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A Flexible Framework for the Automatic

Generation of SBST Programs
Andreas Riefert, Member, IEEE, Riccardo Cantoro, Member, IEEE, Matthias Sauer, Member, IEEE,

Matteo Sonza Reorda, Fellow, IEEE, and Bernd Becker, Fellow, IEEE

Abstract— Software-based self-test (SBST) techniques are used
to test processors and processor cores against permanent faults
introduced by the manufacturing process or to perform in-
field test in safety-critical applications. However, the gener-
ation of an SBST program is usually associated with high
costs as it requires significant manual effort of a skilled engi-
neer with in-depth knowledge about the processor under test.
In this paper, we propose an approach for the automatic
generation of SBST programs. First, we detail an automatic
test pattern generation (ATPG) framework for the genera-
tion of functional test sequences. Second, we describe the
extension of this framework with the concept of a validity
checker module (VCM), which allows the specification of con-
straints with regard to the generated sequences. Third, we
use the VCM to express typical constraints that exist when
SBST is adopted for in-field test. In our experimental results,
we evaluate the proposed approach with a microprocessor
without interlocked pipeline stages (MIPS)-like microproces-
sor. The results show that the proposed method is the first
approach able to automatically generate SBST programs for both
end-of-manufacturing and in-field test whose fault efficiency
is superior to those produced by state-of-the-art manual
approaches.

Index Terms— Automatic software-based self-test (SBST),
functional ATPG, microprocessor test, SBST, SBST for in-field
test.

I. INTRODUCTION

TESTING microprocessors for permanent faults emerg-

ing during the manufacturing process or during the

operational phase is a complex task, regardless whether the

processor is a standalone device or a core within a system

on a chip. The most suitable solution depends on the spe-

cific scenario and on the specific technology. In some cases,

design for testability (DfT) perfectly fits the requirements.

In other cases, it is necessary to complement DfT solutions

with other techniques, e.g., functional test.1 For example,

the adoption of some recent technologies makes the test of

delay defects particularly important, which sometimes can
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1In this paper, we denote a test, which can only control the functional inputs

and can only observe the functional outputs as a functional test.

hardly be detected using traditional DfT solutions (e.g., scan).

There are also cases, in which DfT is simply not feasible. For

example, when the in-field test of a board or system must

be developed by a system company, sufficient information

about any DfT structure is often not made available by the

device providers, and functional test becomes the only feasible

solution.

When processors are considered, functional test typically

takes the form of software-based self-test (SBST) [1]: the

processor is forced to execute a given test program, and

faults are detected by looking at the results produced by

the program (e.g., in terms of values written in memory).

Unfortunately, functional test suffered in the past from the fact

that the complexity for generating suitable test stimuli may be

prohibitively high. When considering a processor, the task of

developing suitable test programs was mainly performed in a

manual manner, thus raising significant concerns in terms of

required cost and time.

Several functional test approaches have been proposed for

microprocessors over the last three decades [2]–[5]. In the

last decade, functional approaches have also been increasingly

adopted by industry [6]–[8]. In the recent years, the growing

adoption of processor-based systems in safety-critical appli-

cations significantly increased the need for effective solutions

for their in-field test. Furthermore, the emergence of standards

and regulations (e.g., IEC 61 508 for industrial safety-

related systems, ISO 26 262 for automotive applications, and

DO-254 for avionics) further pushed industries and researchers

to focus on the in-field test of such systems. As a result,

several works dealt with the development of techniques for

writing effective test programs for whole processors or for

some popular components within a processor. For example,

the method described in [9] allows to write test programs

able to effectively test caches, while in [10], an approach

was proposed that focuses on the test of branch prediction

units. In [11], a technique is described for the test of memory

management units. In addition, functional ATPG tools based

on formal methods, such as satisfiability (SAT) and bounded

model checking (BMC), have been proposed [12]–[14].

However, these approaches struggled with the complexity of

handling a complete processor within a BMC formula. For

example, in [12], this is handled by generating module level

tests and mapping them to instructions. This is often not

possible as module level tests may require nonfunctional

system states. While often stuck-at faults are considered, also

methods for the functional test of delay faults have been devel-

oped [15], [16]. Furthermore, functional methods for detecting

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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faults, which do not affect the correct functionality of a proces-

sor but degrade its performance, have been investigated [17].

In [18], an approach was proposed for the generation of

SBST programs, which is mainly based on the execution of a

large number of blocks of random instructions (>1 million).

However, it does not succeed in achieving high fault coverage

when only the memory content can be observed after SBST

program execution. In [19], an approach to SBST program

generation is presented, which is based on the creation of an

abstract simulation model of the processor under test. Random

training programs are used to create a mapping from processor

inputs and outputs to inner module ports. This mapping is used

in conjunction with constrained structural ATPG in order to

derive an SBST program. Furthermore, special test routines for

hidden control logic as data forwarding and branch prediction

are proposed. While this approach is able to achieve high fault

coverage, it requires in-depth knowledge of the processor for

creating a simulation model and test routines for hard-to-test

logic.

At the same time, some companies providing micro-

controllers for safety-critical applications started to deliver

libraries of software procedures that, when executed by the

processor, guarantee the achievement of specified fault cov-

erage. These libraries are integrated by the system company

into the application software, and their execution is properly

triggered depending on the test and reliability specifications.

Clearly, their development represents a significant cost, which

could be reduced if at least some parts could be automatically

generated, starting from the processor netlist.

