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Abstract
Identifying sources of variation in DNA methylation levels is important for understanding

gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating

DNA methylation levels. However, modeling bisulfite sequencing data is complicated by

dramatic variation in coverage across sites and individual samples, and because of the

computational challenges of controlling for genetic covariance in count data. To address

these challenges, we present a binomial mixed model and an efficient, sampling-based

algorithm (MACAU: Mixed model association for count data via data augmentation) for

approximate parameter estimation and p-value computation. This framework allows us to

simultaneously account for both the over-dispersed, count-based nature of bisulfite

sequencing data, as well as genetic relatedness among individuals. Using simulations and

two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thali-
ana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show

that our method provides well-calibrated test statistics in the presence of population struc-

ture. Further, it improves power to detect differentially methylated sites: in the RRBS data

set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model

(the next best approach). Changes in these sites are consistent with known age-related

shifts in DNA methylation levels, and are enriched near genes that are differentially

expressed with age in the same population. Taken together, our results indicate that

MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular

salience to analyses of structured populations. MACAU is freely available at www.xzlab.

org/software.html.
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Author Summary

DNAmethylation is an important epigenetic modification involved in regulating gene
expression. It can be measured at base-pair resolution, on a genome-wide scale, by cou-
pling sodium bisulfite conversion with high-throughput sequencing (a technique known
as ‘bisulfite sequencing’). However, the data generated by such methods present several
challenges for statistical analysis. In particular, while the raw data generated from bisulfite
sequencing experiments are read counts, they are often converted to proportions for ease
of modeling, resulting in loss of information. Furthermore, although DNAmethylation
levels are known to be heritable—and are thus affected by kinship and population struc-
ture—existing approaches for modeling bisulfite sequencing data fail to account for this
covariance. Such failure can lead to spurious associations and reduced power. Here, we
present a new approach that models bisulfite sequencing data using raw read counts, while
also taking into account population structure and other sources of data over-dispersion.
Using simulations and two real data sets (publicly available data from Arabidopsis thaliana
and newly generated data from Papio cynocephalus), we demonstrate that our model pro-
vides well-calibrated p-values and improves power compared with previous methods. In
addition, the DNA methylation patterns identified by our method agree with those
reported in previous studies.

Introduction
DNAmethylation—the covalent addition of methyl groups to cytosine bases—is a major epige-
netic gene regulatory mechanism observed in a wide variety of species. DNA methylation influ-
ences genome-wide gene expression patterns, is involved in genomic imprinting and X-
inactivation, and functions to suppress the activity of transposable elements [1–3]. In addition,
DNAmethylation is essential for normal development. For example, mutant Arabidopsis
plants with reduced levels of DNAmethylation display a range of abnormalities including
reduced overall size, altered leaf size and shape, and reduced fertility [4–6]. In humans, DNA
methylation levels are strongly linked to disease, including major public health burdens such as
diabetes [7,8], Alzheimer’s disease [9,10], and many forms of cancer [7,11–15]. Together, these
observations point to a central role for DNA methylation in shaping genome architecture,
influencing development, and driving trait variation. Consequently, there is substantial interest
in identifying the genetic [16–19] and environmental [20–23] factors that shape DNAmethyla-
tion levels. Progress toward this goal requires statistical approaches that can handle the com-
plexities of real world, population-based datasets. Here, we present one such approach,
designed specifically for analyses of differential methylation levels in bisulfite sequencing
datasets.

High-throughput bisulfite sequencing approaches, which include whole genome bisulfite
sequencing (WGBS or BS-seq) [24], reduced representation bisulfite sequencing (RRBS)
[25,26], and sequence capture followed by bisulfite conversion [27,28], are used to estimate
genome-wide DNAmethylation levels at base-pair resolution. All such methods rely on the dif-
ferential sensitivity of methylated versus unmethylated cytosines to the chemical sodium bisul-
fite. Specifically, sodium bisulfite converts unmethylated cytosines to uracil (and ultimately
thymine following PCR), while methylated cytosines are protected from conversion. Estimates
of DNA methylation levels for each cytosine base can thus be obtained directly from high-
throughput sequencing data by comparing the number of C’s (reflecting an originally
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methylated version of the base) versus T’s (reflecting an originally unmethylated version of the
base) at that position in the mapped reads.

The raw data produced by bisulfite sequencing methods are therefore count data, in which
both the number of methylated reads and the total coverage at a site contain useful informa-
tion. Higher total coverage corresponds to a more reliable estimate of the true DNAmethyla-
tion level, which, in a typical experiment, can vary dramatically across individuals and sites
(e.g., by several orders of magnitude: S1 Fig). Many commonly used methods for testing for dif-
ferential methylation (whether by genotype, environmental predictor, or experimental pertur-
bation) ignore this variability by converting counts to percentages or proportions (e.g., t-tests,
Mann-Whitney U tests, linear models, and all tools initially designed for array-based data
[29,30]; Table 1). Thus, a site at which 5 of 10 reads are designated as methylated (i.e., read as a
cytosine) is treated identically to a site at which 50 of 100 reads are designated as methylated.
This assumption reduces the power to uncover true predictors of variation in DNAmethyla-
tion levels, because it treats noisy measurements the same way as accurate ones.

To address this problem, several recently introduced methods for differential DNAmethyl-
ation analysis implement a beta-binomial model (e.g., ‘DSS: Dispersion Shrinkage for Sequenc-
ing data’ [31], ‘RADMeth: Regression Analysis of Differential Methylation’ [33], and ‘MOABS:
Model Based Analysis of Bisulfite Sequencing data’ [32]). These methods model the binomial
nature of bisulfite sequencing data, while taking into account the well-known problem of over-
dispersion in sequencing reads. Because these methods work directly on count data, they can
reliably account for variation in read coverage across sites and individuals. Consequently, beta-
binomial methods consistently provide increased power to detect true associations between
genetic or environmental sources of variance and DNAmethylation levels [31–33].

However, methods based on beta-binomial models only account for over-dispersion due to
independent variation, making them unsuited for data sets containing population structure or
related individuals. Accounting for genetic relatedness is important because genetic variation
can exert strong and pervasive effects on DNA methylation levels [17,19,38,39]. In humans,
methylation levels at more than ten thousand CpG sites are influenced by local genetic varia-
tion [18], and DNA methylation levels in whole blood are 18%-20% heritable on average, with
the heritability estimates for the most heritable loci (top 10%) averaging around 68% [38,39].
As a result, DNA methylation levels will frequently covary with kinship or population struc-
ture, and failure to account for this covariance could lead to spurious associations or reduced
power to detect true effects. This phenomenon has been extensively documented for genotype-
phenotype association studies [35,36,40–42], and controlling for genetic covariance between

Table 1. Approaches for identifying differentially methylated loci in bisulfite sequencing data sets.

Statistical method Directly models
counts?

Controls for biological
covariates?

Controls for genetic
covariance?

Programs that implement the method

t-test or Wilcoxon rank-
sum test

No No No R and many others

Fisher’s exact test Yes No No R and many others

Binomial regression Yes Yes No R and many others

Linear regression No Yes No R and many others

Beta-binomial model Yes Some1 No DSS [31], MOABS [32], RadMeth [33]

Linear mixed model No Yes Yes GEMMA [34], EMMA [35], EMMAX [36],
FaST-LMM [37]

Binomial mixed model Yes Yes Yes MACAU

1Only RadMeth; the implementations of the beta-binomial model in MOABS and DSS do not allow the user to control for covariates.

doi:10.1371/journal.pgen.1005650.t001
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samples is now a basic requirement for genome-wide association studies. Similar logic applies
to analyses of gene regulatory phenotypes and studies of gene expression variation often do
take genetic structure into account by using mixed model approaches [43–45]. However,
despite growing interest in environmental epigenetics and epigenome-wide association studies
(EWAS), none of the currently available count-based methods appropriately control for genetic
effects on DNAmethylation levels in bisulfite sequencing data (Table 1). Consequently, even
though count-based methods have been shown to be more powerful, recent bisulfite sequenc-
ing studies have turned to linear mixed models to deal with the confounding effects of popula-
tion structure [19,46].

To address this gap, we present a binomial mixed model (BMM) for identifying differen-
tially methylated sites that directly models raw read counts while accounting for both covari-
ance between samples and extra over-dispersion caused by independent noise. We also present
an efficient, sampling-based inference algorithm to accompany this model, called MACAU
(Mixed model association for count data via data augmentation). MACAU works directly on
binomially distributed count data from any high-throughput bisulfite sequencing method (e.g.,
WGBS, RRBS, targeted sequence capture) and uses random effects to not only model over-dis-
persion (as in the standard beta-binomial approach [47]), but also to model relatedness/popu-
lation structure. Hence, MACAU enables users to identify differentially methylated sites in a
wide variety of settings, with little cost to power even when genetic effects on DNAmethylation
levels are negligible.

