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Abstract— As robotic technology matures, fully autonomous
robots become a realistic possibility, but demand very complex
solutions to be rapidly engineered. In order to be able to
quickly set up a working autonomous system, and to re-
duce the gap between simulated and real experiments, we
propose a modular, upgradeable and flexible hardware-in-the-
loop (HIL) architecture, which hybridizes the simulated and
real settings. We take as use case the autonomous exploration
of dense forests with UAVs, with the aim of creating useful
maps for forest inspection, cataloging, or to compute other
metrics such as total wood volume. As the first step in the
development of the full system, in this paper we implement a
fraction of this architecture, comprising assisted localization,
and automatic methods for mapping, planning and motion
execution. Specifically we are able to simulate the use of a 3D
LIDAR endowed below an actual UAV autonomously navigating
among simulated obstacles, thus the platform safety is not
compromised. The full system is modular and takes profit
of pieces either publicly available or easily programmed. We
highlight the flexibility of the proposed HIL architecture to
rapidly configure different experimental setups with a UAV
in challenging terrain. Moreover, it can be extended to other
robotic fields without further design. The HIL system uses
the multi-platform ROS capabilities and only needs a motion
capture system as external extra hardware, which is becoming
standard equipment in all research labs dealing with mobile
robots.

I. INTRODUCTION

Thanks to an acceleration of technological solutions for

robotics, robotic systems are becoming more and more

mature. This derives in systems with a high degree of

complexity, in which robots are asked to fulfill a wide

range of functionalities in a coherent, robust, and efficient

way. Setting up a fully autonomous system including sens-

ing, environment modeling, planning, and execution through

control laws, becomes a delicate task of trial and error,

tuning, and redesign considerations. This is especially acute

in naturally unstable robots, such as drones or humanoids,

for which failures or imbalances in the system can derive in

fatal crashes that may put people and expensive hardware at

risk. Moreover, operation of such robots in poorly structured

and evolving scenarios, such as busy factories or dense

forests, increases the need for robustness up to levels far

beyond those typically encountered in research labs. Early

experimentation through simulation is a powerful way of
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doing a number of these trials without risk, but simulation

often lies too far from the real world scenarios [1]. Hardware-

in-the-loop (HIL) schemes come handy for narrowing this

gap.

This paper describes a HIL architecture as an efficient

approach to pursue safe research and development of a

complete and complex robotic system. This work takes as

a use case the problem of setting up a fully autonomous

unmanned aerial vehicle (UAV) for automatic exploration of

forests from their inside. Dense forests are very challenging

scenarios for the deployment of UAVs: GPS signals are

denied or corrupted, the areas to cover are huge, which

demands flights to be planned and executed at agile speeds,

and they constitute unstructured and evolving 3D scenarios

with difficult lightning, and potentially very small obstacles

that will be detected only at the last moment. Ideally, the user

should specify only the area to cover by the UAV, and the

UAV should start the flight and return with a full map of the

forest, providing precious data for its cataloging, exploitation

and/or conservation.

In order to have the complete system rapidly working and

easily upgradable by just upgrading the parts, our architec-

ture takes profit of pieces of software publicly available,

and organizes them in an operative system. Our focus has

been in creating a HIL research and development platform,

which gives us the flexibility to experiment safely, regardless

of the system being somewhere midway in the process

of development. Summarizing, the idea is to create a full

working system quickly, which starts simple but safe thanks

to the HIL architecture, and to upgrade it with more and

better features as time, resources and/or knowledge become

available. Among others, our HIL scheme helps in three main

aspects:

• We can simulate the sensing part. This allows us

to try different sensor configurations without actually

having to acquire and install them, and to decide on the

best sensing solution. Then, the payload and associated

dynamics can be analyzed and the UAV can be properly

optimized for weight, power consumption, speed, etc.

• We can create any kind of simulated scenario (and

perceive it with the simulated sensors) and deploy the

actual UAV on it. For example, we can try different tree

geometries, consider small moving twigs and leaves,

add low bushes, uneven terrain, etc.

• HIL allows us to perform safer real experiments,

removing real obstacles and substituting them by simu-

lated ones, while using the real platform, with the sensor

on it, hence with the correct dynamics, but substituting

the real sensor data by simulated sensor data.



The key of a HIL system is to hybridize simulation with

real scenario parts. In [2], [3], [4] similar HIL schemes were

presented. However, only the onboard autopilots are used as

hardware, and the platform dynamics, the actuation, and the

Earth’s physical effects are simulated. In [5] an HIL scheme

is presented to simulate the visual servo control performed

by a fixed-wing aircraft. And similarly, [6] proposes a

test platform to develop educational and research autopilot

control systems. Similar approaches are [7] and [8], where

a real UAV is stabilized using computer vision. The actual

vehicle is controlled inside a lowspeed wind tunnel and its

attitude estimation is used to obtain images from a virtual

camera in a simulated scenario.

