
ARTICLE OPEN

A flexible high-performance simulator for verifying and

benchmarking quantum circuits implemented on real hardware
Benjamin Villalonga 1,2,3, Sergio Boixo 4, Bron Nelson2,5, Christopher Henze2, Eleanor Rieffel2, Rupak Biswas2 and

Salvatore Mandrà 2,6*

Here we present qFlex, a flexible tensor network-based quantum circuit simulator. qFlex can compute both the exact amplitudes,
essential for the verification of the quantum hardware, as well as low-fidelity amplitudes, to mimic sampling from Noisy
Intermediate-Scale Quantum (NISQ) devices. In this work, we focus on random quantum circuits (RQCs) in the range of sizes
expected for supremacy experiments. Fidelity f simulations are performed at a cost that is 1/f lower than perfect fidelity ones. We
also present a technique to eliminate the overhead introduced by rejection sampling in most tensor network approaches. We
benchmark the simulation of square lattices and Google’s Bristlecone QPU. Our analysis is supported by extensive simulations on
NASA HPC clusters Pleiades and Electra. For our most computationally demanding simulation, the two clusters combined reached a
peak of 20 Peta Floating Point Operations per Second (PFLOPS) (single precision), i.e., 64% of their maximum achievable
performance, which represents the largest numerical computation in terms of sustained FLOPs and the number of nodes utilized
ever run on NASA HPC clusters. Finally, we introduce a novel multithreaded, cache-efficient tensor index permutation algorithm of
general application.

npj Quantum Information            (2019) 5:86 ; https://doi.org/10.1038/s41534-019-0196-1

INTRODUCTION

Building a universal, noise-resistant quantum computer is to date
a long-term goal driven by the strong evidence that such a
machine will provide large amounts of computational power,
beyond classical capabilities.1–9 An imminent milestone in that
direction is represented by Noisy Intermediate-Scale Quantum
(NISQ) devices10 of about 50–100 qubits. Despite the lack of error-
correction mechanisms to run arbitrarily deep quantum circuits,
NISQ devices may be able to perform tasks which already surpass
the capabilities of today’s classical digital computers within
reasonable time and energy constraints,11–13 thereby achieving
quantum supremacy.11–21

Quantum circuit simulation plays a dual role in demonstrating
quantum supremacy. First, it establishes a classical computational
bar that quantum computation must pass to demonstrate
supremacy. Indeed, formal complexity proofs related to quantum
supremacy are asymptotic and therefore assume an arbitrarily
large number of qubits.11–21 This is only possible with a fault
tolerant quantum computer13,16,22–27 (it is noteworthy that the
polynomial approximation algorithms in refs. 16,25,27 never pro-
duce a better approximation than trivially sampling bit-strings
uniformly at random, as shown in ref. 26) and therefore a near-
term practical demonstration of quantum supremacy must rely on
a careful comparison with highly optimized classical algorithms on
state-of-the-art supercomputers. Second, it also provides verifica-
tion that the quantum hardware is indeed performing as expected
up to the limits of classical computational capabilities.
The leading near-term proposal for a quantum supremacy

experiment on NISQ devices is based on the sampling of bit-
strings from a random quantum circuit (RQC).13,17,19,21 Indeed,

under reasonable assumptions, sampling from large RQCs is
classically unfeasible.11,13,14,16,17,19,21 Further, these quantum
circuits appear to become difficult to simulate at relatively small
sizes and within error tolerances that are expected to be
implementable on early NISQ hardware.13 Here we present a
flexible simulator that both raise the bar for quantum supremacy
demonstrations and provide expanded verification of quantum
hardware through sampling.
It is important to emphasize the difference between the two

tasks at hand: the verification of a NISQ device and the
computational task proposed for quantum supremacy, as well as
the role that a classical simulator plays in both of them.
On the one hand, the fidelity of NISQ devices can be estimated

by computing the cross-entropy difference (cross-entropy bench-
marking, or XEB) between the actual output from the hardware
given an RQC and the corresponding exact output of that
particular RQC using classical simulators, as proposed in Boixo
et al.13 It is noteworthy that this calculation requires the sampling
of about one million bit-strings from the device and the
computation of their exact amplitudes using a classical simulator.
For quantum circuits beyond the ability to compute amplitudes
classically, XEB can no longer be performed. Alternatively, close
correspondence between experiments, numerics, and theory up
to that point, for a variety of circuits with combinations of fewer
qubits, shallower depth, or simpler-to-simulate circuits (e.g., more
Clifford gates) or architectures (see “Contraction of the 3D tensor
network”) of the same size, may suggest by extrapolation that the
hardware is performing correctly at a particular fidelity.
On the other hand, the computational task proposed for

supremacy experiments consists of sampling a million amplitudes

1Institute for Condensed Matter Theory and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 2Quantum Artificial Intelligence Lab.

(QuAIL), NASA Ames Research Center, Moffett Field, CA 94035, USA. 3USRA Research Institute for Advanced Computer Science (RIACS), 615 National, Mountain View, CA 94043,

USA. 4Google, Inc., Venice, CA 90291, USA. 5ASRC Federal InuTeq, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705, USA. 6Stinger Ghaffarian Technologies, Inc., 7701

Greenbelt Road, Suite 400, Greenbelt, MD 20770, USA. *email: salvatore.mandra@nasa.gov

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0002-3299-7226
http://orcid.org/0000-0002-3299-7226
http://orcid.org/0000-0002-3299-7226
http://orcid.org/0000-0002-3299-7226
http://orcid.org/0000-0002-3299-7226
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-3908-2694
http://orcid.org/0000-0002-3908-2694
http://orcid.org/0000-0002-3908-2694
http://orcid.org/0000-0002-3908-2694
http://orcid.org/0000-0002-3908-2694
https://doi.org/10.1038/s41534-019-0196-1
mailto:salvatore.mandra@nasa.gov
www.nature.com/npjqi


from either the NISQ device or its classical competitor at the same
fidelity, e.g., 0.5%. A quantum computer performing this sampling
task beyond the capabilities of the best state-of-the-art algorithms
in supercomputers would therefore achieve practical quantum
supremacy.
Here we propose a flexible quantum circuit simulator (qFlex)

that raises the bar in the classical simulation of RQCs, including the
simulation of the Google Bristlecone QPU. By design, our simulator
is “blind” to the randomness in the choice of single-qubit gates of
the RQCs. Therefore, it presents no fluctuations in performance
from one RQC to another. Moreover, by expanding on a technique
introduced in ref. 28, including introducing fine-grained “cuts” that
enable us to judiciously balance memory requirements with the
number of independent computations that can be done in
parallel, our simulator can output 1/f amplitudes with a target
fidelity f at the same computational cost to compute a single
perfect-fidelity amplitude; furthermore, we present an alternative
technique to simulate RQC sampling with target fidelity f with the
same speedup factor of 1/f.
In the last few years, many different simulators have been

proposed, either based on the direct evolution of the quantum
wavefunction,13,28–34 Clifford+ T gate sets,35 or tensor network
contraction.36–39 Tensor network contraction-based simulators
have been particularly successful in simulating RQCs for sizes
close to the quantum supremacy regime. Some recent simulators
exploited34,38,39 weaknesses in the design of the RQCs presented
in ref. 13 and even introduced small changes in the circuits that
make them significantly easier to simulate. These designs have
been revised to remove these weaknesses (see ref. 28 and “Revised
set of RQCs”). Making RQCs as difficult as possible to simulate is a
key point in the route towards quantum supremacy. At the same
time, a thorough exploration of optimizations that make classical
simulators as efficient as possible is essential so that supremacy is
not overclaimed when an NISQ device surpasses classical
capabilities. It is also important to reiterate that the quantum
supremacy computational task of interest consists of producing a
sample of bit-strings within some variational distance of the
output distribution defined by a quantum circuit.13,17,19,21 This is
very different from computing a single output amplitude, as done
in ref. 39 (see “Fast sampling of bit-strings from low delity RQCs”).
Among the proposed classical approaches, the Markov et al.28

simulator is worth mentioning. Their method is based on splitting
I × J grids of qubits in halves, which are then independently
simulated.38 To make the simulator more competitive, Markov
et al.28 introduce checkpoint states and reuse them for different
branches of a tree where internal nodes represent Schmidt
decompositions of cross-gates and leaves represent simulation
results for each tree path. The number of independent circuits to
simulate is exponential in the number of projected CZ gates that
cross from one half to the other. As part of their study, the authors
propose for the first time a technique to “match” the target fidelity
f of the NISQ device, which actually reduces the classical
computation cost by a factor f. By matching the fidelity of a
realistic quantum hardware (f= 0.51%), Markov et al.36 were able
to simulate 7 × 7 and 7 × 8 grids with depth 1+ 40+ 1 by
numerically computing 106 amplitudes in, respectively, 582,000 h
and 1,407,000 h on single cores. However, the algorithm in ref. 28

becomes less efficient than our algorithm for grids beyond 8 ×
8 qubits because of memory requirements. Moreover, it is not well
suited for the simulation of the Google Bristlecone QPU. Indeed, as
we show here, the Google Bristlecone QPU implements circuit
topologies with a large diameter, which increases the run time
exponentially. In both cases, one could mitigate the memory
requirements by either using distributed memory protocols such
as Message Passing Interface (MPI) or by partitioning the RQCs in
more sub-circuits. However, the aforementioned approaches
introduce a non-negligible slow-down that make them unpractical
(see Supplementary Information C for more details).

To summarize, our tensor network-based simulator relies on
four different points of strength as follows:
Robustness. RQCs are mapped onto regular tensor networks,

where each tensor corresponds to a block of the circuit enclosing
several gates; consequently, two-dimensional (2D) grids of qubits,
including the Bristlecone architecture, are mapped onto 2D grids
of tensors. As the blocking operation removes any randomness in
the resulting tensor network topology (the only randomness left is
in the tensor entries themselves), our simulator is robust against
fluctuations from RQC to RQC, and to changes of the rules to
generate RQCs.
Flexibility. By computing an appropriate fraction of “paths,” it is

possible to control the “fidelity” of the simulated RQCs, as first
introduced in ref. 28. Therefore, our simulator can output 1/f
amplitudes with target fidelity f with the same computational cost
to compute one perfect amplitude, for almost any f. This property
is very important to “mimick” the sampling from NISQ devices.
Scalability. By carefully choosing which cuts to apply to the

RQCs, we are able to control the maximum size of tensors seen
during tensor contraction. Thanks to the regularity of the resulting
tensor network, together with a better memory management and
a novel cache-efficient tensor index permutation routine, we are
able to simulate circuits of as many as 72 qubits and realistic
circuit depths on NISQ architectures such as Bristlecone.
Performance. To the best of our knowledge, our tensor

contraction engine is optimized beyond all the existing Central
Processing Unit (CPU)-based alternatives for contracting the RQCs
with the largest number of qubits studied in this work.
Our analyses are supported by extensive simulations on

Pleiades (27th in the November 2018 TOP500 list) and Electra
(33rd in the November 2018 TOP500 list) supercomputers hosted
at NASA Ames Research Center.
In total, we used over 3.2 million core hours and ran 6 different

numerical simulations (see Fig. 1 for nomenclature of Google
Bristlecone).
[Run 1] Bristlecone-64 (1+ 32+ 1): 1.2M amplitudes with target

fidelity 0.78%,
[Run 2] Bristlecone-48 (1+ 32+ 1): 1.2M amplitudes with target

fidelity 0.78%,
[Run 3] Bristlecone-72 (1+ 32+ 1): 10 amplitudes with perfect

fidelity,
[Run 4] Bristlecone-72 (1+ 24+ 1): 43K amplitudes with target

fidelity 12.5%,
[Run 5] Bristlecone-72 (1+ 24+ 1): 6000 amplitudes with perfect

fidelity,
[Run 6] Bristlecone-60 (1+ 32+ 1): 1.15M amplitudes with target

fidelity 0.51%.
For the most computationally demanding simulation we have

run, namely sampling from a 60 qubit sub-lattice of Bristlecone,
the two systems combined reached a peak of 20 PFLOPS (single
precision), i.e., 64% of their maximum achievable performance,
while running on about 90% of the nodes. To date, this is the
largest computation run on NASA HPC clusters in terms of peak
PFLOPS and number of nodes used. All Bristlecone simulation data
are publicly available (see Data Availability) and we plan to open
source our simulator in the near future.
This study is structured as follows. Our results—with an

emphasis on our ability to both simulate the computational task
run on the quantum computer as well as to compute perfect
fidelity amplitudes for the verification of the experiments—and
discussion are presented in their respective sections. In “Revised
set of RQCs”, we review the rules for generating the revised
RQCs,28 which are based on the constraints of the quantum
hardware, while attempting to make classical simulations hard.
The hardness of the revised RQCs motivates, in part, our
simulator’s approach, which is explained in “Overview of the
simulator,” where both conceptual and implementation details are
discussed; here we also introduce a novel, cache-efficient

B. Villalonga et al.

2

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



algorithm for tensor index permutation, which takes advantage of
multithreading. In “Fast sampling of bit-strings from low delity
RQCs”, we discuss two methods to classically sample from an RQC
mimicking the fidelity f of the output of a real device, while
achieving a speedup in performance of a factor of 1/f (see ref. 28);
in addition, we present a method to speed up the classical
sampling by a factor of about 10× that, under reasonable
assumptions, is well suited to tensor network-based simulators.
We also discuss the implications of classically sampling from a non
fully thermalized RQC. “Simulation of Bristlecone compared with
rectangular grids” discusses the hardness of simulating RQCs
implemented on the Bristlecone QPU as compared with those
implemented on square grids of qubits.