We compared MACAU’s performance with currently available methods under two realis-
tic scenarios, using both real bisulfite sequencing data sets (WGBS and RRBS) and simula-
tions parameterized based on properties of real data. In the first scenario, we analyzed
publicly available data from Arabidopsis thaliana [48] to show that, when a predictor variable
of interest is correlated with population structure, MACAU provides better control of type I
error than existing methods. This setting is particularly relevant to understanding geographic
variation in DNA methylation levels (e.g., [19,48–50]) and for identifying genetic or environ-
mental predictors of DNA methylation in structured samples (e.g., [50,51]). In the second
scenario, we used newly generated RRBS data from wild baboons (Papio cynocephalus) to
demonstrate that MACAU also provides increased power to detect truly differentially meth-
ylated sites in the presence of kinship—a condition that often holds in analyses of natural
populations (e.g., [48,52,53]) and in tests for epigenetic discordance between siblings [22,53–
55]. As interest in epigenome-wide association studies (EWAS), environmental epigenetics,
and the epigenetic correlates of disease grows, these types of complex data sets will become
increasingly common.

Results

The binomial mixed model and the MACAU algorithm
Here, we briefly describe the model and the algorithm. Additional information is provided in
the S1 Text, which includes details on the model, inference method, and algorithm (including
descriptions of the data augmentation approach and efficient MCMC sampling steps).

To detect differentially methylated sites, we model each potential target of DNA methyla-
tion individually (i.e., we model each CpG site one at a time) as a function of x, a predictor vari-
able of interest. Here, x could be a genotype value, as in methylation QTL mapping analyses; an
environmental predictor of interest, such as temperature, chemical exposure, or social environ-
ment; an individual characteristic, such as age or sex; or an experimental perturbation, as in a
treatment-control design. For each site, we consider the following binomial mixed model
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(BMM):

yi ¼ Binðri; piÞ; ð1Þ

where ri is the total read count for ith individual; yi is the methylated read count for that indi-
vidual, constrained to be an integer value less than or equal to ri; and πi is an unknown parame-
ter that represents the underlying proportion of methylated reads for the individual at the site.
We use a logit link to model πi as a linear function of several parameters:

log
pi

1� pi

� �
¼ wT

i α þ xibþ gi þ ei; ð2Þ

g ¼ ðg1; � � � ; gnÞT � MVNð0; s2h2KÞ; ð3Þ

e ¼ ðe1; � � � ; enÞT � MVNð0; s2ð1� h2ÞIÞ; ð4Þ

where, for a data set including c covariates and n individuals, wi is a c-vector of covariates
including an intercept; α is a c-vector of corresponding coefficients; xi is the predictor of inter-
est for individual i and β is its coefficient; g is an n-vector of genetic random effects that model
correlation due to population structure or kinship; MVN denotes the multivariate normal dis-
tribution; e is an n-vector of environmental residual errors that model independent variation;
K is a known n by n relatedness matrix that can be calculated based on pedigree or genotype
data; I is an n by n identity matrix; σ2h2 is the genetic variance component; σ2(1 − h2) is the
environmental variance component; and h2 is the heritability of the logit transformed methyla-
tion proportion (i.e. logit(π)). Note that K has been standardized to ensure tr(K) /n = 1, so that
h2 lies between 0 and 1 and can be interpreted as heritability (see [56]; tr denotes the trace
norm).

Both g and emodel over-dispersion (i.e., the increased variance in the data that is not
explained by the binomial model). However, they model different aspects of over-dispersion: e
models the variation that is due to independent environmental noise (a known problem in data
sets based on sequencing reads [57–60], including analyses of read proportions [61]), while g
models the variation that is explained by kinship or population structure. Effectively, our
model improves and generalizes the beta-binomial model by introducing this extra g term to
model individual relatedness due to population structure or stratification. In the absence of g,
our model becomes similar to other beta-binomial models previously developed for modeling
count data [31,33,47,62].

We are interested in testing the null hypothesis that the predictor of interest has no effect on
DNAmethylation levels:H0: β = 0. This test requires obtaining the maximum likelihood esti-

mate b̂ from the model. Unlike its linear counterpart, estimating b̂ from the binomial mixed
model is notoriously difficult, as the joint likelihood consists of an n-dimensional integral that
cannot be solved analytically [63,64]. Standard approaches rely on numerical integration [65]
or Laplace approximation [66,67], but neither strategy scales well with the increasing dimen-
sion of the integral, which in our case is equal to the sample size. Because of this problem, stan-
dard implementations of binomial mixed models often produce biased estimates and overly
narrow (i.e., anti-conservative) confidence intervals [68–72]. To overcome this problem, we
instead use a Markov chain Monte Carlo (MCMC) algorithm-based approach for inference,
using un-informative priors for the hyper-parameters h2 and σ2. After drawing accurate poste-
rior samples of β, we rely on the asymptotic normality of both the likelihood and the posterior

distributions [73] to obtain the approximate maximum likelihood estimate b̂ and its standard
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error se(b̂). This procedure allows us to construct approximate Wald test statistics and p-values
for hypothesis testing (note that the p-values from our procedure diff from tail posterior proba-
bilities usually used in purely Bayesian methods, and are more akin to p-values from frequen-
tists tests; thus, they are not “improper”.) Despite the stochastic nature of the procedure, the
MCMC errors are small enough to ensure stable p-value computation across multiple MCMC
runs (S2 Fig). We note that with reasonably large sample sizes (n = 50 or more), the resulting
p-values are also robust to prior perturbation on hyper-parameters (S3 Fig); however, all results
reported here are based on calculations with un-informative priors.

In addition to the approximate inference procedure described above, we also developed a
novel MCMC algorithm based on an auxiliary variable representation of the binomial distribu-
tion for efficient, approximate p-value computation [74–76] (see S1 Text File Section 2: Infer-
ence Method Overview and S1 Text File Section 3.1: Data Augmentation for more details). We
did so to reduce the heavy computational burden of standard MCMC algorithms, which would
otherwise be prohibitive in terms of run time for large datasets. Building on the auxiliary vari-
able representation, our main technical contribution is a new framework that approximates the
distribution of the auxiliary variables (S4 Fig and S1 and S2 Tables) while simultaneously tak-
ing advantage of recent innovations for fitting mixed effects models [34,35,37,77] (see S1 Text
File Sections 3.2 and 3.3). This framework reduces per-MCMC iteration computational com-
plexity from cubic to quadratic with respect to the sample size, and results in an approximate
n-fold speed up in practice compared with the popular Bayesian software MCMCglmm [78],
where n is the sample size (S5 Fig and S3 Table; we note that this speed-up is generalizable to
other GLMM problems as well). Our implementation of the BMM is therefore efficient for
data sets ranging up to hundreds of samples and millions of sites, as computational complexity
scales only linearly with respect to the number of analyzed sites (S5 Fig).

Because our model effectively includes the beta-binomial model as a special case, we expect
it to perform similarly to the beta-binomial model in settings in which population structure is
absent (we say “effectively” because the beta-binomial model uses a beta distribution to model
independent noise while we use a log-normal distribution). However, we expect our model to
outperform the beta binomial in settings in which population structure is present. In addition,
in the presence of population stratification, we expect the beta-binomial model to produce
inflated test statistics (thus increasing the false positive rate) while our model should provide
calibrated ones. Below, we test these predictions using two different bisulfite sequencing data
sets. We begin with simulations in which the true value of β is known, and the over-dispersion
parameter and genetic covariance between samples are motivated by the real data sets. We also
motivate our choice of simulated sample sizes based on real bisulfite sequencing data sets,
which currently range from ~20–150 samples [19,26,46,53,79–82]. However, because sample
sizes are only likely to grow in the future, for the data set types of most direct interest (i.e.,
those that contain population structure and heritable DNAmethylation levels) we further con-
sider sample sizes that are much larger than currently represented in the literature (n = 500
and n = 1000). Finally, we apply our model directly to the real data.

Count-based models perform well in the absence of genetic effects on
DNAmethylation levels
We first compared the performance of the BMM implemented inMACAUwith the performance
of other currently available methods for analyzing bisulfite sequencing data in the absence of
genetic effects. Intuitively, we expected MACAU and the beta-binomial model to perform simi-
larly, and we expected both methods to outperform those that first transform the raw count data.
To test our prediction, we simulated the effect of a predictor variable on DNAmethylation levels
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across 5000 CpG sites (4500 true negatives and 500 true positives). Motivated by our analysis of
age effects on DNAmethylation levels in the baboon RRBS data set (below), we conducted this
simulation by sampling from a distribution of known age values from the same baboon popula-
tion. For all simulations, we set the effect of genetic variation on DNAmethylation levels equal to
zero, which is equivalent to setting either (i) the heritability of DNAmethylation levels to zero
(unlikely based on prior findings [38,39]), or (ii) studying completely unrelated individuals in the
absence of population structure. To explore MACAU’s performance across a range of conditions,
we simulated age effects on DNAmethylation levels across three effect sizes (percent of variance
in DNAmethylation explained (PVE) = 5%, 10%, or 15%) and three sample sizes (n = 20, 50,
and 80). These values capture the majority of effect sizes and sample sizes documented in recent
genome-wide bisulfite sequencing studies (e.g., [45,52,53,83]).