The navigation system of a UAV comprises localization,

mapping, motion planning, motion generation and control, in

a fully closed-loop manner. In a complete navigation system,

suited for unstructured terrains, the localization and mapping

tasks should be based on a simultaneous localization and

mapping system (SLAM) such as [9], [10], [11]. Although

the full HIL architecture is described in the following, we

considered the SLAM module out of the paper scope to

simplify the initial stages of the framework development

and to allow easy and safe inlab experimentation. Without

loss of generality, we substituted this module by a motion

capture system with the hope that SLAM can be incorporate

in further stages.

This document is structured as follows. In the next section

we present a brief description of the relevant HIL architecture

of the system, including its main building blocks. Section III

goes over the simulated results and real experiments. Con-

clusions and future work are provided in Section IV.

II. SYSTEM SETUP

A. Flexible Hardware-in-the-Loop System

We propose a hardware-in-the-loop architecture that al-

lows for a smooth transition from a fully simulated system

to a fully autonomous system, incorporating SLAM as an

optional module. The architecture makes it easy to switch

between five basic configurations, as described hereafter

(Figs. 1(a) to 1(e)).

• Simulation (Fig. 1(a) and 1(b) ). A UAV with a laser

range finder (LRF) is deployed in a simulated environ-

ment. The pose of the vehicle can be obtained in a first

stage from the simulator, Fig. 1(a), and then incorporate

SLAM smoothly in a second stage, Fig. 1(b). This

pose is used to stitch all scans together to form a well

referenced Octomap ([12]). This scheme is useful to

develop and validate the exploration, global planning

and local planning techniques. Motion controllers close

the loop back to the simulated UAV motors.

• HIL system, with motion capture system (Fig. 1(c)).

A real UAV is deployed in a flying area, initially free of

obstacles, provided with a motion capture system. The

captured pose is used to simultaneously spawn a UAV

in a simulated environment, with simulated obstacles,

producing simulated sensor readings, i.e. laser scans.

The captured pose is used to stitch all scans together to

form a well referenced Octomap. Notice that the actual

UAV can fly either in empty space (thus avoiding the

risk of collisions), or in a cluttered space with obstacles

accurately scanned and reproduced in the simulator

(establishing this way a quasireal experiment). Motion

controllers feed the real UAV motors.

• HIL system, with SLAM (Fig. 1(d)). SLAM is then in-

corporated in a new HIL system. The tracked UAV pose

is used to simulate the scans in a simulated environment.

Real IMU and simulated scans (and eventually other

sensory information such as vision) are fused together in

a SLAM module, thus obtaining an estimated pose, used

with the scans to create dense Octomaps. The estimated

and captured poses can be compared against each other

for performance evaluation. Notice again that the real

UAV can fly either in empty or cluttered space. When

the system performs satisfactorily, we can switch to the

fully autonomous configuration (next paragraph).

• Fully autonomous system (Fig. 1(e)) including full

SLAM capabilities. The system is disconnected from

any simulation or HIL modules. The motion capture

unit can be used as a ground truth provider for the sake

of performance evaluation. The validated system should

be able to fly in other areas of similar complexity, away

from the controlled lab conditions.

B. Navigation system

We have designed a modular system based on the Robot

Operating System (ROS) framework. In this section we focus

on four main blocks which together provide the desired

navigation functionality: the localization and mapping tasks,

the exploration technique, the global path planner (to reach

the exploration goal) and the local path planner (which

outputs the waypoint commands to the platform and contains

the reactive behavior). All those modules are based on

the current pose and the environment map. Localization

comes from either simulation, motion capture, or SLAM,

as explained in Section II-A. Dense mapping is produced

by Octomap, an efficient 3D grid representation presented in

[12], which takes profit of the precise localization to stitch all

captured scans together into a full globally referenced map,

called Octomap.

1) Exploration: Exploration is one of the elementary tasks

in autonomous mobile robotics where the robot has to map

the forest area in an efficient and fast manner. Several

techniques have been presented to explore an unknown envi-

ronment, and among them one of the simplest and functional

is the frontier-based method. The basics of frontier-based

exploration techniques were studied in [13], [14], [15], [16],

[17]. Among these approaches, we have chosen the method

which visits the closest frontier point. Its main operation can

be described as follows.

