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Abstract—User privacy on the Internet has been an in-
creasing concern in recent years. With the proliferation
and sophistication of information services, data mining, and
search engines, a simple network address may be used to
reveal a great deal of information about a user, including lo-
cation, identity, and behavior. Existing approaches to privacy,
however, make unacceptable tradeoffs between performance
and anonymity. For example, Tor [5] attempts to provide
strong anonymity by withholding trust from third-party
relays. We believe an acceptable level of privacy can be
provided to most users, with noticeably lower latency and
throughput impact, by working with the network provider.

In this paper, we introduce AnonyFlow, an in-network
anonymization service designed to efficiently and seamlessly
provide privacy to users as they communicate with other
endpoints and services. We design, implement, and evaluate
an OpenFlow-based prototype of AnonyFlow that achieves
endpoint anonymity without compromising on throughput
or latency.

I. INTRODUCTION

As data mining, geolocation services, targeted ad-
vertising, and data brokers become more pervasive, it
is possible to learn a large amount from information
flowing through the network, in particular network
addresses stamped on each packet. This coupled with
considerable increase in privacy and security breaches
have sparked renewed interest in services and tools
that provide user anonymity. However, as will become
clear in Section III, current anonymization approaches
typically incur prohibitive performance penalties.

We argue that the bigger threat to privacy for
everyday Internet users is unscrupulous or overzealous
endpoints and Web services, and not network infras-
tructure providers, who are typically restricted from
disclosing data. In fact, our claim is that infrastructure
providers would be quite willing to protect their users
against any potential attacks and/or threats as they may
be held accountable and liable for security breaches,
such as identity theft and other intrusions of user
privacy.

While there have been some previous attempts
to enlist providers to offer privacy services [19],
they required the deployment of specialized gateways
and faced challenges arising from having multiple

ingress/egress points in the network. Furthermore the
previous approach forces temporary outages on long-
lived flows because they are unable to keep track of
per-flow state at the gateways beyond a fixed time
period when keys rotate. Approaching this issue from
a software-defined network viewpoint, the deployment
is simplified and many of the problems facing earlier
distributed solutions are solved by maintaining a cen-
tralized view.

In this paper, we address the issue of network
privacy with this viewpoint in mind. We introduce
AnonyFlow, an in-network anonymization service de-
signed to efficiently and seamlessly provide privacy
to users as they communicate with other endpoints
and services. As an anonymization tool, AnonyFlow
can also be used as a building block for a variety
of services, such as PO Box [18], anonymization of
network traces [17], as well as a way to provide
separation between location and identification [13].

There exists several approaches to privacy as de-
scribed in §III. Popular privacy-preserving tools, how-
ever, offer unacceptable delays. Figure 1 presents the
results from our preliminary experiment involving the
access of Wikipedia from a laptop in our Los Altos
lab. In this figure, “proxy” represents the average
of the page access delay seen with popular web
proxy tools that offer anonymization1. This increase in
latency motivated us to pursue other network-enabled
approaches.

By enlisting cooperation from infrastructure
providers and thus adopting an “in-network”
approach to anonymization, we are able to provide
endpoint privacy in a seamless, user-transparent
way. Unlike approaches such as Onion Routing [8],
AnonyFlow incurs negligible overhead; for example,
as shown by our performance evaluation experiments
in Section V, AnonyFlow’s impact on user-perceived

1Each delay measurement is in itself an average over 10 runs per
method. The Tor experiment used a 3-relay path in each run. The
proxies used were viz., anonymouse, zend2, proxify, hidemyass, kproxy,
browser9. “BASE” refers to the non-anonymized web download.
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Fig. 1. Webpage load time using common privacy tools.

latency is close to zero. Additionally, AnonyFlow
requires no changes to endpoints which facilitates its
deployment considerably. Unlike Network Address
Translation (NAT) based tools, AnonyFlow is able
to provide intra-domain anonymity, as well as
dynamic, on-demand addresses. This ability to
provide disposable, flow-based identifiers prevents
malicious endpoints from tracking behavior and
launching attacks on users.