Because age is naturally modeled as a continuous variable, we focused our comparisons only
on approaches that could accommodate continuous predictor variables (comparisons in which
we artificially binarized age, which allowed us to include a larger set of approaches, are shown
in S6 Fig and S7 Fig for cases excluding and including genetic effects on DNA methylation,
respectively; however, binarizing a truly continuous variable consistently results in poorer per-
formance: see S6 Fig versus S9 Fig). Specifically, in addition to the BMM implemented in
MACAU, we considered the performance of a beta-binomial model, a binomial model, a linear
model, and a linear mixed model (implemented in the software GEMMA [34]). For the linear
and linear mixed model case, methylation proportions were quantile normalized to a standard
normal prior to modeling (see Methods and S8 Fig for parallel results using logit, M-value, and
arcsin(sqrt) transformations prior to linear mixed modeling as alternatives to quantile normali-
zation). As expected, we found that MACAU performed similarly to the beta-binomial model,
and that these two approaches consistently detected more true positive age effects on DNA
methylation levels (at a 10% empirical FDR) than all other methods (S9 Fig). For example, in
the “easiest” case we simulated (PVE = 15%, n = 80), we found that the beta-binomial model
detected 30% of simulated true positives, while the BMM implemented in MACAU detected
27.8%. The slight loss of power in the BMM is a consequence of the smaller degrees of freedom
caused by the additional genetic variance component. In comparison, the linear model detected
21.2% of true positives; the linear mixed effects model, 14%; and the binomial model, 8.4% (S9
Fig). Although it is often used to test for differential methylation [53,84,85], the binomial
model exhibits low power when an empirical FDR is used to control for multiple hypothesis
testing due to poor type I error calibration, as has been previously reported [33]. Area under a
receiver operating characteristic curve (AUC) was also consistently very similar between the
beta-binomial and MACAU (S9 Fig), although the advantage of the count-based methods was
less clear by this measure. This reduced contrast is because AUC is based on true positive-false
positive trade-offs across the entire range of p-value thresholds: methods can consequently
yield high AUCs even when they harbor little power to detect true positives at FDR thresholds
that are frequently used in practice. Taken together, our simulations suggest a general advan-
tage to count-based models for samples that contain no genetic structure. Further, the differ-
ences in performance between the beta-binomial model and the BMM implemented in
MACAU were consistently small in this setting (S9 Fig).

Binomial mixed models control for false positive associations that arise
from population structure: Simulations and a real data example from
Arabidopsis
We next evaluated each model’s performance in a more realistic setting, in which genetic
covariance between samples could potentially confound tests for environmental or genetic
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effects on DNAmethylation levels. As a case study example, we drew from publicly available
phenotype data and SNP genotype data for 24 Arabidopsis thaliana accessions [86,87] in which
leaf tissue samples had been recently subjected to whole genome bisulfite sequencing [48].
Among these accessions, a secondary dormancy phenotype (measured as the slope of the rela-
tionship between length of cold treatment and seed germination percentages [88]) is correlated
with population structure (R2 = 0.38 against the first principal component of the genotype
matrix for these accessions; p = 7.84 x 10−4; S10 Fig). Because secondary dormancy is associ-
ated with environmental conditions that are experienced after the seed has already dispersed,
we have no expectation that secondary dormancy should be associated with DNA methylation
levels in leaf tissue. Consequently, this data set provided the opportunity to evaluate calibration
of Type I error (false positives) using MACAU, which controls for population structure, versus
other available approaches.

To do so, we first used the true distribution of secondary dormancy characteristics and the
true genetic structure among these 24 accessions to simulate a dataset that consisted entirely of
null associations. Specifically, we simulated data sets (containing 4000 sites each) in which the
secondary dormancy had no effect on DNAmethylation levels, but the effect of genetic varia-
tion on DNAmethylation levels was either moderate (h2 = 0.3) or large (h2 = 0.6). Thus, in
these data sets, population structure could confound the relationship between the predictor
variable (the capacity for secondary dormancy) and DNA methylation levels if not taken into
account.

As predicted, we found that the BMM implemented in MACAU appropriately controlled
for genetic effects on DNA methylation levels: whether DNAmethylation levels were moder-
ately (h2 = 0.3) or strongly (h2 = 0.6) heritable, MACAU did not detect any sites associated
with secondary dormancy at a relatively liberal false discovery rate threshold of 20% (whether
calculated against empirical permutations or calculated using the R package qvalue [32]). In
addition, the p-value distributions for secondary dormancy effects on DNA methylation levels,
in both simulations, did not differ from the expected uniform distribution (Fig 1; Kolmogorov-
Smirnov (KS) test when h2 = 0.3: D = 0.015, p = 0.909; when h2 = 0.6: D = 0.016, p = 0.874;

Fig 1. MACAU appropriately controls for genetic covariance in simulated and real WGBS data and eliminates false positive identification of
differentially methylated sites. (A, B) The distribution of p-values for 4000 simulated true negative sites (n = 24 accessions; effect of secondary dormancy
on DNAmethylation levels = 0). For each simulation, h2 was set to 0.3 (A) or 0.6 (B). Simulated data were analyzed with a beta-binomial model or MACAU,
and compared against the expected uniform distribution. (C) QQ-plots comparing the p-value distributions for (i) a model testing for effects of secondary
dormancy on DNAmethylation levels in real WGBS data, with quantiles plotted on the y-axis; and (ii) the same model when the secondary dormancy values
were permuted across individuals, with quantiles plotted on the x-axis. The genomic control factor, λ, is shown for each set of results.

doi:10.1371/journal.pgen.1005650.g001
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genomic control factors: 0.90 when h2 = 0.3, 0.93 when h2 = 0.6). In contrast, when we analyzed
the same simulated data sets with a beta-binomial model, we erroneously detected 2 CpG sites
associated with secondary dormancy when heritability was set to 0.3, and 4 CpG sites when
heritability was set to 0.6 (at a 20% FDR in both cases). More concerningly, the distributions of
p-values produced by the beta-binomial model were significantly different from the expected
uniform distribution and skewed towards low (significant) values (KS test when h2 = 0.3:
D = 0.084, p = 1.75 x 10−8; when h2 = 0.6: D = 0.096, p = 2.80 x 10−11; genomic control factors:
1.18 when h2 = 0.3, 1.32 when h2 = 0.6). These results suggest an increasing problem with false
positives as the heritability of DNAmethylation levels increases (see S11 Fig for similar results
when comparing a linear model to a linear mixed model).

Notably, this problem should become more acute with increasing sample size, which pro-
vides greater power to detect false positives generated by this type of confounding [89]. Indeed,
both increasing the simulated sample size and increasing the simulated correlation between the
predictor variable and genetic structure produces increasingly poorly calibrated results. For
example, when sample sizes were simulated from 25 up to 1000 individuals (and the heritability
of DNA methylation levels was set to 0.6), we observed genomic inflation factors ranging from
1.03–3.49 for data sets analyzed with a beta-binomial (Fig 2A). Not surprisingly, for a dataset
of a fixed size, the beta-binomial genomic control factor increased as the confounding between
population structure and the predictor variable of interest became more extreme (see S12A Fig
for comparable results for a linear model). In contrast, when we analyzed the same simulated
datasets with the BMM implemented in MACAU, the genomic control factors consistently
ranged from 0.82–1.08, even when sample sizes were large and/or the correlation between pop-
ulation structure and the predictor variable was substantial (Fig 2B; see S12B Fig for compara-
ble results from a linear mixed model). Importantly, these differences in genomic control
factors can translate into substantial differences in the results suggested by a given method. For

Fig 2. MACAU controls for genetic covariance in data sets that span a range of sample sizes and levels of correlation between population
structure and a predictor variable of interest.Genomic control factor when simulated datasets (n = 5000 sites per dataset; h2 = 0.6) were analyzed with
either (A) a beta-binomial model or (B) a BMM implemented in MACAU. The correlation between the simulated predictor variable and the first principal
component of genome-wide genotype data is plotted on the x-axis. Genotype data are for Arabidopsis accessions, as reported in [87].

doi:10.1371/journal.pgen.1005650.g002
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example, when n = 1000 and the predictor variable is highly confounded with population struc-
ture (R2 = 0.5), a beta-binomial falsely identified 32% of sites in the data set as differentially
methylated (10% FDR), while MACAU correctly identified no differentially methylated sites
(10% FDR; S13 Fig).

