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ABSTRACT: 

 

Terrestrial Laser Scanning data are increasingly used in building survey not only in cultural heritage domain but also for as-built 

modelling of large and medium size civil structures. However, raw point clouds derived from laser scanning generally not directly 

ready for the generation of such models. A time-consuming manual modelling phase has to be taken into account. In addition the 

large presence of occlusion and clutter may turn out in low-quality building models when state-of-the-art automatic modelling 

procedures are applied. This paper presents an automated procedure to convert raw point clouds into semantically-enriched building 

models. The developed method mainly focuses on a geometrical complexity typical of modern buildings with clear prevalence of 

planar features A characteristic of this methodology is the possibility to work with outdoor and indoor building environments. In 

order to operate under severe occlusions and clutter a couple of completion algorithms were designed to generate a plausible and 

reliable model. Finally, some examples of the developed modelling procedure are presented and discussed.  

 

 

1. INTRODUCTION 

In the last years terrestrial laser scanning (TLS) has become a 

major source for the generation of complex digital 3D models of 

building façades. This achievement has been motivated by some 

significant advances in scanning technology, by the increased 

automation of acquisition and registration processes of laser 

scans, along with a reduction of instrumental cost. In addition, 

the improvements in mobile laser scanning (MLS) systems and 

processing techniques allowed rising up the productivity of 

ground-based point-cloud acquisition, despite of a slightly 

lower precision than static scanning.  

At the same time the demand of as-built building models has 

been also fostered by a major attention in energy saving policies 

fixed by national and over-national authorities. Indeed, to 

increase the energy efficiency of existing buildings as-built 

models are necessary both for thermal assessment/simulation 

and for the design of retrofitting interventions. 

To faithfully capture a building model, especially in the case of 

large premises, an extensive acquisition process is often 

required to guarantee a complete coverage of the entire external 

surface. Once preliminary processing of laser point clouds is 

accomplished and laser scans are aligned and edited to remove 

background objects, the process to derive a complete and 

consistent 3D vector model is still a tedious job that may easily 

take several hours or few days, even for an experienced user. 

Significant manual assistance is often required for tasks such as 

data cleaning, hole filling, object classification, and model 

extraction. To improve this process, the topic of increasing 

automation in the building reconstruction pipeline has been 

paid a lot of attention in the literature, see Pu et al. (2011) and 

Haala and Kada (2010). However, the 3D reconstruction is 

generally complicated by some missing parts in the scans. 

Indeed, due to time and accessibility limitations, a complete 

acquisition setup is not always affordable for large buildings 

and often the surface has to be recovered from rather imperfect 

scans, i.e., noisy, incomplete and corrupted with outliers. While 

in static TLS applications occlusions may be reduced by 

carefully planning the acquisition scheme, in MLS datasets 

generally a significant shadowing effect cannot be avoided due 

to pieces of urban furniture, trees, poles and other vehicles on 

the roads. 

In this paper we focus on the automatic generation of building 

models and in particular on the enhancement and consolidation 

of imperfect and missing parts due to the poor quality of input 

data. The applications under consideration belong to Level-of-

Detail (LoD) 4, being such as-built building models requested 

for planned maintenance, thermal retrofitting, preservation and 

documentation, as well as in other engineering applications. In 

such cases the geometric accuracy of the model is of primary 

relevance and objects have to be completed in an accurate and 

reliable way. In particular, since the primary application devised 

for the developed method is thermal analysis of existing 

buildings, we are mainly focusing on premises dated between 

1950 and 1975. Indeed, those constructions were built up in an 

era when little or no consciousness was on taking care of energy 

efficiency performance. Although some differences exist in 

different countries, the most buildings at this epoch feature a 

prevalence of orthogonal intersections between walls. Such kind 

of scenes may be referred to as ‘legoland’ scenes (Foerstner 

2010). 

