

of DE genes (100, 1000 and 2000) and three different

magnitudes of fold-change (1.5, 2 and 4-fold). Similarly

to [8], data were simulated from a hierarchical gamma-

Poisson model with and without simulated library factors

(see Methods).

From every simulated data set, raw P-values for the

two-sample DE test were obtained with each method and

configuration parameters. Using the qvalue Bioconduc-

tor package [21] we estimated q-values and the fraction of

DE genes from each P-value distribution. Q-values pro-

vide a nominal estimation of the FDR for each gene and

in Figures 7 and 8 we show the empirical FDR (eFDR)

as a function of the nominal q-values for the simulations

with constant and variable library factors, respectively.

The dashed diagonal line indicates a correct calibration

of P-values whose nominal FDR equals the observed

eFDR. Lines above the diagonal correspond to liberal

DE analysis methodologies and below to conservative

ones.

To facilitate the comparison of methods across all sim-

ulated data sets we have calculated the mean squared

error (MSE) between the eFDR and the nominal FDR and

ranked the methods by increasing MSE. In Tables 2 and 3

we can find the MSE values and in Tables 4 and 5 the cor-

responding ranks of the methods according to the MSE

values. As it follows from the rankings in Tables 4 and 5,

tweeDEseq provides the best calibrated P-values inmost

of the simulated data sets.

The previous calculations of q-values with the qvalue

package [21] provide us also with estimates π̂0 of the

fraction of genes under the null hypothesis of no differ-

ential expression. This, in turn, allows one to derive an
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Figure 6 Quantile-quantile (Q-Q) plots for the goodness-of-fit of null-hypothesis P-values to an uniform distribution. Using the results

displayed in Additional file 2: Figure S8 and performing as described by Leek et al. (2007) [20], for each gene, the distribution of P-values throughout

the 100 simulations was tested for its goodness-of-fit to an uniform distribution using a Kolmogorov-Smirnov test. Q-Q plots in this figure show for

all genes the resulting P-values of the previous test which, under the null hypothesis of no differential expression, should be uniformly distributed

too and lead to lines lying on the diagonal. Panels a-b show results from female vs female comparisons and c-d from male vs male comparisons,

while a,c correspond to un-normalized data and b,d to data normalized with the cqn [4]. The method introduced in this paper, tweeDEseq, is on

average closer to the diagonal throughout the four simulations, closely followed by DESeq when sharingMode="gene-est-only" and

either method="per-condition" or method="pooled".

estimated number of DE genes as p(1 − π̂0) with p being

the total number of genes. In principle, more precise P-

values both under the null and the alternative hypotheses

should provide more accurate estimates of the number of

DE genes. We show such an assessment for the previous

simulations in Additional file 2: Figures S9 and S10. To

summarize those results we have divided each estimate of

the number of DE genes by their actual simulated num-

ber of DE genes and aggregate those ratios throughout

the different simulation scenarios to ease the comparison

among the methods. We find this comparison in Figure 9

and it follows that tweeDEseq produces P-values that

lead to the most accurate estimation of the number of

DE genes, closely followed by edgeR with prior.df=1

when library factors are not held constant. In both set-

tings, DESeq leads to extremely conservative estimates of

the number of DE genes.

Identification of sex-specific gene expression in

lymphoblastoid cell lines

Assessing performance of DE analysis methods without

using simulated data is a challenging problem due to the

difficulty of knowing or ensuring the exact differential

concentration of RNA molecules in the analysed samples.

In this respect, sex-specific expression constitutes a use-

ful system to assess the accuracy of DE detection methods

due to the vast literature on genes contributing to gender-

specific traits. For this reason, in order to illustrate the

accuracy of tweeDEseqwith real RNA-seq data, we have

searched for genes changing significantly their expres-

sion between female and male individuals of the RNA-seq

experiments on LCLs analyzed in this paper. Again, we

have compared different normalization procedures and

parameter configurations of edgeR and DESeq. Next

to considering the raw un-normalized data and the data
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Figure 7 Empirical FDR values for simulated data with constant library factors. Empirical FDR values on the y-axis as function of nominal

q-values on the x-axis calculated from data simulated with p = 20, 000 genes, n = 70 samples and constant library factors. Each row and column

corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,

tweeDEseq, is consistently closer to the diagonal than other methods throughout the different simulations.

normalized with cqn, TMM normalization was used for

edgeR and tweeDEseq, while DESeq was used with its

own normalization method. We have used a single signifi-

cance cutoff of FDR < 0.1 at which genes were called DE.

Since LCLs come from a non-sexually dimorphic tissue

and are outside their original biological context, the frac-

tion of sex-specific expression changes we could expect

should be rather small.

In an attempt to verify the accuracy of these lists of DE

genes between female and male individuals, we searched

for genes reported in the literature to be potential con-

tributors to sexually dimorphic traits. This list of genes

with documented sex-specific expression was obtained

from genes in chromosome X that escape X-inactivation

[22] and from genes in the male-specific region of the

Y chromosome [23] (see Methods). This resulted in a

gold-standard set of 95 genes mapping to Ensembl Gene

Identifiers (release 63), which we shall denote by XiE

and MSY genes, depending on their origin. For every

predicted set of DE genes by each combination of DE

detection method and normalized data set, we calculated

precision and recall with respect to the gold-standard, and

the F-measure which summarizes the trade-off between

these two diagnostics.
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Figure 8 Empirical FDR values for simulated data with variable library factors. Empirical FDR values on the y-axis as function of nominal

q-values on the x-axis calculated from data simulated with p = 20, 000 genes, n = 70 samples and variable library factors. Each row and column

corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,

tweeDEseq, is consistently closer to the diagonal than other methods throughout the different simulations.

In Figure 10 we can see that tweeDEseq pro-

vides better performance than the other competing

methods under different parameter configurations. The

improvement is small with respect to the second best-

performing method and parameter configuration but we

would like to emphasize that tweeDEseq does not

require any informed decision on a parameter config-

uration, as opposed to edgeR and DESeq. To assess

the robustness of this figure, we have run this compar-

ative assessment with a more stringent filter on lowly

expressed genes and, as Additional file 2: Figure S11

shows, tweeDEseq keeps performing better than the

other methods, this time however only when data are

normalized.