To investigate the calibration of test statistics in the real data set, we then analyzed the rela-
tionship between the secondary dormancy phenotype and WGBS data for the 24 Arabidopsis
accessions in which both phenotype andWGBS data were available (n = 830,676 CpG sites
tested [32,33,34]). We again compared the performance of a simple linear model, a binomial
model, a beta-binomial model, the BMM implemented in MACAU, and an LMM implemented
in GEMMA. Further illustrating its poor handling of Type I error, the binomial model detected
more than 100,000 secondary dormancy-associated sites at a 10% empirical FDR threshold,
respectively, with a genomic control factor of 3.81. A beta-binomial model substantially
improved over the binomial model, but still detected 39 secondary dormancy-associated sites
at a 20% empirical FDR threshold, and 150 sites and 690 sites at a 10% or 20% FDR qvalue
threshold, respectively (genomic control factor = 1.16). Given the clear confounding of popula-
tion structure and secondary dormancy in this sample, as well as the results of our simulations,
these associations are probably largely, if not completely, spurious. In contrast, MACAU, the
linear mixed model (GEMMA), and the simple linear model did not identify any CpG sites
associated with secondary dormancy, either at a 10% or a 20% false discovery rate threshold
(Fig 1 and S11 Fig; genomic control factors: MACAU– 0.89, GEMMA– 0.97, Linear model–
0.99). Based on our earlier simulations, the similarity of performance among the three
approaches likely stems from different reasons: the linear model is poorly powered to detect
positive hits with this sample size (either true positives or false positives); the linear mixed
model controls for population structure but has low power to detect true associations; while
MACAU combines both the increased power conferred by modeling the raw count data with
appropriate controls for population structure (see Fig 1 and results below).

MACAU provides increased power to detect true positives in the
presence of kinship: Simulations based on data from baboons
In other data sets, a predictor variable of interest may not be confounded with genetic struc-
ture, but modeling genetic similarity between samples could reduce residual error variance and
improve power. To investigate this scenario, we focused on the relationship between age and
DNAmethylation levels in a wild baboon population. Female baboons remain in their natal
groups throughout their lives, producing relatedness values that are primarily due to matrilin-
eal descent. The resulting genetic structure is one in which females tend to be more closely
related to each other, on average, than males or male-female dyads [90], but in which not all
females are related (because multiple matrilines co-reside in a single group). Data sets drawn
from baboon populations therefore include a substantial number of unrelated individuals, but
also some dyads that are genetically non-independent (i.e., relatives: S14 Fig).

To test the relative performance of different modeling approaches in this setting, we first
simulated moderate to large genetic effects on DNAmethylation levels (h2 = 0.3 and 0.6 respec-
tively, as in the Arabidopsis simulation above) and relatedness values based on the observed
distribution of relatedness values within baboon social groups (n = 80, 500, or 1000 baboons).
We again simulated a range of non-zero effect sizes (percent variance explained by age = 5%,
10%, or 15%) for 500 true positive sites, and an effect size of zero for 4500 true negative sites.

In simulations in which age had a moderate effect on DNAmethylation levels (PVE = 10%),
MACAU detected 11.4% (when h2 = 0.3) and 20.6% (when h2 = 0.6) of simulated true positives
at a 10% empirical FDR, and produced well calibrated p-values for sites with no simulated age
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effect (S15 Fig). In comparison, the beta-binomial model (the next best model) detected 8.2%
and 10.4% of true positives, respectively (Fig 3). As in the simulations, we again observed that a
simple binomial model was prone to type I error, which resulted in failure to detect true age-
associated sites when empirical FDRs were calculated against permuted data. Our additional
simulations at PVE = 5% or PVE = 15%, and n = 500 or n = 1000, confirmed MACAU’s advan-
tage over other methods across a range of conditions (S16 and S17 Figs). As expected, the mag-
nitude of this advantage was positively correlated with the heritability of DNA methylation
levels.

Fig 3. MACAU exhibits increased power to detect differential methylation when DNAmethylation levels are heritable. Receiver operating
characteristic (ROC) curves and true positive rates at a 10% false discovery rate threshold for simulated age effects on DNAmethylation levels at (A-C)
simulated sites with moderately heritable DNAmethylation levels (h2 = 0.3) and (D-F) simulated sites with highly heritable DNAmethylation levels (h2 = 0.6).
Panels B and E are enlarged versions of panels A and D, respectively. They focus on false positive rates below 0.1, because the performance of alternative
methods at low false positive rates tends to be most important to researchers in practice; that is, it is unlikely to matter if method performance is identical
when accepting a 50% false positive rate, which would yield very poor inferential power. Each simulated dataset contained n = 80 individuals and 5000
simulated CpG sites, with 500 true positives and 4500 true negatives. Here, we show results where the simulated percent variance explained by age = 10%.
A binomial model could not detect true positives at a false positive rate below 0.10 (when h2 = 0.3) or below 0.9 (when h2 = 0.6); the binomial is therefore
removed from panel B, and only shown for large false positive rates in panel E.

doi:10.1371/journal.pgen.1005650.g003
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Age-associated DNAmethylation levels in wild baboons
Finally, we analyzed the new baboon RRBS data set for differential methylation patterns by age
(n = 50, age range = 1.76–18.01 years in our sample, S4 Table). Because age-related effects on
DNAmethylation levels are well described, this approach allowed us to not only evaluate
MACAU’s ability to detect differentially methylated sites, but also to identify known age-
related signatures in DNAmethylation data [38,39,91–93]. This data set included 433,871 CpG
sites, enriched for putatively functional regions of the genome (e.g., genes, gene promoters,
CpG islands, as expected in RRBS data sets [25,26]: S18 Fig; see also S19 Fig and S4 Table for
additional information on data quality, including bisulfite conversion rates,MspI digest effi-
ciency, correlation with gene expression levels, and methylation level distributions by genomic
regions). As in our simulations, we found that MACAU provided increased power to detect
age effects in the presence of familial relatedness. We detected 1.6-fold more age-associated
CpG sites at a 10% empirical FDR using MACAU compared to the results of a beta-binomial
model, the next best approach (1.4-fold more sites at a 20% empirical FDR; Fig 4 and S20 Fig).

Fig 4. Age-associated CpG sites identified by MACAU in the baboon RRBS data. (A) The number of age-associated CpG sites detected at a given
empirical FDR. The binomial model cannot detect age-associated sites at a false discovery rate below 0.20 and is consequently removed from the panel. (B)
For age-associated sites detected by MACAU (at a 10% FDR), the proportion of sites that gain or lose methylation with age is shown by genomic region.
Positive = DNAmethylation levels increase with age; Negative = DNAmethylation levels decrease with age. (C) Age-associated CpG sites detected using
MACAU (10% FDR) are more likely to fall near genes that are expressed in whole blood, compared to the background set of CpG sites near genes
(**p < 10−10). Further, age-associated CpG sites are more likely to occur near genes that are differentially expressed (DE) with age, compared to CpG sites
near genes that are not DE with age (*p = 0.032).

doi:10.1371/journal.pgen.1005650.g004
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This advantage was consistently observed across all FDR thresholds we considered, except for
relatively low (<7.5%) empirical FDR thresholds, when all of the methods were very low pow-
ered as a result of the modest sample size.

We performed several analyses to investigate the likely validity and functional importance
of the age-associated CpG sites we identified. Based on the results of previous studies, we
expected that age-associated sites in CpG islands would tend to gain methylation with age
[92,93], while sites in other regions of the genome (e.g., CpG island shores, gene bodies) would
tend to lose methylation with age [92,93]. In addition, we expected that, in whole blood, biva-
lent/poised promoters should gain DNA methylation with age, while enhancers should lose
methylation with age (as discussed in [91,92,94]). Finally, we expected that stretches of differ-
entially methylated sites (i.e., differentially methylated regions, or DMRs) would tend to occur
in or near CpG islands and CpG shores, potentially altering how steeply methylation levels
change between islands and their surrounding shelves (e.g., [95]).

Our results conformed to these patterns: sites in CpG islands tended to gain methylation
with age (71.4% of sites were positively correlated with age); and sites in promoters, CpG island
shores, and gene bodies tended to lose methylation with age (72.7%, 75.4%, and 75.2% of sites
were negatively correlated with age, respectively; Fig 4). In addition, we found that positively
correlated, age-associated sites were highly enriched in chromatin states associated with biva-
lent/poised promoters (as defined by the Roadmap Epigenomics Project [96]). Specifically,
age-associated CpG sites in bivalent/poised promoters were 3.4 times more likely to show
increases in DNAmethylation with age, compared to age-associated CpG sites in other regions
(p< 10−10, Fisher’s exact test). Negatively correlated age-associated sites (i.e., sites where DNA
methylation levels decreased with age) were strongly enriched in enhancers (defined as sites
either marked by H3K4me1 in human PBMCs [97] or sites within chromatin states annotated
as ‘enhancers’ by the Roadmap Epigenomics Project [96], p = 2 x 10−4, Fisher’s exact test).
Finally, we detected 142 age-related DMRs, the majority of which were found in CpG islands,
shores, and bridging islands and shores (S21 Fig and S5 Table).

We also reasoned that true positive age-associated CpG sites should contain information
about age-associated gene expression levels. To test this hypothesis, we turned to previously
generated whole blood RNA-seq data [43] from the same baboon population (n = 63; only four
baboons in the RNA-seq data set were also included in the DNAmethylation data set). Overall,
we observed a strong enrichment of differentially methylated CpG sites in or near (within 10
kb) blood-expressed genes (n = 12,018 genes), compared to the background set of all CpG sites
near genes (Fisher’s exact test, p< 10−10). Further, CpG sites near age-associated genes
(n = 1396 genes, 10% FDR) were 30.5% more likely to be differentially methylated with age
compared to the background set of all CpG sites near genes (Fisher’s exact test, p = 0.032; Fig
4). Notably, this enrichment was almost always stronger for the set of differentially methylated
sites identified by MACAU than for the same number of top sites identified when running the
linear model, linear mixed model, binomial, or beta-binomial approaches, across different FDR
thresholds (S22 Fig).