While the discussed works provide generalized approaches

to (semi-)manual test program generation or automatically

generated functional test sequences (TSs), none of them allows

a user to model the constraints of an SBST program for

an arbitrary processor and test environment on an abstract

level. For example, a constraint could require to only apply

valid instructions. Especially when targeting in-field SBST,

restrictive constraints are imposed, e.g., the memory area

available for the test code and data may be limited [20], some

input signals may hardly be controllable (e.g., reset), and only

the final content of the memory can be observed. Hence, the

generation of the corresponding test program is significantly

more complex than for end-of-manufacturing test. Previous

works also showed that during in-field test, a higher number

of faults become untestable [21]. Thus, a general approach

to model the described constraints is mandatory to achieve

the same degree of automatism for SBST generation as it is

common for scan test patterns in (commercial) ATPG tools.

Furthermore, an effective identification of untestable faults

under the specific constraints is necessary to comply with the

regulations in the application field of the processor.

The first contribution of this paper is to describe a method,

based on formal techniques, which is able to automati-

cally generate suitable test programs for mid-sized pipelined

processors, such as those that are often used in microcon-

trollers. These test programs can be used for both end-of-

manufacturing and in-field test. The method introduces several

optimizations with respect to previous attempts in the area,

which can reduce the computational effort and maximize the

achieved fault coverage. It is worth mentioning that the method

is able not only to generate a test program with high fault

coverage, but also to prove the untestability of faults. The

employed solving engine applies unbounded model checking

for the first time in the scope of SBST generation. This enables

to handle a complete mid-sized processor at gate level within

the solving engine, which has not been possible with other

approaches [12]. The employment of abstraction techniques

in combination with the powerful solving engine will allow to

handle even larger designs.

The second contribution of this paper specifically focuses on

in-field test. This kind of test requires launching the execution

of suitable procedures either at the power-ON or during the idle

slots of the application. By looking at the produced results,

the system can detect possible faults affecting the processor.

We list constraints, which often exist when performing in-

field SBST test of a processor, and propose a method, which

allows to use the optimized ATPG algorithm mentioned before

in combination with these constraints. In practice, the method

allows the test engineer to specify the constraints existing in

a given environment, and thereby forcing the ATPG algorithm

to generate a test program matching them. As a result, this

paper is the first to propose a method able to automatically

generate effective test programs to be used for in-field SBST

test of a processor. A major advantage of this method lies in

the fact that it is also able to identify faults, which cannot be

tested, when constraints are introduced. Experimental results

gathered on an MIPS-like processor show the feasibility and

the effectiveness of the proposed solutions.

This paper is an extension of [22], where the combination of

specified constraints with the described ATPG was introduced,

and of [23], where exemplary constraints for SBST were devel-

oped and evaluated. In this paper, we improve the runtime of

the functional test generation engine by extracting and reusing

knowledge gained during the test generation process and by

implementing a heuristic for the reduction of aborts. We give

a detailed and generalized description of typical in-field SBST

constraints and their integration into our framework. Finally,

we present extensive experimental results with significantly

improved performance compared with the previous works.

The rest of this paper is organized as follows. Section II

introduces two formal tools, which are used in this paper.

Section III details the functional ATPG algorithm and its

optimizations. In Section IV, the interface for the specifi-

cation of constraints is described. Section V introduces the

considered constraints, which are present in a typical SBST

scenario. Finally, Section VI shows the experimental results

and Section VII concludes this paper.

II. PRELIMINARIES

In this section, we give an introduction to two formal

techniques, which are employed in this paper. First, we detail

BMC with Craig interpolation, which allows to determine the

(non-)existence of a trace from an initial state to a target

state. Thus, the combination of BMC with Craig interpola-

tion enables unbounded model checking. Second, we give a

brief introduction to maximum SAT (MAX-SAT), which is a

generalization of the Boolean SAT problem.
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Fig. 1. Processing steps for a fault.

A. Bounded Model Checking With Craig Interpolation

A classical BMC solver tries to solve a formula, which is

defined by an initial state I0, a transition relation Ti,i+1 , and

a target property Pk

BMCk = I0 ∧ T0,1 ∧ · · · ∧ Tk−1,k ∧ Pk . (1)

Ti,i+1 defines the progress of the system from time frame i

to i + 1, whereas Pk specifies the property to be verified.

Starting with k = 0, the solver searches for a solution, which

satisfies the target property or proves that the target property

cannot be satisfied within k steps. k is increased stepwise until

a solution is found or no new system states can be reached.

In general, the latter case requires very large values for k,

which are not feasible in practice.

However, several approaches for a more efficient unreacha-

bility proof exist. In this paper, the solver Craig Interpolation

prover (CIP) is employed [24], which uses Craig interpolants

to over approximate the reachable system states within each

step. This in many cases allows to prove effectively that a

target property will not be satisfied for arbitrary values of k,

which corresponds to unbounded model checking.

B. MAX-SAT

The underlying engine of our algorithm is an efficient

SAT-based maximization tool, which solves the so-called

MAX-SAT. An ordinary SAT problem consists of a number

of clauses. An SAT solver has to find a solution, which

satisfies each single clause and thus satisfies the SAT formula.

If no such solution exists, the formula is unsatisfiable.

An MAX-SAT problem is a generalization of SAT and its

target is to determine the maximum number of clauses that

can be satisfied simultaneously.

In the following, we provide a brief overview of the

employed MAX-SAT solver [25]. The solver distinguishes

between two types of clauses, namely, hard clauses and soft

clauses. A valid solution has to satisfy all hard clauses and

the maximum number of soft clauses. This problem is solved

by incrementally calling an SAT solver. In order to transform

the original problem, consisting of hard and soft clauses,

into a standard SAT problem, which only consists of hard

clauses, the formula has to be modified. For this purpose,

a bitonic sorting network is employed and encoded into the

formula. This network can be viewed as a circuit with n inputs

(corresponding to the soft clauses) and n outputs. Its function

is to sort all 0s and 1s [each 0 (1) corresponding to an

unsatisfied (a satisfied) soft clause] applied at the inputs to

form a nondecreasing sequence. Alternatively, the network can

be understood as a counter, which counts all applied 1s and

outputs the result in a unary representation. This enables us to

count the number of satisfied soft clauses and incrementally

adjust the bounds for this number until the optimal solution is

found.