In Additional file 2: Table S3 we report the complete list

of 55 DE genes detected by tweeDEseq from the data

normalized with cqn, which is when it yields the best

precision-recall tradeoff. More than a half of genes in this

list (32) are located in either the X or Y chromosomes

and where the first 10 with largest fold-change contain 7

from the gold-standard set of MSY and XiE genes. Among

the other 3, we find TTTY15, a testis-specific non-coding

transcript from the Y chromosome and the other two lack

functional annotation in Ensembl release 63.
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Table 2 Mean squared error of false discovery rates under constant library factors

#DE Rank 1.5-fold change 2-fold change 4-fold change

MSE Method MSE Method MSE Method

1 0.050 DESeq - Pmax 0.050 DESeq - Pmax 0.031 tweeDEseq

2 0.122 tweeDEseq 0.053 tweeDEseq 0.037 DESeq - Cmax

3 0.155 DESeq - Cmax 0.065 DESeq - Cmax 0.070 DESeq - Pmax

4 0.257 DESeq - PgOn 0.104 DESeq - PgOn 0.072 DESeq - PgOn

100 5 0.306 edgeR - QLF Df1 0.138 edgeR - QLF Df1 0.430 edgeR - QLF Df1

6 0.313 edgeR - QLF (def) 0.177 edgeR - QLF (def) 0.452 edgeR - QLF (def)

7 0.558 edgeR - (def) 0.336 edgeR - (def) 0.790 edgeR - (def)

8 0.755 edgeR - Df1 0.431 edgeR - Df1 0.957 edgeR - Df1

9 9.688 DESeq - CgOn 6.232 DESeq - CgOn 5.133 DESeq - CgOn

1 0.008 tweeDEseq 0.004 tweeDEseq 0.004 tweeDEseq

2 0.008 DESeq - Cmax 0.008 DESeq - PgOn 0.007 DESeq - PgOn

3 0.016 DESeq - PgOn 0.015 DESeq - Cmax 0.014 DESeq - Cmax

4 0.043 edgeR - QLF Df1 0.087 DESeq - Pmax 0.081 DESeq - Pmax

1000 5 0.045 edgeR - QLF (def) 0.413 edgeR - QLF (def) 0.429 DESeq - CgOn

6 0.082 DESeq - Pmax 0.459 edgeR - QLF Df1 21.358 edgeR - QLF (def)

7 0.105 edgeR - (def) 0.532 DESeq - CgOn 22.208 edgeR - (def)

8 0.155 edgeR - Df1 0.639 edgeR - (def) 23.401 edgeR - QLF Df1

9 0.735 DESeq - CgOn 0.835 edgeR - Df1 25.004 edgeR - Df1

1 0.002 DESeq - PgOn 0.001 DESeq - PgOn 0.000 DESeq - PgOn

2 0.002 tweeDEseq 0.001 tweeDEseq 0.001 tweeDEseq

3 0.025 DESeq - Cmax 0.031 DESeq - Cmax 0.036 DESeq - Cmax

4 0.053 edgeR - QLF (def) 0.090 DESeq - Pmax 0.093 DESeq - Pmax

2000 5 0.056 edgeR - QLF Df1 0.183 DESeq - CgOn 0.140 DESeq - CgOn

6 0.093 DESeq - Pmax 1.444 edgeR - QLF (def) 34.551 edgeR - QLF (def)

7 0.113 edgeR - (def) 1.702 edgeR - QLF Df1 35.365 edgeR - (def)

8 0.169 edgeR - Df1 1.724 edgeR - (def) 35.468 edgeR - QLF Df1

9 0.271 DESeq - CgOn 2.219 edgeR - Df1 36.929 edgeR - Df1

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal q-values obtained from the

simulation study shown in Figure 7 in which library factors were held constant.

Reproducibility with respect to microarray data

The YRI LCL samples we have analyzed have been previ-

ously assayed using microarray chips [24] and this enables

a comparison between the gene expression read out of

both technologies. In particular, we wanted to assess the

degree of reproducibility of the significance levels of DE.

While there may be many aspects from both technolo-

gies that can potentially bound the extent to which we

can reproduce rankings of DE, we postulate that more

accurate P-values in DE genes should lead to higher repro-

ducibility of significance levels of DE genes.

With this purpose, we applied limma [25] on the

microarray data and called genes DE at 10% FDR, just as

we did with RNA-seq data, and then compared the− log10
units of the raw P-values from DE genes called in RNA-

seq by each DE detection method to the − log10 P-value

units from genes called DE by limma. In Additional file 2:

Figure S12 we show this comparison for every gene that

is called DE either by limma in microarray data or by

the other compared method in RNA-seq data. Although

we can observe a significant linear relationship between

P-values in every compared method, the low fraction of

variability explained by the fitted linear model (R2 < 0.25)

in every of those comparisons indicates a rather poor level

of reproducibility for every method.

A closer look to genes in that figure indicates that the

lack of reproducibility mostly comes from genes called

DE by one method and technology but not by the other

(dots close to zero in either the x or the y-axis). There

may be many reasons, unrelated to the DE detection

method itself, why a gene is not called simultaneously DE

in two completely independent RNA-seq and microarray
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Table 3 Mean squared error of false discovery rates under variable library factors

#DE Rank 1.5-fold change 2-fold change 4-fold change

MSE Method MSE Method MSE Method

1 0.030 DESeq - Pmax 0.059 DESeq - Cmax 0.046 tweeDEseq

2 0.099 tweeDEseq 0.064 tweeDEseq 0.055 DESeq - Pmax

3 0.189 DESeq - Cmax 0.072 DESeq - Pmax 0.057 DESeq - Cmax

4 0.194 DESeq - PgOn 0.116 DESeq - PgOn 0.106 DESeq - PgOn

100 5 0.258 edgeR - QLF Df1 0.129 edgeR - QLF Df1 0.124 edgeR - QLF Df1

6 0.348 edgeR - QLF (def) 0.129 edgeR - QLF (def) 0.153 edgeR - QLF (def)

7 0.581 edgeR - (def) 0.273 edgeR - (def) 0.290 edgeR - (def)

8 0.667 edgeR - Df1 0.420 edgeR - Df1 0.380 edgeR - Df1

9 8.882 DESeq - CgOn 6.429 DESeq - CgOn 5.217 DESeq - CgOn

1 0.005 tweeDEseq 0.006 tweeDEseq 0.008 tweeDEseq

2 0.009 DESeq - Cmax 0.012 DESeq - Cmax 0.010 DESeq - Cmax

3 0.013 DESeq - PgOn 0.012 DESeq - PgOn 0.011 edgeR - QLF Df1

4 0.016 edgeR - QLF Df1 0.016 edgeR - QLF Df1 0.013 edgeR - QLF (def)