Discussion
DNAmethylation levels can have potent effects on downstream gene regulation, and, in doing
so, can shape key behavioral, physiological, and disease-related phenotypes [7,20,98–100].
These observations have motivated an increasing number of DNA methylation studies in
humans and other organisms, highlighting the need for sophisticated statistical methods that
can accommodate the complexities of a broad array of data sets [19,46]. Here, we demonstrate
that the binomial mixed model implemented in our software MACAU can (i) effectively
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control for confounding relationships between genetic background and a predictor variable of
interest and (ii) provide increased power to detect true sources of variance in DNAmethylation
levels in data sets that contain kinship or population structure. In addition, MACAU provides
increased flexibility over current count-based methods that cannot accommodate biological
replicates (e.g., Fisher’s exact test), continuous predictor variables (e.g., DSS, MOABS, Rad-
Meth), or biological or technical covariates (e.g., MOABS, DSS; see also Table 1). Given the
increasing interest in both the environmental [21,101,102] and genetic [16,17,19,103] architec-
ture of DNAmethylation levels, we believe MACAU will be a useful tool for generalizing epige-
nomic studies to a larger range of populations. MACAU is particularly well suited to data sets
that contain related individuals or population structure; notably, several major population
genomic resources contain structure of these kinds (e.g., the HapMap population samples
[104], the Human Genome Diversity Panel [105], and the 1000 Genomes Project in humans
[106]; the Hybrid Mouse Diversity Panel in mice [107]; and the 1001 Genomes Project in Ara-
bidopsis [108]).

Indeed, our results suggest MACAU is a useful tool even in data sets that are less affected by
genetic structure, or when the heritability of DNAmethylation levels is unclear. Because the
beta-binomial model is effectively incorporated as a special case, MACAU exhibits only a slight
loss of power relative to a beta-binomial model without genetic random effects when h2 = 0,
while conferring better power and better test statistic calibration when h2 > 0 (S9 and S16 and
S17 Figs and Fig 1). Previous studies in humans have shown that, while the heritability of DNA
methylation levels varies across loci, an appreciable proportion of loci are either modestly (h2

� 0.3: 21.06% of all CpG sites) or highly (h2 � 0.6: 6.95% of all CpG sites) heritable [39,109].
Further, DNAmethylation QTLs are widespread across the genome [18,38,103]. Thus, because
investigators will rarely have a priori knowledge of the heritability of DNA methylation levels
at a given locus, and because the advantage of a beta-binomial model is small even when herita-
bility is zero, we recommend applying MACAU in cases in which genetic effects on DNA
methylation levels are poorly understood. In addition, our model provides a natural framework
for incorporating the spatial dependency of DNA methylation levels across neighboring sites
[110,111], which we expect to increase power even further [110,111]. However, we do note
that, even with the efficient algorithm implemented here, fitting the binomial mixed model (or
its extensions) remains more computationally expensive than other approaches for moderately
sized datasets (S3 Table). While it remains appropriate for the sample sizes used in current
studies (e.g., dozens to hundreds of individuals), or even larger with the support of a moderate-
sized computing cluster (because MACAU is easily parallelizable with respect to sites), rapid
increases in sample size—especially in the context of EWAS—strongly motivate additional
algorithm development to scale up the binomial mixed model for data sets that include thou-
sands or tens of thousands of individuals. This is particularly important given that methods tai-
lored for other types of studies (e.g., quantile normalization followed by linear mixed modeling
or voom + limma, both commonly used for RNA-seq) do not appear to translate well to bisul-
fite sequencing data sets (S8 Fig; see Methods for additional information on the voom + limma
comparison).

Although we developed MACAU with the analysis of bisulfite sequencing data in mind, we
note that a count-based binomial mixed model may be an appropriate tool in other settings as
well. For example, allele-specific gene expression (ASE) can be measured in RNA-seq data by
comparing the number of reads originating from a given variant to the total number of mapped
reads for that site [77,112–114]. Similarly, alternative isoform usage can be represented as a
proportion of reads containing a non-constitutive exon versus the total reads for the same gene
[47]. The structure of these data are highly similar to the structure of bisulfite sequencing data,
which focus on counts of methylated versus total reads. Unsurprisingly, beta-binomial models
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have also emerged as one of the most popular methods for estimating both ASE values [114–
116] and alternative isoform usage [47]. Researchers interested in the predictors of variation in
either of these measures—which could include trans-acting genetic effects, environmental con-
ditions, or properties of the individual (e.g., sex or disease status)—might also benefit from
using MACAU. Recent work from the TwinsUK study motivates the need for such a model:
Grundberg et al. demonstrated a strong heritable component to ASE levels [117], which could
be effectively taken into account using the random effects approach implemented here.

Finally, linear mixed models have been recently proposed to account for cell type heteroge-
neity in epigenome-wide association studies focused on array data [118]. In this framework,
the random effect covariance structure is based on overall covariance in DNAmethylation lev-
els between samples, which is assumed to be largely attributable to variation in tissue composi-
tion. MACAU provides a potential avenue for extending these ideas to sequencing-based data
sets.

Materials and Methods

Arabidopsis thaliana whole genome bisulfite sequencing (WGBS) data
set
We downloaded publicly available WGBS data generated by Schmitz et al. [48], as well as pre-
viously published SNP genotype data [87] and secondary dormancy data [86] for 24 Arabidop-
sis accessions. We used the SNP genotype data (specifically, 188,093 sites with minor allele
frequency>5%) to construct a pairwise genetic relatedness matrix, K, as the product of a stan-
dardized genotype matrix X, or K = XXT/p [56], where genotypes were expressed as 0, 1, or 2
depending on the number of reference alleles for that site-sample combination. We used this
estimate of K for both the simulations and our analyses of the real WGBS data.

In these analyses, we focused on CpG sites measured in�50% of accessions, and excluded
sites that were constitutively hypermethylated (average DNAmethylation level>0.90) or
hypomethylated (average DNA methylation level<0.10, following [101,118]). We also
excluded highly invariable sites (i.e., sites where the standard deviation of DNAmethylation
levels fell in the lowest 5% of the overall data set) and sites with very low coverage (i.e., sites
where the mean coverage fell in the lowest quartile for the overall data set, below a mean of
3.34 reads). After filtering, the final data set consisted of 830,676 sites.

For the analysis of test statistic calibration as a function of sample size (Fig 2), we also used
Arabidopsis data, but simulated the phenotype data as a function of genetic covariance between
the accessions. Genotype data were obtained from [87].

Baboon reduced representation bisulfite sequencing (RRBS) data set
Study subjects and sample collection. To investigate age effects on DNAmethylation lev-

els, in both real and simulated data sets, we drew on data and samples from a wild population
of yellow baboons in the Amboseli ecosystem of southern Kenya. This population has been
monitored for over four decades by the Amboseli Baboon Research Project (ABRP) [119], and
the ages of animals born in the study population (n = 37; 74% of the data set) were therefore
known to within a few days’ error. For animals that immigrated into the study population, ages
were estimated from morphological features by trained observers (n = 13; 26% of the data set)
[120]. Pairwise relatedness values were calculated based on previously collected microsatellite
data (14 highly variable loci) [121,122], using the likelihood-based estimator of Lynch and Rit-
land [123] implemented in the program COANCESTRY [124]. Using the age and relatedness
data sets, we simulated age effects on DNAmethylation levels for either n = 20, 50, or 80
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baboons from a single social group. For simulations with larger sample sizes, we extrapolated
both age values and pairwise relatedness values from the n = 80 dataset to maintain the same
level of age variation and genetic structure; notably, our results are highly stable in the face of
realistic levels of noise in the estimate of K (S23 Fig). In addition, we used previously collected
blood samples from the Amboseli population, paired with age and microsatellite genotype rec-
ords, to investigate age effects on DNAmethylation levels in a newly generated RRBS data set.

To generate the new RRBS data, we used whole blood samples collected from 50 animals
(35 males and 15 females) by the ABRP between 1989 and 2011 following well-established pro-
cedures [43,125,126]. Briefly, animals were immobilized by an anesthetic-bearing dart deliv-
ered through a hand-held blow gun. They were then quickly transferred to a processing site for
blood sample collection. Following sample collection, study subjects were allowed to regain
consciousness in a covered holding cage until they were fully recovered from the effects of the
anesthetic. Upon recovery, study subjects were released near their social group and closely
monitored. Blood samples were stored at the field site or at an ABRP-affiliated lab at the Uni-
versity of Nairobi until they were transported to the United States.

Importantly, given the large range in sample collection dates, we observed no correlation
between the age of our study subjects at sample collection and sample age (i.e., time since the
collection date; Spearman rank correlation, p = 0.779). Further, to ensure that variation in sam-
ple collection dates did not influence our results, we also controlled for sample age as a covari-
ate in our final analyses of the RRBS dataset (see Analysis of age-related changes in DNA
methylation levels).