To prevent excessive runtimes, the employed MAX-SAT

solver works with a timeout. If the timeout is reached, the

solver returns the best solution that it has found so far.

Furthermore, the solver comprises a partial mode, which does

not return the optimal solution but incrementally optimizes

the blocks of soft clauses. The block size is a user-defined

parameter. Small block sizes yield increased performance but,

in general, produce worse results.

III. ATPG FRAMEWORK FOR FUNCTIONAL

TEST GENERATION

In this section, we give a detailed description of the pro-

posed functional ATPG framework, which is based on the

solver introduced in Section II-A. While also other functional

ATPG engines could be used, SAT-based approaches have

shown to be very effective for targeting hard-to-detect faults

and identifying untestable faults. The proof of structural or

functional untestability for a considered fault allows to cor-

rectly classify it and reduces the overall abort ratio.

The ATPG framework starts with a fault list, which initially

contains all faults. All structurally equivalent faults are then

collapsed. The faults from the collapsed fault list are processed

one after each other. If a TS could be generated for a fault,

all yet untested faults, which are tested by this sequence,

are removed from the fault list. Processing one fault consists

of the steps shown in Fig. 1. These steps are described in

Sections III-A–III-D. The structural testability check is done

with an SAT solver; all remaining steps are based on the

CIP solver. All CIP-based steps require an initial state I0.

We use the reset state,2 when no TS has been found yet,

or the state reached after applying the last pattern of the

previously generated sequence. Finally, Section III-E describes

an optimization of the framework, which extracts knowledge

from successfully generated TSs and reuses this knowledge to

speed up the further TS generation.

2The reset state is determined by calculating a synchronization sequence,
which starts in the all-X state and brings the circuit into a well-defined reset
state. Thus, the synchronization sequence can bring the circuit from each
arbitrary state into the reset state.
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This functional ATPG framework is the underlying engine

for the automatic generation of an SBST program. When

applying additional constraints for SBST (Section V) to the

ATPG algorithm, the generation of a TS for a fault will

correspond to finding an assembler code snippet, which tests

this fault. By using the final state of the last sequence as the

starting state for the next sequence, we ensure that all snippets

can be consecutively connected to a single test program.

Furthermore, the ability of the solver to prove unreachability

will identify faults for which no system state can be reached

from which the fault can be tested. Consequently, it is not

possible to generate a code snippet, which will test this fault,

i.e., the fault is proved to be untestable.

A. Structural Testability Check

The first step determines whether a fault is structurally

testable. We denote a fault as structurally testable if it can be

tested with full control over all primary inputs and secondary

inputs (i.e., flip-flop outputs) and full observability of all

primary outputs and secondary outputs (i.e., flip-flop inputs).

Consequently, a structurally testable fault can be tested with

a full-scan approach. In this step, we employ an SAT solver

as only one unrolling of the circuit has to be considered. For

the input cone of the fault, only the fault-free version of the

circuit has to be encoded. The output cone has to be encoded

in fault-free and faulty versions in order to determine the fault

effect. By solving the corresponding formula, the SAT solver

either finds a structural test for the fault or proves that no

such test exists. In the latter case, the fault does not have to be

considered further as it will also be untestable in the functional

scenario. This step is reasonable as it can effectively identify

structurally untestable faults with only one unrolling of the

circuit.

B. Functional Testability Check

The second step evaluates whether a TS exists, which is able

to sensitize the fault and propagate it to a primary or secondary

output within the same cycle. For this purpose, a CIP formula

has to be generated. For the transition relation Ti,i+1 , the

whole circuit is encoded in a fault-free version. In addition,

the output cone of the fault location, specifying the faulty

behavior, is encoded in the transition relation. In the target

property Pk , we require a difference between the fault-free

and the faulty output cone of the fault location. If the solver

returns unsatisfiable, then the fault is functionally untestable as

no circuit state can be reached, which sensitizes the fault and

propagates it to an output. In combination with Footnote 2, we

can also conclude that no such state can be reached from the

initial state. Thus, there is no functional system state, which

allows testing the fault. This check is reasonable as it only

requires encoding the faulty output cone of the faulty circuit

instead of the complete faulty circuit (which is required for the

next steps) and is, therefore, a less complex problem. If the

solver returns satisfiable, we proceed with the next step.

C. Test Sequence Generation

This step tries to generate a TS, which sensitizes the

considered fault and propagates it to a primary output. For the

transition relation of the CIP formula, we now have to encode

the complete circuit in a fault-free and a faulty version. This is

necessary as the fault effect may be propagated through several

cycles and arbitrary parts of the circuit before it reaches a

primary output. In the target property, we require a difference

between the fault-free and the faulty circuit at a primary

output. If the solver returns satisfiable, we can extract the

TS from the solution. If the solver aborts due to a timeout, we

proceed with the next step.

D. Partitioned Test Sequence Generation

If a fault is testable, but requires a long TS, the TS genera-

tion step may abort with a timeout, as a large number of circuit

unrollings are required. Therefore, this step tries to generate a

TS by partitioning the problem into two subproblems, namely,

sensitization and propagation. The sensitization step sensitizes

the fault and latches it into at least one flip-flop. Then the

propagation step tries to propagate the latched fault effect to

a primary output.

For the transition relation of the sensitization step, we

encode the complete circuit in a fault-free and a faulty version.

