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A Flexible Machine Learning-Aware Architecture
for Future WLANs
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Abstract—Lots of hopes have been placed in Machine Learning
(ML) as a key enabler of future wireless networks. By taking
advantage of the large volumes of data generated by networks,
ML is expected to deal with the ever-increasing complexity of
networking problems. Unfortunately, current networking systems
are not yet prepared for supporting the ensuing requirements of
ML-based applications, especially for enabling procedures related
to data collection, processing, and output distribution. This article
points out the architectural requirements that are needed to
pervasively include ML as part of future wireless networks
operation. To this aim, we propose to adopt the International
Telecommunications Union (ITU) unified architecture for 5G
and beyond. Specifically, we look into Wireless Local Area
Networks (WLANs), which, due to their nature, can be found
in multiple forms, ranging from cloud-based to edge-computing-
like deployments. Based on the ITU’s architecture, we provide
insights on the main requirements and the major challenges of
introducing ML to the multiple modalities of WLANs.

Index Terms—Machine Learning, Future Networks, Wireless
Local Area Networks, Architecture, ITU

I. INTRODUCTION

Wireless communications have reached a point where a
paradigm shift is required for satisfying the increasing needs
of next-generation applications [1]. Based on the current trend,
Artificial Intelligence (AI), and more precisely Machine Learn-
ing (ML), are expected to conduct a revolution, especially
regarding the network planning, operation, and management
of the fifth and sixth generation (5G/6G) of mobile commu-
nications.

ML is meant to empower a computational system for
learning automatically, based on experience, so that future
situations can be properly managed without having been
programmed explicitly. Concerning wireless communications,
there is a huge amount of unexploited data generated at both
infrastructure and user levels, which could be extremely useful
to ML mechanisms for learning complex patterns. Accord-
ing to the information extracted by these methods, network
performance can be improved. For instance, the behavior of
users in a given network-oriented service can be predicted
through ML, based on the information from previous sessions.
This information would enable to better accommodate network
resources in future sessions, thus leading to an optimized
solution.

Unfortunately, the potential benefits of ML solutions for real
networks are currently limited by the existing infrastructure,
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which is not yet prepared to accommodate ML-oriented tasks
such as data collection, processing, and output distribution.
Instead, current networking systems are typically meant for
delivering content, without taking into account the underlying
characteristics of the processes that generate it.

The first steps towards AI-enabled networking are currently
being made in 5G through network function virtualization
(NFV). Unlike traditional hardware-based networks, NFV al-
lows rapid elasticity and fast reconfiguration on assigning net-
work resources, which is particularly useful to enable verticals
such as autonomous driving in the automotive sector or smart
manufacturing in Industry 4.0. Besides, network virtualization
is useful to boost inter-operator coordination, which would
bring the ML operation to a macro-scale level, thus counting
with vast information and computation resources.

To conduct the evolution towards ML-aware networks,
standardization is key to reach consensus between operators
and manufacturers. In this regard, we find many initiatives held
by standardization organizations, from which we highlight
the Focus Group on Machine Learning for Future Networks
including 5G (FG-ML5G), which belongs to the International
Telecommunication Union Telecommunication Standardiza-
tion Sector (ITU-T). The FG-ML5G aims to enable the con-
vergence of future communications with ML technologies. To
that end, the focus group has released a specification on a
Unified architecture for 5G and beyond, which has recently
been turned into an ITU Recommendation [2]. The ITU’s
standardized architecture provides a common nomenclature
for ML-related mechanisms so that interoperability with other
networking systems is achieved.

Apart from the ITU-T initiatives, other important standard-
ization bodies such as the 3rd Generation Partnership Project
(3GPP) or the European Telecommunications Standards Insti-
tute (ETSI) are currently working on the integration of data
analytics to network functions. The 3GPP contemplates AI as
one of the priority topics for shaping its upcoming release
(Release 17), and architectural requirements are currently
under study [3]. Furthermore, we highlight the ETSI groups
on Experiential Networked Intelligence (ENI) and Zero touch
network and Service Management (ZSM), which actively
study the integration of AI to networks [4]. Unlike the ITU’s
unified architecture, most of the work held by the 3GPP
and the ETSI focuses on centralized data collection and data
analytics solutions. Nevertheless, we understand that the works
in [2], [3], [4] are complementary to each other.