RRBS data generation and low-level processing. Genomic DNA was extracted from
whole blood samples using the DNeasy Blood and Tissue Kit (QIAGEN) according to the man-
ufacturer’s instructions. RRBS libraries were created from 180 ng of genomic DNA per individ-
ual, following the protocol by Boyle et al. [25]. In addition, 1 ng of unmethylated lambda phage
DNA (Sigma Aldrich) was incorporated into each library to assess the efficiency of the bisulfite
conversion (>98% in all case: S4 Table). All RRBS libraries were sequenced using 100 bp single
end sequencing on an Illumina HiSeq 2000 platform, yielding a mean of 28.97 ±8.97 million
reads per analyzed sample (range: 9.59–79.78 million reads; S4 Table).

We removed adaptor contamination and low-quality bases from all reads using the program
TRIMMOMATIC [127]. We then mapped the trimmed reads to the olive baboon genome
(Panu 2.0) using BSMAP, a tool designed for high-throughput DNA methylation data [128].
We used a Python script packaged with BSMAP to extract the number of reads as cytosine
(reflecting an originally methylated base) and the total read count for each individual and CpG
site. We performed the same set of filtering steps described for the ArabidopsisWGBS data set
to produce our final data set for the baboons. Specifically, we excluded sites that were constitu-
tively hypermethylated or hypomethylated, sites that were highly invariable, and sites that had
low average coverage across individuals (in this case, the lowest quartile for mean coverage lev-
els was 4.74 reads). The final filtered data set consisted of 433,871 CpG sites.

Simulations
To simulate the methylated read counts and total read counts that result fromWGBS and
RRBS, we performed the following procedure:

First, we simulated the proportion of methylated reads for each site. To do so, we drew sec-
ondary dormancy values or age values, x, as the predictor of interest, from the actual values for
the Arabidopsis accessions or from the baboon population, respectively. For simulations that
focused on Arabidopsis data sets of various sizes (e.g., Fig 2), we simulated x and varied the
degree to which it was confounded with population structure. Specifically, for each dataset
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(ranging from n = 25 to n = 1000 accessions) we performed principal components analysis on
the SNP genotype data, and extracted the first principal component to capture the major axis
of population structure (PC1). We then added environmental noise from a zero-centered nor-
mal distribution to achieve a correlation (R2) between the simulated phenotype and PC1 that
reached the desired value (ranging from R2 = 0.1 to 0.5).

For each simulated data set, we simulated the DNA methylation level at each CpG site, π, as
a linear function of x and its effect size, β. In addition, we included the effects of genetic varia-
tion (g) and random environmental variation (e), passed through a logit link (based on the
model described in the Results section).

For the baboon RRBS and the ArabidopsisWGBS simulations, we determined K from 14
highly variable microsatellite loci or from the publicly available SNP data, as described above.
For each simulation, we set h2 to 0, 0.3, or 0.6 to simulate non-heritable, modestly heritable, or
highly heritable DNA methylation levels. We also estimated the variance term σ2 from the real
data sets. Specifically, we took the mean estimate of σ2 across all sites (calculated in MACAU)
for each real data set, and used this value as the fixed value of σ2 in the corresponding
simulations.

Next, for each site, we simulated total read counts ri for each individual i from a negative
binomial distribution that models the extra variation observed in the real data:

ri � NBðt; pÞ; ð5Þ
where t and p are site specific parameters estimated from the real data. Specifically, we gener-
ated 10,000 sets of t and p parameters by fitting a negative binomial distribution to the total
read count data from 10,000 randomly selected CpG sites in the real baboon RRBS data set or
the real Arabidopsis data set, using the function ‘fitdistr’ in the R packageMASS [129]. To sim-
ulate counts for a given CpG site, we randomly selected one of these parameter sets to produce
the total number of reads. Finally, we simulated the number of methylated reads for each indi-
vidual at that locus (y) by drawing from a binomial distribution parameterized by the number
of total reads (r) and the DNAmethylation level (π).

Comparison of MACAU to existing methods
For all simulated and real data sets, we used raw methylated and total read counts to compare
the results of a beta-binomial model (using a custom R script), a binomial model (implemented
via ‘glm’ in R), and the binomial mixed model implemented in MACAU. For computation
time comparison, we used the MCMCglmm software, which also provides an implementation
of a binomial mixed model [78]. In addition, we used the same count data to run a Fisher’s
exact test (implemented in R), DSS [31], and RadMeth [33] in the subset of analyses that uti-
lized these programs. To analyze simulated and real data sets using a linear model (imple-
mented using ‘lm’ in R) or the linear mixed model implemented in GEMMA [34], we
estimated DNA methylation levels by dividing the number of methylated reads by the total
read count for each individual and CpG site. We then quantile normalized the resulting pro-
portions for each CpG site to a standard normal distribution, and imputed any missing data
using the K-nearest neighbors algorithm in the R package impute [130].

In addition to the quantile normalization approach, we also evaluated three other methods
for transforming methylation proportions: a logit transformation, following [110]; the “M”

value transformation (log2((methylated counts + α)/(unmethylated counts + α)), where α =
0.01, following [30]; and an arcsin square root transformation, following [131]. All four
approaches produced qualitatively identical results (S8 Fig), so we elected to concentrate on the
results from quantile normalization in the main text. Finally, we also tested the performance of
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a powerful, commonly used method for modeling RNA-seq data: the combination of the voom
function for data weighting with limma, a linear model approach [132]. Our results indicated
that voom + limma performs more poorly than even a simple linear model (S24 Fig), probably
because read depth variation is much more complicated in bisulfite sequencing studies than in
RNA-seq studies (S1 Fig). Because voom + limma also cannot account for population structure,
we report these results in the SI but focus on results from the simple linear model in the main
text.

To compute empirical false discovery rates in simulated data, we divided the number of
false positives detected at a given p-value threshold by the total number of sites called by the
model as significant at that threshold (i.e., the sum of false positives and true positives). To
compute empirical false discovery rates in the real data, in which the false positives and true
positives were unknown, we used permutations. Specifically, we permuted the predictor vari-
able for each data set four times, reran our analyses, and then calculated the false discovery rate
as the average number of sites detected at a given p-value threshold in the permuted data
divided by the total number of sites detected at that threshold in the real data. For simulated
data sets only, we also calculated the area under the receiver operating characteristic curve
(AUC) to produce a measure of the overall tradeoff between detecting true positives and calling
false positives.

Analysis of age-related changes in DNAmethylation levels
Our initial analyses of the baboon RRBS dataset focused only on the relative ability of each
method to detect age-associated sites. For these analyses, we therefore did not control for other
biological covariates that may contribute to variance in DNA methylation levels (note that bio-
logical covariates cannot be incorporated into several implementations of the beta-binomial
model [31,32]: see Table 1). However, to investigate patterns of age-related changes in DNA
methylation levels, and to compare them to previously described patterns in the literature, we
wished to control for such covariates. To do so, we reran the differential methylation analysis
in MACAU, this time controlling for sex, sample age, and efficiency of the bisulfite conversion
rate estimated from the lambda phage spike-in.

First, we investigated whether age-associated sites were enriched in functionally coherent
regions of the genome, many of which have previously been identified as age-related
[38,92,93]. To do so, we defined gene bodies as the regions between the 5’-most transcription
start site (TSS) and 3’-most transcription end site (TES) of each gene using Panu 2.0 annota-
tions from Ensembl [133]. We defined promoter regions as the 2 kb upstream of the TSS. CpG
were annotated based on the UCSC Genome Browser track for baboon [134], with CpG island
shores defined as the 2 kb regions flanking either side of the CpG island boundary (following
[26,135,136]). Finally, because no enhancer annotations are available that are specific to
baboons, we used H3K4me1 ChIP-seq data generated by ENCODE (from human peripheral
blood mononuclear cells) to define enhancer regions [97]. In addition, we used chromatin state
annotations from the Roadmap Epigenomics Project (also generated from human peripheral
blood mononuclear cells) to further investigate biases in the locations of age-associated sites
[96]. Using these annotation sets, we performed Fisher’s Exact Tests to ask whether age-associ-
ated sites were enriched or underrepresented in specific genomic regions. To identify differen-
tially methylated regions (DMRs), we used the criteria proposed by [137]. Specifically, DMRs
contained at least 3 differentially methylated sites with an inter-CpG distance�1 kb, with only
3 non-differentially methylated sites permitted in the DMR as a whole.

Second, we asked whether differentially methylated sites were more likely to fall close to
blood-expressed genes. For this comparison, we drew on previously published RNA-seq data,
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generated from whole blood samples collected in the Amboseli baboon population [43]. We
defined blood-expressed genes as those genes that had non-zero counts in more than 10% of
individuals in the RNA-seq data sets, and that had mean read counts greater than or equal to
10. We then compared the number of differentially methylated CpG sites near blood-expressed
genes (i.e., within the gene body or within 10 kb of the gene TSS or TES) to the number of dif-
ferentially methylated CpG sites near genes that were not expressed in blood, using a Fisher’s
Exact Test.