In the target property, we require the fault effect to be latched

at least in one of a set of suitable flip-flops. The initial state

of the propagation step is then given by the final state of the

sensitization step, i.e., a circuit state where at least one flip-flop

contains a fault effect. The transition relation also contains the

encoding of the fault-free and the faulty circuit. In the target

property, we require a difference between the fault-free and

the faulty circuit at a primary output. The selection of suitable

flip-flops is crucial for the success of this ATPG step. For this

purpose, we precompute a heuristic for each flip-flop, which

estimates the probability that a fault effect latched in this flip-

flop can be propagated to a primary output. This heuristic is

computed by choosing several random functional states. Then,

for each flip-flop, a fault effect is inserted and a CIP formula

is generated and solved, which tries to propagate this fault

effect to a primary output. The partitioned TS generation is

executed for several iterations until a solution is found or

a user-defined bound is reached. In the first iteration, only

flip-flops, which are structurally reachable from the fault

location, are considered. If the fault effect could be latched

into flip-flop F , then, in addition, all flip-flops, which are

structurally reachable from F , are considered in the next itera-

tion. Thus, the iterations of the partitioned TS generation will

propagate the fault effect successively to varying flip-flops,

until the fault effect is latched into a state, which allows

its propagation to a primary output. If the propagation step

succeeds, then the TS is extracted from the solutions of the

sensitization and propagation steps. If the user-defined bound

is reached, the fault is classified as aborted.

E. Fault Propagation Sequences

In this section, we will describe a modification of the

TS generation step (Section III-C), which decreases the

runtime by reusing knowledge gained from previously

generated TSs.

A valid TS for a fault has to achieve two tasks. First,

the fault has to be sensitized and latched into a register.
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Fig. 2. Propagation sequence extraction.

Second, the faulty value of the register has to be propagated

to an observable output of the circuit. While the sensitization

is fault specific, the propagation of the latched register value

is often fault independent. Therefore, we propose an approach

that is based on a propagation sequence cache maintaining

propagation sequences for each register r, which will allow

the propagation of a value from r to a circuit output. These

propagation sequences are extracted during the execution of

the ATPG algorithm. Each successfully generated TS is used

for extraction.

1) Propagation Sequence Extraction: The algorithm for

the extraction of propagation sequences requires a TS for a

fault F as an input. By fault simulation, we determine the

traces over which the fault effect is propagated from the

fault source to a primary output. Assume that TS consists

of N clock cycles, and F is sensitized in cycle tK . An example

of such a sequence is shown in Fig. 2. The algorithm will start

with the last clock cycle tN . The set ODN of all observable

outputs, which show a fault effect in this cycle, is identified,

i.e., oa and ob in the example. For each output odN ∈ ODN ,

we will then execute the following flow. The fault propagation

path in the currently evaluated cycle tN from odN to an

originating register idN is identified, e.g., from oa to rg .

Then an MAX-SAT formula (see Section II-B) is build.

We use 01X-encoding where an X is regarded as a don’t

care value. First, the input cone of this path is encoded.

All side inputs of the path are required to maintain their

noncontrolling value. All primary and secondary inputs in

the input cone are required either to maintain their logic

value or to be X . Finally, a maximization condition over

the number of primary and secondary inputs being X is

formulated. By solving this formula, the MAX-SAT solver

will return a partially specified pattern PTSN , where the

01X-minimal number of primary and secondary inputs is

specified, which still enables the fault propagation through the

required path. This pattern then constitutes a fault propagation

sequence with a length of one clock cycle starting at register

idN . If there is more than one originating register, the flow

is repeated for all of them. Then, the next output odN is

evaluated.

When all odN ∈ ODN values have been evaluated, the

algorithm will continue with clock cycle tN−1 . Now,

the set ODn−1 consists of the registers idN (r f and rg in

the example) from the previously evaluated cycle tN . The

elements of this set will be denoted by odN−1. Similar to

cycle tN , for each odN−1 , the following flow is executed:

The fault propagation path in cycle tN−1 from odN−1 to an

originating register idN−1 is identified, e.g., from r f to rd . The

MAX-SAT formula is built by first generating 01X-encoding

of the input cone of this path. In addition, the pattern PTSN

from cycle tN has to be considered. The input cone of each

register, whose value is not X in PTSN , is also 01X-encoded.

Furthermore, these registers are required to have the same

logic value as in PTSN . The remaining formula is generated as

described above. The solution of this MAX-SAT formula is a

partially specified pattern PTSN−1 with the minimal number of

specified primary and secondary inputs and enabled fault prop-

agation through the desired path. Furthermore, the secondary

outputs of this pattern are compatible with the secondary

inputs of PTSN . By concatenating PTSN−1 and PTSN , we

obtain a fault propagation sequence with a length of two clock

cycles, which propagates a fault from the register idN−1 to

the primary output odN . An example for such a propagation

sequence would be the path from rd to r f and then to ob.

Then, the next odN−1 is considered.

In general, there can be several propagation paths originat-

ing from a register r . In order to reduce the processing time,

we determine whether an already computed partially specified

pattern PTS for r also covers other propagation paths from r .

If this is the case, these paths do not have to be considered.

The algorithm will evaluate all clock cycles until

reaching tK . During each cycle tI , we extract partially speci-

fied patterns PTSI and connect them with their corresponding

patterns from the following time frames. This enables us to

efficiently compute propagation sequences of arbitrary length.

The fault propagation sequence extraction algorithm is applied

to each generated TS during the ATPG flow.

2) Application of Propagation Sequences: The computed

fault propagation sequences are integrated into the ATPG

flow by modifying the TS generation step described in

Section III-C. This modification is detailed in the following.