1000 5 0.019 edgeR - QLF (def) 0.017 edgeR - QLF (def) 0.024 DESeq - PgOn

6 0.054 edgeR - (def) 0.051 edgeR - (def) 0.045 edgeR -(def)

7 0.083 DESeq - Pmax 0.082 DESeq - Pmax 0.067 DESeq - Pmax

8 0.087 edgeR - Df1 0.083 edgeR - Df1 0.077 edgeR - Df1

9 0.700 DESeq - CgOn 0.545 DESeq - CgOn 0.529 DESeq - CgOn

1 0.003 tweeDEseq 0.004 tweeDEseq 0.005 DESeq - Cmax

2 0.003 DESeq - PgOn 0.006 edgeR - QLF Df1 0.017 edgeR - QLF (def)

3 0.006 edgeR - QLF Df1 0.006 edgeR - QLF (def) 0.018 edgeR - QLF Df1

4 0.007 edgeR - QLF (def) 0.007 DESeq - PgOn 0.023 tweeDEseq

2000 5 0.025 DESeq - Cmax 0.024 DESeq - Cmax 0.029 DESeq - Pmax

6 0.028 edgeR - (def) 0.026 edgeR - (def) 0.053 edgeR - (def)

7 0.049 edgeR - Df1 0.047 edgeR - Df1 0.088 edgeR - Df1

8 0.091 DESeq - Pmax 0.077 DESeq - Pmax 0.092 DESeq - PgOn

9 0.267 DESeq - CgOn 0.238 DESeq - CgOn 0.465 DESeq - CgOn

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal q-values obtained from the

simulation study shown in Figure 8 in which library factors were variable.

Table 4 Rankings of methods by themean squared error of false discovery rates under constant library factors

Method #DE = 100 #DE = 1000 #DE = 2000

1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC

tweeDEseq 2 2 1 1 1 1 2 2 2

DESeq - PgOn 4 4 4 3 2 2 1 1 1

DESeq - Pmax 1 1 3 6 4 4 6 4 4

DESeq - CgOn 9 9 9 9 7 5 9 5 5

DESeq - Cmax 3 3 2 2 3 3 3 3 3

edgeR - (def) 7 7 7 7 8 7 7 8 7

edgeR - QLF (def) 6 6 6 5 5 6 4 6 6

edgeR - Df1 8 8 8 8 9 9 8 9 9

edgeR - QLF Df1 5 5 5 4 6 8 5 7 8

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 1.
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Table 5 Rankings of methods by themean squared error of false discovery rates under variable library factors

Method #DE = 100 #DE = 1000 #DE = 2000

1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC

tweeDEseq 2 2 1 1 1 1 1 1 4

DESeq - PgOn 4 4 4 3 3 5 2 4 8

DESeq - Pmax 1 3 2 7 7 7 8 8 5

DESeq - CgOn 9 9 9 9 9 9 9 9 9

DESeq - Cmax 3 1 3 2 2 2 5 5 1

edgeR - (def) 7 7 7 6 6 6 6 6 6

edgeR - QLF (def) 6 6 6 5 5 4 4 3 2

edgeR - Df1 8 8 8 8 8 8 7 7 7

edgeR - QLF Df1 5 5 5 4 4 3 3 2 3

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 2.

experiments on the same biological material, such as dif-

ferent isoforms being probed in the microarray and sum-

marized in RNA-seq or differences in sample preparation.

Therefore, for our current goal of assessing reproducibil-

ity of DE detection methods, we believe it makes sense to

restrict this comparison to those genes that are called DE

by both, limma in microrray data and the corresponding

method in RNA-seq data.

We can find this restricted comparison in Figure 11

which reveals that in this case only tweeDEseq attains

a significant (P < 0.05) linear fit with respect to the P-

values from limma with a level of reproduciblity (R2 =

0.6) substantially larger (46% increase) than the second

best method (DESeq - PgO) with R2 = 0.41.

Finally, we have carried out a comparison between the

entire output of DE genes obtained with tweeDEseq in

RNA-seq data with the entire output DE genes obtained

with limma in microarray data. In Figure 12 we show

the resulting volcano plots where we have highlighted

with black dots those genes that are exclusively profiled

by each technology. As the figure suggests, many more

of these genes occur in RNA-seq than in microrray, one

remarkable case being the XIST gene which shows the

largest fold-change and significance level and corresponds
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Figure 9 Estimation of the number of differentially expressed (DE) genes from simulated data. Boxplots of ratios of estimated to true

numbers of DE genes obtained from data simulated from a hierarchical gamma-Poisson model with constant (a) and variable (b) library factors. This

figure summarizes the results in Additional file 2: Figures S9 and S10 reporting estimated numbers of DE genes under different simulated scenarios

of number or true DE genes and fold-change. The horizontal dash line at ratio one corresponds to the best performance where the estimated

number of DE genes matches the true number.
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Figure 10 Precision and recall comparison on the LCL RNA-seq

data. Precision (y-axis) and recall (x-axis) values for genes called DE at

1% FDR by different DE detection methods and configuration

parameters. The right y-axis indicates values of the F-measure shown

by dot lines. As the figure shows, tweeDEseq provides higher

F-measure values than other methods indicating a better

precision-recall tradeoff.

to the X-inactive specific non-coding RNA gene which

acts as one of the key regulators in silencing one of the

copies of chromosome X in females. Blue and red cir-

cles denoteMSY and XiE genes, respectively. As expected,

all MSY and XiE DE genes report significantly higher

expression in males and females, respectively, except for

the XiE gene NLGN4X in RNA-seq, likely due to low

expression from the inactive X chromosome in female

samples [26]. Surprisingly the volcano plots show that

limma on this microarray data set is able to detect a

few more such genes than tweeDEseq on RNA-seq

data. Last, but not least, an important difference between

the volcano plots of Figure 12 is the fact that expres-

sion changes larger than 2-fold in these microarray data

are nearly synonymous of statistical significance while

with RNA-seq a sizeable fraction of genes with 2-fold or

larger changes show very poor significance levels. This is

likely due to the larger variability of gene expression mea-

surements in RNA-seq experiments with many samples

and underscores the importance of using methods that

properly assess the statistical significance of the observed

changes.