Finally, we investigated whether CpG sites that occur near genes that are differentially
expressed with age were also more likely to be differentially methylated with age. For this com-
parison, we defined ‘age-associated genes’ as genes differentially expressed with age (at a 10%
FDR) in the RNA-seq data set [43]. We compared the number of differentially methylated
CpG sites near blood-expressed, age-associated genes to the number of differentially methyl-
ated CpG sites near genes that were not within this set of genes, again using a Fisher’s Exact
Test.

Ethics statement
The baboon data used in this study was generated from samples collected from wild baboons
living in the Amboseli ecosystem of southern Kenya. This research is conducted under the
authority of the Kenya Wildlife Service (KWS), the Kenyan governmental body that oversees
wildlife (permit number NCST/RCD/12B/012/57 to Jenny Tung). As the animals are members
of a wild population, KWS requires that we do not interfere with injuries to study subjects
inflicted by predators, conspecifics, or through other naturally occurring events. Permission to
perform temporary immobilizations (for blood sample collection) was granted by KWS; fur-
ther, these immobilizations were supervised by a KWS-approved Kenyan veterinarian, who
monitored anesthetized animals for hypothermia, hyperthermia, and trauma (no such events
occurred during our sample collection efforts). Observational and sample collection protocols
were approved though IACUC committees at Duke University (current protocol is A020-15-
01 to Jenny Tung and Susan C. Alberts).

Software and data availability
The MACAU software and a custom script for implementing a beta-binomial model in R is
available at: www.xzlab.org/software.html. Previously published data sets are available at
http://bergelson.uchicago.edu/regmap-data/regmap.html/ (Arabidopsis SNP genotype data);
http://www.ncbi.nlm.nih.gov/geo/ (ArabidopsisWGBS data: GSE43857); http://www.nature.
com/nature/journal/v465/n7298/full/nature08800.html#supplementary-information (Arabi-
dopsis phenotype data); and http://www.ncbi.nlm.nih.gov/sra (Baboon RNA-seq data:
GSE63788). Baboon RRBS data generated in this study are deposited in NCBI (project acces-
sion SRP058411).

Supporting Information
S1 Fig. In a real WGBS dataset (from Arabidopsis) and a real RRBS dataset (from yellow
baboons), coverage varies widely across CpG sites and individuals. For each CpG site repre-
sented in each data set (n = 433,871 for baboon and n = 830,676 for Arabidopsis), we calculated
the mean site-specific coverage across individuals, as well as the standard deviation of coverage
values for those sites. The distribution of these values are are shown for the baboon RRBS data-
set (A-B, in blue) and the ArabidopisWGBS dataset (C-D, in green). Average coverage values
are depicted in A and C, and coverage standard deviation values are depicted in B and D.
(TIFF)
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S2 Fig. MACAU p-values are consistent across runs. QQ-plots comparing the p-value distri-
butions for 3 independent runs of MACAU on the same data sets, with different simulated her-
itability values (Panels A, D—h2 = 0; Panels B, E—h2 = 0.3; Panels C, F—h2 = 0.6). Pairwise
correlations between each independent run were R> 0.95 for h2 = 0:,R> 0.97 for h2 = 0.3; and
R> 0.98 for h2 = 0.6. Distributions shown are for analyses of simulated secondary dormancy
effects on DNAmethylation levels in the Arabidopsis data set (4000 sites, n = 24 accessions).
(TIFF)

S3 Fig. MACAU results are robust to prior perturbation. QQ-plots comparing the results
fromMACAU implemented with an uninformative prior (σ2 ~ U(0,1), as in the main text, x-
axis) versus an alternative prior (log(σ2) ~ U(0,1), y-axis). All analyses tested for age effects on
DNAmethylation levels in a simulated baboon data (based on properties of the real baboon
RRBS data and age information). Sample sizes and heritabilities are shown on each plot, as are
the results from a Kolmogorov-Smirnov test comparing the two distributions represented in
each plot. In all cases, the simulated percent variance explained by age was set to 10%. The
number of age-associated sites detected in each analysis were identical for all simulations
where n = 80 (10% empirical FDR), and very similar when n = 50 (0.4–0.8% more age-associ-
ated sites were detected with the alternative prior than with the uninformative prior).
(TIFF)

S4 Fig. The normal mixture provides an accurate approximation to the negative log
gamma distribution. (A) Density plot and (B) quantile-quantile plots demonstrating that the
normal mixture approximation approximates–log(Ga(r, 1)) well even in the most difficult case
when r = 1.
(TIFF)

S5 Fig. A binomial mixed model (BMM) implemented in MACAU is more efficent than a
BMM implemented in the software MCMCglmm. (A) Computation time (in hours) is plot-
ted for datasets containing varying numbers of individuals, but each containing 100 sites. Com-
putation time is plotted on a log10 scale in the main plot, and on a traditional scale in the inset.
(B) Computation time (in hours) is plotted for a dataset containing 150 individuals, but varying
numbers of sites (in thousands) as noted on the x-axis. All computation was performed on a
single core of an Intel Xeon L5420 2.50 GHz processor.
(TIFF)

S6 Fig. Comparisons between methods when DNAmethylation levels are not heritable,
and the predictor variable is binarized. To include methods that can only analyze categorical
differences in DNAmethylation levels between two groups, we binarized age values in our sim-
ulated RRBS datasets (individuals below median age = young versus individuals above median
age = old). We compared the AUC of each method (open circles), as well as their ability to
detect true positives at a 10% FDR (closed circles). For these comparisons, we used simulated
datasets with a fixed h2 of 0 (n = 5000 sites including 500 true positives and 4500 true negatives;
percent variance explained by age varies as noted in the panel headings). Results for simula-
tions with (A) n = 50 or (B) n = 80 individuals are plotted below. Note that the right-hand y
axis for the proportion of true positives detected varies depending on sample size.
(TIFF)

S7 Fig. Comparisons between methods when DNAmethylation levels are heritable, and the
predictor variable is binarized. To include methods that can only analyze categorical differ-
ences in DNAmethylation levels between two groups, we binarized age values in our simulated
RRBS datasets (individuals below median age = young versus individuals above median
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age = old). We compared the AUC of each method (open circles), as well as their ability to
detect true positives at a 10% FDR (closed circles). For these comparisons, we used simulated
datasets with a fixed sample size of 80 (n = 5000 sites including 500 true positives and 4500
true negatives; percent variance explained by age varies as noted in the panel headings). Results
for simulations with (A) h2 = 0.3 or (B) h2 = 0.6 are plotted below.
(TIFF)

S8 Fig. MACAU outperforms linear mixed models implemented after a variety of standard
data transformation approaches.We performed four different transformations on simulated
baboon bisulfite sequencing count data (n = 5000 sites including 500 true positives and 4500
true negatives; percent variance explained by age = 10%; sample size = 80, h2 = 0.6). Below, we
use QQ-plots to compare the distribution of p-values produced by GEMMA (operating on the
transformed data) versus MACAU (analyzing the raw count data). In all panels, the observed
p-values are plotted against quantiles for the distribution of p-values obtained from running
each method (MACAU or GEMMA, respectively) on permuted data. We also note the propor-
tion of simulated true positives detected by each approach (for comparison, MACAU detects
20.6% of simulated true positives in the same dataset).
(TIFF)

S9 Fig. Comparison across methods when DNAmethylation levels are not heritable.We
compared the AUC of each method (open circles) and their ability to detect true positives at a
10% FDR (closed circles). We did so using simulated data sets (n = 5000 sites including 500
true positives and 4500 true negatives; percent variance explained by age varies as noted in the
panel headings). For all simulations shown below, h2 was set to 0. (A) Results for simulations
with n = 20 individuals; (B) with n = 50 individuals; and (C) with n = 80 individuals. Note that
the right-hand y axis for the proportion of true positives detected varies depending on sample
size.
(TIFF)

S10 Fig. Secondary dormancy is correlated with population structure in the Arabidopsis
WGBS dataset. Principal components analysis on 188,093 genotyped sites with minor allele
frequency>5% reveals that genetic background is correlated with secondary dormancy values.
The correlation between the secondary dormancy phenotype values and the first principal
component of the genetic relatedness matrix is R2 = 0.38, p = 7.84 x 10−4 (n = 24). The first
principal component (PC1) explains 8.5% of the genetic variance in the data set.
(TIFF)

S11 Fig. A mixed modeling approach (implemented in GEMMA) appropriately controls
for genetic covariance in simulated and real WGBS data. (A, B) The distribution of p-values
for 4000 simulated true negative sites (n = 24 accessions; effect of secondary dormancy on
DNAmethylation levels = 0). For each simulation, h2 was set to 0.3 (A) or 0.6 (B). Simulated
data were analyzed with a linear model or GEMMA, and compared against the expected uni-
form distribution. (C) QQ-plots comparing the p-value distributions for (i) a model testing for
effects of secondary dormancy on DNA methylation levels in real WGBS data, plotted on the
y-axis; and (ii) the same model when the secondary dormancy values were permuted across
individuals, plotted on the x-axis. Here, the lack of inflated test statistics in the case of the linear
model is likely due to the model’s low power (see S12B Fig, for n = 25). The genomic control
factor, λ, is shown for each set of results.
(TIFF)
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S12 Fig. A mixed modeling approach (implemented in GEMMA) controls for genetic
covariance in data sets that span a range of sample sizes and levels of correlation between
population structure and a predictor variable of interest. Genomic control factor when sim-
ulated datasets (n = 5000 sites per dataset; h2 = 0.6) were analyzed with either (A) a linear
model or (B) a linear mixed model implemented in GEMMA. The correlation between the sim-
ulated predictor variable and the first principal component of genome-wide genotype data is
plotted on the x-axis.
(TIFF)