To evaluate AnonyFlow’s functionality and per-
formance in managed networks, we implemented a
simple prototype using the OpenFlow platform [12].
OpenFlow enables execution of network-level services
through a controller, which dictates the behavior and
actions of switches under it’s jurisdiction. This en-
ables the implementation of in-network, on-the-fly,
packet morphing actions. Our simple evaluation over
the hardware-based testbed showed that AnonyFlow
provides higher flexibility in IP anonymization with
no impact on the end-to-end latency and a minor de-
terioration in TCP throughput in wide-area networks.
By design, AnonyFlow places a degree of trust in
the network infrastructure provider who operates the
OpenFlow controller. As discussed above, network
infrastructure providers have all the incentives to
provide anonymity to its users in a transparent fashion,
with minimal impact on performance.

II. DESIGN GOALS

Before describing our design goals, we briefly
overview the threat model we employ.

Threat Model

Unlike systems that wish to offer full anonymity,
we place a measure of trust in the managed network
provider and the network privacy service. In our work,
the main “adversary” is the other endpoint. To a

lesser extent, we also hide information from third-
party switches outside the managed network when
traffic crosses the Internet.

In the network today, an intrusive endpoint may
attempt to track user behavior based on the IP address
of the connection. By correlating network logs with
user actions, the “anonymity” that many users believe
is implicit on the Internet is destroyed as usage
patterns such as when the user connects, how often, to
what services, etc. can be extracted. Furthermore, the
proliferation of services such as WHOIS and IP ge-
olocation allows third-party providers to learn a great
deal about the location and possibly the real identity
of the user. Besides passively monitoring user activity,
active attacks may take place based on the information
gleaned from IP address, where user experience may
be altered or user access may even be blocked. While
it is possible that user profiling may be used for a
benign purpose, they can also lead to censorship or
gross violations of user privacy. Our privacy service
attempts to decouple network identifiers from location
and identity in order to provide users with truly free
and universal Internet experience.

Goals

AnonyFlow is designed to protect users primarily
from endpoint logging, while minimizing its impact
on performance.

Below, we list our main design goals:
• Endpoint privacy – the other endpoints should not

be able to track source behavior or location.
• Minimal performance impact – no additional per-

ceived latency on web traffic.
• Network-based design – should require no change

to the endpoints.
• Straightforward deployment – the service should

be easily deployed and managed, with a minimal
amount of specialized network hardware.

We should also point out that AnonyFlow does not
try to address the following issues:

• Data security – we allow applications to enforce
their desired level of protection from eavesdrop-
ping and tampering by leaving the data encryption
to the application layer. Likewise, we leave it to
our users to select applications that are privacy-
aware and will not leak identity information to
the other endpoint.

• Steganography – we do not attempt to achieve un-
observability nor hide the existence of messages
within other data, such as digital media [4], [11].
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• Complete anonymity – as previously highlighted,
we assume that network providers are trusted en-
tities and require their cooperation in concealing
end-user identity.

III. RELATED WORK

Simple anonymizing proxies [3] provide endpoint
privacy but require trust in the proxy. Additionally,
there is an overhead cost of working at a higher layer
or through tunneling, as well as the delay of routing
traffic through the proxy rather than following the
most efficient route to the destination.

Traditional network address translation (NAT) also
provides a certain degree of privacy, but the public
IP address can still typically be traced back to a
single household, organization, or ISP. Additionally,
it provides no privacy benefit to intranetwork com-
munication behind the NAT box.

Virtual Private Networks are another popular solu-
tion used to hide network identity from the opposite
endpoint. While widely supported and deployed, it has
similar drawbacks as an anonymizing proxy - the user
must trust in the VPN service provider and traffic must
flow through the provider network, which may not be
the most efficient route to the destination.