Conclusions
The increased amount of biological variability revealed

by extensive replication in RNA-seq experiments brings

new challenges to the task of identifying genes whose

change in expression is both, biologically and statistically

significant. In microarray data, large fold-changes derived

from large data sets were nearly synonymous of statisti-

cal significance. The volcano plots in Figure 12 and the

examples of specific genes in Figure 1 illustrate why this

is not true anymore with RNA-seq count data. Those

figures unveil that one of these new challenges is to dis-

tinguish statistically significant changes among those that

are already large in magnitude. In this paper we pro-

vide an approach to this problem by using the PT family

of distributions, showing that it captures a much richer

diversity of expression dynamics in RNA-seq count data

than the statistical models based in the NB distributions

alone (see Figures 4 and 5). We have implemented a

two-sample PT-test in a software package for R, called

tweeDEseq, for detecting DE genes and demonstrated

with simulations that produces more accurate P-value dis-

tributions that lead to better calibrated q-values and FDR

estimates.

We have made an attempt to assess DE detection

accuracy with real RNA-seq data by comparing male

and female LCL samples normalized with three different

methods and comparing the results to a gold-standard set

of genes with documented sex-specific expression. This

assessment also shows that tweeDEseq provides a bet-

ter precision-recall tradeoff than the compared NB-based

methods (see Figure 10 and Additional file 2: Figure S11).

We have also made a comparison with matching sam-

ples hybridised on microarray chips which allowed us to

verify that tweeDEseq yields a higher degree of repro-

ducibility of significance levels with respect to microrray

data.

All these different comparative assessments have been

performed against two of the most widely currently

used methods for DE analysis of RNA-seq data, edgeR

and DESeq, under four different parameter configura-

tions each, since their default parametrisation is tailored

towards very limited sample size. Making an informed

decision on what is the most appropriate setup is not

trivial for the non-expert user and, for this reason, it is

important to underscore that tweeDEseq is competitive

with all of the methodologies that follow from the differ-

ent configurations of edgeR and DESeqwithout the need

to set a single parameter.

The fact that the volcano plots from tweeDEseq and

limma, derived from RNA-seq and microarray data,

reveal that limma is able to find a larger number of DE

genes from the gold-standard, suggests a long way still

ahead of us to fully exploit the RNA-seq technology for

DE. Not only regarding experimental aspects, but also sta-

tistical ones such as properly detecting and adjusting for

unwanted sources of non-biological variability, for which

there is currently no well-established available techniques,

as in the case of microarray data.
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Figure 11 Reproducibility of differential expression (DE) betweenmicroarray and RNA-seq. Raw P-values of differential expression in − log10
scale for DE genes called at 10% FDR by both, limma (y-axis), from microarray data, and the other compared DE detection method applied on

RNA-seq data (x-axis). A regression line is depicted in red. On the bottom-right corner of each panel, ρ indicates the Pearson correlation whereas R2

and P indicate, respectively, the coefficient of determination and P-value of the test for zero regression coefficient, of the − log10 p-values of limma

as function of those from the compared RNA-seq method. Only tweeDEseq provides a significant (p < 0.05) level of reproducibility between

P-values of DE genes reported by both, limma on microarray data and the compared RNA-seq method, attaining also the highest ρ and R2 values.

Blue dots indicate genes with documented sex-specific expression.

Other applications of high-throughput sequencing tech-

nology that output counts of molecules, like in Copy

Number Variation (CNV) analysis, could potentially ben-

efit of models based on the PT-distribution. It is our

perception that richer count data models of this kind will

become increasingly necessary to draw accurate conclu-

sions from data as technology brings us closer the actual

biology of the cell.

Methods
Pre-processing of RNA-seq data

We have analyzed data from Pickrell et al. (2010) [12]

that sequenced RNA from LCLs in 69 Nigerian (YRI) [12]

individuals. Raw reads were downloaded from http://eqtl.

uchicago.edu/RNA_Seq_data/unmapped_reads and pre-

processed using the GRAPE pipeline [27]. This pipeline

consists of first mapping the reads to the human genome

http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads
http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads
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Figure 12 Comparison of DE analyses betweenmicroarray and RNA-seq. Volcano plots of DE analyses performed on matching LCL samples

profiled with RNA-seq (a) and gene expression microarrays (b). The x-axis corresponds to log2 fold-changes between female and male individuals

while the y-axis corresponds to − log10 P-value of significance. RNA-seq data were analysed with tweeDEseq while microarray data were analysed

with limma. Grey dots indicate genes common to both, the RNA-seq and the microarray gene expression matrices, while black dots indicate genes

occurring exclusively in one of the two data sets. Blue and red circles indicate genes documented in the literature with sex-specific expression,

concretely belonging to the male-specific region of chromosome Y and escaping X-chromosome inactivation in females, respectively.

version hg19 using the GEM mapper software [28]. Sec-

ond, mapped reads were summarized into gene-level

counts according to the GENCODE annotation version 3c

[29] with Ensembl release 63 gene identifiers, by select-

ing those reads that mapped either completely within

an exon or spanning a junction. This resulted in an

initial table of counts of 38,415 Ensembl genes. This

table of counts form part of the experimental data pack-

age tweeDEseqCountData available at http://www.

bioconductor.org under the name pickrell1.

The table of counts was filtered to discard lowly

expressed genes by keeping only those with an average

of more than 0.1 counts per million (CPM) through-

out the samples. The results shown in Additional file 2:

Figure S11 were obtained by applying a more stringent

minimum cutoff of 0.5 CPM. When we applied a normal-

ization method that adjusted for gene length and G+C

content (see below), genes without this information were

also discarded. When the minimum CPM was 0.1, then

31,226 genes were kept when no normalization method

or edgeR-TMM was applied and when cqn was applied

then 27,438 were kept (see pg. 5 and 6 from Additional

file 1). When the minimum CPMwas 0.5 then these num-

bers decreased to 19,166 and 18,009 genes, respectively.

Three approaches to normalizing the table of counts

from the LCL data have been considered. The first one

is to work with the initial table of raw counts without

any kind of normalization, the second one is to apply

TMM [2] normalization as implemented in the edgeR

[30] package, the third one is to use the methodology

implemented in the cqn [4] Bioconductor package which

adjusts for sample-specific effects of gene length and G+C

content of every gene. When using the DESeq method

for DE analysis in the LCL samples, the TMM normal-

ization procedure was replaced by its own normalization

procedure.

Raw counts were transformed into filtered and nor-

malized counts for the purpose of producing MA-plots

(Figure 2), assessing goodness of fit to the NB distribu-

tion (Figure 3), examining the relationship between mean

expression level and the shape parameter of the PT distri-

bution (Figure 4) and doingDE analysis with tweeDEseq.