We define exploration rays from the robot’s current pose

to the current map border as shown in Fig. 2. The angle

and distance steps for collision checks are tuning parameters

that actually define the complexity and the performance



(a) Simulated system without SLAM.

(b) Simulated system with SLAM.

(c) HIL system without SLAM.

(d) HIL system with SLAM.

(e) Full system with SLAM.

Fig. 1. Arquitecture configuration schemes.

Fig. 2. Frontier-based exploration concept used in the UAV navigation
system.

of the exploration algorithm. For each ray, we search for

free spots among the candidates (e.g. C1, C2, C3) near the

frontier between known and unknown terrain. If the space

around the calculated position is free, which is defined by

the robot size in a form of a cylinder, it is considered as a

potential exploration goal candidate. The proposed algorithm

selects the outmost candidate (C3) and stores it in a list.

The list is initially filtered based on a given world size

parameters, whose size defines the maximum exploration

area with respect to the robot start position. We choose the

closest exploration candidate from the list to establish the

next exploration goal. We maintain the list of other potential

goals in case the currently selected goal is not reachable.

2) Global Planner: The global path planner tries to

compute a free path from the robot to the desired exploration

goal based on the current pose and Octomap status. The

resulting path is represented as a list of waypoints.

The planner is based on the Visibility Graph path search

algorithm from chapter 6.2 in [13]. We have simplified it

slightly in the sense that only one possible path around the

detected obstacles is checked, so we have no guarantee of

this path being the shortest one. However, given the typical

shapes of obstacles in a forest (tree trunks), we found it

reasonable to do it this way.

The global path planner starts by computing the straight

path to the given goal, and checking for collisions on this

path (Fig. 3). The collision checking is done considering

the robot as a cylindrical bounding shape. If a collision is

detected, the initial and final locations of the obstacle in the

path line are used to create a collision bounding box (shown

as an orange rectangular box in Fig. 3). The free space search

or collision checking is done parallel to the longest side of

the bounding box based on the limitation of Z axis (vertical)

and offside distance parameter. Offside distance parameter is

defined by the user and represent the search distance from

the edge of the collision box.

The free positions found are stored in a list, from which

we choose the best candidates to plan a collision free path

around the collision box. First, we decide which is the most

interesting side of the collision box based on the largest

number of free poses found, and we keep the middle of

all points on that side. We then check for the collisions on

the resulting path which is now formed with all previously

found free points. This is repeated until we have a free path



Fig. 3. The path planning algorithm shown in a 3D visualizer (ROS
rviz): the red UAV model represents the goal position; the blue straight line
represents the shortest path to the goal; the orange square box represents a
collision box; and the red cylinder shape shows an example of a free space
search around the collision box.

to the given goal. If a free path cannot be found we recall

the global goals list from the Exploration module for a new

goal candidate.

3) Local Planner: The local planner includes a reactive

behavior, necessary to safely navigate in the dense forest

environment. This topic has been studied in [18], [19] and

[20]. The reactive behavior is designed to find a safe way,

even if new obstacles have appeared in the environment as

the result of an updated Octomap.

The reactive part of the local planner is done based on a

cylinder shape whose dimension is defined by a lookahead

distance parameter set by the user. Based on this cylindrical

shape, we perform checking for the occupied cells in the

Octomap. At maximum rate of 5 times per second, the

Octomap provides an updated world model which triggers

the reactive force calculations. If there are no occupied cells

in the lookahead area, the local planner does not deform

the global path. Otherwise, reactive vector forces, f , are

computed from the average distance between the robot and

all occupied cells that lie closer to the lookahead distance d,

according to

f = −u
d

∑

di<d

di
. (1)

where u is a directed vector from the current waypoint Xc

to the i-th Octomap’s cell, and di is the distance to that

cell. The local planner uses f to deform the current path’s

waypoints according to

Xd = Xc + r f (2)

where Xd is the deviated waypoint, and r is a tuning

parameter that controls the effect of the reactive forces.

The produced waypoints are fed to the waypoints con-

troller module. This controller resides in the embedded com-

puter (on-board) and incorporates a platform states machine

to deal with all platform modes, thus allowing only the

execution of waypoints’ control during flight mode (the

takeoff and land will be performed internally in the states

(a) Top view where black circular elements are the
treetops. The explored and unexplored zones are shown
in clear and dark gray colors, respectively.

(b) Obtained 3D octomap.

Fig. 4. Results of the autonomous exploration in a simulated environment
with several trees distributed along an area of 20x20m.

machine). Our implementation of the control law corresponds

to a well known PID controller which produces velocity

commands to achieve the next waypoint in the list. These

velocity commands are fed to the attitude controller which

actuates the motors to accomplish the desired motions.