RESULTS

In this section we review the performance and the numerical
results obtained by running our simulations [Run 1–6] on the
NASA HPC clusters Pleiades and Electra.
In the time of exclusive access to large portions of the NASA

HPC clusters, we were able to run for over 3.2 million core hours.
Although most of the computation ran on varying portions of
the supercomputers, for a period of time we were able to reach
the peak of 20 PFLOPS (single precision), which corresponds to
64% of the maximum achievable performance for Pleiades and
Electra combined. For a comparison, the peak for the LINear
equations software PACKage (LINPACK) benchmark is 23 PFLOPS

(single precision, projected), which is only 15% larger than the
peak we obtained with our simulator. This is to date the largest
simulation (in terms of number of nodes and FLOPS rate) run on
the NASA Ames Research Center HPC clusters. This is not a
surprise, as both LINPACK and our simulation do the majority of
work in Math Kernel Library (MKL) routines (dgemm or cgemm
and similar), in our case due, in part, to the fact that our cache-
efficient memory reordering routines lower the tensor indexes
permutation bottleneck to a minimum. Figure 2 reports the
distribution of the runtimes for a single instance of each of the
six simulations [Run 1–6] for both Pleiades and Electra.
Interestingly, we observe a split in the distribution of runtimes
(see Supplementary Information D for further details). For our
simulations run on Pleiades, we used all the four available node
architectures as follows:

● 2016 Broadwell (bro) nodes: Intel Xeon E5-2680v4, 28 cores,
128 GB per node.

● 2088 Haswell (has) nodes: Intel Xeon E5-2680v3, 24 cores,
128 GB per node.

● 5400 Ivy Bridge (ivy) nodes: Intel Xeon E5-2680v2, 20 cores,
64 GB per node.

● 1936 Sandy Bridge (san) nodes: Intel Xeon E5-2670, 16 cores,
32 GB per node.

For the Electra system, we used its two available node
architectures as follows:

Brist lecone-40

Brist lecone-48 Brist lecone-60Brist lecone-64

Brist lecone-70 Brist lecone-72

Brist lecone-40

Brist lecone-48 Brist lecone-60Brist lecone-64

Brist lecone-70 Brist lecone-72

Fig. 1 Sub-lattices of interest of the full Bristlecone-72 (bottom right), ordered by increasing hardness for a given depth. It is noteworthy that
Bristlecone-72 (entire lattice) is not harder to simulate than Bristlecone-70, as the two corner tensors can be contracted trivially at a negligible
cost (see “Overview of the simulator”). It is also worth noting that Bristlecone-64 is similar in hardness to Bristlecone-48 and substantially
easier to simulate than Bristlecone-60, as is discussed in “Overview of the simulator” and “Results”. We identify a family of sub-lattices of
Bristlecone, namely Bristlecone-24, -30, -40, -48, -60, and -70, which are hard to simulate classically, while keeping the number of qubits as low
as possible

B. Villalonga et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



● 1152 Broadwell (bro) nodes: same as above.
● 2304 Skylake (sky) nodes: 2 × 20-core Intel Xeon Gold 6148, 40

cores, 192 GB per node.

It is noteworthy that the Skylake nodes at Electra form a much
smaller machine than Pleiades, but substantially more efficient,
both time and energy-wise.
In Table 1 we report runtime, memory footprint, and the

number of cores (threads) used for all six cases run on NASA
Pleiades and Electra HPC clusters. As we describe in “Overview of
the simulator,” instances (which involve a certain number of paths
given a cut prescription, as well as a batch size Nc, as introduced in
“Fast sampling technique”) can be collected for a large number of
low-fidelity amplitudes or for a smaller number of high-fidelity
amplitudes at the same computational cost. [Run 1–6] were
performed sharing the Pleiades and Electra clusters on main-
tenance period, which made nodes on both supercomputers
become available and unavailable for our simulations without
prior notice. For this reason, the ZeroMQ software (more suited for
this sort of scheduling than MPI) was used for scheduling different
instances of the simulations; all instances were scheduled from a
master task. In practice, instances corresponding to different paths
of the same amplitude were grouped together onto a single
instance and run sequentially on the same group of cores of a
single node (except for [Run 3], which requires a large number of
paths, whose computations were also parallelized across nodes);
this provides some advantage due to the reuse of tensors across
paths (see Supplementary Information A). Due to the inhomoge-
neous nature of our two clusters, with five different types of nodes
across two supercomputers, each job instance included an
estimate of its memory footprint (see Table 1) and was scheduled
on any available node with enough available memory. Given that
the number of instances per node was always smaller than the
number of cores, each instance was multithreaded, using as many
threads as the number of physical cores given; cores were
assigned proportionally to the memory footprint of the instance. It
is noteworthy that both matrix multiplications and tensor index
permutations take advantage of multithreading (see “Implemen-
tation of the simulator”). All the numerical data gathered during

the simulations [Run 1–6], including all the amplitudes, are
publicly available (see Data Availability).
It is worth noting that, after running our simulations on Pleiades

and Electra, we have identified for Bristlecone-48 and -70 a better
contraction procedure ([Run 2b] and [Run 3b], respectively). This
new contraction is about twice as fast as the one used in [Run
2–3], which was similar in approach to the contraction used for
Bristlecone-60 (see Supplementary Information B for more details);
we include the estimated benchmark of these new contractions
as well.
In Table 2 we estimate the effective runtime needed for the

computation of 106 batches of amplitudes (i.e., sampling 106 bit-
strings) with a target fidelity close to 0.5% on a single core, for
different node types. As one can see, the Bristlecone-60 sub-lattice
is almost 10× harder to simulate than the Bristlecone-64 sub-
lattice, whereas Bristlecone-64 is only 2× harder than Bristlecone-
48.
In the following, we report the (estimated) runtime and energy

consumption for both the tasks of verification and sampling for
rectangular grids of qubits, up to 8 × 9, as well as the full
Bristlecone-70 layout. The estimation is obtained by computing a
small percentage of the calculations required for the full task. We
would like to stress that our simulator’s runtimes are independent
of any particular RQC instance and, therefore, our estimations are
quite robust.
Table 3 shows the estimated performance (runtimes and energy

consumption) of our simulator in computing perfect fidelity
amplitudes of output bit-strings of an RQC (rectangular lattices
and Bristlecone-70), for both Pleiades and Electra. Runtimes are
estimated assuming that fractions of the jobs are assigned to each
group of nodes of the same type in a way that they all finish
simultaneously, thus reducing the total real time of the run. The
power consumption of Pleiades is 5 MW and a constant power
consumption per core, regardless of the node type, is assumed for
our estimations. For Electra, the 2304 Skylake nodes have an
overall power consumption of 1.2 MW, whereas the 1152 Broad-
well nodes have an overall power consumption of 0.44 MW.
Classically sampling bit-strings from the output state of an RQC

involves the computation of a large number (~1million) of low-
fidelity (about 0.5%) batches of probability amplitudes, as better

Fig. 2 (a) Distribution of the runtimes for a single instance of each of the six simulations [Run 1–6] run on different node architectures. An
instance refers to a certain number of paths for a particular number of amplitudes (output bit-strings); see “Contraction of the 3D tensor
network” and Table 1 for more details. For clarity, all distributions have been normalized so that their maxima are all at the same height. The
nodes used on NASA HPC clusters Pleiades and Electra are as follows: Broadwell (bro), Intel Xeon E5-2680v4; Haswell (has), Intel Xeon E5-
2680v3; Ivy Bridge (ivy), Intel Xeon E5-2680v2; Sandy Bridge (san), Intel Xeon E5-2670; Skylake (sky), 2 × 20-core Intel Xeon Gold 6148
processors per node. (b) Same distribution as above, but the runtimes are multiplied by the number of cores per job on a single node, to
provide a fairer comparison. As one can see, Skylake nodes provide generally the best performance and belong to Electra, an energy-efficient
HPC cluster. The split of runtimes into groups is discussed in Supplementary Information D

B. Villalonga et al.

4

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



described in “Simulating low delity RQCs.” Table 4 shows the
estimated performance of our simulator in this task, with runtimes
and energy consumption requirements on the two HPC clusters
Pleiades and Electra.
Finally, we compare our approach with the two leading

previously existing simulators of RQCs, introduced in ref. 39

(Alibaba) and ref. 28 (MFIB) (see also Table 5), as well as with the
recently proposed simulation methods of ref. 40 (Teleportation-
Inspired Algorithm, or TIA) and refs. 41,42 (General-purpose
quantum circuit simulator, or GPQS).
Compared with ref. 39 our simulator is between 3.6× and 100×

slower (see Supplementary Information D for complementary

details), depending on the case. However, it is important to stress
that ref. 39 reports the computational cost to simulate a class of
RQCs, which is much easier to simulate than the class of RQCs
reported in ref. 13. Indeed, Chen et al.39 fail to include the final
layer of Hadamards in their RQCs and use more T gates at the
beginning of the circuit. For these reasons, we estimate that such
class is about 1000× easier to simulate than the new prescription
of RQCs we present in this work. The computational cost of
simulating a circuit using Alibaba’s simulator scales as 2TW, where
TW is the treewidth of the undirected graphical model of the
circuit.37 We show in Fig. 3 the treewidths of the circuits simulated
in ref. 39, the old prescription of the circuits13 (with and without

Table 1. Bristlecone simulations: breakdown of instance parameters

Run Circuit Depth Paths per instance/total paths NC Cores per instance/cores per node

bro has ivy san sky (Electra)

1 Bris.-64 (1 + 32 + 1) 2/28 30 - - - - 2/40

2 Bris.-48 (1 + 32 + 1) 2/28 30 - - - - 2/40

2b* Bris.-48 (1 + 32 + 1) 2/28 256 2/28 2/24 2/20 4/16 2/40

3 Bris.-70 (1 + 32 + 1) 1/216 512 2/24 4/20 8/16 2/40

3b* Bris.-70 (1 + 32 + 1) 1/216 256 2/28 2/24 2/20 4/16 2/40

4 Bris.-70 (1 + 24 + 1) 1/23 62 – 8/24 20/20 – –

5 Bris.-70 (1 + 24 + 1) 23/23 62 – 8/24 20/20 – –

6 Bris.-60 (1 + 32 + 1) 21/212 30 2/28 2/24 4/20 8/16 2/40

Run Memory footprint (GB) Num. instances per node

bro has ivy san sky (Electra)