S13 Fig. MACAU controls for genetic covariance in data sets that span a range of sample
sizes and levels of correlation between population structure and a predictor variable of
interest. Percent of dataset associated with the predictor variable (at a 10% FDR) when simu-
lated datasets (n = 5000 sites per dataset; h2 = 0.6) were analyzed with either (A) a beta-bino-
mial model or (B) a binomial mixed model implemented in MACAU. The correlation between
the simulated predictor variable and the first principal component of genome-wide genotype
data is plotted on the x-axis.
(TIFF)

S14 Fig. Distribution of pairwise relatedness values for baboons (n = 80) from a single
social group, used in simulations. Approximately half of the individuals are unrelated, while a
small proportion (~10%) are highly related (i.e., related at the level of half siblings or higher,
r = 0.25).
(TIFF)

S15 Fig. MACAU produces well-calibrated p-values when the simulated effect of age is set
to 0. Results from 4500 simulated sites, where we set the effect of age on DNAmethylation lev-
els equal to 0 and the heritability of DNAmethylation levels equal to (A) 0, (B) 0.3, or (C) 0.6.
All QQ-plots compare the distribution of p-values produced by MACAU to the expected uni-
form distribution.
(TIFF)

S16 Fig. MACAU provides increased power to detect age-associated sites when DNAmeth-
ylation levels are heritable.We simulated age effects on DNA methylation levels, in presence
of genetic effects (panel A, h2 = 0.3; panel B, h2 = 0.6) across a range of effect sizes. The propor-
tion of true positives detected at a 10% empirical FDR is plotted for each method (closed cir-
cles) as is the AUC (open circles). For all simulations shown here, the sample size was set to 80
individuals.
(TIFF)

S17 Fig. MACAU provides increased power to detect age-associated sites when DNAmeth-
ylation levels are heritable.We simulated age effects on DNA methylation levels in datasets of
500 (A-B) and 1000 individuals (C-D). For all simulations, we included genetic effects on DNA
methylation levels (panels A and C: h2 = 0.3; panels B and D: h2 = 0.6). Below, we show the pro-
portion of true positives detected at a 1% empirical FDR (closed circles) as well as the AUC
(open circles) for each method.
(TIFF)

S18 Fig. Distribution of sites covered in the baboon RRBS dataset (n = 433,871 CpG sites).
(A) Absolute number of sites analyzed for a given genomic region. See Materials and Methods
for information on how we defined each genomic region. (B) Proportion of total annotated fea-
tures in the baboon genome for which a least one CpG site was analyzed in this data set.
(TIFF)
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S19 Fig. DNAmethylation patterns in the baboon RRBS data. (A) The distributions of bisul-
fite conversion rates (estimated from a spike-in sample of unmethylated lambda phage DNA)
and proportions of reads starting or ending with anMsp1 digest site, for each sample. (B) Bar-
plots showing the distribution of DNA methylation levels by genomic compartment. As
expected, CpG islands, H3K3me1-marked enhancers and promoters tend to be lowly methyl-
ated, while gene bodies and the background set of all sites analyzed tend to be hypermethylated.
(C) For each CpG site within 5000 bp of an annotated Ensembl TSS, we calculated the mean
DNAmethylation level at that site across all 50 baboons. These mean levels are plotted as a
smoothed function of distance from the TSS, stratified by gene expression level quartiles
obtained from baboon whole blood RNA-seq. As expected, more highly methylated regions are
associated with more lowly expressed genes. Only expressed genes were included.
(TIFF)

S20 Fig. Distribution of p-values from four different methods for the real RRBS data.QQ-
plots comparing the p-value distributions for (i) a model testing for effects of age on DNA
methylation levels in real RRBS data, plotted on the y-axis; and (ii) the same model when the
age values were permuted across individuals, plotted on the x-axis. For each method, the num-
ber of sites detected at a 10% FDR was as follows: Beta-binomial = 747, GEMMA = 205, Linear
324, MACAU = 1018.
(TIFF)

S21 Fig. MACAU detects differentially methylated regions in the baboon genome. Overall,
we detected 142 age-related DMRs. Two representative DMRs are plotted in panels A and B
(location of DMR in panel A: Chr14, 908111–908168; and panel B: Chr 20: 996106–996139;
see S5 Table for the locations of additional DMRs). To detect DMRs, baboon ages were binar-
ized into two categories, based on whether an individual’s age fell above or below the median
age in our sample. Smoothed estimates of DNA methylation levels are shown for each age
group, and the location of measured CpG sites are noted along the x-axis by black dots. Panel
C shows the proportion of all identified DMRs that fell in a CpG island, CpG island shore, or
both.
(TIFF)

S22 Fig. Sites identified by MACAU are consistently enriched near genes identified as age-
associated in the same population. For each method below, we asked whether CpG sites that
occur near age-associated genes were more likely to be differentially methylated with age com-
pared to the background set of all CpG sites near genes (using a Fisher’s exact test). We report
the enrichment observed and show whether the p-value associated with the Fisher’s exact test
(FET) was below 0.05 (triangles). We repeated this analysis using a varying number of top CpG
sites from each method, with the number for each analysis shown on the x-axis. Dotted vertical
lines correspond to the number of sites detected by MACAU at a 10% empirical FDR (a more
conservative approach), or at a 10% FDR calculated in the R package qvalue (a less conservative
approach).
(TIFF)

S23 Fig. MACAU is robust to error in the estimation of pairwise genetic relatedness. To
understand how the performance of MACAU varies when there is error in the estimation of
pairwise genetic relatedness, we added random error drawn from a normal distribution with
mean 0 and standard error as noted on the x-axis. We then reran our analyses of all simulated
datasets (with varying heritabilities, as noted in the Fig legend) where n = 80 and percent vari-
ance explained by age = 10%. For each analysis, we noted the number of simulated true posi-
tives detected by MACAU at a 10% empirical FDR (note, the results from our original
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analyses, with no error in the estimation of pairwise genetic relatedness, corresponds to x = 0).
(TIFF)

S24 Fig. MACAU outperforms the linear modeling approach ‘voom’.We tested the perfor-
mance of a powerful, commonly used method for modeling RNA-seq data: the combination of
the voom function for data weighting with limma, a linear model approach. To do so, we used
simulated baboon bisulfite sequencing count data (n = 5000 sites including 500 true positives
and 4500 true negatives; percent variance explained by age = 10%; sample size = 80, h2 = 0.6).
QQ-plots show the results for both the voom + limma approach, as well as an analysis of the
same dataset with MACAU. QQ-plots compare the p-value distributions for (i) a model testing
for effects of age on DNAmethylation levels, plotted on the y-axis; and (ii) the same model
when the age values were permuted across individuals, plotted on the x-axis. MACAU detects
20.6% of simulated true positives (at a 10% empirical FDR), while the voom + limma approach
detects less than 1% of simulated true positives.
(TIFF)

S1 Table. Normal mixture approximations to -log(Ga(r, 1)) for r. A separate normal mixture
distribution is used to approximate each negative log gamma distribution. The estimated
parameters in the normal mixture distribution ensure that the Kullback-Leibler (KL) diver-
gence between the two distributions is below 5x10-4. The parameters in the normal mixture
distribution include the number of normal components (k), their weights (w), means (m) and
variances (σ2). Means and variances are shown in their standardized version, whereC(r)
denotes the diagamma function andC’(r) denotes the trigamma function.
(PDF)

S2 Table. Normal mixture approximations to -log(Ga(r, 1)) for r. A separate normal mixture
distribution is used to approximate each negative log gamma distribution. The estimated
parameters in the normal mixture distribution ensure that the Kullback-Leibler (KL) diver-
gence between the two distributions is below 5x10-4. The parameters in the normal mixture
distribution include the number of normal components (k), their weights (w), means (m) and
variances (σ2), all of which are functions of r. Means and variances are shown in their standard-
ized version, whereC(r) denotes the diagamma function andC’(r) denotes the trigamma func-
tion.
(PDF)

S3 Table. Computation times for each method on the two real datasets. Computation was
performed on a single core of an Intel Xeon L5420 2.50 GHz processor. n = number of individ-
uals;m = number of sites.
(XLSX)

S4 Table. Baboon RRBS dataset sample characteristics and read mapping summary.
(XLSX)

S5 Table. Locations of identified age-DMRs in the baboon genome.
(XLSX)

S1 Text. Detailed Methods.
(PDF)
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