In particular, the developed solution is flexible and can deal 

both with indoor and outdoor scenes. The availability of a 

single reconstruction method dealing with both building façade 

and indoor rooms gives the chance to exploit redundant 

information, e.g., in the case an element (like a window) is 

occluded from outside, this may be recovered from indoor data 

or vice versa. In addition, the integration between outdoor and 

indoor data is fundamental for generation of building 

information models at LoD 4. On the other hand, indoor and 

outdoor scenes present different architectural peculiarities and 

tailored solutions for modelling have to be designed. In 

particular, two main completion strategies are presented here: 
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(i) Repeated Pattern Detection and Completion (RPDC) and (ii) 

Visibility Analysis Completion (VAC).  

The former (i) has been primarily designed for building 

outdoor. Indeed, façades of urban buildings generally exhibit a 

high degree of self-similarity and redundancy that is due to 

presence of repeated, regular patterns. In the developed 

methodology we explicitly make use of this characteristic of 

urban scenes to enable the recovery of missing geometry. In 

contrast to other methods based on procedural modelling 

(Ullrich et al. 2013), instead of making strong prior assumptions 

about the models and blindly recreating geometry using 

predefined procedural rules, we attempt to extract the maximum 

information from real scans. The challenge lies in the automatic 

determination of which elements repeat in the façade and the 

pattern they form.  

On the other hand, VAC (ii) is primary intended for completion 

of indoor environments. Indeed, in such cases, repetitive 

patterns of walls and windows are more unlucky to be identified 

and ad-hoc algorithms robust to clutter are needed. In the 

developed procedure to understand the nature of occlusions, a 

ray-tracing algorithm (see Alsadik et al. 2014) is used to 

identify regions that are occluded from every viewpoint and to 

distinguish them from openings in the surface (e.g., due to 

doorways or windows). Even if this second completion strategy 

is primarily designed for indoors it can be used also in outdoors 

regions were no repeated patterns can be found, for example in 

MLS data sets. 

 

1.1 Related work 

Several methods have been proposed in the recent literature for 

production of building models generated from TLS data. 

However, they are generally specifically designed for separately 

modelling of building façades (e.g., Pu and Vosselman 2009; 

Ripperda and Brenner 2009) or indoor rooms (Budroni and 

Boehm 2005; Okron et al. 2010; Adan and Huber 2011). No 

reconstruction methods have been developed for simultaneous 

modelling of both kinds of environments. In addition, several 

methodologies operate under the assumption that the surface 

being modelled is relatively unobstructed. To recover missing 

parts a few research works focused on the detection of 

regularity directly on 3D geometry (e.g., Pauly et al. 2008; 

Bokeloh et al. 2009). These state-of-the-art techniques focus on 

detecting repeating elements in 3D models, but do not 

investigate how to use the detected structures for extensive data 

improvement or completion. 

Similarly, also the indoor modelling based on TLS data was 

investigated in different works (Hahnel et al. 2003; Dumitru et 

al. 2013; Khoshelham and Díaz-Vilariño 2014). However, they 

do not considered the occlusion problem because they focused 

on modelling of hallways with no furniture or other potentially 

occluding objects. More attention to this problem is given in 

Díaz-Vilariño et al. (2014), where laser data are integrated to 

images. 

 

 

2. METHOD OVERVIEW 

The presented approach follows the workflow reported in 

Figure 1. The modelling methodology can be applied to 

unstructured point cloud of tens of millions points. This means 

that each point is parameterized by its spatial coordinates and 

may also feature some related attributes (e.g., intensity, colour, 

normal vector), but does not share any topological relationships 

with other points in the neighbourhood. The input point cloud 

can be generated by a single or multiple laser scan station(s). 