1 10 – – – – 19

2 10 – – – – 19

2b* 7 14 12 8 4 20

3 11 - 11 5 2 16

3b* 7 14 12 8 4 20

4 36 – 3 1 – –

5 36 – 3 1 – –

6 10 11 11 5 2 17

Run Runtime (s)

bro has ivy san sky (Electra)

2 – – – – 335.8 ± 12.2

2 – – – – 246.0 ± 9.4

2b* 204.9 ± 6.5 215.6 ± 2.6 256.9 ± 0.5 149.9 ± 0.1 150.0 ± 3.5

3 – 1034.5 ± 91.3 700.9 ± 32.8 386.3 ± 4.0 708.4 ± 79.9

3b* 156.3 ± 4.3 161.7 ± 1.7 190.9 ± 1.7 113.3 ± 0.3 113.2 ± 2.8

4 – 226.5 ± 15.8 126.8 ± 5.2 – –

5 – 1683.2 ± 111.1 885.3 ± 4.4 – –

6 4555.4 ± 311.7 5092.2 ± 311.7 3606.5 ± 159.8 2040.9 ± 18.9 3054.0 ± 230.3

Number of paths per instance, size of batches of amplitudes (see “Fast sampling technique”), number of cores (threads) used per instance, memory footprint,

number of instances fit in a node, and runtime per instance for all six cases run and for all five node types used on NASA Pleiades and Electra HPC clusters. We

report single instances of a run, where an instance corresponds to the computation of a number of paths given a cut prescription and the computation of a

batch of NC amplitudes corresponding to output bit-strings chosen at random over subsystem C (see “Fast sampling technique”). It is noteworthy that for

[Run3] NC= 512 and thuscomputing NC amplitudes takes about three times the time of computing a single one. However, this is strongly mitigated with the

contraction used for [Run3b]. It is also noteworthy that for [Run6] we ran 17 jobs per Skylake node, instead of 19, as a conservative strategy to stay well below

the total memory available on these nodes and hence avoid any unwanted crash in our largest simulation. Instances can be collected for a large number of

low-fidelity amplitudes or for a smaller number of high-fidelity amplitudes at the same computational cost. *[Run2b] and [Run3b] refer to the benchmark of

the contraction procedure introduced in “Contraction of the 3D tensor network” for Bristlecone-48 and Bristlecone-70, respectively; [Run1] and [Run3] were

run using a less performing procedure, similar to the one used for Bristlecone-60 (see Supplementary Information B)

B. Villalonga et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



the final layer of Hadamards), and the revised prescription, for
RQCs on a 7 × 7 × (1+ 40+ 1) square grid. It is noteworthy that
with this number of qubits and depth, the circuits simulated in
ref. 39 are (on average) 1000× easier or more than the revised
ones. Here we are comparing the treewidth of the circuits to
simulate, whereas Alibaba’s simulator applies first a preprocessing
algorithm that projects a well-chosen subset of variables in the
undirected graphical model of the circuit; this generates a number
of simulations that is exponential in the number of projected
variables, but that decreases the runtime of each of these
simulations, which also allows for parallelization. In our compar-
ison, we are assuming that the trade-off between the number of
simulations generated after the projections and the decrease in
runtime for each simulation is comparable between different
versions of the circuits, and hence the treewidth is directly a good
measure of the hardness of the simulation of the circuits using the

Alibaba simulator. It is worth noting that the revised RQCs have no
variation in treewidth from one instance to another. In addition, it
is worth noting that ref. 39 reports runtimes corresponding to the
80 percentile best results, excluding the worst runtimes. On the
contrary, our runtimes have little fluctuations and are RQC
independent. Finally, in the absence of an implementation of
the fast sampling technique introduced in “Fast sampling
technique,” this simulator would suffer from a multiplicative
runtime overhead when using rejection sampling (see “Fast
sampling of bit-strings from low delity RQCs”).
Compared with ref. 28, our simulator is 7× less efficient to

compute 106 amplitudes with fidelity 0.51% for 7 × 7 grids of
qubits with depth 1+ 40+ 1, using the new prescription of RQCs.
However, it is important to note the runtime of MFIB’s simulator
and our simulator scale in completely different ways. Indeed,
MFIB’s approach has the advantage to compute a large number of

Table 2. Estimated sampling runtimes on a single core for Bristlecone sublattices at a target fidelity

Circuit Depth Fidelity Runtime × num. cores (h)

bro has ivy san sky (Electra)

Bris.-48 (1+ 32+ 1) 0.78% 1.14 × 105 1.20 × 105 1.78 × 105 1.67 × 105 8.33 × 104

Bris.-64 (1+ 32+ 1) 0.78% – – – – 1.96 × 105

Bris.-60 (1+ 32+ 1) 0.51% 3.22 × 106 3.09 × 106 4.01 × 106 4.54 × 106 2.00 × 106

Bris.-70 (1+ 24+ 1) 0.50% – 1.87 × 104 2.46 × 104 – –

Bris.-70 (1+ 32+ 1) 0.50% 2.85 × 107 2.95 × 107 4.35 × 107 4.13 × 107 2.06 × 107

Estimated effective runtimes on a single core for the computation of 106 amplitudes with a target fidelity of about 0:5% for the Bristlecone sub-lattices (see Fig.

1 for nomenclature). This is an estimate of the computational cost for the completion of the RQC sampling task. The estimate is based on the runtimes for

single instances presented in Table 1. For Bristlecone-70 with depth (1+ 32+ 1), [Run3b] is used, as it offers better performance than [Run3]

Table 3. Estimated runtimes and energy cost for single amplitude calculations at perfect fidelity

Circuit size Fidelity (%) Runtime (h) Energy cost (MWh)

Pleiades Electra Pleiades Electra

7 × 7 × (1+ 40+ 1) 100 1.22 × 10−2 1.16 × 10−2 5.35 × 10−2 1.89 × 10−2

8 × 8 × (1+ 32+ 1) 100 1.77 × 10−4 2.04 × 10−4 8.86 × 10−4 3.34 × 10−4

8 × 8 × (1+ 40+ 1) 100 2.03 2.12 8.88 3.48

8 × 9 × (1+ 32+ 1) 100 2.90 × 10−3 2.98 × 10−3 1.45 × 10−2 4.89 × 10−3

Bris.-70 × (1+ 32+ 1) 100 2.89 × 10−2 3.57 × 10−2 1.45 × 10−1 5.85 × 10−2

Estimated effective runtimes and energy cost for the computation of a single amplitude with perfect fidelity on NASA HPC Pleiades and Electra systems. It is

noteworthy that for the 7 × 7 × (1+ 40+ 1) and 8 × 8 × (1+ 40+ 1) grids, jobs do not fit in Sandy Bridge nodes, due to their memory requirements; for that

reason, the portion of Pleiades with Sandy Bridge nodes is not considered and the energy cost estimations of these two cases do not include those nodes

Table 4. Estimated sampling runtimes and energy cost at a target fidelity

Circuit size Target fidelity (%) Runtime (h) Energy cost (MWh)

Pleiades Electra Pleiades Electra

7 × 7 × (1+ 40+ 1) 0.51 62.4 59.0 2.73 × 102 96.8

8 × 8 × (1+ 32+ 1) 0.78 1.38 1.59 6.91 2.61

8 × 8 × (1+ 40+ 1) 0.58 1.18 × 104 1.23 × 104 5.15 × 104 2.02 × 104

8 × 9 × (1+ 32+ 1) 0.51 14.8 15.2 73.9 24.9

Bris.-70 × (1+ 32+ 1) 0.50 145 178 723 293

Estimated runtimes and energy cost for the computation of 106 amplitudes with fidelity close to 0:5% on NASA HPC Pleiades and Electra systems. It is

noteworthy that for the 7 × 7 × (1+ 40+ 1) and 8 × 8 × (1+ 40+ 1) grids, jobs do not fit in Sandy Bridge nodes, due to their memory requirements; for that

reason, the portion of Pleiades with Sandy Bridge nodes is not considered and the energy cost estimations of these two cases do not include those nodes

B. Villalonga et al.

6

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



amplitudes with a small cost overhead. On the contrary, our
approach performs much better in the computation of a smaller
subset of amplitudes; both methods use comparable resources
when computing about 105 amplitudes of a 7 × 7 × (1+ 40+ 1)
RQC. It is worth noting that MFIB’s approach is limited by memory
usage and it scales unfavorably compared with our simulator for
circuits with a large number of qubits (e.g., beyond 8 × 8
rectangular grids), with a large diameter (e.g., Bristlecone-60 and
-70), or both. For instance, Bristlecone-70 would require 825 GB
per node, which is currently unavailable for most of the HPC
clusters. To mitigate the memory requirements, one could either
partition the RQCs in more sub-circuits or use distributed memory
protocols such as MPI. However, both approaches introduce a

non-negligible slowdown that make them unpractical (see
Supplementary Information C for more details on the impact
further partitions have on the runtime, as well as ref. 43 for insight
on the strong and weak scaling of distributed wavefunction
simulators).
Sometime after this manuscript appeared on the arXiv, two

other simulators have been posted: TIA40 and GPQS.41 TIA is used
to compute single amplitudes of RQCs. The most challenging case
benchmarked using TIA largest number of logical qubits is the
simulation involving the computation of an amplitude for
Bristlecone-72, with depth 1+ 32+ 1; Bristlecone-72 is trivially
equivalent to Bristlecone-70 (see “Contraction of the 3D tensor
network”), and therefore a comparison with our computation
times of Bristlecone-70 is in place. TIA takes 14.1 min to compute
one amplitude on 16384 Sunway SW26010 260C nodes, with 256
cores each, and a theoretical peak performance of 3.05 TFLOPS
per node. Our simulator computes an amplitude in 4121.49 core
hours using Skylake nodes (see Table 1). A direct comparison of
core hours between both simulators running on their respective
architectures results on our simulator being 239× faster than TIA.
However, Taihu Sunlight uses a different architecture, with slower
cores compared with Electra’s cluster of Skylake nodes. Therefore,
for a fairer comparison, we use both the node’s theoretical peak
performance: 3.05 TFLOPS for Sunway SW26010 260C nodes and
3.07 TFLOPS for Electra’s Skylake nodes. Both node types deliver a
similar performance, which leads to the estimation of our
simulator being 37× more efficient than TIA for the circuit
considered in this comparison, i.e., Bristlecone-70 (72) with depth
1+ 32+ 1. It is noteworthy that, although potentially adaptable to
this simulator, in the absence of an implementation of the fast
sampling technique, this simulator needs of the computation of a
few amplitudes in order to sample each bit-string, with the
corresponding multiplicative runtime overhead (see “Fast sam-
pling of bit-strings from low delity RQCs” and ref. 40).
GPQS is also used to compute amplitudes one at a time,

although it could potentially implement the fast sampling
technique, and is closely related to our simulator in that it first
contracts the circuit tensor network in the time direction.
However, it then opts for a distributed contraction across several
nodes of a supercomputer using the Cyclops Tensor Framework,
as opposed to performing cuts to allow for single-node
contractions. On the 7 × 7 × (1+ 40+ 1) computation of single
perfect fidelity amplitudes, which can be directly compared with

Table 5. Comparison with MFIB: runtimes and energy cost

Circuit size Targ. fidelity (%) 2*Num. amps. Runtime (h) Energy cost (MWh)

MFIB Electra (sky) MFIB Electra (sky)