Stronger overlay-based anonymity approaches in-
clude Onion routing [8], e.g., Tor [5], Web mixes, e.g.,
JAP [2], and Tarzan [7]. While they are still considered
“low-latency” connection-oriented approaches com-
pared to slower message-based anonymity systems
[20], they still exhibit non-trivial overhead and no-
ticeable delay (as observed in Figure 1. In particular,
a recent usability study [6] of Tor found that DNS
requests were 40 times slower than direct connections.
The expected Web user cancellation rate was 6 times
greater, indicating high degree of user dissatisfaction.
Although these anonymity solutions still have their
applications, we argue that lower-latency anonymity
approaches, such as AnonyFlow, fill an important role
both as stand-alone services as well as building blocks
for applications that require endpoint anonymity.

The BLIND framework [22] provides location pri-
vacy in IP networks through the use of public key
endpoint identifiers and NAT-based forwarding agents.

There are several approaches that use the idea of
a location-independent identifier, including Mobile IP
[18], the Host Identity Protocol [15], and the Locator
Identifier Separation Protocol (LISP) [13]. Like LISP,
we integrate a network-based location/identity split
into our design.

[14] proposed an approach that assigned tempo-
rary, random, IP and MAC addresses to users requir-
ing anonymity on the Internet. Similarly in wireless
LANs, [9] presented a mechanism to enhance loca-
tion privacy through the use of disposable interface
identifiers. We expand on these ideas in our system
to provide clients with temporary identifiers that are
linked to specific flows.

Just as traditional telephone companies are able to
provide “caller-ID blocking” as an additional service
to their customers, ISP’s should be able to offer a
service that automatically hides the IPs of their users
without modification at the client-side. The Address
Hiding Protocol (AHP) [19] attempts to do this with a
mechanism similar to CPP [21], a system that encrypts
IPv6 address to provide location privacy. AHP re-
quires specially designed gateways that use time-based
keys to keep in sync, but can cause collisions in cases
of long-lived flows, and requires a somewhat involved
design for handling multiple ingress/egress points. We
agree with the high-level goals of AHP, and hope to
show how they can be more easily implemented and
deployed in a software-defined networking environ-
ment.

IV. AnonyFlow ARCHITECTURE AND OPERATION

AnonyFlow is designed to provide endpoint privacy
by concealing the source identifier from the other
side of the connection. Additionally, the in-network
approach allows a level of accountability that can be
used to revoke access to malicious users.

Identifiers

Before presenting AnonyFlow’s architectural
components, we describe the different identifiers
AnonyFlow employs to represent users. Note that our
work is equally applicable if we operate at Layer 2.

• Machine IP address – the address assigned to
the machine, and what would normally be seen
by the other endpoint if AnonyFlow is disabled.
When using AnonyFlow, it is rewritten as soon as
possible to another form, and only changed back
when deliverying messages back to the machine.

• AnonID – the identifier that the other endpoint
receives as it provides no information of the
location or identity of the machine. They may
be used on a temporary basis and discarded at
the end of a flow; alternatively, it can be used
as a more permanent identifier for a service that
wishes to remain anonymous.

6755



• Network IP address – this address is routable
back to the managed network of the machine,
and is necessary for traversing the Internet. It
is associated with a given AnonID and can be
changed on demand.

Components

Each managed network participating in the
AnonyFlow service can be thought of as a local do-
main. The AnonyFlow service itself consists of a local
and global component. At the border of each local
domain, AnonIDs must be translated to an identifier
(e.g., IP address) that would allow flows to traverse
intermediate routers.

• AnonyFlow conduit – rewrites IP addresses
to/from AnonIDs, and forwards resulting pack-
ets towards destination. Consults with the local
AnonyFlow service.

• Local AnonyFlow service – handles user
join/leave and local mappings, and communicates
with global service.

• Global AnonyFlow service – handles network
lookup for AnonIDs outside local managed net-
work.