Indeed, after scan registration/geo-referencing, scans are 

merged together without needing any reorganization into a 

specific data structure. Once all scans are acquired and 

registered together to output a non-structured point cloud, the 

main architectural elements of the building are identified by 

means of a segmentation process based on a modified RANSAC 

implementation (Previtali et al. 2014). In particular, the 

standard RANSAC approach (Boluaassal et al. 2008) for point 

cloud segmentation is modified by including topology into the 

process to minimize problems connected to under- and over-

segmentation, respectively (Sect. 3).  

Once planar clusters constituting the building object are 

detected, their vectorization is performed. During this phase 

some constraints related to building geometry, like the 

prevalence of straight lines and orthogonal intersections, are 

enforced to obtain a regularization effect (Sect. 4).  

A differentiation in the developed pipeline takes place for the 

completion phase, which mainly relies on RPDC and VAC for 

outdoor and indoor modelling, respectively. To achieve 

completion of these parts, the developed algorithm incorporates 

some architectural priors on indoor scenes, notably the 

prevalence of orthogonal elements which is typical of legoland 

scenes (Sect. 5). Finally, all pieces of information are merged 

together to obtain the complete 3D object model enriched with 

semantics (Sect. 6). 

In Tables 1 and 2 all input parameters needed for 

outdoor/indoor reconstruction pipelines are outlined. 

 

 

 
 

Figure 1. The flowchart of the developed flexible methodology 

for building model generation.  

 
Parameters for outdoor reconstruction 

Point cloud 

segmentation 

RANSAC plane threshold ε 

RANSAC normal threshold α 

Bitmap cell size β 

Vectorization 
RANSAC dominant line threshold ε 

Gap filling length L 

Scan completion 
Voxel cell size β 

Minimum similarity SMmin 

 

Table 1. Parameters for outdoor reconstruction.  

 
Parameters for indoor reconstruction 

Point cloud 

segmentation 

RANSAC plane threshold ε 

RANSAC normal threshold α 

Bitmap cell size β 

Vectorization 
RANSAC dominant line threshold ε 

Gap filling length L 

Scan completion 
Bitmap cell size β 

Occluding distance 

 

Table 2. Parameters for indoor reconstruction.  
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3. POINT CLOUD SEGMENTATION 

A first step towards the segmentation of the building object is to 

detect all its planar features. Detection of façade objects is 

accomplished by using a specifically modified RANSAC-based 

algorithm (Fig. 2). This implementation is aimed at reducing 

spurious results obtained by the standard sequential RANSAC 

segmentation as reported in the literature (Boulaassal et al. 

2009; Awwad et al. 2010). Those bad-segmentation problems 

can be categorized into under- and over-segmentation. Under-

segmentation is generally due to the fact that points resulting in 

the maximum consensus to RANSAC may belong to different 

façade objects. A typical example is represented by windows. 

Indeed, even if they belong to the same geometrical plane, each 

window represents a different architectonical component. Over-

segmentation is generally associated with noise or irregularities 

in the data set. Many façades presents irregularities, like out-of-

plumbs that are not evaluated in the RANSAC estimation of 

inliers. This may result in a wrong subdivision of a single 

façade element into several objects.  

 

 

 
Figure 2. Workflow of the developed segmentation process. 

 

 

To partially overcome the limitations enlisted above, a new 

automatic approach is presented for the segmentation of planar 

surfaces based on the combination of RANSAC and region-

growing techniques. The aim of this strategy is to derive 

‘meaningful’ segments from building point clouds. This means 

that extracted segments would correspond to objects of interest 

(e.g., roofs, walls, doors, etc.) instead of being simply those 

which best fit some mathematical models. This hybrid strategy 

allows combining the robustness of RANSAC with the spatial 

proximity used in region growing methods. Indeed, in contrast 

to standard region growing methods (Tóvári and Pfeifer 2005; 

Rabbani 2006) the segmentation results are not affected by 

selection of ‘seed’ points because the estimation of planar 

segment is performed by using RANSAC. In addition fewer 

parameters (see Table 1) are required with respect to the region-

growing implementation presented in Vosselman et al. (2004) 

where the selection of slightly different values of control 

parameters may result in a large variety of bad-segmentation 

problems. On the other hand the developed segmentation 

procedure is able to solve those critical situations reported in 

Boulaassal et al. (2009). 