7 × 7 × (1+ 40+ 1) 0.51 1 4.96 × 105 6.63 6.46 8.64 × 10−5

7 × 7 × (1+ 40+ 1) 0.51 105 5.05 × 105 6.63 × 105 6.58 8.64

7 × 7 × (1+ 40+ 1) 0.51 106 5.82 × 105 6.63 × 106 7.58 86.4

7 × 7 × (1+ 40+ 1) 100.0 1 9.73 × 107 1.30 × 103 1.27 × 103 1.69 × 10−2

7 × 7 × (1+ 40+ 1) 100.0 105 9.90 × 107 1.30 × 108 1.29 × 103 1.69 × 103

7 × 7 × (1+ 40+ 1) 100.0 106 1.14 × 108 1.30 × 109 1.49 × 103 1.69 × 104

Estimated runtime and energy cost consumption to compute the specified number of amplitudes for our simulator on a single processor of the Skylake nodes

portion of the NASA Electra system, compared with ref. 28 (MFIB). The energy cost for the MFIB simulations is estimated assuming the same power

consumption per core as the Skylake nodes. In ref. 28, the authors report a number of cores P= 625 × 16= 105, as they use 625 nodes of 16 cores (32 vCPUs or

hyper-threads) each. For ours, P= 2304 × 40= 92; 160 on the Skylake nodes of Electra (it is worth noting that we consider 40 cores per node, even though we

use only 39 in practice for the 7 × 7 × (1+ 40+ 1) simulations; this is due to the ability of modern Intel processors to “up-clock” their CPUs in favorable

conditions (known as Dynamic Frequency Scaling), thus consuming a similar amount of energy and achieving a similar performance as in the case where there

are no idle cores. It is noteworthy that MFIB’s approach has the advantage to compute a large number of of amplitudes with a small cost overhead. On the

contrary, our approach performs much better in the computation of a smaller subset of amplitudes; both methods use comparable resources when

computing about 105 amplitudes. The MFIB algorithm becomes less efficient than our algorithm as the number of qubits grows because of memory

requirements

Fig. 3 From the left to right, upper bounds of treewidths of RQCs on
a 7 × 7 square lattice simulated in: [Ali 40] ref. 39 with depth (1+ 40)
(note that no layer of Hadamards is added at the end of the circuit);
[Ali 41] ref. 39 with depth (1+ 41); [v1 no H] old prescription of the
RQCs13 without the final layer of Hadamards and depth (1+ 41); [v1]
old prescription of the RQCs13 with the final layer of Hadamards and
depth (1+ 40+ 1); [v2] revised prescription of the RQCs28 with
depth (1+ 40+ 1). It is noteworthy that in all cases the treewidth of
the RQCs is substantially larger than the ones simulated in ref. 39,
making the simulations about 213× or 214× harder (on average).
Moreover, fluctuations in the treewidth for the revised prescriptions
of RQCs are completely absent. The upper bounds were obtained by
running quickbb42 with settings –time 60 –min-fill-ordering

B. Villalonga et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



our equivalent computation, GPQS takes 31 min using a fraction of
the Tianhe-2 supercomputer, delivering a theoretical peak of 1.73
PFLOPS (double precision), as reported by the authors. Our
simulator takes 1.16 × 10−2 h to compute a single perfect fidelity
amplitude on Electra (see Table 3), which delivers a theoretical
peak of 8.32 PFLOPS. From a direct comparison between both
simulators, we estimate that our simulator is 9.26× more efficient
than GPQS for the aforementioned circuit instance. However,
GPQS performs calculations using double precision. If this
simulator were to be adapted for single precision calculations,
we estimate ours would still be 4.63× more efficient. This
comparison gives meaningful insight on the cost of relying on
inter-node communication, instead of cuts, for tensor network
contractions of the sizes relevant to supremacy circuit sizes.

DISCUSSION

In this work, we introduced a flexible simulator, based on tensor
contraction (qFlex), to compute both the exact and noisy (with a
given target fidelity28) amplitudes of the output wavefunction of a
quantum circuit. Although the simulator is general and can be
used for a wide range of circuit topologies, it is well optimized for
quantum circuits with a regular design, including rectangular grids
of qubits and the Google Bristlecone QPU. To test the
performance of our simulator, we focused on the benchmark of
RQCs presented in refs. 13,28 for both the 2D grids (7 × 7, 8 × 8, and
8 × 9) and the Google Bristlecone QPU (24, 48, 60, 64, and 70
qubits). Compared with some existing methods,34,38,39 our
approach is more robust to modifications in the class of circuits
to simulate and performs well on the redesigned, harder class of
RQCs. Although other benchmarks exploit,34 and sometimes
introduce,38,39 weaknesses in particular ensembles of RQCs that
affect their reported performance significantly, our runtimes are
directly determined by the number of full lattices of two-qubit
gates at a given depth (see Fig. 6).
Our performance analyses are supported by extensive simula-

tions on Pleiades (24th in the November 2018 TOP500 list) and
Electra (43rd in the November 2018 TOP500 list) supercomputers
hosted at NASA Ames Research Center. Among other “diamond-
shaped” lattices of qubits benchmarked, which are likely to be
used for supremacy experiments, our simulator is able to compute
the exact amplitudes for the benchmark of RQCs using the full
Google Bristlecone QPU with depth 1+ 32+ 1 in less than
(f · 4200) h on a single core, with f the target fidelity. This
corresponds to 210 h in Pleiades or 264 h in Electra for 106

amplitudes with fidelity close to 0.5%, a computation needed to
perform the RQC sampling task. All our data are publicly available
to use (see Data Availability).
At first sight, compared with Alibaba’s simulator,39 our simulator

is between 3.6× and 100× slower, depending on the case.
However, Alibaba’s simulator heavily exploits the structure of
RQCs and its performance widely varies from one RQC instance to
another. Indeed, ref. 39 reports only runtimes corresponding to the
80th percentile best results, excluding the worst runtime. In
contrast, our runtimes have little variation in performance
between instances and are independent of RQC class. Moreover,
ref. 39 fails to include the final layer of Hadamards and uses fewer
non-diagonal gates at the beginning of the circuit, which, we
estimate, makes the corresponding circuits much easier to
simulate: ~1000× easier for the 7 × 7 × (1+ 40+ 1) circuit. We
would like to encourage the reporting of benchmarking against
the circuit instances publicly available in ref. 44, to arrive at
meaningful conclusions.
Compared with ref. 28, our simulator is 7× less efficient (on

Electra Skylake nodes) to compute 106 amplitudes with a fidelity
0.51% for 7 × 7 grids of qubits with depth 1+ 40+ 1. However,
compared with ref. 28, our simulator scales better on grids beyond
8 × 8 and on circuits with a large number of qubits and diameter,

including the Bristlecone QPU and its sub-lattices Bristlecone-60
and -70.
Compared with ref. 40, our simulator is 37× more efficient in

computing an amplitude of Bristlecone-70 at depth 1+ 32+ 1,
which is equivalent in hardness to Bristlecone-72 (see “Contraction
of the 3D tensor network”).
Compared with ref. 41, our simulator is more than 9× more

efficient in computing an amplitude of a 7 × 7 circuit of depth 1+
40+ 1.
In addition, we were able to simulate (i.e., compute over 106

amplitudes) RQCs on classically hard sub-lattices of the
Bristlecone of up to 60 qubits with depth (1+ 32+ 1) and
fidelity comparable to the one expected in the experiments
(around 0.50%) in effectively well below half a day using both
Pleiades and Electra combined. We also discussed the classical
hardness in simulating sub-lattices of Bristlecone as compared
with rectangular grids with the same number of qubits. Our
theoretical study and numerical analyses show that simulating
the Bristlecone architecture is computationally more demanding
than rectangular grids with the same number of qubits and we
propose a family of sub-lattices of Bristlecone to be used in
experiments that make classical simulations hard, while keeping
the number of qubits and gates involved as small as possible to
increase the overall fidelity. As a final remark, we will explore
using our approach and extensions to simulate different classes
of quantum circuits, particularly those with a regular structure,
including quantum circuits for algorithms with potential
applications to challenging optimization and machine-learning
problems arising in aeronautics, Earth science, and space
exploration, as well as to simulate many-body systems for
applications in material science and chemistry.

METHODS

Revised set of RQCs
In this section, we review the prescription to generate RQCs proposed
originally by Google13 and its revised version.28 This prescription can be
used to generate RQCs for 2D square grids, including the Bristlecone
architecture (which is a diamond-shaped subset of a 2D square grid). The
circuit files used for the numerical simulations in this study are publicly
available in ref. 44

Given a circuit depth and circuit topology of n qubits, Google’s RQCs13,28

are an ensemble of quantum circuits acting on a Hilbert space of
dimension N= 2n. The computational task consists of sampling bit-strings
as defined by the final output.
Due to the limitation of the current technology and the constraints

imposed by the quantum hardware, circuits are randomly generated using
the following prescription:

(1) Apply a first layer of Hadamard (H) gates to all the qubits.
(2) After the initial layer (1), subsequent layers of two-qubit gates are

applied. There are eight different layers, which are cycled through in
a consistent order (see Fig. 4).

(3) Within these layers, for each qubit that is not being acted upon by a
two-qubit gate in the current layer, and such that a two-qubit gate
was acting on it in the previous layer, randomly apply (with equal
probability) a gate in the set {X1/2, Y1/2}.

(4) Within these layers, for each qubit that is not being acted upon by a
two-qubit gate in the current layer and was acted upon by a gate in
the set {X1/2, Y1/2, H} in the previous layer, apply a T gate.

(5) Apply a final layer of H gates to all the qubits.

The depth of a circuit will be expressed as 1+ t+ 1, where the prefix
and suffix of 1 explicitly denote the presence of an initial and a final layer
of Hadamard gates.
For our simulations, as was done in prior RQC works, we use the CZ gate

as our two-qubit gate. One of the differences between the original
prescription13 and this new prescription28 for the generation of RQCs is
that we now avoid placing T gates after CZ gates. If a T gate follows a CZ
gate, this structure can be exploited to effectively reduce the computa-
tional cost to simulate the RQCs, as was done in refs. 34,38,39. The revised
RQC formulation ensures that each T gate is preceded by a {X1/2, Y1/2, H}

B. Villalonga et al.

8

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



gate, which foils this exploit. In addition, the layers of two-qubit gates have
been reordered, to avoid consecutive “horizontal” or “vertical” layers,
which is known to make simulations easier. Finally, it is important to keep
the final layer of H gates, as otherwise multiple two-qubit gates at the end
of the circuit can be simplified away, making the simulation easier.13

Replacing CZ gates with iSWAP = (|00〉〈00|+ |11〉〈11|+ i|01〉〈10|+ i|10〉
〈01|) gates is known to make the circuits yet harder to simulate. More
precisely, an RQC of depth 1+ t+ 1 with CZ gates is equivalent, in terms of
simulation cost, to an RQC of depth 1+ t/2+ 1 with iSWAPs. In future
work, we will benchmark our approach on these circuits as well.

Overview of the simulator
A given quantum circuit can always be represented as a tensor network,
where one-qubit gates are rank-2 tensors (tensors of 2 indexes with
dimension 2 each), two-qubit gates are rank-4 tensors (tensors of 4 indexes
with dimension 2 each), and in general n-qubit gates are rank-2n tensors.
The computational and memory cost for the contraction of such networks
is exponential with the number of open indexes and, for large enough
circuits, the network contraction is unpractical; nonetheless, it is always
possible to specify input and output configurations in the computational
basis through rank-1 Kronecker deltas over all qubits, which can vastly
simplify the complexity of the tensor network. This representation of
quantum circuits gives rise to an efficient simulation technique, first
introduced in ref. 36, where the contraction of the network gives
amplitudes of the circuit at specified input and output configurations.
Our approach allows the calculation of amplitudes of RQCs through the

contraction of their corresponding tensor networks, as discussed above,
but with an essential first step, which we now describe. One of the
characteristics of the layers of CZ gates shown in Fig. 4 is that it takes eight
cycles for each qubit to share one, and only one, CZ gate with each of its
neighbors. This property holds for all subsets of a 2D square grid, including
the Bristlecone architecture. Therefore, it is possible to contract every eight
layers of the tensor network corresponding to an RQC of the form
described in “Revised set of RQCs” onto an I × J 2D grid of tensors, where I
and J are the dimensions of the grid of qubits. Although in this work we
assume that the number of layers is a multiple of 8, our simulator can be
trivially used for RQCs with a depth that is not a multiple of 8. The bond
dimensions between each tensor and its neighbors are the Schmidt rank of
a CZ gate, which (as for any diagonal two-qubit gate) is equal to 2 (note
that for iSWAP the Schmidt rank is equal to 4, thus effectively doubling the
depth of the circuit as compared with the CZ case). After contracting each
group of eight layers in the time direction onto a single, denser layer of
tensors, the RQC is mapped onto an I × J × K three-dimensional grid of
tensors of indexes of bond dimension 2, as shown in Fig. 5, where K= t/8,
and 1+ t+ 1 is the depth of the circuit (see “Revised set of RQCs”). It is
noteworthy that the initial (final) layer of Hadamard gates, as well as the
input (resp. output) delta tensors, can be trivially contracted with the initial
(resp. final) cycle of eight layers of gates. At this point, the randomness of

the RQCs appears only in the entries of the tensors in the tensor network,
but not in its layout, which is largely regular, and whose contraction
complexity is therefore independent of the particular RQC instance at
hand. This approach contrasts with those taken in refs. 34,37,39, which
propose simulators that either benefit from an approach tailored for each
random instance of an RQC, or take advantage of the particular layout of
the CZ layers.
The contraction of the resulting 3D tensor network described above (see

Fig. 5), to compute the amplitude corresponding to specified initial and
final bit-strings is described in the following “Contraction of the 3D tensor
network”.