To contribute to the evolution of wireless communications
towards AI-based systems, we provide a realization of an
ML-aware architecture for IEEE 802.11 Wireless Local Area
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TABLE I
MACHINE LEARNING METHODS, ALGORITHMS, POTENTIAL NETWORKING APPLICATIONS, AND EXAMPLES OF INPUT DATA.

ML method Algorithms Potential applications Examples of input data
Supervised
Learning

Linear classifiers, Regression methods (e.g.,
ARIMA), Neural Networks, Hidden Markov
Models, Random Forest, Support Vector Ma-
chines, k-Nearest Neighbors, Principal Com-
ponent Analysis

Traffic forecasting, mobility pattern
prediction, flow classification, routing,
anomaly detection, spectrum manage-
ment, failure detection, QoE prediction

IP traffic matrices, temporal user loca-
tion, availability of routing paths, ap-
plication data, channel measurements,
performance metrics

Unsupervised
Learning

Clustering, Mixture models, Generative
models, Non-Negative Matrix Factorization,
Evolutionary algorithms

Traffic classification, virtual topology
design, path computation, intruder de-
tection, signal separation

IP traffic matrices, historical end-to-end
bit-rate, received symbols

Reinforcement
Learning

Monte Carlo, Q-learning, SARSA, Deep Q
Network, Actor-critic, Multi-Armed Bandits,
Learning automaton

Power control, rate adaptation, rout-
ing, channel selection, spatial reuse,
smart caching, traffic offloading, cogni-
tive channel access, energy harvesting

Channel measurements, link status, per-
formance metrics (e.g., throughput, de-
lay)

Networks (WLANs), which will be an essential part of the
5G/6G ecosystem in the unlicensed bands. Unlike for cellular
networks, WLANs have received much less attention when
designing AI-aware architectural solutions. The fact is that
cellular-based deployments fit in perfectly with big data ana-
lytics, due to the vast amount of data and high computation
resources available for mobile network operators (MNOs). In
contrast, WLANs pose a set of specific challenges resulting
from their multiple deployment modes (e.g., campus net-
work, residential usage) and their typical decentralized nature.
Despite WLANs can count with plenty of data to be used
by ML methods in large and planned deployments, we find
other decentralized scenarios that lack powerful centralized
equipment. In the latter cases, huge computing and processing
operations cannot be endowed to the ML operation.

In particular, we adopt the module-based ITU’s architecture,
which is flexible in terms of deployment heterogeneity and
provides adaptability to the problem instance and the set of
available resources. This is an important requirement for the
integration of different ML-based approaches into the different
modalities of WLANs. For instance, despite deep learning is
a powerful solution, it entails a set of computation, storage
and communication requirements that may not be fulfilled in
certain deployments or parts of the network.

II. MACHINE LEARNING AS ENABLER OF FUTURE
WIRELESS NETWORKS

In this section, we discuss the role of ML for sustaining the
progress of future wireless networks. Then, we motivate the
application of ML to IEEE 802.11 WLANs through a set of
illustrative ML-driven use cases.

A. Machine Learning in Communications

The proliferation of new communication-based applications
is defining the shape of future networks through a set of strict
requirements [5]. Some examples are Vehicle to Everything
(V2X), Industry 4.0, and Virtual Reality / Augmented Reality
(VR/AR). Those applications are really challenging in terms
of bandwidth, latency, reliability, and scalability. In this regard,
the main pillars to be fulfilled by next-generation wireless
networks are:

1) Provide a very high data rate (10-20 Gbps).

2) Support a massive amount of connected devices
(1,000,000 devices/km2).