In the case of DESeq raw counts were transformed into

normalized counts only when used with the cqn normal-

ization method.

In the case of edgeR-TMM normalization, counts

were transformed following the steps that the function

exactTest() in edgeR takes: calculate normalization

factors with the TMMmethod (calcNormFactors()),

estimate effective library sizes and adjust counts to

effective library sizes obtaining non-integer normalized

pseudocounts (equalizeLibSizes()) which were

http://www.bioconductor.org
http://www.bioconductor.org
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subtracted by 0.5 and then raised to the smallest inte-

gers not less than these pseudocounts (ceiling()).

These steps are written together in the function

normalizeCounts() from the tweeDEseq package.

In the case of cqn, normalization offsets are calculated

by the function cqn() as log2 RPMs, which are added

to original raw log2 RPMs. These are rolled back to abso-

lute numbers and “unlogged” obtaining non-integer nor-

malized pseudocounts which, analogously to the edgeR-

TMM case, were subtracted by 0.5 and then raised to

the smallest integers not less than these pseudocounts

(ceiling()). The rationale behind subtracting 0.5 to

the pseudocounts instead of directly truncating or raising

to the next integer value, is to try to approach as much

as possible the correct proportion of zero counts in the

normalized data.

However, when performing DE analysis with edgeR,

or with DESeq and its own normalization procedure,

the specific recommendations made by the correspond-

ing software authors were followed. More concretely,

raw counts were not transformed in order to preserve

their sampling properties and normalization adjustments

entered the DE analysis through the corresponding nor-

malization factors and offsets arguments within the func-

tions that test for DE (see scripts for details in Additional

file 1).

Pre-processing of microarray data

The microarray LCL data from [24] was processed from

the raw CEL files available at http://www.ncbi.nlm.nih.

gov/geo under accession GSE7792. Firstly, we only con-

sidered YRI samples. Secondly, data was processed using

the Bioconductor oligo package. Quality assessment was

performed by calculating NUSE and RLE diagnostics

(Bolstad et al., 2005) and discarding those samples that

either of the two reported diagnostics was considered

below a minimum quality threshold. Third, using the

RMA algorithm (Irizarry et al., 2003) implemented in the

rma() function from the oligo package with argument

target="core", expression values were background

corrected, normalized and summarized into Affymetrix

transcript clusters. Fourth, most samples formed part

of family trios and only samples belonging to father

or mother were kept. Fifth, using the getNetAffx()

function from the oligo package, Ensembl Transcript

identifiers well obtained for each Affymetrix transcript

cluster identifier. Sixth, using the bioconductor package

biomaRt, Ensembl Transcript identifiers were translated

into Ensembl Gene identifiers, resolving multiple assign-

ments by keeping the Ensembl Gene identifier that had a

match in the Ensembl Gene identifiers forming the table of

counts of the [12] RNA-seq data, or choosing one arbitrar-

ily, otherwise. Seven, duplicated assignments of the same

Ensembl Gene identifier to multiple Affymetrix transcript

cluster identifiers were resolved by keeping the transcript

cluster with largest expression variability measured by its

interquartile range (IQR).

At this point an expression data matrix of 16,323

Ensembl Genes by 74 samples was obtained and using

the scanning date of each CEL file, samples were grouped

into 5 batches, out of which one containing only three

male samples was discarded leaving a total of 71 sam-

ples distributed into 4 balanced batches across gender.

Batch effect was removed by using the QR-decomposition

method implemented in the removeBatchEffect()

function from the Bioconductor package limma [25]

while keeping the sex-specific expression effect by setting

the gender sample indicator variable within the design

matrix argument. Finally, samples and genes were further

filtered to match those from the RNA-seq table of counts.

Matching RNA-seq andmicroarray expression data

matrices

To perform the analyses summarized in Figure 11 and

Additional file 2: Figure S12 we further filtered the

previously pre-processed RNA-seq and microarray gene

expression matrices to match both Ensembl Gene iden-

tifiers and individual HapMap identifiers. This resulted

in two gene expression data matrices of equal dimension

with 15,194 genes and 36 samples.We only considered the

RNA-seq data normalized with the cqn package.

To perform the analyses summarized in Figure 12 we

built two other gene expression data matrices where, as

before, samples were restricted to those 36 that matched

between RNA-seq and microarray data but genes were

not, leading to a RNA-seq and microarray gene expres-

sion data matrices of 27,438 and 16,323 Ensembl Genes by

36 samples, respectively. Genes were not matched since

the purpose of these analyses was to gather insight into

the differences and challenges in detecting DE genes using

RNA-seq with respect to microarray gene expression data

with many replicates.

Functional annotations

Functional annotations for Ensembl genes forming

the tables of counts, were retrieved from http://

jun2011.archive.ensembl.org with R and the

biomaRt Bioconductor package. Gene length and G+C

content annotations, used with the cqn normalization

method, were obtained by downloading all human cDNAs

from ftp://ftp.ensembl.org/pub/release-63/fasta/homo_

sapiens/cdna/Homo_sapiens.GRCh37.63.cdna.all.fa.gz

and calculating the length and G+C content of the longest

cDNA for each Ensembl gene.

The gold-standard list of genes with sex-specific expres-

sion was built with genes reported in the literature that,

in one hand, escape chromosome X inactivation [22] and,

on the other hand, belong to the male-specific region of

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://jun2011.archive.ensembl.org
http://jun2011.archive.ensembl.org
ftp://ftp.ensembl.org/pub/release-63/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37 .63.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-63/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37 .63.cdna.all.fa.gz
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chromosome Y [23]. In both cases, gene symbols were

first translated into Ensembl gene identifiers and then fur-

ther filtered to keep only those included in the set of

Ensembl gene identifiers release 63. This resulted in a

gold-standard list of 95 genes with sex-specific expression.

The list of housekeeping genes was retrieved from the

literature [19] and mapped to Ensembl genes release 63,

resulting in a final set of 669 housekeeping genes. The

expression breadth reported in Figure 5 was obtained

through the Barcode Gene Expression catalog [18] which

uses information from 18,656 publicly available microar-

ray samples from 131 tissue types, of the HG-U133 Plus

2.0 Affymetrix chip, to estimate the proportion of tis-

sue types in which a given probeset is expressed in more

than half the samples. After discarding unreliable probes

(annotated with high-entropy in the catalog), we use these

values as surrogates for expression breadth by mapping

Affymetrix probeset identifiers to the genes in our table

of counts through the hgu133plus2.db Bioconductor

annotation package, leading to 16,292 genes with expres-

sion breadth values.When two ormore probesetsmapped

to the same gene, the maximum value was taken for that

gene.