Contraction of the 3D tensor network. In this section, we describe the
contraction procedure followed for the computation of single perfect-
fidelity output amplitudes for the 3D grid of tensors described in the
previous section.
Starting from the 3D grid of tensors of Fig. 5, we first contract each

vertical (K direction) column of tensors onto a single tensor of at most four
indexes of dimension 2K each (see left panel of Fig. 6). It is noteworthy that
for the circuit sizes and depths we simulate, K is always smaller than I and J,
and so this contraction is always feasible in terms of memory, fast, and
preferable to a contraction in either the direction of I or J. This results in a
2D grid of tensors of size I × J, where all indexes have dimension 2K (see
the right panel of Fig. 6). It is worth noting that contracting in the time
direction first is done at a negligible cost and reduces the number of high-
complexity contractions to only the ones left in the resulting 2D grid.

Fig. 4 Layout of two-qubit gates and the corresponding cycle order (from 1 to 8). This layout can be tiled over 2D square grids of arbitrary
size. The Bristlecone architecture is a diamond-shaped subset of such a 2D grid. For our simulations, we use CZ gates as the two-qubit gate

Fig. 5 (a) 3D grid of tensors obtained by contracting eight
consecutive layers of CZ gates, including the single-qubit gates.
(b) Example of a typical block of eight layers of gates on a single
qubit; note that the qubit shares one CZ gate with each of its four
neighbors per block

B. Villalonga et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



Although we have focused so far on the steps leading to the 2D square
grid tensor network of Fig. 6, it is easy to see that the Bristlecone topology
(see Bristlecone-72 in Fig. 1) is a sub-lattice of a square grid or qubits, and
so all considerations discussed up to this point are applicable. Even though
Bristlecone has 72 qubits, the top-left and bottom-right qubits of the
network can be contracted trivially with their respective only neighbor,
adding no complexity to our classical simulation of RQCs. For this reason,
without loss of generality, we “turn off” those two qubits from the
Bristlecone lattice and work only with the resulting sub-lattice, which we
call Bristlecone-70 (see Fig. 1). For the remainder of this section, we will
focus on Bristlecone-70 and other sub-lattices of Bristlecone (see sub-
lattices considered in Fig. 1), and we will refer back to square grids of
qubits in later sections.

Cutting indexes and the contraction of the 2D tensor network: From
Fig. 1, it is easy to see that it is not possible to contract the Bristlecone-70
tensor network without generating tensors of rank 11, where each index
has dimension 2K. For a circuit of depth 1+ 32+ 1 and K= 4, the
dimension of the largest tensors is 211×4, which needs over 140 TB of
memory to be stored using single precision floating point complex
numbers, far beyond the RAM of a typical HPC cluster node (between
32 GB and 512 GB). Therefore, to avoid the memory bottleneck, we
decompose the contraction of the Bristlecone-70 tensor network into
independent contractions of several easier-to-compute sub-networks. Each

sub-network is obtained by applying specific “cuts”, as is described below.
Given a tensor network with n tensors and a set of indexes to contract

{il}l= 1,…,
P

i1 ;i2 ;¼
T1T2 ¼ Tn , we define a cut over index ik as the explicit

decomposition of the contraction into
P

ik

P

filgl¼1;¼�fikg
T1T2 ¼ Tn

� �

. This

implies the contraction of dim(ik) many tensor networks of lower
complexity, namely each of the

P

filgl¼1;¼�fikg
T1T2 ¼ networks, where

tensors involving index ik decrease their rank by 1, fixing the value of ik to
the particular value given by the term in Σik . This procedure, equivalent to
the ones used in refs. 28,34,38,39 reduces the complexity of the resulting
tensor network contractions to computationally manageable tasks (in
terms of both memory and time), at the expense of creating exponentially
many contractions. The resulting tensor networks can be contracted
independently, which results in a computation that is embarrassingly
parallelizable. It is possible to make more than one cut on a tensor
network, in which case ik refers to a multi-index; the contribution to the
final sum of each of the contractions (each of the values of the multi-index
cut) is called a “path” and the final value of the contraction is the sum of all
path contributions.
For the Bristlecone-70 example with depth (1+ 32+ 1), making four

cuts, as shown in Fig. 7(a), decreases the size of the maximum tensor
stored during the contraction from 211×4 to 27×4 entries, at the price of 24×4

contractions to be computed. At the same time, the choice of cuts aims at
lowering the number of high-complexity contractions needed per path, as
well as lowering the number of largest tensors held simultaneously in
memory. It is noteworthy that for Bristlecone-60, tensors A and B are both
equally large, and that the number of high-complexity contractions is
larger than for a single path of Bristlecone-70.
After making these cuts, the contraction of each path is carried out in

the following way (see Fig. 7): first, we contract all tensors within region A
onto a tensor of rank 7 (tensor A); we do the same for tensor B; then
tensors A and B are contracted onto a rank-6 tensor, AB; finally, tensor C is
contracted, which does not depend on the particular path at hand,
followed by the contraction of AB with C onto a scalar. In Fig. 7(b), we
depict the corresponding A, B, and C regions for the sub-lattices of
Bristlecone we use in our simulations, as well as the cuts needed to
contract the resulting tensor networks using the described method, in
particular for Bristlecone-48, -60, and -64. It is noteworthy that Bristlecone-
48 and -64 need both two cuts of depth 4, making them similar to each
other in complexity, whereas Bristlecone-60 needs three cuts, making it
substantially harder to simulate.

Fig. 6 a Contraction of the 3D grid of tensors (see Fig. 5) in the time
direction to obtain (b) a 2D grid of tensors

(a)

(b)

Fig. 7 (a) Sketch of the contraction procedure followed to obtain one path of one amplitude of the Bristlecone-70 with depth (1+ 32+ 1). We
first make four cuts of dimension 24 each, leaving us with 216 paths; for each path, we contract all tensors on region A and all tensors on region
B; then tensors A and B are contracted together; finally, tensor C (which is independent of chosen path and can in addition be computed very
efficiently) is contracted with AB, which obtains the contribution of this path to this particular amplitude. (b) Corresponding regions A, B, and C
for the Bristlecone-24, -48, -60, and -64. It is worth noting that both the Bristlecone-48 and the Bristlecone-64 need 2 cuts of dimension 24

each, whereas the Bristlecone-60 needs 3 of such cuts, making it a factor of 24 times harder than Bristlecone-64, even though it has
4 qubits less

B. Villalonga et al.

10

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



We identify a family of sub-lattices of Bristlecone, namely Bristlecone-24,
-30, -40, -48, -60, and -70, which are hard to simulate classically, while
keeping the number of qubits and gates as low as possible. Indeed, the
fidelity of a quantum computer decreases with the number of qubits and
gates involved in the experiment,13 and so finding classically hard sub-
lattices with a small number of qubits is essential for quantum supremacy
experiments. It is interesting to observe that Bristlecone-64 is an example
of a misleadingly large lattice that is easy to simulate classically (see
"Results" for our numerical results).
It is noteworthy that the rules for generating RQCs cycle over the layers

of two-qubit gates depicted in Fig. 4. In the case that the cycles or the
layers are perturbed, our simulator can be trivially adapted. In particular: (1)
if the layers are applied in a different order, but the number of two-qubit
gates between all pairs of neighbors is the same, then the 2D grid tensor
network of Fig. 6 still holds and the contraction method can be applied as
described; (2) if there is a higher count of two-qubit gates between some
pairs of neighbors than between others, then the corresponding
anisotropy in the bond dimensions of the 2D tensor network can be
exploited through different cuts.

Remarks on the choice of cuts and contraction ordering: The cost of
contracting a tensor network depends strongly on the contraction
ordering chosen and is a topic covered in the literature (see refs. 36,37);
determining the optimal contraction ordering is an Non-deterministic
Polynomial (NP)-hard problem. Given an ordering, the leading term to the
time complexity of the contraction is given by the most expensive
contraction between two tensors encountered along the contraction of the
full network; the optimal ordering given this cost model is closely related
to the treewidth of the line-graph of the tensor network. However, a more
practical approach to determining the cost of a particular contraction
ordering is the FLOP count of the contraction of the entire network (i.e.,
the number of scalar additions and multiplications needed); this accounts
for cases where a single high-complexity contraction is preferable to a
large number of low-complexity ones. The latter cost model is commonly
used, to determine the optimal ordering for the contraction of tensor
networks (e.g., in ref. 39). It is noteworthy that, although the choice of a
contraction ordering affects also its memory complexity, by what we mean
the memory required to perform the contraction, this is usually a smaller
concern as compared with time complexity.
An even more realistic approach needs to consider the performance

efficiency of the different tensor contractions, i.e., the delivered FLOP/s of
each contraction. In particular, modern computing architectures benefit
from high arithmetically intensive contractions, i.e., contractions with a
large ratio between the FLOP count and the number of reads and writes
from and to memory. Highly unbalanced matrix multiplications, e.g.,
present low arithmetic intensity, whereas the multiplication of large
squared matrices shows high arithmetic intensity, and therefore achieves a
performance very close to the theoretical peak FLOP/s of a particular CPU.
This principle (which prioritizes time-to-solution over FLOP count-to-
solution) is at the heart of our choice to contract the quantum circuits first
into blocks and subsequently along the “time” direction. This choice,
beyond “regularizing” the tensor network, serves two purposes, aimed at
decreasing the overall time-to-solution in practice: (1) the vast majority of
contractions are performed in these first steps and are done in a negligible
amount of time, leaving most of the computation to a small number of
subsequent high-complexity contractions; and (2) the remaining high-
complexity contractions have high arithmetic intensity and therefore
achieve high efficiency. In addition, contracting all blocks in the time
direction first reduces the memory requirement of the subsequent
contraction as compared with keeping the tensor network in its three-
dimensional version.
The cost model discussed here becomes more intricate when cuts are

considered. Each choice of cuts not only has a different impact on the
memory complexity of the resulting, simplified tensor networks, but it can
also substantially affect their time complexity. As was explained in
“Contraction of the 3D tensor network,” the main purpose of the cuts is
reducing the memory requirement of the resulting contractions to fit the
limits of each computation node; this is indeed the main factor taken into
account when choosing a set of cuts. However, the right choice of cuts can
also allow us to, again, have a small number of high arithmetic intensity
contractions. This is the case with the contractions depicted in Fig. 7,
where the main bottleneck is given by the contraction of A with B, which is
very arithmetically intensive; see also Fig. A1 for an example on a square
lattice.