3) Dramatically reduce the latency (< 5 ms) whilst main-
taining a low packet error rate (1 packet lost for every
105 packets sent).

In 5G, the previous concepts are referred to as enhanced mo-
bile broadband (eMBB), massive machine to machine (M2M)
and Internet of Things (IoT) communication (mMTC), and
ultra-reliable and low latency communication (uRLLC), re-
spectively. Similarly, IEEE 802.11 groups are also considering
those aspects in the design of next-generation amendments,
such as high efficiency (HE) IEEE 802.11ax and extreme high
throughput (EHT) IEEE 802.11be.

In order to meet the abovementioned strict requirements,
not only a technological innovation is expected (e.g., use of
more spectrum or improve multiple-antennas technologies),
but a paradigm shift is necessary when designing solutions for
network planning, operation, and management. In particular,
intelligent wireless networks need to be empowered with
cognitive and context-aware capabilities, which may require
additional infrastructure such as environmental sensors and
cameras. To that end, ML is expected to be important during
the lifetime of 5G and will become pervasive - as included
from the beginning in their conception - in 6G networks.

The actual utility of ML lies in those problems that are
hard to solve by hand-programming due to their underlying
complex patterns (e.g., network traffic prediction). Formally,
a machine is said to learn if it improves the performance P
obtained from undertaking task T, based on the gathered expe-
rience E [6]. Different ML techniques have been categorized
in multiple ways, but the most common taxonomy differen-
tiates between Supervised Learning (labeled data is used for
training), Unsupervised Learning (no labels are used on input
data), and Reinforcement Learning (exploration-exploitation
trade-off with label/unlabeled data). Table I provides a list of
algorithms and potential networking applications for each type
of ML technique, as well as some examples of input data for
these methods. For further details, we address the interested
reader to [7], [8], [9], which survey a plethora of ML-based
applications for networking.

Apart from the specific ML solutions to problems in com-
munications, some efforts have been made towards enabling
AI-aware networking in more general terms. In this regard,
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several architectural proposals have been provided so far [10],
[11], [12]. Most of the referenced works agree in the necessary
steps for enabling big data analytics in cellular deployments,
which roughly are: (1) data collection, (2) data preparation,
(3) data analysis, and (4) decision making. Nevertheless, none
of these works provide architectural guidelines to introduce
ML to wireless networks. In contrast, the ITU’s architecture
looks deeper into the ML operation and targets the actual
procedures involving information gathering, processing, and
communication. In addition to the architectural guidelines,
the ITU-T has provided a data handling framework for ML-
aware networks [13], which defines processes concerning data
collection, processing, and output distribution.

B. Machine Learning-Enabled Use Cases in IEEE 802.11
WLANs

To showcase the potential of applying AI in IEEE 802.11
WLANs, we next describe a set of use cases where ML allows
improving the network operation and performance.

1) OFDMA-Based Smart Network Slicing: Network slicing
is one of the hottest topics in 5G because it allows separat-
ing network resources virtually to meet diverse application
requirements. In next-generation WLANs, network slicing
can be realized through the allocation of radio resources
via orthogonal frequency-division multiple access (OFDMA).
However, the heterogeneity of applications running in multi-
ple devices and their subsequent elasticity prevent to assign
frequency resources easily.

The application of ML can overcome the aforementioned
challenges by making predictions on the user requirements so
that the access network can be optimized. As an example,
Fig. 1 shows a scenario where multiple users have different
requirements, based on the applications they use. While the
central controller can make predictions on user behavior, the
local schedulers can consider information such as the user
profile, the current performance, and the environmental cir-
cumstances. In this regard, the Access Point (AP) can allocate
the most suitable OFDMA resources to each device, according
to its predicted needs and current status of the network.
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Fig. 1. OFDMA-based smart network slicing.