All these functional data are included in the exper-

imental data package tweeDEseqCountData avail-

able at http://www.bioconductor.org under the keywords

annotEnsembl63, genderGenes and hkGenes.

Poisson-Tweedie distributions

Poisson-Tweedie (PT) distributions have been studied by

several authors [31-34] and unify several over-dispersed

count data distributions (see Figure one in [34]). This fam-

ily of distributions can be defined by a probability generat-

ing function and mass probabilities have to be computed

using a recursive algorithm [31,34]. El-Shaarawi et al.

(2011) [34] compared different recursions and parameter-

izations of this family providing an algorithm to compute

the PT probability distribution function. In the R package

tweeDEseq we have developed a fast implementation,

written in the C programming language, of this recursive

algorithm.We briefly describe here the PT family of distri-

butions as well as how we have used it to analyze RNA-seq

count data in the context of a differential expression (DE)

analysis.

Following El-Shaarawi et al. (2011) [34], let Y ∼ PT

(a, b, c) be a PT random variable with vector of parameters

θ = (a, b, c)T defined in the domain

� = (−∞, 1]×(0,+∞)×[ 0, 1) . (1)

The PT random variable Y has a probability generating

function (pgf ) of the form:

GY (y|a, b, c) = exp

{
b

a

(
(1 − c)a − (1 − cy)a

)}
, (2)

when a �= 0, while when a = 0, then:

lim
a→0

GY (y|a, b, c) =
[

(1 − c)

(1 − cy)

]b
. (3)

Using this parameterization, the following recursive

algorithm can be used to compute the PT probability

distribution function [34]:

p0 =
{
eb[(1−c)a−1]/a, a �= 0,

(1 − c)b, a = 0,
(4)

p1 = bcp0, pk+1 = 1

k + 1

⎛
⎝bcpk +

k∑

j=1

jrk+1−jpj

⎞
⎠ ,

k = 1, 2, . . .

(5)

where

r1 = (1 − a)c, rj+1 =
(
j − 1 + a

j + 1

)
crj, j = 1, 2, . . .

(6)

and pi denotes the probability of observing i counts.

For the sake of interpretability, we reparameterize θ =
(a, b, c) to θ = (μ,φ, a), where μ denotes the mean, φ =
σ 2/μ is the dispersion index (σ 2 is the variance), and a the

shape parameter that is used to define some count data

distributions that are particular cases of PT such as Pois-

son or negative binomial. The relationship between both

parameterizations is the following:

c = φ − 1

φ − a
, b = μ(1 − a)(1−a)

(φ − 1)(d − a)−a
. (7)

The PT model includes not only Poisson (a = 1) and neg-

ative binomial (NB) (a = 0) but also other distributions

that have been used to analyze count data such as Poisson-

Inverse Gaussian (PIG) (a = 1
2 ), Pólya-Aeppli (P-A)

(a = −1) or Neyman type A (a → −∞). Therefore, the

PT distribution family unifies several diverse count data

distributions, including different overdispersed distribu-

tions such as NB or PIG. These distributions can model

different scenarios as, for instance, a RNA-seq expression

profile with a wide dynamic range leading to a heavy tail

in the distribution. In such a case, PIG has a heavier tail

than NB and this would make it more appropriate for such

a gene. Note that an extremely heavy tail implies overdis-

persion, but the converse does not hold; hence the NB

distribution is not adequate to model RNA-seq expression

profiles of genes with a wide dynamic range due to their

intrinsic biological variability [15].

Given a certain parameterization Kokonendji et al.

(2004) [17] prove that the mean-variance relationship for

the PT family can be expressed as:

σ 2 = μ
(
1 + μp−1 exp

{
(2 − p)
p

})
(8)

http://www.bioconductor.org
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where p is the shape parameter of that specific parame-

terization. It follows that, whereas the NB distribution is

only able to capture a quadratic mean-variance relation-

ship, the PT family is able to generalize this relationship

to any order. As a result, it is more convenient to use the

PT model when dealing with count data which presents

variable overdispersion.

Parameter estimation for Poisson-Tweedie distributions

We need to estimate the parameter vector θ̂ = (μ̂, φ̂, â)

to develop, on the one hand, a test of goodness-of-fit to

an NB distribution and, on the other hand, a two-sample

PT-test for differences in means. This latter test is used

for detecting differentially expressed genes. Without loss

of generality, let ygk be the number of counts for gene g in

sample k, derived from pre-processing RNA-seq data. We

assume that ygk follows the PT distribution:

ygk ∼ PT(μg ,φg , ag) . (9)

In practice, we do not know the parameters θg =
μg ,φg , ag , but we can estimate them from data by maxi-

mum likelihood when the sample size is sufficiently large

so that it guarantees the desirable large sample properties

of unbiasedness and minimum variance of the maximum

likelihood estimate (MLE). In the Additional file 2: Sup-

plementary Information we provide a simulation study

in order to estimate the minimum number of samples

per group that approximately meets this requirement (see

Additional file 2: Figure S7).

We obtained the MLE θ̂ using a quasi-Newton method

with constraints. We have implemented such a procedure

using the optim function in R. In order to guarantee

good convergence, we consider as initial parameters the

moment estimates of μg and φg , and ag = 0. We choose

this value for ag because it corresponds to an NB model

that is the natural cut-point of PT’s parameter space.

Goodness-of-fit to a negative binomial distribution

In the framework of PT distributions we can formulate a

test of the goodness of fit to an NB distribution by consid-

ering H0 : a = 0 versus Ha : a �= 0. Using a likelihood

ratio test (LRT), the testing statistic is [34]

T =
max(μ̂,φ̂,â) ℓ(μ̂, φ̂, â|y0, . . . , ym)

max
(μ̂,φ̂)

ℓ(μ̂, φ̂|y0, . . . , ym)
, (10)

where numerator and denominator correspond to the

likelihood functions for the PT and NB models, respec-

tively. Since the PT model has just one parameter more

than the NB model, the quantity 2 logT ∼ χ2
1 under the

null hypothesis, as n grows large, and it can be used to

decide whether count data follow a NB distribution by

means of a Q-Q plot (see Additional file 2: Figure S2) or

by calculating the corresponding P-value.

Test to determine differentially expressed genes

For a given gene, let us assume that we observe

c1, c2, . . . , cn counts for n individuals and that we tab-

ulate these counts into a contingency table with cells,

y0, y1, . . . , ym where m = max{c1, . . . , cn}. Therefore, yc
represents the number of observations with c counts.