Finally, it is worth noting the two more factors on the runtime of a
contraction. First, if the memory requirement of a contraction is well below
the limits of a computing node, then several contractions can be run in
parallel. In these cases, there is a trade-off between the number of cuts
made and the number of contractions run in parallel. Second, the choice of
cuts can affect the number of tensors reused across different paths (which
is done at a memory cost), which can have a substantial impact on the
computation time of an amplitude, as can be seen in the examples of
Supplementary Information A.
Although a cost model involving all the factors discussed above can be

well characterized, automatically optimizing the cuts chosen and the
contraction ordering, together with the tensors reused across paths, is
beyond the scope of this work. In practice, we study different configurations
“by hand”. It is noteworthy that, once the tensor networks have a certain
level of regularity, it is not hard to make a choice that is close to optimal.

Implementation of the simulator. We implemented our tensor network
contraction engine for CPU-based supercomputers using C++. We have
planned to release our tensor contraction engine in the near future. During
the optimization, we were able to identify two clear bottlenecks in the
implementation of the contractions: the matrix multiplication required for
each index (or multi-index) contraction and the reordering of tensors in
memory needed to pass the multiplication to a matrix multiplier in the
appropriate storage order (in particular, we always use row-major storage).
In addition, to avoid time-consuming allocations during the runs, we
immediately allocate large-enough memory to be reused as scratch space
in the reordering of tensors and other operations.

Matrix multiplications with Intel® MKL: For the multiplication of two
large matrices that are not distributed over several computational nodes,
Intel’s MKL library is arguably the best performing library on Intel CPU-
based architectures. We therefore leave this essential part of the
contraction of tensor networks to MKL’s efficient, hand-optimized
implementation of the Basic Linear Algebra Subprograms (BLAS) matrix
multiplication functions. It is worth noting that, even though we have used
MKL, any other BLAS implementation could be used as well and other
linear algebra libraries could be used straightforwardly.

Cache-efficient index permutations: The permutation of the indexes
necessary as a preparatory step for efficient matrix multiplications can be
very costly for large tensors, as it involves the reordering of virtually all
entries of the tensors in memory; similar issues have been an area of study
in other contexts.45–47 In this section we describe our novel cache-efficient
implementation of the permutation of tensor indexes.
Let Ai0,…,ik be a tensor with k indexes. In our implementation, we follow a

row-major storage for tensors, a natural generalization of matrix row-major
storage to an arbitrary number of indexes. In the tensor network literature,
a permutation of indexes formally does not induce any change in tensor A.
However, given a storage prescription (e.g., row-major), we will consider
that a permutation of indexes induces the corresponding reordering of the
tensor entries in memory. A naive implementation of this reordering
routine will result in an extensive number of cache misses, with poor
performance.
We implement the reorderings in a cache-efficient way by designing two

reordering routines that apply to two special index permutations. Let us
divide a tensor’s indexes into a left and a right group: A i0; ¼ ; ij

|fflfflfflffl{zfflfflfflffl}
ijþ1; ¼ ; ik
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

.

If a permutation involves only indexes in the left (right) group, then the
permutation is called a left (resp. right) move. Let γ be the number of
indexes in the right group. We will denote the left (resp. right) moves with
γ indexes in the right group by Lγ (resp. Rγ). The importance of these
moves is that they are both cache-efficient for a wide range of values of γ,
and that an arbitrary permutation of the indexes of a tensor can be
decomposed into a small number of the left and right moves, as will be
explained later in this section. Let dγ be the dimension of all γ right indexes
together. Then the left moves involve the reordering across groups of dγ
entries of the tensor, where each group of dγ entries is contiguous in
memory and is moved as a whole, without any reordering within itself,
therefore largely reducing the number of cache misses in the routine. On
the other hand, right moves involve reordering within all of dγ entries that
are contiguous in memory, but involves no reordering across groups,
hence greatly reducing the number of cache misses, as all reorderings take
place in small contiguous chunks of memory. Figure 8 shows the efficiency
of Rγ and Lγ as compared with a naive (but still optimized) implementation
of the reordering that is comparable in performance to python’s numpy
implementation. A further advantage of the left and right moves is that

B. Villalonga et al.

11

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



they can be parallelized over multiple threads and remain cache-efficient
in each of the threads. This allows for a very efficient use of the
computation resources, while the naive implementation does not benefit
from multithreading.
Let us introduce the decomposition of an arbitrary permutation into the

left and right moves through an example. Let Aabcdefg be a tensor with
seven indexes of dimension d each. Let abcde fg→ c f eadgb be the index
permutation we wish to perform. Furthermore, let us assume that it is
known that L2 and R4 are cache efficient. Let us also divide the list of seven
indexes of this example in three groups: the last two (indexes 6 and 7), the
next group of two indexes from the right (indexes 4 and 5), and the
remaining three indexes on the left (1, 2, and 3). We now proceed as
follows. First, we apply an L2 move that places all indexes in the left and
middle groups that need to end up in the rightmost group in the middle
group; in our case, this is index b and the L2 we have in mind is
abcjde
|fflfflffl{zfflfflffl}

L2

jfg ! caejbd
|fflfflffl{zfflfflffl}

L2

jfg; it is noteworthy that if the middle group is at least

as big as the rightmost group, then it is always possible to do this. Second,
we apply an R4 move that places all indexes that need to end up in the
rightmost group in their final positions; in our case, that is
caej bdjfg

|ffl{zffl}

R4

! caej fdjgb
|ffl{zffl}

R4

; note that, if the first move was successful, then

this one can always be done. Finally, we take a final L2 move that places all
indexes in the leftmost and middle groups in their final positions, i.e.,
caejfd
|fflffl{zfflffl}

L2

jgb ! cfejad
|fflffl{zfflffl}

L2

jgb. We have decomposed the permutation into three

cache-efficient moves, Lμ− Rν− Lμ, with μ= 2, ν= 4. It is worth noting
that it is essential for this particular decomposition that the middle group
has at least the same dimension as the rightmost group. It is also crucial
that both Lμ and Rν are cache efficient.
In practice, we find that (beyond the above example, where μ= 2 and

ν= 4) for tensors with binary indexes, μ= 5 and ν= 10 are good choices
for our processors (see Fig. 8). If the tensor indexes are not binary, this
approach can be generalized: if all indexes have a dimension that is a
power of 2, then mapping the reordering onto one involving explicitly
binary indexes is trivial; in the case where indexes are not all powers of 2,
then different values of μ and ν could be found, or decompositions more
general than Lμ− Rν− Lμ could be thought of. In our case, we find good
results for the L5− R10− L5 decomposition. Note also that in many cases a
single R or a single L move is sufficient, and sometimes a combination of
only two of them is enough, which can accelerate contractions by a large
factor.

We apply a further optimization to our index permutation routines. A
reordering of tensor entries in memory (either a general one or some of Rγ
or Lγ moves) involves two procedures: generating a map between the old
and the new positions of each entry, which has size equal to the dimension
of all indexes involved and applying the map to actually move the entries
in memory. The generation of the map takes a large part of the
computation time, and so storing maps that have already been used in a
look-up table (memoization), to reuse them in future reorderings, is a
desirable technique to use. Although the size of such maps might make
this approach impractical in general, for the left and right moves
memoization becomes feasible, as the size of the maps is now
exponentially smaller than in the general case due to the left and right
moves only involving a subset of indexes. In the contraction of regular
tensor networks we work with maps reappear often, and so memoization
proves very useful.
The implementation of the decomposition of general permutations of

indexes into the left and right moves, with all the details discussed above,
give us speedups in the contractions that range from under 5% in single-
threaded contractions that are dominated by matrix multiplications, to well
over 50% in multithreaded contractions that are dominated by reorder-
ings. A detailed comparison of runtimes using a naive approach and the
cache-efficient approach discussed is shown in Fig. 9. The contraction
corresponding to the simulation of Bristlecone-60 with depth 1+ 32+ 1
(presented in “Contraction of the 3D tensor network”) is dominated by
reorderings, as a large part of the runtime is spent in building tensor A,
which involves a large number of “unbalanced” contractions, where the
reordering of a large tensor is followed by the multiplication of a large
matrix with a small one. The contraction corresponding the a 7 × 7 grid of
depth 1+ 40+ 1 (presented in Supplementary Information A) is domi-
nated by a few “balanced” contractions of large tensors and so the overall
runtime is dominated by matrix–matrix multiplication. In this case, larger
speedups are still achieved using a large number of threads, due to
multithreading, and the speedup using a single thread is appreciable but
small; in practice, we use 13 threads per job on Skylake nodes, where we
can only fit 3 jobs per node due to memory constraints, and a larger
number of threads per job on other node types. Finally, it is worth
mentioning that runtimes are still robust when using cache-efficient,
multithreaded index permutations, showing small variation among runs.

Fast sampling of bit-strings from low-fidelity RQCs
Although the computation of perfect fidelity amplitudes of output bit-
strings of RQCs is needed for the verification of quantum supremacy
experiments,13 classically simulating sampling from low-fidelity RQCs is
essential to benchmark the performance of classical supercomputers in
carrying out the same task as a noisy quantum computer. Indeed, present
day quantum computers suffer from noise and errors in each gate. In the
commonly used digital error model,13,48–53 the total error probability for a
RQC is the sum of the probability of error from each gate. The fidelity, or
probability of no errors, of a quantum computer or of a classical algorithm
for RQC sampling can be estimated with XEB.13 Therefore, we only require
the same value for the cross-entropy or fidelity in the classical algorithm as
in the noisy quantum computer. A superconducting quantum processor
with the present day technology is expected to achieve a fidelity of around
0.5% for circuits with the number of gates considered here.13

In “Simulating low delity RQCs,” we describe two methods to mimic the
fidelity f of the output wavefunction of the quantum computer with our
simulator, providing a speedup of a factor of 1/f to the simulation as
compared with the computation of exact amplitudes.28 Both methods can
be adjusted to provide the same fidelity and therefore the same cross-
entropy,13 as a noisy quantum computer. That is, they result in an
equivalent RQC sampling. In “Fast sampling technique,” we describe a way
to reduce the computational cost of the sampling procedure on tensor
contraction type simulators by a factor of almost 10×, under reasonable
assumptions. Finally, in “Sampling from a non fully-thermalized Porter-
Thomas distribution,” we discuss the implications of sampling from a
Porter–Thomas distribution that has not fully converged.

Simulating low-fidelity RQCs. Here we describe two methods to reduce
the computational cost of classical sampling from an RQC given a target
fidelity.

Summing a fraction of the paths: This method, presented in ref. 28,
exploits the fact that, for RQCs, the decomposition of the output
wavefunction of a circuit into paths ψj i ¼

P

p2fpathsg jψpi (see “Contraction
of the 3D tensor network”) leads to terms |ψp〉 that have similar norm and

Fig. 8 Single thread computation times on Broadwell nodes on
Pleiades for an arbitrary permutation of the indexes of a tensor of
single precision complex entries (and 25 indexes of dimension 2
each) following an optimized, naive implementation of the
reordering (green), an arbitrary Lγ move (red), and an arbitrary Rγ
move (blue). The optimized, naive approach performs comparably
to python’s numpy implementation of the reordering. It is
noteworthy that, for a wide range of γ, the left and right moves
are very efficient. Left inset: zoomed version of the main plot. For
γ∈ [5; 10] both the right and left moves are efficient. Right inset:
computation times for L5 and R10 (used in practice) as a function of
the number of threads used

B. Villalonga et al.

12

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



that are almost orthogonal to each other. For this reason, summing only
over a fraction f of the paths, one obtains a wavefunction j~ψi with norm
h~ψj~ψi ¼ f . Moreover, j~ψi has fidelity f as compared with |ψ〉, that is:

hψj~ψi
ffiffiffiffiffiffiffiffiffiffiffi

h~ψj~ψi
p

�
�
�
�
�

�
�
�
�
�

2

¼ f : (1)

Therefore, amplitudes of a fidelity f wavefunction can be computed at a
cost that is only a fraction f of that of the perfect fidelity case.
We find empirically that, although the different contributions |ψp〉 fulfill

the orthogonality requirement (with a negligible overlap; e.g., in the
Bristlecone-60 simulation, the mutual fidelity between pairs out of 4096
paths is about 10−6), there is some non-negligible variation in their norms
(see “Results” and Fig. 10), and thus the fidelity achieved by |ψp〉 is equal to:

hψjψpi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hψpjψpi
q

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

¼ hψpjψpi; (2)

which is in general different than (#paths)−1. If an extensive subset of paths
is summed over, then the variations on the norm and the fidelity are
suppressed, and the target fidelity is achieved. This was the case in ref. 28.
However, in this work we aim at minimizing the number of cuts on the
circuits and so low-fidelity simulations involve a small number of paths
(between 1 and 21 in the cases simulated). In this case, some “unlucky”
randomly selected paths might contribute with a fidelity that is below the
target, whereas others might achieve a higher fidelity than expected.
Finally, the low-fidelity probability amplitudes reported in ref. 28,

obtained using the method described above, follow a Porter–Thomas
distribution as expected for perfect fidelity amplitudes. Again, this is
presumably true only in the case when a large number of paths is
considered. In our case, we find distributions that have not fully converged
to a Porter–Thomas, but rather have a larger tail (see "Results" and Fig. 10).
We attribute this phenomenon to the cuts in the circuit acting as removed
gates between qubits, thus increasing the effective diameter of the circuit,
which needs higher depth to fully thermalize. We discuss the implications
of these tails for the sampling procedure in “Sampling from a non fully-
thermalized Porter–Thomas distribution.”