2) Cloud-Based User Association and Handover: Most of
the current user association and handover procedures held in
WLANs typically rely on strongest signal first (SSF) mecha-
nisms. This might be problematic in terms of load balancing,
thus potentially leading to severe performance degradation at
saturated APs. By introducing ML, it is possible to handle
contextual information such as the traffic load at the APs,
which can support decision-making. Furthermore, mobility
pattern prediction and predicted user requirements can be
included in the system, thus empowering the association and
handover mechanisms with insightful information.

3) Inference-Based Coordinated Scheduling: Contrary to
traditional cellular-type networks, WLAN deployments can be
chaotic, especially in residential scenarios where anyone can
set-up an AP and create a wireless network. This typically
leads to scenarios with complex interactions among differ-
ent Basic Service Sets (BSSs), which prevent the existing
scheduling approaches to ensuring proper quality of service
(QoS). Nevertheless, ML can be used to infer these interactions
and provide a solution accordingly. In particular, through
coordinated ML-assisted scheduling, different APs can trigger
uplink/downlink transmissions from/to the appropriate stations
(STAs), thus increasing the network throughput and reducing
the number of packet collisions.

4) Reinforcement Learning-Based Spatial Reuse: In con-
trast to centralized and cooperative ML approaches, local
optimization is required for independent WLANs. In this
regard, Spatial Reuse (SR) aims to improve channel utilization
by means of sensitivity adjustment mechanisms. However,
selecting the best sensitivity threshold is not trivial, given the
complex spatial interactions that occur among WLANs and the
high action space. With this purpose, RL can be introduced to
improve spectral efficiency in a decentralized manner, so that
each WLAN learns based on experience.

III. ITU UNIFIED ARCHITECURE FOR FUTURE NETWORKS

The FG-ML5G was created in November 2017 by its parent
group, the ITU-T Study Group 13, with the aim of studying
the integration of ML mechanisms into future networks. This
includes the definition of interfaces, protocols, data formats,
and architectures. During its lifetime, the FG-ML5G has
released several reports and contributions. Among them, we
highlight the ITU’s logical interoperable architecture for future
networks [2], which defines an ML overlay that operates on
the top of any unspecified underlay network technology (e.g.,
3GPP, EdgeX, IEEE 802.11). The ITU’s architecture aims to
fulfill a set of technology-agnostic high-level requirements by
the utilization of ML. For instance, the architecture must be
able to support multiple types of data, thus taking advantage
of heterogeneous data sources.

Figure 2 shows the elements that compose the ML overlay
(management subsystem, multi-level ML Pipeline, and closed-
loop subsystem), which are further described in the following
subsections. Based on this overlay, ML applications can be
instantiated in the logical entities (represented by white boxes),
which are managed in a standard manner.
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Fig. 2. ITU logical architecture for future networks [2].

A. Management Subsystem

The management subsystem is in charge of the deploy-
ment and the orchestration of the ML services so that they
can operate in the underlying network. To that purpose, the
Machine Learning Function Orchestrator (MLFO) entity is
defined. The MLFO is first instantiated by an intent, which
is a declarative mechanism that provides details on the ML
use case to be applied. The ML intent, therefore, defines the
methods and policies to be applied throughout the network
and instantiates the elements of the multi-level ML Pipeline
in the corresponding devices. In particular, the intent can use
a meta language to define the policies and constraints that
characterize the use case.

B. Multi-Level Machine Learning Pipeline

The multi-level ML Pipeline is formed by a set of logical
entities that perform the actual ML activity in a given network
underlay. The ML Pipeline is instantiated and managed by
the management subsystem and it is mainly in charge of the
data collection and pre-processing, ML model application, and
output distribution. The logical entities that compose the ML
Pipeline are as follows:

• Source (src): element that generates data to be used by
the ML mechanism.

• Collector (C): element responsible for collecting the data
generated by source nodes.

• Pre-processor (PP): element that prepares the data col-
lected by the collector for its utilization by the ML
mechanism.

• Model (M): ML model that is applied according to the
use case.

• Policy (P): provides a set of constraints and/or guidelines
that delimit the behavior of the model.