III. EXPERIMENTS

The experiments corresponding to the schemes presented

in Section II, comprising from simulation to different HIL

implementations, are detailed hereafter and shown in the

accompaining video.

A. Simulation

The simulation setup (architectures shown in Fig. 1) uses

the Gazebo simulator1 as the main physics machine. We take

advantage of the Hector quadrotor gazebo plugins2, modified

to match the real quadrotor specifications, described in the

following section. We assume that inside a forest there will

1http://gazebosim.org
2http://wiki.ros.org/hector quadrotor



Fig. 5. Hardware setup including main processors, functionalities and communications.

be null presence or very small amount of wind. We simulate

a set of trees distributed over a flat ground area and to reduce

the computational burden of the simulation. Without loss of

generality, we limited the simulated area to 20× 20m. This

first simulation step is crucial to test all algorithms without

compromising the real platform.

Fig. 4 shows the 3D map resulting of applying the ex-

ploration, navigation, mapping and control techniques men-

tioned in previous sections. Notice how in Fig. 4 not only

the tree trunks are present in the 3D Octomap, but also some

important parts of the treetops.

B. Hardware-in-the-Loop

The robot used in the real experiments is based on an

ASCTEC Pelican quadrotor3, and the hardware setup is

composed of two main systems, as shown in Fig. 5, including

the ground station (Intel Core i7, 8 Gb RAM) and the

onboard processors (i.e. an embedded Intel Atom @1.6GHz,

1Gb RAM, and the ASCTEC autopilot running the attitude

controller).

In order to work with the virtual and real testbeds at the

same time, we prepared a 3D reconstruction of the laboratory

space (empty of obstacles) where a motion capture system

(Optitrack) has his workspace defined. A dense point cloud

was gathered using a custom-built 3D laser with a Hokuyo

UTM30LX scanner mounted in a slipring. Each scan has

194,580 points with a resolution of 0.5 deg azimuth and 0.25

deg elevation. Then, we created the 3D model and imported it

to the Gazebo simulator. Although the simulated environment

allows also simpler environment models, this procedure was

done in order to have a scenario as real as possible.

Notice how in the 3D virtual environment we are able to

add virtual objects, see the vertical columns added in Fig.

6(a), or even simulate sensors exactly in the same pose as

if they were attach to the real robot, such as a Velodyne

VLP16. In the latter, the virtual sensor takes scans of the

virtual scenario, which is a model of the real environment,

defining what we call a quasireal environment, see Fig. 6(b).

Therefore, this 3D virtual world model can be used to

deploy either a simulated UAV, corresponding to the scheme

3http://wiki.iri.upc.edu/index.php/Kinton

(a) Simulated environment composed by the 3D model
of the real scenario together with virtual pillars emulating
tree trunks.

(b) Overlapping of the real and simulated environments
with the Octomap containing the detected obstacles
(coloured Voxels) and the sensing area (white circle with
an alpha channel reduction).

Fig. 6. Real and Simulated scenario with vertical pillars to emulate tree
trunks. Note how the 3D LIDAR of the experiments exists only in simulation
but its readings are the used by the actual platform to navigate and map the
obstacles.

in Fig. 1(a), or a real UAV, Fig. 1(c), creating a quasi-real

experiment. In this second case, and during the first flights,

we can remove the real obstacles thus achieving much safer

paths for flight trials. Once the UAV closed-loop operation is

judged robust enough, we can re-introduce the real obstacles.

Finally, Fig. 7 shows the resulting visualization of navi-

gating in the real scenario with the quadrotor amongst the



real obstacles but using the virtual sensed pillars with the

simulated 3D laser scan (Fig. 1(c)).

(a) Simulated environment.

(b) Real environment.

Fig. 7. Robot Kinton, navigating in real experiment with simulated pillars.
The green path present robot trajectory, the purple path is the planned path
and the blue path is the recorded reactive path.

IV. CONCLUSIONS

We have presented a modular, upgradeable and flexible

hardware in the loop (HIL) architecture for research and

development of fully autonomous robotic systems, especially

indicated for UAVs deployed in challenging environments.

We used as use-case the autonomous exploration of dense

forests with UAVs. We have implemented the first steps of

this architecture, and shown the potential of HIL systems to

rapidly set and experiment with complex robotic systems.

The full system is modular and takes profit of pieces either

publicly available or easily programmed. The full HIL sys-

tem uses the multiplatform ROS capabilities and only needs

a motion capture system as external extra hardware, which

is becoming standard equipment in all research labs dealing

with UAVs. In the near future we plan to incorporate a SLAM

pose estimation algorithm in the simulated, HIL and real

environments, and to test the system in a real forest.
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