Fraction of perfect fidelity amplitudes: There exists a second method to
simulate sampling from the output wavefunction |ψ〉 with a target fidelity f
that avoids summing over a fraction of paths.
The output density matrix of a RQC with fidelity f can be written as13

ρ ¼ f jψihψj þ ð1� f Þ
1

N
: (3)

This means that to produce a sample with fidelity f we can sample from
the exact wavefunction |ψ〉 with probability f or produce a random bit-
string with probability 1− f. The sample from the exact wavefunction can
be simulated by calculating the required number of amplitudes with
perfect fidelity.
It is noteworthy that the method presented in this section involves the

computation of the same number of paths as the one described in
“Simulating low delity RQCs” for a given f, circuit topology, circuit depth,
and set of cuts. However, this second method is more robust in achieving a
target fidelity. Note that by this argument the 6000 amplitudes of [Run 5]
are equivalent to 1.2 M amplitudes at 0.5% fidelity.
It is also noteworthy that, even though this method and the one

presented in “Simulating low delity RQCs” have the same computational
cost for tensor network-based simulators, for Schrödinger–Feynman
simulators such as the one presented in ref. 28 it is preferable to consider
a fraction of paths as opposed to a fraction of perfect fidelity amplitudes.
This is due to the small cost overhead of computing an arbitrary number of
amplitudes using these simulators.

Fast sampling technique. Although 106 sampled amplitudes are necessary
for cross-entropy verification of the sampling task,13 the frugal rejection
sampling proposed in ref. 28 needs the numerical computation of 10 × 106

= 107 amplitudes, to carry out the correct sampling on a classical
supercomputer. This is due to the acceptance of 1/M amplitudes (on
average) of the rejection sampling, where M= 10 when sampling from a
given Porter–Thomas distribution with statistical distance ε of the order of
10−4 (negligible).
In this section, we propose a method to effectively remove the 10×

overhead in the sampling procedure for tensor network-based simulators,
which normally compute one amplitude at a time. For the sake of clarity,
we tailor the proposed fast sampling technique to the Bristlecone
architecture. However, it can be straightforwardly generalized to different
architectures (see Supplementary Information A). Given the two regions of

Fig. 9 Comparison of the runtime of the computation of an amplitude using a naive index permutation implementation (comparable to
python’s numpy implementation) and the cache-efficient implementation described in “Implementation of the simulator,” using Skylake
nodes on Electra. Left: computation of three paths of an amplitude of Bristlecone-60 with depth 1+ 32+ 1, corresponding to a target fidelity f
= 3/212 (see “Results”). Right: computation of three paths of an amplitude of a grid of size 7 × 7 with depth 1+ 40+ 1, corresponding to a
target fidelity f= 3/210 (see also “Results”). Runtimes using a varying number of threads (one threads per physical core) in an otherwise idle
node are presented (single job), as well as runtimes for the case where several amplitudes are computed on the same node, fitting as many
concurrent computations as possible (concurrent jobs, also shown in the insets for clarity), a number that is constrained by memory
requirements; the latter is the case for the simulations presented in “Results”. Cache-efficient runs show always better runtimes. The scaling of
runtime with number of threads is better for the cache-efficient runs, given multithreading; note that the matrix–matrix multiplication part of
the contraction is always multithreaded. Concurrent jobs suffer from contention, which is larger for the cache-efficient runs, presumably due
to a larger use of bandwidth; however, runtimes are still substantially improved in this case

B. Villalonga et al.

13

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 



the Bristlecone (and sub-lattices) AB and C of Fig. 7, and the contraction
proposed (see “Contraction of the 3D tensor network”), the construction of
tensor C and its subsequent contraction with AB are computationally
efficient tasks done in a small amount of time as compared with the full
computation of the particular path. This implies that one can compute, for
a given output bit-string on AB, sAB, a set of 212 amplitudes generated by
the concatenation of sAB with all possible sC bit-strings on C at a small
overhead cost per amplitude. We call this set of amplitudes a “batch”; we
denote its size by NC and each of the (concatenated) bit-strings by sABC. In
practice, we find that for the Bristlecone-64 and -60 with depth (1+ 32+
1), the computation of a batch of 30 amplitudes is only around 10% more
expensive than the computation of a single amplitude, whereas for the
Bristlecone-48 and -70 with depth (1+ 32+ 1), the computation of a batch
of 256 amplitudes is around 15% more expensive than the computation of
a single amplitude, instead of a theoretical overhead of 30× and 256×,
respectively.
The sampling procedure we propose is a modification of the frugal

rejection sampling presented in ref. 28 and proceeds as follows. First, we
choose slightly over 106 (see below) random bit-strings on AB, sAB. For each
sAB, we choose NC bit-strings on C, sC, at random (without repetition). We
then compute the probability amplitudes corresponding to all sABC bit-
strings on all (slightly over) 106 batches. We now shuffle each batch of bit-
strings. For each batch, we proceed onto the bit-strings in the order given
by the shuffle; we accept a bit-string sABC with probability min [1, p(sABC)N/
M], where p(sABC) is the probability amplitude of sABC and N is the
dimension of the Hilbert space; once a bit-string is accepted, or the bit-
strings of the batch have been exhausted without acceptance, we proceed
to the next batch. By accepting at most one bit-string per batch, we avoid
introducing spurious correlations in the final sample of bit-strings.
Given an M and a batch size NC, the probability that a bit-string is

accepted from a batch is (on average) 1� ð1� 1=MÞNC . For M= 10 and NC

= 30, the probability of acceptance in a batch is 95.76% and one would
need to compute amplitudes for 1.045 × 106 batches, to sample 106 bit-
strings; for M= 10 and NC= 60, the probability goes up to 99.82% and one
only needs 1.002 × 106 batches; for M= 10 and NC= 256, the probability of
acceptance is virtually 100% and 1.00 × 106 batches are sufficient. There is
an optimal point, given by the overhead in computing batches of different
sizes NC and the probability of accepting a bit-string on a batch given NC,
which minimizes the runtime of the algorithm.
There is a crucial condition for this sampling algorithm to work, namely

the absence of correlations between the probability amplitudes of the bit-
strings {sABC} for fixed sAB, so that they are indistinguishable from
probability amplitudes taken from random bit-strings over ABC. We expect
this condition to be satisfied for chaotic systems that have converged to a
Porter–Thomas distribution. To test this, we perform the following test: for
Bristlecone-24, we choose 1000 bit-strings over AB (sAB) at random and for
each of them we generate a batch of size NC= 32, where we constrain the
bit-strings {sC} to be the same across batches. We now compute the
Pearson’s correlation coefficient between the two sets of 1000 amplitudes
gotten for each pair of bit-strings in C and we do this for all 32 × 31/2 pairs.
If the probability amplitudes of each batch are really uncorrelated to each
other, we expect the correlation coefficient to vanish. We show the
coefficient as a function of Hamming distance between the pairs in Fig. 11
(a) and (b). We can see that, for depth (1+ 24+ 1) (a) there is a small but

non-negligible correlation, which in fact decreases on average with
Hamming distance. For depth (1+ 32+ 1) (b), the correlation is Hamming
distance independent and approaches zero. In Fig. 11(b), we compare the
distribution of Pearson’s coefficients obtained for both depths analyzed to
that one obtained from pairs of sets of size 1000 sampled from a
Porter–Thomas distribution. Although a fairer comparison would involve
sampling from the distribution of the output wavefunction of the RQC,
which might differ from the Porter–Thomas in the absence of conver-
gence, we still see a clear tendency of the distributions to match for longer
depth, i.e., closer to convergence.

Sampling from a non-fully thermalized Porter–Thomas distribution. In
ref. 28, an error of the order of 10−4 is computed for a frugal rejection
sampling with M= 10, assuming Porter–Thomas statistics. When the
distribution has not converged to a Porter–Thomas, but rather has a larger
tail, we expect the error to increase. We can estimate the error in sampling
numerically for the cases simulated here as the sum of the probability
amplitudes larger than M/N with N being the dimension of the Hilbert
space, multiplied by N and divided by the number of amplitudes
computed. For M= 10, we estimate an error ε= 9.3 × 10−4 for [Run 1],
ε= 1.0 × 10−2 for [Run 2], and ε= 2.5 × 10−3 for [Run 6], respectively. If
instead we consider M= 15, this lowers the error to ε= 1.3 × 10−5 for [Run
1], ε= 1.0 × 10−3 for [Run 2], and ε= 1.15 × 10−4 for [Run 6], respectively.
Increasing M, to reduce the error in the frugal sampling, implies a lower
acceptance rate in the fast sampling, which is resolved by increasing the
size of the batches NC, which is done at a small cost.

Simulation of Bristlecone compared with rectangular grids
The diamond shape of the topology of Bristlecone and its hard sub-lattices
(see Fig. 1: Bristlecone-24, -30, -40, -48, -60, and -70) makes them
particularly hard to simulate classically when compared with rectangular
grids of the same (or smaller) number of qubits. Indeed, these lattices are
subsets of large rectangular grids, from which they inherit their diameter;
e.g., Bristlecone-70 is a sub-lattice of a 10 × 11 grid. When cutting the
lattice (see “Contraction of the 3D tensor network”), one has to apply
several cuts, to decrease the maximum size of the tensors in the
contraction to manageable sizes; in the case of Bristlecone-70 and depth
(1+ 32+ 1), four cuts are needed, to have tensors in the contraction of at
most dimension 27×4, whereas for a rectangular 8 × 9 lattice (with
72 qubits) only 3 cuts are needed. It is noteworthy that the computational
cost scales with the dimension of the indexes cut, i.e., exponentially with
the number of cuts.
The same applies to a simulator based on a full split of the circuit into

two parts, as in refs. 12,28,38. For instance, the number of CZ gates for RQCs
with depth (1+ 32+ 1), which are cut when splitting Bristlecone-60 in two
halves is equal to 40. In comparison, 8 × 8 grids of qubits with the same
depth have only 32 CZ gates cut. See Supplementary Information C for
more details.
As was discussed in “Overview of the simulator”, identifying topologies

that are hard to simulate classically, but that minimize the number of
qubits involved, increases the chances of success of quantum supremacy
experiments, due to the decrease of the overall fidelity of the quantum

Fig. 10 Porter–Thomas distribution for the three different sub-lattices of Bristlecone simulated with depth (1+ 32+ 1). (a) Bristlecone-64 ([Run
1]); 1.2 × 106 amplitudes with a target fidelity f= 0.78%; h~ψj~ψi ¼ 0:87f . (b) Bristlecone-48 ([Run 2]); 1.2 × 106 amplitudes with target fidelity f=
0.78%; h~ψj~ψi ¼ 0:77f . (c) Bristlecone-60 ([Run 6]); 1.15 × 106 amplitudes with a target fidelity f= 0.51%; h~ψj~ψi ¼ 1:38f . For reference, the
theoretical value of the Porter–Thomas distribution is plotted (solid line). For some simulations, the depth is not sufficient to fully converge to
a Porter–Thomas distribution. Furthermore, summing a small number of paths of low fidelity might lead to worse convergence than expected
for a particular depth (see “Simulating low delity RQCs”)

B. Villalonga et al.

14

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales



computer with the number of gates and qubits.13 For this reason, we find
that Bristlecone is a good setup for quantum supremacy experiments.