• Distributor (D): element that spreads the ML output
across all the corresponding targets (or sinks).

• Sink (sink): target of the ML output that is allocated by
the distributor.

C. Closed-loop Subsystem

In order to address network dynamics, the ML operation is
assisted by a closed-loop subsystem. In particular, a sandbox

environment can be used to reproduce (internal network)
or simulate (simulator/emulator) the effect of certain ML
optimization, so that additional information is provided to
the system beforehand. As for the ML Pipeline, the closed-
loop subsystem is orchestrated by the management subsystem.
Network simulators (e.g., ns-3, Komondor [14]) are examples
of closed-loop subsystems, which can serve two purposes:
i) generate synthetic data to be used for training, and ii)
conducting a simulation for devising the potential of a given
ML method to be applied afterward on the real network.

IV. MACHINE LEARNING-AWARE ARCHITECTURE FOR
IEEE 802.11 WLANS

IEEE 802.11 WLANs are versatile in the sense that many
different kinds of deployments can be realized. Roughly, we
differentiate between two main types:

• Enterprise: a set of WLANs can be jointly operated from
the edge and/or the cloud, thus providing management
and orchestration functionalities (e.g., centralized authen-
tication, channel allocation). Enterprise-like deployments
are realized through extended service sets (ESS) and can
be typically found in environments controlled by a single
network operator, such as university campuses, offices,
stadiums, etc.

• Residential: each WLAN is responsible for its own
management and operation. In the context of residential
scenarios (but not limited to), ad-hoc WLANs such
as personal hotspots are gaining popularity for infras-
tructureless communications (i.e., peer-to-peer). Ad-hoc
WLANs are realized through the independent basic ser-
vice set (IBSS).

Figure 3 illustrates the enterprise and residential-like de-
ployments, as well as a set of IEEE 802.11 mechanisms
(summarized in Table II) that can potentially enable the
utilization of ML in WLANs. These mechanisms can be used
for data collection, training, and output distribution. By taking
advantage of the current IEEE 802.11 mechanisms, ML can
be introduced to WLANs in a non-intrusive manner, thus
facilitating its immediate adoption.
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TABLE II
FEATURES SUPPORTED BY 802.11 AMENDMENTS THAT CAN ENABLE THE INTRODUCTION OF ML METHODS TO WLANS.

Feature Amendments Opportunities for ML application
Information gathering 802.11k/r/v A given ML mechanism can use information about the network topology or RF measurements

to infer the behavior of other devices or to extract important environmental characteristics.
Interoperability 802.11f/u Interoperability with other networks can be used to perform coordinated operations (e.g.,

scheduling, resource allocation). Besides, inter-AP communication procedures can enable
centralized/coordinated mechanisms (e.g., federated learning).

Security 802.11w ML mechanisms can use management frames that are protected so that a higher level of security
is granted.

Validation 802.11t Performance evaluation in WLANs through test metrics can be of great utility to define
optimization goals within the ML operation.

IEEE 802.11 Mechanisms
Report to the edge/cloud (802.11u)
Report to the AP (802.11v)
Inter-AP communication (802.11f/r/u)

Return configuration (802.11k/u/v)
Sense the environment (802.11k)
P2P communication (Wi-Fi direct)

Cloud
 server

ESS

BSS

AP

APSTA

STA

Enterprise

Residential

IBSS

Edge
 server

Fig. 3. Enterprise and residential-like deployments and complementary
mechanisms from IEEE 802.11 amendments to enable the utilization of ML.

A. Challenges in IEEE 802.11 WLANs

The application of ML methods in WLANs is tightly tied to
the technological challenges posed by these types of networks.
The major challenges encountered in wireless communications
stand for fast data expiry and lack of resources for data
handling (e.g., storage, computation, information exchange).
Regarding Wi-Fi networks, we find the following challenges:

1) Network dynamics: channel fluctuations (e.g., due to
multipath fading), users mobility and varying traffic
needs entail a big challenge to ML applications. As
a result of network dynamics, ML methods need to
constantly adapt to the environment, which may be
achieved through continuous re-training.