We first determine which registers are structurally reachable

from the considered fault over a certain amount of clock

cycles. If no propagation sequences have been cached for

any of these registers, the TS generation step is executed

as usual. The amount of evaluated clock cycles is deter-

mined by the user. Furthermore, the user defines how many

propagation sequences are chosen as targets. The selection

algorithm will then start with the registers that are structurally

reachable within one clock cycle and select one register and
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its corresponding propagation sequence, which has the lowest

number of specified secondary inputs. Then, the selection will

proceed with the registers structurally reachable within two

clock cycles. When the maximum number of considered clock

cycles is reached, the selection process will start again with the

registers reachable within one cycle. This process continues

until the required number of propagation sequences is chosen.

Next, a CIP formula is constructed, similar to Section III-C.

For the transition relation, we also generate encoding of the

fault-free and the faulty version of the complete circuit. The

target property is now modified. It requires that the fault effect

is latched into a system state, which is compatible with one of

the targeted propagation sequences. This means that the fault

effect has to be latched into the register, which is given by

the propagation sequence, and the other register values have

to match the values of the specified secondary inputs given by

the propagation sequence. If such a state is reachable, we can

construct the final TS for the considered fault by extracting

the resulting sequence from the CIP formula solution and

attaching the propagation sequence. We determine by fault

simulation that the fault is detected by the final sequence.

In general, it may happen that the desired propagation is

hindered because of reconvergent fault effects. In this case,

the generation of a TS with the propagation sequence cache

has failed and we proceed with the partitioned TS generation

step, thus trying to generate a TS without the cache.

F. Prediction of Aborts

The first experimental results showed that the list of aborted

faults contained several blocks of faults, which consisted of

structurally very similar faults. This structural similarity is

usually due to several gates being located in the input cone

of different flip-flops, which belong to the same multibit

register (e.g., a 32-bit register). When considering such a

block of structurally similar faults, the solver will try to solve

repeatedly almost the same problem for each fault. Therefore,

we implemented a heuristic, which identifies faults that are

structurally similar to previously aborted faults in order to

avoid unnecessary processing. Structural similarity of two

faults is determined by comparing the port and the type of

the gates affected by the two faults as well as the inputs,

outputs, and (multibit) registers located in the input and output

cone of the two fault sites. If all of these points are equal,

the two faults are considered to be structurally similar. For

the heuristic, all aborted faults since the last successfully

generated TS are stored. When considering the next fault

for ATPG, we determine whether this fault is structurally

similar to a previously aborted fault. If this is the case, this

fault is immediately classified as aborted without processing it.

IV. VALIDITY CHECKER MODULE

The functional ATPG framework described in Section III

assumes that the primary inputs of a circuit under test (CUT)

can be set to arbitrary values at each clock cycle, and the

primary outputs can be observed at each clock cycle. While

this assumption is valid in a production test scenario, it is not

realistic in an SBST environment. Usually, an SBST approach

Fig. 3. Validity checker module (VCM).

comprises the following steps. First, a test program and

corresponding data are uploaded to the memory accessible by

the microprocessor under test. Then, the program is executed

and the final memory content is downloaded. Finally, the

memory content is compared with a golden version, i.e.,

a fault-free execution. Consequently, only valid instructions

and data words can be applied to the data bus. In addition,

hardware interrupts cannot be controlled by software means.

Furthermore, a fault effect can only be observed if written in

the memory at the end of the test. The described constraints

are exemplary for a realistic SBST environment. However,

the concrete constraints can differ depending on the require-

ments imposed by the environment. Therefore, an approach

is required, which can flexibly model these requirements and

constrain the generated TSs accordingly.

We propose a so-called validity checker module (VCM)

for the specification of the SBST requirements. The VCM is

a circuit that can be specified in a hardware description

language (HDL), such as VHDL or Verilog. It is then syn-

thesized to a gate-level netlist and combined with the CUT.

The described functional ATPG framework (Section III)

is extended to incorporate the constraints specified in the

VCM into the TS generation. This will yield TSs, which satisfy

all specified constraints. Thus, the VCM serves as an interface

for the specification of constraints given by the environment of

the CUT. This interface is also very flexible as the addition of

new constraints or the modification of existing constraints can

be achieved by (re)writing a small amount of the HDL code.

Fig. 3 shows an overview over the VCM concept. In the

HDL source file, a test engineer will specify a number of con-

straints describing the environment of the CUT. A constraint

has to be a circuit itself with an arbitrary number of inputs

and one output. The output should be 1 if the constraint is

satisfied and 0 otherwise and is denoted by validity output.

The constraint can be designed as a pure combinational block

or may contain storing elements. Its inputs can comprise

several types of signals as indicated in Fig. 3. The primary

inputs and outputs of the CUT can be utilized as constraint

inputs, e.g., for forbidding certain values on these signal lines.

An internal signal can serve as an input, e.g., if the validity of

the constraint depends on a CUT register value. In addition,

we introduce pseudo-D inputs that are not part of the CUT.

However, they are required if a constraint, referring to a fault
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Fig. 4. Typical in-field SBST environment.

effect at a certain signal or bus, has to be specified. For

example, if a constraint requires a fault effect to be visible

at bus data, then pseudo-D input data_D is introduced, which

is handled like a normal circuit input in the VCM. The ATPG

framework will then identify data_D as the placeholder for the

fault effect at data and connect this line to the corresponding

variable in the circuit encoding, which determines whether

a fault effect is visible, i.e., a difference between the fault-

free and faulty circuit version is visible at data. After all

constraints are specified, the VCM can be synthesized to a gate

netlist. This netlist is combined with the CUT netlist, as shown

in Fig. 3. The resulting netlist is the input for the functional

ATPG. The ATPG framework supports the activation and

deactivation of each constraint during each step. This is useful

for identifying constraints, which invalidated test generation

for a specific fault. Furthermore, we distinguish between two

types of constraints, namely, invariant constraints and target

constraints. An invariant constraint has to be valid in each

cycle of a TS, while a target constraint only has to be valid

in the last cycle of a sequence.