Example Operation

Entity AnonID Network IP Machine IP
A 1 11.11.X.X 11.11.0.1
B 2 11.11.X.X 11.11.0.2
C - 12.12.0.1 12.12.0.1
D 3 13.13.X.X 13.13.0.1

Fig. 2. Example of AnonyFlow’s Operation.

We use the scenario depicted in Figure 2 to illustrate
AnonyFlow’s operation and examine the series of
events that occur when host A opens a connection to
the hidden service on host B. First, A sends a packet
with source ‘11.11.0.1’ and destination ‘2’ that will
pass through the AnonyFlow conduit on network N1.
The conduit will consult with the AnonyFlow’s local
service of N1 for the first packet of the flow. The
local service determines that both the source address
is associated with AnonID ‘1’, and that the destination
AnonID ‘2’ is within the same network. The conduit
will then rewrite the source address to ‘1’ and the

Entity AnonID Network IP Machine IP
B X
C X
D X
N1 Service X X X
N2 Service X X
Global Service X X

TABLE I
IDENTIFIERS OF HOST A AS OBSERVED BY OTHER AGENTS.

destination to ‘11.11.0.2’ and set up rules to forward
the flow to the destination.

If the destination AnonID is in another network,
for instance, when host A communicates with host
D, there are a few more steps. The local service
must do a global lookup of the destination AnonID
to determine an address routable to the destination
network. It must also assign a routable address to the
source, in a manner similar to NAT. Finally, when the
flow arrives at a conduit in the destination network, it
will rewrite the source address to AnonID ‘1’ and the
destination to the machine address of D.

In the final case of the destination being outside
the AnonyFlow namespace, such as when host A
communicates with host C, our system resembles a
more flexible yet traditional NAT service. The conduit
rewrites the source address with an address routable
to the source network so that the destination is able to
trace the message directly back to the source network.

In Table I, we summarize the identifiers of host A
that each network entity is able to observe when host
A communicates with host B, C, and D.

OpenFlow Platform

Although there are a number of ways to enable
AnonyFlow in a managed network, we use the Open-
Flow platform in our reference implementation. Open-
Flow provides the means for rapid deployment and
execution of network services by enabling a remote
controller to modify the behavior of switches and
routers. By providing direct access to the switch
flow table, OpenFlow API allows services to achieve
custom routing and packet processing.

In our OpenFlow implementation, each local
AnonyFlow domain consists of a network managed
by a single OpenFlow controller. AnonyFlow conduits
correspond to OpenFlow-enabled switches, while the
local AnonyFlow service is integrated with the Open-
Flow controller. AnonyFlow’s global service exists
outside of the OpenFlow infrastructure as a directory
service.
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Fig. 3. Lab network used to emulate a wide-area OpenFlow-enabled
network. The NetFPGA-based OpenFlow switches at the edge take care
of the required header rewriting actions.

V. PERFORMANCE

To evaluate the performance of AnonyFlow’s
OpenFlow-based implementation, we deploy it in a
real network testbed with OpenFlow switches. We
focus on IP identifier anonymization and compare
the performance of AnonyFlow with other related
approaches.

The testbed, as shown in Figure 3,has two logical
sub-networks interconnected by a Linux bridge. Each
subnetwork consists of two commercial OpenFlow-
enabled switches and two NetFPGA [16]-based Open-
Flow switches, all of which are controlled by a remote
NOX [10]-based AnonyFlow controller. This testbed
provides header rewriting capability at line-rate in the
NetFPGA-based edge switches.

In Figure 1 we presented the latency char-
acterization of common privacy-preserving tools.
AnonyFlow’s performance is almost the same as the
base case because the anonymization is done by an
en-route switch. This happens at line speed and does
not incur additional delays.