2) Limited communication resources: since Wi-Fi oper-
ates under unlicensed bands, resources are scarce and
shared. Thus, any potential communication required by
a certain ML mechanism (as for distributed learning)
may fail or be delayed if the medium is congested. As a
result, the ML operation must be robust and resilient
enough in order to react to potential communication
issues.

3) Limited computation and storage resources: com-
putation and storage resources may also be lim-

ited in WLANs, especially in residential-like deploy-
ments. Therefore, the ML operation should include
computation-efficient procedures. Another implication
of limited resources lies in the availability of information
to be used by ML algorithms, especially for online
learning methods.

4) Adversarial environment: in many cases, Wi-Fi de-
ployments are chaotic in the sense that many overlapping
WLANs coexist without any kind of cooperation (e.g.,
residential buildings). This is a particularly interesting
challenge for ML operation, which may lead to adver-
sarial settings where different agents compete for the
same resources. Moreover, multi-vendor devices may
implement different ML mechanisms that may lead to
clashing interests.

5) Legacy devices: in a similar way to the previous case,
ML-empowered WLANs may coexist with other legacy
networks that do not perform any intelligent operation.
It is then required for ML methods to be aware of those
legacy devices, so that unfairness situations are avoided.

Apart from the aforementioned WLAN-specific challenges,
other inter-domain issues should be considered. First, security
is required since ML mechanisms store and/or exchange
sensitive data that may be exposed. Besides, interoperability
should be tackled to allow the deployment of ML solutions to
different underlay networks. In this regard, the standardized
ITU ML Pipeline stands up as a promising solution.

B. Realization of the ML-Aware Architecture for IEEE 802.11
WLANs

The various types of WLAN deployments and their com-
putation and communication capabilities are closely linked to
the ML solutions that can be applied to them, which can be
categorized into cloud and edge-oriented.

Cloud-oriented ML applications are characterized by bear-
ing high computational and storage resources, thus allowing
to collect various types of data from multiple sources and to
provide global and long-term solutions. The major challenge
for cloud-oriented methods lies in the management of data,
which entails dealing with synchronization, availability, and
heterogeneity issues.

In edge-oriented mechanisms, the ML operation is mainly
ruled by edge devices (e.g., APs and/or STAs), which, contrary
to the cloud approach, typically lack powerful computation and
storage resources. In consequence, edge-oriented mechanisms
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may only allow using simple and light-weight computing
ML algorithms. Nevertheless, edge servers can be placed for
providing more powerful solutions in a timely manner. The
edge-oriented approach is useful for real-time ML applications
that manage local (and even highly-varying) information.

Besides cloud and edge-oriented settings, we may distin-
guish between methods based on cooperation or not, depend-
ing on the inter-entity communication degree. In cooperative
approaches, nodes interact among them for the sake of con-
ducting the learning operation in a joint manner (e.g., use a
shared reward). With this aim, reliable and timely connections
among learners are often required. In this regard, [15] showed
the role of communications on speeding up a distributed
training procedure over a set of nodes in a network. Alterna-
tively, for the non-cooperative case, the learning operation may
lead to adversarial settings, especially since WLANs share
resources such as frequency channels.

1) Example of the adoption of the architecture: By adopting
the ITU’s architecture, multiple entities in the ML Pipeline can
be activated at different locations of the network, according to
the selected learning approach. This expands the concept of
cloud and edge computing and leads to hybrid solutions.

To illustrate this (see Fig. 4), let us retake the AP
(re)association and handover example. We now consider a
hybrid solution whereby two main ML-oriented processes are
held: training (learn from data) and placement (apply the
learned knowledge). While the training procedure is carried
out at the cloud (collect data from multiple sources), the
placement operation is done at the edge (provide timely
responses to new cases). Notice that the placement phase can
also contribute to re-train the system in an online manner.