V. CONSTRAINTS

In this section, we will describe the constraints that are

usually present in a realistic in-field SBST environment and

explain how these constraints can be enforced with the

VCM (Section IV). We divided the constraints into several

subclasses, which outline the challenges related to the genera-

tion of an SBST program. First, we will discuss each subclass

on an abstract level and then give the concretely implemented

constraints for a typical in-field test environment. An overview

of the considered SBST environment is shown in Fig. 4. The

implemented constraints should be seen as an example and

as a basis for the specification of constraints for an arbitrary

microprocessor and test environment, since the flexibility of

our framework allows a user to easily change, remove, or add

constraints in order to model his specific requirements.

A. Hardware-Controlled Inputs

As SBST is solely based on the execution of a software

program, it is not possible to access hardware-controlled

inputs. This is especially true when considering in-field SBST,

where the processor is usually embedded in a larger system.

Therefore, the input signals of the processor will be connected

to other system modules, such as memory, sensors, or IO con-

trollers, and will not be controllable during SBST. Instead, the

SBST program has to work properly without being disturbed

by these hardware-controlled inputs. Consequently, the user

has to specify HDL constraints, which describe the behavior of

these signals during SBST execution. For example, an external

interrupt may be constantly inactive or may only occur within

a certain amount of clock cycles. However, describing such

behavior on the high abstraction level of an HDL is easily

achievable.

In our SBST environment, we consider three hardware-

controlled inputs. First, the system reset signal is only allowed

to be active once at circuit initialization and then has to remain

inactive. This is reasonable as activating the signal at certain

clock cycles would be hard to control in an in-field SBST sce-

nario. Second, analogous to the previous constraint, hardware

interrupts are not allowed and have to remain inactive. Third,

we assume a memory with a response time of one clock cycle.

Therefore, we require the memory acknowledgment signal to

be always active. If a memory with another response time or

interface is used, constraints corresponding to this memory

protocol have to be implemented at this point.

B. Valid Memory Content

In an in-field SBST scenario, we are only able to control the

program and data memory content. Depending on the actual

processor under test, this content has to be further restricted.

In most cases, the program memory is supposed to solely

contain instructions from the processor instruction set. This

requires the user to implement a constraint, which comprises

the encoding of all instructions.

In our test environment, we applied the following constraint.

If the processor is loading an instruction, only valid instruc-

tions are allowed to be applied at the data bus. For this purpose,

the encoding of all instructions from the processor instruction

set has to be contained in the implementation of this constraint.

If a data word is loaded, no restrictions are applied.

C. Program Memory Coherence

As the objective is to generate a program, it has to be

possible to map a computed TS to memory. This requires

the coherence of the program memory, i.e., fetching an

instruction from one memory address should always return

the same instruction. A naive approach could store all accessed

instructions in the VCM, i.e., implement a program memory.

However, this would induce a large search space and would not

be feasible. Hence, we implement this requirement by prevent-

ing operations, which decrement the program counter. This can

be achieved by restricting branch instructions accordingly and

forbidding system functions and exceptions. As this approach

is very restrictive and may decrease the fault coverage for

certain modules, test macros can be utilized. The idea of a

test macro is to specify a small state machine, which requires

a certain sequence of instructions. For example, this can be

used to allow backward branches, which are usually required

for testing branch prediction units.

At the power-ON, the processor is supposed to set the

program counter to a well-defined value. The constraint is

enforced by forbidding jump instructions to arbitrary memory

locations and system functions. Furthermore, branch instruc-

tions are only allowed to increase the program counter by a

fixed value. This value is chosen by taking into account the

number of pipeline stages, which take place after loading the
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branch instruction until its execution. The described constraint

will, therefore, enforce a monotonic increase in the program

counter and avoid several fetch operations from the same

memory address. However, this restrictive implementation may

prevent testing some parts of the processor. In order to cope

with this challenge, the constraint is extended by two macros,

which are described in the following.

Increasing the program counter by a fixed value results in

high instruction addresses being hard to reach. Therefore, the

first macro enables reaching these addresses more easily. It

consists of two jump and link instructions (jump to target

address and store return address) and one store instruction.

The first jump can target an arbitrary memory address above a

user-defined threshold; the second jump will then return to the

memory address after the first jump. Finally, a store instruction

for the return address will be performed. In case of a fault in

the address logic, this control flow will be manipulated and

the store instruction will not be performed or store a wrong

value in the memory.

A branch prediction module will usually require the exe-

cution of a branch instruction at a certain memory address

several times in order to be activated [10]. Therefore, the

second macro enables backward branches in a restricted way.

The macro enforces a conditional branch instruction, whose

condition is initially false and, therefore, the branch is not

taken. Then, the condition is set to true, and a second branch

instruction returns to the first conditional branch instruction.

As its condition is now true, it will branch to a store instruc-

tion, which finishes the macro. A fault in the branch prediction

module will cause a branch to a wrong memory address and,

therefore, the store instruction will not be executed. Please

note that the performance faults [17] in the branch prediction

unit, i.e., faults that only cause a wrong branch prediction,

cannot be detected due to the fault detection condition, which

states that only the memory content after program execution

is observable. However, performance faults would require

cycle-accurate monitoring of the circuit outputs. Consequently,

performance faults are untestable in an in-field SBST scenario.

Finally, the constraint requires that either only one of the

macros is active or both are deactivated. In the latter case,

branches are restricted to a fixed value. The functional ATPG

will then choose one of these three possibilities to test a given

fault.