Then, the log-likelihood can be written as follows

log ℓ(θ̂ |y0, . . . , ym) =
m∑

i=0

yi li(θ̂) , (11)

where li(θ̂) = log[ pi(θ̂)] and pi(θ̂) denotes the mass prob-

ability at i with i = 0, 1, . . . ,m and is computed using

the recurrence given in equation (6). El-Shaarawi et al.

(2011) [34] indicate that when regularity conditions hold,

that is, when θ is an interior point of the parameter space

�, asymptotic normality of θ̂ can be assumed. Therefore,

the negative inverse Hessian matrix of the log-likelihood

at the MLE θ̂ corresponds to the estimated covariance

matrix of θ̂ . In particular, for theμ parameter we have that

Var(μ) = −E

[
∂2

∂μ2
log ℓ(θ̂ |y0, . . . , ym)

]−1

. (12)

Consequently, if we are interested in comparing the mean

counts for two sample groups, denoted by μA and μB, a

two-sample PT-test for themean with null hypothesisH0 :
μA
μB

= 1, which we perform in logarithmic scale as H0 :

log(μA) = log(μB), can be built by calculating the PT-

statistic:

T = μ̂A − μ̂B√
Var(μA) + Var(μB)

, (13)

The PT-statitic, T, follows a standard normal distri-

bution under the null hypothesis. Therefore, the (1 −
α)% percentile of a N(0, 1) distribution is used to deter-

mine whether the observed differences between the two

groups are statistically significant or not by providing a

corresponding P-value that can be later on corrected for

multiple testing using, for instance, Benjamini-Hochberg’s

FDR [35].

Simulation of RNA-seq data

The results shown in Figure 6 recreating the null hypoth-

esis of no DE with real RNA-seq data were performed

by dividing the LCL data into two separate data sets of

male and female samples. From each data set we boot-

strapped 100 times two groups of 20 samples uniformly

at random, thus obtaining on the one hand, group pairs

of female samples and, on the other hand, group pairs

of male samples. On each bootstrapped data set we per-

formed the two-sample test for DE detection of every

method between the groups of female versus female sam-

ples and male versus male samples. We also considered

two versions of the data, one with the raw un-normalized

counts and the other with the counts normalized with the
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cqn package [4]. In principle, there are no DE genes to be

discovered from these comparisons, and therefore, under

the null hypothesis of no DE, the P-value distribution for

any given gene throughout the 100 bootstrapped data sets

should be uniform.

The simulations shown in Figures 7, 8 and 9 contained

synthetic RNA-seq data generated from a gamma-Poisson

mixture model in a similar way to other published studies

[8]. Under this model, we first draw dispersion parameters

φg for every gene g at random from a gamma distribu-

tion Gamma(k = 2, θ = 0.7) and means according to

three different fold-changes (1.5, 2 and 4) where half of

the genes were up-regulated and the other half down-

regulated. The λgi Poisson parameter for every gene g and

sample i was drawn at random from a gamma distribution

Gamma(k = a, θ = 1/(φ − 1)) with a = fμgk/(φ − 1)

and f ≈ N(0, σ) corresponding to library factor which

was either constant (σ = 0) or variable (σ = 0.5). Counts

were simulated for each gene g from the resulting mixture

gamma-Poisson distribution with parameters λgi for each

sample i. Note that the resulting marginal distribution

from the gamma-Poisson is a negative-binomial.

Software availability
• Project name: tweeDEseq
• Project home page: http://www.bioconductor.org/

packages/release/bioc/html/tweeDEseq.html
• Operating system(s): Platform independent
• Programming language: R and C
• Other requirements: R 3.0.0
• Licence: GNU GPL
• Any restrictions tu use by non-academics: no

restrictions
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Additional file 2: Supplementary materials. PDF file including

supplementary figures and tables.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JRG and PP conceived the idea of modelling RNA-seq count data using PT

family of distributions. ME programmed the recursive algorithm to compute

PT probability distribution, performed simulation studies, and created the R

package jointly with JRG and RC. PP and JRG proposed the statistical test for

detecting DE genes. DG preprocessed the RNA-seq data. RC, ME and JRG

analysed the data and wrote the paper. The project was supervised by JRG. All

authors read and approved the final manuscript.

Acknowledgements

This work was supported by grants from the ‘Ministerio de Ciencia e

Innovación - MICINN’ (MTM2011-26515 to JRG and ME, MTM2010-09526-E to

JRG, MTM2009-10893 to PP and TIN2011-22826 to RC), from European

Reseach Council, Breathe project, ERC-AdG, GA num. 268479 to ME.

Author details
1Center for Research in Environmental Epidemiology (CREAL), Barcelona,

Spain. 2Department of Mathematics, Universitat Autònoma de Barcelona

(UAB), Barcelona, Spain. 3Center for Genomic Regulation (CRG), Barcelona,

Spain. 4Department of Experimental and Health Sciences, Research Program

on Biomedical Informatics (GRIB), Universitat Pompeu Fabra, Barcelona, Spain.
5Hospital del Mar Research Institute (IMIM), Barcelona, Spain. 6CIBER

Epidemiology and Public Health (CIBERESP), Barcelona, Spain.

Received: 1 June 2013 Accepted: 14 August 2013

Published: 21 August 2013

References

1. Mortazavi1 A, Williams B, McCue K, Schaeffer L, Wold B:Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods

2008, 5:621–628.

2. Robinson M, Oshlack A: A scaling normalization method for

differential expression analysis of RNA-seq data. Genome Biol 2010,

11:R25.

3. Risso D, Schwartz K, Sherlock G, Dudoit S: GC-content normalization for

RNA-Seq data. BMC Bioinformatics 2011, 12:480.

4. Hansen KD, Irizarry RA, Wu Z: Removing technical variability in

RNA-seq data using conditional quantile normalization. Biostatistics

2012, 13(2):204–216.

5. Marioni J, Mason C, Mane S, Stephens M, Gilad Y: RNA-seq: An

assessment of technical reproducibility and comparison with gene

expression arrays. Genome Res 2008, 18:1509–1517.

6. Robinson MD, Smyth GK: Small-sample estimation of negative

binomial dispersion, with applications to SAGE data. Biostatistics

2008, 9(2):321–332.

7. Anders S, Huber W: Differential expression analysis for sequence

count data. Genome Biol 2010, 11(10):R106.