DATA AVAILABILITY

The simulation data that support the findings of this study are available at https://

data.nas.nasa.gov/quail/data.php?dir=/quaildata/quantum/qcSim. The circuit files

used for the numerical simulations in this paper are publicly available in ref. 44

Received: 5 March 2019; Accepted: 10 September 2019;

REFERENCES

1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information

(Cambridge Univ. Press, Cambridge, 2000).

2. Rieffel, E. G. & Polak, W. Quantum Computing: A Gentle Introduction. (MIT Press,

Cambridge, MA, 2011).

3. Shor P. Algorithms for quantum computation: discrete logarithms and factoring.

In Proc. 35th Annual Symposium on Foundations of Computer Science, 124–134

(IEEE, 1994).

4. Grover L. K., A fast quantum mechanical algorithm for database search. In

Proc.28th Annual ACM Symposium on Theory of Computing - STOC ’96, 212–219

(ACM, 1996).

5. Feynman, R. P. Simulating {P}hysics with {C}omputers. Int. J. Theoretical Phys. 21,

467 (1982).

6. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Chemistry: simulated

quantum computation of molecular energies. Science 309, 1704 (2005).

7. Babbush R., et al. Low-depth quantum simulation of materials. Phys. Rev. X 8

(2018).

8. Jiang, Z., Sung, K. J., Kechedzhi, K., Smelyanskiy, V. N. & Boixo, S. Quantum

algorithms to simulate many-body physics of correlated Fermions. Phys. Rev.

Appl. 9, 44036 (2018).

9. Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T

complexity. Phys. Rev. X 8, 41015 (2018).

10. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79

(2018).

11. Bremner, M. J., Montanaro, A. & Shepherd, D. J. Average-case complexity versus

approximate simulation of commuting quantum computations. Phys. Rev. Lett.

117, 80501 (2016).

12. Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549,

203 (2017).

13. Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat.

Phys. 14, 1 (2018).

14. Aaronson S. & Arkhipov A. The computational complexity of linear optics. In Proc.

43rd Annual ACM Symposium on Theory of Computing, 333–342 (ACM, 2010).

15. Preskill, J. Quantum computing and the entanglement frontier arXiv:1203.5813

(2012).

16. Bremner, M. J., Montanaro, A. & Shepherd, D. J. Achieving quantum supremacy

with sparse and noisy commuting quantum computations. Quantum 1, 8

(2016b).

17. Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy

experiments. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 79

(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016).

18. Neill, C. et al. A blueprint for demonstrating quantum supremacy with super-

conducting qubits. Science 360, 195 (2018).

19. Bouland, A., Fefferman, B., Nirkhe, C., & Vazirani, U. On the complexity and ver-

ification of quantum random circuit sampling. Nature Physics 15, 159 (2019).

20. Harrow, A. & Mehraban, S. Approximate unitary $t$-designs by short random

quantum circuits using nearest-neighbor and long-range gates. arXiv:1809.06957

(2018)

21. Movassagh, R. Efficient unitary paths and quantum computational supremacy: a

proof of average-case hardness of Random Circuit Sampling. arXiv:1810.04681

(2018).

22. Kalai, G. & Kindler, G. Gaussian noise sensitivity and boson sampling.

arXiv:1409.3093 (2014).

23. Arkhipov, A. Boson sampling is robust to small errors in the network matrix. Phys.

Rev. A 92, 62326 (2014).

24. Rahimi-keshari, S. & Ralph, T. C. Sufficient conditions for efficient classical simu-

lation of quantum optics. Phys. Rev. X 6, 1 (2016).

25. Yung, M. -H. & Gao, X. Can chaotic quantum circuits maintain quantum supre-

macy under noise? arXiv:1706.08913 (2017).

26. Boixo, S., Smelyanskiy, V. N. & Neven, H. Fourier analysis of sampling from noisy

chaotic quantum circuits. arXiv:1708.01875 (2017).

27. Gao, X. & Duan, L. Efficient classical simulation of noisy quantum computation.

arXiv:1810.03176 (2018).

28. Markov, I. L., Fatima, A., Isakov, S. V. & Boixo, S. Quantum supremacy is both closer

and farther than it appears arXiv:1807.10749 (2018).

29. De Raedt, K. et al. Massively parallel quantum computer simulator. Comput. Phys.

Commun. 176, 121 (2007).

30. Smelyanskiy, M., Sawaya, N. P. D., & Aspuru-Guzik, A. qHiPSTER: the quantum high

performance software testing environment. arXiv:1601.07195 (2016).

Fig. 11 (a)-(b) Pearson’s coefficient as a function of Hamming
distance for pairs generated at random on subsystem C of sub-
lattice Bristlecone-24, for samples of size 1000 of random strings on
subsystem A+ B. All pairs between strings of a set of 32 random
strings on subsystem C are considered. The average and SD (error
bars) for each Hamming distance is plotted with a solid line. We can
see that, for depth (1+ 24+ 1) (a), the system has not thermalized
and the correlation decreases with Hamming distance; for depth
(1+ 32+ 1) (b), correlations approach zero and become Hamming
distance independent (on subsystem C). (c) we compare the
distribution of Pearson’s coefficients, obtained as described above,
to the distribution of Pearson’s coefficients obtained (numerically)
from probability amplitudes with the same sample size as in the
simulations above, drawn from a Porter–Thomas distribution. At
large-enough depth, the system is expected to thermalize and the
two distributions match, meaning that the probability amplitudes
obtained by varying bit-strings only on subsystem C are
uncorrelated

B. Villalonga et al.

15

Published in partnership with The University of New South Wales npj Quantum Information (2019)    86 

https://data.nas.nasa.gov/quail/data.php?dir=/quaildata/quantum/qcSim
https://data.nas.nasa.gov/quail/data.php?dir=/quaildata/quantum/qcSim


31. Häner, T. & Steiger, D. S. Petabyte simulation of a 45-qubit quantum circuit. In

Proc. International Conference for High Performance Computing, Networking, Sto-

rage and Analysis, 33 (ACM, 2017).

32. Pednault, E., et al, Breaking the 49-qubit barrier in the simulation of quantum

circuits. arXiv:1710.05867 (2017).

33. De Raedt, H., et al. Massively parallel quantum computer simulator, eleven years

later. Computer Physics Communications 237, 47 (2019).

34. Li, R., Wu, B., Ying, M., Sun, X. & Yang, G. Quantum supremacy circuit simulation

on sunway TaihuLight. arXiv:1804.04797 (2018).

35. Bravyi, S. & Gosset, D. Improved classical simulation of quantum circuits domi-

nated by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016).

36. Markov, I. L. & Shi, Y. Simulating quantum computation by contracting tensor

networks. SIAM J. Comput. 38, 963 (2008).

37. Boixo, S., Isakov, S. V., Smelyanskiy, V. N. & Neven, H. Simulation of low-depth

quantum circuits as complex undirected graphical models. arXiv:1712.05384

(2017).

38. Chen, Z. Y. et al. 64-Qubit quantum circuit simulation. Sci. Bull. 63, 964 (2018a).

39. Chen, J., Zhang, F., Huang, C., Newman, M. & Shi, Y. Classical simulation of

intermediate-size quantum circuits. arXiv:1805.01450 (2018).

40. Chen, M.-C., et al. Quantum teleportation-inspired algorithm for sampling large

random quantum circuits. arXiv:1901.05003 (2019).

41. Guo, C., et al. General-purpose quantum circuit simulator with Projected

Entangled-Pair States and the quantum supremacy frontier. arXiv:1905.08394

(2019).

42. Gogate, V. & Dechter, R. A complete anytime algorithm for treewidth. In Proc.

CUAI, 201–208 (2004).

43. Jones, T., Brown, A., Bush, I. & Benjamin, S. QuEST and high performance simu-

lation of quantum computers. Scientific Reports 9 (2019).

44. Boixo, S. Random quantum circuits for circuit sampling with superconducting

qubits https://github.com/sboixo/GRCS.

45. Lokhmotov, A. & Mycroft, A. Brief announcement: optimal bit-reversal using

vector permutations. In Proc. 19th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA’ 07) 198–199 (2007).

46. Weng, T. H., Huang, S. W., Perng, R. K., Hsu, C. H. & Li, K. C. A practical openMP

implementation of bit-reversal for Fast Fourier Transform. In Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications Engi-

neering, Vol. 18 LNICST, 206–216 (Springer, 2009).

47. Knittel, G. QTIB: quick bit-reversed permutations on CPUs. In Proc. 17th DSP 2011

International Conference on Digital Signal Processing 1–6 (2011).

48. Emerson, J., Alicki, R. & Zyczkowski, K. Scalable noise estimation with random

unitary operators. J. Opt. B 7, S347 (2005).

49. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77,

012307 (2008).

50. Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized

benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

51. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards

practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

52. Barends, R. et al. Superconducting quantum circuits at the surface code threshold

for fault tolerance. Nature 508, 500 (2014).

53. Barends, R. et al. Digital quantum simulation of fermionic models with a super-

conducting circuit. Nat. Commun. 6, 7654 (2015).

ACKNOWLEDGEMENTS

We thank Edward Farhi, Bryan A. O’Gorman, Alan Ho, Sergei V. Isakov, Norman M.

Tubman, and Dmitry Lyakh for enlightening discussions and Igor L. Markov for

reviewing the manuscript. We also thank Orion Martin, Alan Kao, and David Yonge-

Mallo for helping open source qFlex code. We thank the authors of ref. 39 for sharing

the instances used in that work. We are grateful for support from NASA Ames

Research Center, from the NASA Advanced Exploration Systems (AES) program, and

the NASA Transformative Aeronautics Concepts Program (TACP). We also appreciate

support from the AFRL Information Directorate under grant number

F4HBKC4162G001. We acknowledge support of the NASA Advanced Division for

providing access to the NASA HPC systems, Pleiades and Electra, during dedicated

downtime. The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for governmental

purpose notwithstanding any copyright annotation thereon.

AUTHOR CONTRIBUTIONS

B.V., S.B. and S.M. designed qFlex and the study. B.V., S.B. and S.M. devised new

improvements for approximated sampling. B.V. wrote the original qFlex code and B.

V., B.N. and C.H. further optimized it. B.V., B.N. and C.H. ran simulations on NASA

Pleiades and Electra. B.V., S.B., E.R., R.B. and S.M. performed the analysis of data. All

the authors contributed to the discussions and wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41534-019-0196-1.

Correspondence and requests for materials should be addressed to S.M.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign

copyright protection may apply 2019

B. Villalonga et al.

16

npj Quantum Information (2019)    86 Published in partnership with The University of New South Wales

https://github.com/sboixo/GRCS
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware
	Introduction
	Results
	Discussion
	Methods
	Revised set of RQCs
	Overview of the simulator
	Contraction of the 3D tensor network
	Cutting indexes and the contraction of the 2D tensor network
	Implementation of the simulator
	Matrix multiplications with Intel&#x000AE; MKL
	Cache-efficient index permutations

	Fast sampling of bit-strings from low-fidelity RQCs
	Simulating low-fidelity RQCs
	Summing a fraction of the paths
	Fraction of perfect fidelity amplitudes
	Fast sampling technique
	Sampling from a non-fully thermalized Porter&#x02013;nobreakThomas distribution

	Simulation of Bristlecone compared with rectangular grids

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