Training
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Sandbox

src DC sinkPP M P

src DC sinkPP M P

src DC sinkPP M P
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2 3

3

src DC sinkPP M P

1

4

1

2 3 4

1 2
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Station

Sandbox src DC sinkPP P
Simulated environment

M

Fig. 4. Realization of the ITU’s ML architecture for IEEE 802.11 WLANs
through a hybrid ML-based solution for AP (re)association and handover.

Specifically, the training procedure consists of the following
steps (shown by red bullets in Fig. 4):

1) Data collection: the edge server collects information
of different nature from either APs and STAs, which
can provide contextual data such as user information
(e.g., current location), performance (e.g., throughput,
delay), application data (e.g., traffic load), or channel
status reports (e.g., the power received from interfering
nodes). This information can be used either for training

or feeding auxiliary algorithms that help the main AP
association procedure (e.g., predict user behavior).

2) ML input preparation: the data collected at the cloud
is prepared by the pre-processor so that the ML method
can properly manage it. For instance, in case of applying
a multiple linear regression, the input user information
needs to be converted into normalized features (e.g.,
convert the throughput given in Mbps into a scalar
between 0 and 1).

3) ML method application: on applying the ML method,
policies are also taken into account for generating the
final output result. In this case, a given AP may have
specific constraints regarding its occupation or the max-
imum number of associated STAs. The policies are
strongly tied to the capabilities of the devices or the
existing regulations (e.g., frequency channels available
due to antenna capabilities, maximum regulated trans-
mission power).

4) Output distribution: once the ML method gener-
ates the output (i.e., the predicted function for new
(re)associations), it is distributed throughout the sink
edge servers, which are then prepared to give quick
response to new cases.

When it comes to placement phase, we find the following
operations (shown by green bullets in Fig. 4):

1) Handle new cases: new (re)association requests or po-
tential handovers are detected based on newly acquired
information from STAs. This information is collected by
the edge server.

2) Pre-processing: the acquired information is then pro-
cessed by the edge server, as for the training phase.

3) Run the ML solution: the ML method provided by
the cloud is applied locally at the edge server, which
provides an output for the new placement case.

4) Apply the ML solution: finally, the output solution
to new (re)association cases is distributed to the cor-
responding sinks.

Finally, it is worth pointing out the role of the sandbox
(e.g., a simulated environment), which can be mainly twofold
(shown by orange bullets in Fig. 4):

1) Generate data for training: the sandbox can act as a
source in the ML Pipeline by generating synthetic data
for training purposes. Nevertheless, the data provided
by the sandbox is limited to several factors such as
the accuracy of the simulation model or the degree of
similarity between the sandbox and the real network.

2) Preliminary model testing: alternatively, the sandbox
can be used to validate the output of the ML method
before being applied to the real network.

V. CONCLUDING REMARKS

In order to sustain progress in wireless networks, it is
needed to accommodate the operation of ML as an intrinsic
part of communications. Nevertheless, current networks are
not yet prepared for the pervasive adoption of ML-based oper-
ation. Hence, disruptive architectural changes are required. For
the sake of moving forward in this field, this article introduced
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the ITU’s unified architecture for future networks and provided
a realization for IEEE 802.11 WLANs. The different forms of
Wi-Fi networks allow uplifting the flexibility characteristic of
the ITU’s architecture, thus empowering from edge to cloud-
oriented approaches, including hybrid approaches.

To conclude, future wireless networks are envisioned to
share a common flexible architecture that allows a fast
adaptation of resources to accommodate a plethora of ML-
enabled network verticals. Nevertheless, a lot of effort is still
required before reaching fully intelligent wireless networks.
Among several open issues, we highlight the ones related to
data handling (how and where to store data? how to assess
the expiry of data?), orchestration (how would several ML
approaches would behave in conjunction? how to distribute
the ML operation? how to deal with heterogeneity?), and
robustness of the ML methods (how to deal with uncertainty?
how to prevent network failures?).
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