In Figure 4 we present the TCP throughput char-
acterization performed over the above mentioned
testbed. In this characerization, we ran iperf [1]
between the two hosts (Host 1 and 2 in Figure 3)
multiple times, with each run lasting 25 seconds. The
mean, min and max values are shown in the two
figures; the mean is denoted by a ’x’ marker, and
the vertical line around the mean value represents the
min to max range. We observe that AnonyFlow does
not experience a throughput deterioration, while Tor
achieves throughput that is a few orders of magnitude
lower than the direct route. This is because Tor
selects additional Internet relay hops without regard
to routing performance.
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Fig. 4. TCP Throughput (iperf) between the 2 hosts in our testbed.

VI. DISCUSSION

A. Attacks and Defenses

In this section, we examine possible attacks on
AnonyFlow users and on AnonyFlow itself. As spec-
ified in our design goals, our system is designed
to protect against a single adversary and not more
exhaustive global attacks.

a) Passive attacks:
• Network address tracking – a static IP address

allows users to be tracked, and may also leak in-
formation about identity and location. AnonyFlow
uses disposable, flow-based identifiers when talk-
ing to endpoints within domains; otherwise, tem-
porary IP addresses are assigned when commu-
nicating with traditional Web servers.

• Timing correlation – unlike high-latency
anonymity systems that introduce delays to
alter timing characteristics, AnonyFlow seeks
to minimize performance impact; consequently,
it does not hide information learned by the
observation of packet inter-arrival times.

• Content analysis – packet payloads may contain
identifying information. We leave it to the user
to select applications that provide data privacy.
b) Active attacks:

• Direct attacks on AnonIDs – the use of temporary,
flow-based identifiers offers a level of protection
and indirection to endpoints as it is not possible to
communicate with an identifier after it has been
released or expired. This prevents attacks such as
port scanning or denial of service.

• Denial of service on service – an adversary may
attempt to overwhelm AnonyFlow’s mapping ser-
vice with false requests. This may be dealt with,
on-the-fly, by pushing rules that dump excessive
flows from offenders at the conduits.
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• Router subversion – if an intermediate router is
compromised by the adversary, they may learn
information about the hidden endpoint. In the
worst case, the protection offered degenerates to a
simple network address translation (NAT) service.
To protect against subversion within domains, we
require authentication and use encrypted com-
munication between conduits and the privacy
service.

• Man-in-the-middle – we leave it to the user to
select applications that offer data privacy and
integrity.

• Governmental authority – endpoint privacy is
provided by the network infrastructure rather than
the endpoints; therefore, it is subject to control
by authoritative entities. This provides a level of
accountability, and is well suited to protecting the
identity of legitimate users, but means the service
is ill-advised for abusive criminals or users living
under oppressive regimes.

B. Future work

In summary, AnonyFlow offers a lightweight end-
point anonymity service with minimal performance
impact. Directions for future work include:

• Scalability – currently, AnonyFlow’s global map-
ping service that maps AnonIDs to networks
is implemented using a centralized architecture.
As the number of users and domains grow, a
distributed service would reduce possible bottle-
necks.

• Increased access to hidden services – currently,
only users from within AnonyFlow domains are
able to access hidden services offered by other
AnonyFlow users.

• Placement – it suffices to place OpenFlow
switches with header rewriting capability in only
a few strategic locations of the network. We plan
to further investigate this option, which allows
incremental deployment.

Features NAT Proxy Tor AnonyFlow
Hide source from destination X X X X
Hide source from relays X
Change identifier on-demand X X
L2 or Intra-domain privacy X X
Enable hidden services X X
Optimal routing X X

TABLE II
FEATURE COMPARISION OF ANONYMIZATION TECHNIQUES.

VII. CONCLUDING REMARKS

In this work we presented AnonyFlow, an in-
network endpoint anonymization service designed to
provide privacy to users. Through experiments on
a real network testbed, we show that our proof-
of-concept OpenFlow-based prototype of AnonyFlow
delivers similar performance when compared to non-
anonymized network access, while providing more
features than the other schemes (Table II).
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