8. Lund SP, Nettleton D, McCarthy DJ, Smyth GK: Detecting differential

expression in RNA-sequence data using quasi-Likelihood with

shrunken dispersion estimates. Stat Appl Genet Mol Biol 2012, 11(5).

doi:10.1515/1544-6115.1826.

9. Hardcastle TJ, Kelly KA: baySeq: empirical Bayesian methods for

identifying differential expression in sequence count data. BMC

Bioinformatics 2010, 11:422.

10. McCarthy DJ, Chen Y, Smyth GK: Differential expression analysis of

multifactor RNA-Seq experiments with respect to biological

variation. Nucleic Acids Res 2012, 40(10):4288–4297.

11. Wu H, Wang C, Wu Z: A new shrinkage estimator for dispersion

improves differential expression detection in RNA-seq data.

Biostatistics 2012. doi:10.1093/biostatistics/kxs033.

12. Pickrell J, Marioni J, Pai A, Degner J, Engelhardt B, Nkadori E, Veyrieras J,

Stephens M, Gilad Y, Pritchard J: Understanding mechanisms

underlying human gene expression variation with RNA sequencing.

Nature 2010, 464:768–772.

13. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,

Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G,

Tierney L, Yang JYH, Zhang J: Bioconductor: open software

development for computational biology and bioinformatics.

Genome Biol 2004, 5(10):R80.

14. Van De Wiel MA, Leday GGR, Pardo L, Rue H, Van Der Vaart AW,

Van Wieringen WN: Bayesian analysis of RNA sequencing data by

estimating multiple shrinkage priors. Biostatistics 2012.

doi:10.1093/biostatistics/kxs031.

15. Hansen K, Wu Z, Irizarry R, Leek J: Sequencing technology does not

eliminate biological variability. Nat Biotech 2011, 29:572–573.

16. Jorgensen B: The Theory of DispersionModels. New York: Chapman and

Hall; 1997.

17. Kokonendji C, Dossou-Gbété S, Demétrio C: Some discrete exponencial

dispersion models: Poisson-Tweedie and Hinde-Demétrio classes.

SORT 2004, 28(2):201–214.

18. McCall M, Uppal K, Jaffee H, Zilliox R M J Irizarry: The Gene Expression

Barcode: leveraging public data repositories to begin cataloging

http://www.bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://www.bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://www.biomedcentral.com/content/supplementary/1471-2105-14-254-S1.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-14-254-S2.pdf


Esnaola et al. BMC Bioinformatics 2013, 14:254 Page 22 of 22

http://www.biomedcentral.com/1471-2105/14/254

the human andmurine transcriptomes. Nucleic Acids Res 2011,

39:D1011–D1015.

19. Eisenberg E, Levanon EY: Human housekeeping genes are compact.

Trends Genet 2003, 19(7):362–365.

20. Leek JT, Storey JD: Capturing heterogeneity in gene expression

studies by surrogate variable analysis. PLoS Genet 2007,

3(9):1724–1735.

21. Storey JD, Tibshirani R: Statistical significance for genomewide

studies. Proc Natl Acad Sci U S A 2003, 100(16):9440–9445.

22. Carrel L, HF W: X-inactivation profile reveals extensive variability in

X-linked gene expression in females. Nature 2005, 434:400–404.

23. Skaletsky H, Kuroda-Kawaguchi T, Minx P, Cordum H, Hillier L, Brown L,

Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A,

Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF,

Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W,

Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong

C, Tin-Wollam A, Yang SP, Waterston R, Wilson R, Rozen S, Page D: The

male-specific region of the human Y chromosome is a mosic of

discrete sequence classes. Nature 2003, 423:825–837.

24. Huang RS, Duan S, Bleibel WK, Kistner EO, Zhang W, Clark TA, Chen TX,

Schweitzer AC, Blume JE, Cox NJ, Dolan ME: A genome-wide approach

to identify genetic variants that contribute to etoposide-induced

cytotoxicity. Proc Natl Acad Sci U S A 2007, 104(23):9758–9563.

25. Smyth GK: Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol

Biol 2004, 3:. doi:10.2202/1544-6115.1027.

26. Nguyen DK, Disteche CM: Dosage compensation of the active X

chromosome in mammals. Nat Genet 2006, 38:47–53.

27. Knowles DG, Röder M, Merkel A, Guigó R: Grape RNA-Seq analysis

pipeline environment. Bioinformatics 2013, 29(5):614–621.

28. Marco-Sola S, Sammeth M, Guigó R, Ribeca P: The GEMmapper: fast,

accurate and versatile alignment by filtration. Nat Methods 2012,

9(12):1185–1188.

29. Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J, Lagarde

J, Gilbert JGR, Storey R, Swarbreck D, Rossier C, Ucla C, Hubbard T,

Antonarakis SE, Guigo R. Genome Biol 2006, 7(Suppl 1):S4.1–S4.9.

30. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package

for differential expression analysis of digital gene expression data.

Bioinformatics 2010, 26:139–140.

31. Hougaard P, Lee ML, Whitmore G: Analysis of overdispersed count

data by mixtures of Poisson variables and Poisson processes.

Biometrics 1997, 53:1225–1238.

32. Gupta R, Ong S: A new generalization of the negative binomial

distribution. Compu Stat Data An 2004, 45:287–300.

33. Puig P, Valero J: Count Data Distributions: Some Characterizations

With Applications. J Am Stat Assoc 2006, 101:332–340.

34. El-Shaarawi A, Zhu R, Joe H:Modelling species abundance using the

Poisson-Tweedie family. Environmetrics 2011, 22:152–164.

35. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A

practical and powerful approach to multiple testing. J R Stat Soc B

1995, 57:289–300.

doi:10.1186/1471-2105-14-254
Cite this article as: Esnaola et al.: A flexible count data model to fit the wide
diversity of expression profiles arising from extensively replicated RNA-seq
experiments. BMC Bioinformatics 2013 14:254.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Review of competing methods
	Different gene expression dynamics require different distributional assumptions on count data
	Accurately testing differential expression
	Identification of sex-specific gene expression in lymphoblastoid cell lines
	Reproducibility with respect to microarray data

	Conclusions
	Methods
	Pre-processing of RNA-seq data
	Pre-processing of microarray data
	Matching RNA-seq and microarray expression data matrices
	Functional annotations
	Poisson-Tweedie distributions
	Parameter estimation for Poisson-Tweedie distributions
	Goodness-of-fit to a negative binomial distribution
	Test to determine differentially expressed genes
	Simulation of RNA-seq data

	Software availability
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