D. Data Memory Coherence

In addition to the program memory coherence, the data

memory coherence also has to be guaranteed. This means

that two consecutive load instructions accessing the same

memory address have to return the same data word. If a store

instruction has been executed on a memory address, then all

following load instructions accessing the same address have to

return the previously stored data word. This requirement can

be implemented by defining a starting address for the data

memory and by then performing all memory load and store

instructions on consecutive memory cells.

The data memory coherence constraint is implemented by

initially loading a predefined value into a general purpose

register r. The loaded value determines the starting address of

the data memory. The value of r serves as the target address for

all load and store instructions. After one of these instructions

has been executed, the value of r is incremented. No other

manipulations of r are allowed. This constraint will, therefore,

cause all load and store instructions to target distinct memory

cells in the data memory.

E. Fault Detection

In an in-field SBST scenario, it is only possible to observe

the memory content after the execution of the test program.

Therefore, a fault effect has to be persistently stored in

the memory in order to be observed. For this purpose, the

pseudo_D inputs (Section IV) can be utilized. The constraint

that enforces the fault detection has to require a memory

store operation, while a pseudo_D input (related to a memory-

controlling output) is active, i.e., a fault effect affecting the

store operation is visible. For example, requiring the pseudo_D

input of the data bus to be active, while a store is performed,

will cause storing faulty data.

For our test environment, the implemented constraint

requires that either the memory write signal is faulty or the

memory write signal is active and a fault effect is visible at

either the address or the data bus. The first requirement will

lead to a store instruction, which is only executed in either

the fault-free or the faulty case. The latter requirement will

cause a store instruction, which either writes to an erroneous

memory address or writes an erroneous data value into the

memory.

F. SBST Program Extraction

Generating a TS for a fault with the described constraints

will return a sequence of patterns consisting of valid instruc-

tions and data words. By simulating the sequence, we can

determine the memory address, which is outputted by the

processor at the address bus for fetching an instruction or

loading a data word. The implemented constraints will enforce

that each instruction and data word is using a unique address

in the memory. The SBST program can be extracted by map-

ping each instruction to its corresponding memory address.

Furthermore, the data words required by the load instructions

can be preloaded into the corresponding memory cells.

Therefore, a memory mapping is generated, which realizes

an SBST program together with its required data.

G. Application to Other Fault Models

The approach detailed in this paper considers stuck-at

faults. However, this approach can be extended to other fault

models. In [26], a functional ATPG algorithm for small-

delay faults was proposed, which is based on the same solver

as the functional ATPG in this paper. Riefert et al. [22]

combined the small-delay fault ATPG with the VCM described

in Section IV.

VI. EXPERIMENTAL RESULTS

An MIPS-like processor [27] was used to prove the via-

bility and the effectiveness of the proposed approach. This

processor comprises a five-stage pipeline, data forwarding, and
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TABLE I

EXPERIMENTAL RESULTS (PERCENTAGE WITH REGARD TO COMPLETE FAULT LIST)

branch prediction. We utilized the available register transfer-

level description.3 The VHDL code was synthesized with

Synopsys Design Vision using an in-house developed library.

The resulting gate netlist contained 18 279 gates and 1966 flip-

flops that were all considered for stuck-at test generation. The

uncollapsed fault list contains 111 024 faults and is collapsed

to 54 181 faults. The VCM containing all described constraints

was specified in VHDL and comprises ∼400 lines of code,

which resulted in a synthesized netlist consisting of 1387 gates

and 55 flip-flops. All experiments were executed on one core

of an Intel Xeon processor running at 3.3 GHz and being

equipped with 64 GB of RAM. The timeout for each call to

the utilized CIP solver was 60 s. One solver call required no

more than 3 GB.

A. Evaluation of Contraints

We executed three runs with differing sets of applied

constraints. First, we executed an experiment with no con-

straints applied (no constraints). This corresponds to an end-

of-manufacturing test scenario. Second, only the constraints

described in Sections V-A and V-B were considered. These

constraints are implemented as small combinational blocks and

are, therefore, denoted by combinational constraints. Third,

the remaining constraints from Sections V-C to V-E, which

correspond to more complex sequential blocks, are addition-

ally considered. This experiment is denoted by all constraints.

The first run required 32 h, the second run required 29 h,

and the third run required 65 h. The runtime decrease in

the second run, in comparison to the first run, is due to the

combinational constraints, which restrict the search space in

a suitable way, and thus simplify the task of the solver. The

third run requires significantly more time as the additional

constraints, especially the fault detection condition, invalidate

several simple solutions, which were valid in the first two

runs. While the runtime is relevant, the reader should note

that alternative approaches are much more costly as they

require a skilled engineer with in-depth processor knowledge

to manually generate an SBST program instead of computer

runtime.

3The available version contains a bug, which always executes a conditional
branch, even when the condition does not hold. As the correct execution of a
conditional branch instruction is required for the execution of a program, we
fixed this bug.

Table I lists the results of the three runs. We give detailed

results for each of the processor modules. The subdivision

corresponds to the modules given in the available VHDL

code. The columns untest and abort give the percentage of

faults, which are untestable in the considered scenario, and are

aborted, respectively. The column FC gives the fault coverage

of the generated TSs. The column FE gives the fault efficiency,

i.e., the percentage of faults that can be either tested or

proved as being untestable. Compared with other approaches

utilizing BMC [12], we have a low abort ratio as our approach

can identify all structurally untestable faults and a significant

amount of functionally untestable faults. Consequently, aborts

are avoided, while processing these faults. The TSs generated

with no constraints have a total length of 15 389 clock cycles.

Considering the combinational constraints, it yields TSs with

a total length of 12 601 clock cycles. When applying all

constraints, 17 162 clock cycles are required.

B. Evaluation of Proposed Optimizations

The propagation sequence cache (Section III-E) has been

applied to all runs. In order to assess the effectiveness of

the cache, we executed an additional evaluation run with

no constraints applied and without utilizing the propagation

sequence cache. In this evaluation run, we processed all 1588

TSs that were generated by the original run with the cache.

For each of these sequences, the evaluation run tried to

generate one sequence starting from the same starting state

and targeting the same fault as the corresponding sequence

from the original run. The described evaluation approach

ensures that the original run with cache and the comparison

run without cache will always process the same problem

instances and, therefore, provide comparable runtimes. The

original run utilizing the cache required 72 002 s for generating

the 1588 TSs and extracting the propagation sequences. The

comparison run without utilizing the cache required 100 837 s

for processing the corresponding 1588 problem instances.

Out of these instances, 17 were aborted, i.e., no pattern

could be generated without utilizing the cache. Thus, the

application of the propagation sequence cache could improve

the TS generation runtime by ∼28%. This demonstrates

that the knowledge gained from already generated TSs can

be automatically extracted and used beneficially for the
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further ATPG process. Out of the 1588 generated sequences,

1068 propagation sequence cache hits occurred. For all of

these cache hits, the cached sequence provided a valid fault

propagation sequence, i.e., it was not corrupted by the targeted

fault. This shows that assuming the propagation of a latched

fault effect to be mostly fault independent (Section III-E) is

reasonable.

We also evaluated the effectiveness of the proposed heuristic

for the prediction of aborts (Section III-F) by executing an

additional experimental run with combinational constraints

and without the described heuristic. The results show that the

proposed heuristic reduces the runtime by 26% and addition-

ally misclassifies only 0.13% of the total number of faults as

aborts.

C. Comparison With Other Approaches

In [28], an approach for the generation of an SBST program

was proposed, which is based on the manual development

of test programs for the different modules of a processor.

Gizopoulos et al. [28] evaluated the processor, which is

also considered in this paper. They are able to achieve fault

coverage of 95.08%. It has to be noted that they consider

an older version of the processor, which does not contain

a branch prediction unit. However, it can be concluded that

our automatic approach achieves the comparable fault cover-

age (95.02%) without the need for manual effort and in-depth

processor knowledge. In addition, it can classify 3.14% faults

as untestable and achieve a fault efficiency of 98.16%. The

manual generation of test algorithms is particularly tedious

and time expensive when considering pipeline structures with

bypassing and data forwarding. Furthermore, certain faults can

become untestable due to the constraints imposed by a realistic

SBST scenario. Due to standards and regulations for safety-

critical systems, it is also important to identify these faults.

By activating or deactivating certain constraints in the VCM,

our approach allows not only to prove untestability of a

fault but also to identify the constraint, which made the fault

untestable.

In [18] and [19], also the same processor, as considered

in this paper, is evaluated and the results are given. How-

ever, the processor is synthesized using differing libraries.

Furthermore, the fault coverage given in both works is

computed by considering only structurally testable faults,

i.e., structurally untestable faults are collapsed. Thus, the

fault coverage given here is rather comparable to the fault

efficiency of our approach. Furthermore, Lu et al. [18] utilize

so-called micro observations which means that the fault effect

can be observed at each clock cycle. This makes it rather

comparable to our run, which considers only combinational

constraints. In [18], 98.46% fault coverage can be achieved,

while our approach considering combinational constraints

achieves 99.31% fault efficiency. Compared with the fault

coverage of 97.31% achieved by [19], we achieve a fault

efficiency of 98.16%. As detailed, these numbers cannot be

compared exactly but still indicate the effectiveness of our

approach.

For comparison, we also evaluated the effectiveness of

random TSs. Fig. 5 shows the evolution of the fault coverage

Fig. 5. Comparison of fault coverage saturation with random patterns.

over the number of TS clock cycles for different test sets. The

upmost curve (ATPG) is based on the test set generated by our

functional ATPG with combinational constraints applied and

saturates at 96.46%. The second curve (random instructions)

is based on a test set where the reset and interrupt signals

are always inactive; the memory acknowledgment signal is

always active and random instructions are applied. This corre-

sponds to the combinational constraints. This curve saturates at

about 86.66%. In the beginning, this curve rises more steeply

than the fault coverage of the ATPG-generated test set as

the fault list, processed by the ATPG framework, is sorted

modulewise. Consequently, the ATPG will process all faults

from one module before considering the next module, while

random instruction will sooner address easy-to-detect faults

from all modules. The lowest curve (random patterns) is based

on completely random patterns. This test set is only able to

reach ∼25.63% fault coverage. Fig. 5 shows that constrained

random patterns can be used to achieve basic fault coverage.

However, they are not able to achieve high fault coverage as

they fail to test hard-to-detect faults, which require a very

specific TS.

VII. CONCLUSION

In this paper, we have presented a framework, which

allows for the first time to automatically generate an effective

in-field test program for a pipelined processor. We have

detailed the basis of this framework, which is a functional

ATPG engine capable of efficiently generating a TS for a

fault or proving its untestability. Several optimizations of the

functional ATPG engine have been developed. Furthermore,

the flexible interface of our framework has been described,

which allows the specification of arbitrary constraints, induced

by an in-field test environment, on an abstract level. We have

listed typical constraints, which exist in an in-field processor

test environment and illustrated their integration into our

framework. Finally, extensive experimental results have been

reported, which show the effectiveness of the approach and

give significantly improved runtimes with regard to the previ-

ous works. In particular, the experimental results show that our

fully automatic test program generation method can achieve

the same stuck-at fault coverage as manual approaches.

Furthermore, it can take into account any constraint stemming

from an in-field SBST environment, and identify untestable

faults.
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