In particular, under-segmentation is reduced by introducing 

knowledge about point topology. Indeed, even if points are not 

usually related by any topological relationship in an 

unorganized point cloud, we can assume that points belonging 

to the same object should be sufficiently close to one another 

while groups of points belonging to different objects should be 

separated by a spatial gap. For this reason, point cloud 

proximity is evaluated by using a 2D binary point occupancy 

raster map. First, any points belonging to the same plane are 

projected orthogonally to a raster bitmap. All pixels in the 

bitmap containing at least one projected point are assigned the 

value 1, while others are given value 0. This raster map allows 

finding connected regions of pixels featuring value 1. Then all 

points whose projection belongs to the same connected 

component can be clustered. 

Once all planar elements are detected, the extracted planes are 

clustered together to reduce over-segmentation problems. 

Object clustering is performed by evaluating three parameters: 

(i) similarity of normal vectors; (ii) perpendicular distance 

between planes; and (iii) intersection between clusters. 

An example of the results achieved by using the presented 

method is presented in Figure 3. 

 

  
Figure 3. Building’s façade segmentation results: (a) original 

point cloud; and (b) segmentation results, each detected 

segment is represented using a different colour. 

 

 

4. VECTORIZATION 

The most important aspect for vectorization of elements 

detected in the previous step is the detection of breaklines. In 

TLS domain Boulaassal et al. (2009) presented a contour 

extraction algorithm for building façades. After façade 

segmentation and detection of planar clusters in a façade, the 

extraction of their contour is carried out. The main idea 

exploited in this algorithm is based on the hypothesis 

stipulating that contour points belong to the long sides of 

Delaunay’s triangles for detected clusters. This algorithm 

proved to be able to detect contour points. However, due to 

noise in the data set and the random nature of points acquired 

by TLS systems, the derived contours may feature a very 

irregular and jagged shape. Becker and Haala (2007) presented 

a procedure for extraction of breaklines from point cloud of 

building façades combining two different phases. In a first step 

a cell decomposition of the façade is accomplished by 

identifying contour points using a raster representation. Then, 

façade edges are refined by means of an edge matching 

procedure combining photos and TLS data. However, problems 

may arise when the laser point density is too low with respect to 

resolution of digital images. Pu and Vosselman (2006) 

presented an automatic approach to extract building façade 

features from a terrestrial point cloud. The method first defines 

several important building features. Then the point cloud is 

segmented into planar segments. Finally each segment is 
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compared to building features. However, the procedure presents 

a high number of control parameters that are difficult to select.  

To cope with the previously listed limitation of the state-of-the-

art algorithm a new methodology has been developed (Fig. 4). 

The developed procedure does not require RGB images so that 

the problem of image registration can be avoided. In addition 

the obtained breaklines are enforced to fit some architectural 

priors.  

The first step of vectorization is the identification of contour 

points, which are detected by using the procedure presented in a 

previous paper (Previtali et al. 2014). However, as previously 

discussed, contour points define quite irregular and jagged 

profiles showing a characteristic ‘saw-tooth’ shape due to the 

noise and random measurement errors of laser scanning data. 

However, this is in contrast with the characteristic building 

geometry where straight lines are predominant. For this reason, 

the achieved edges cannot be directly used for building 

modelling. Smoothing is still needed to define a regular shape 

of each object. This process has to consider the different 

typologies of possible edges. In particular, edges can be usually 

split into different basic entities (linear or curved parts). Then 

line and the curve equations are fitted with Least Squares by 

using the dominant point information, while the whole edge can 

be finally reconstructed by merging these entities together. As 

previously noticed, an important aspect of the façades targeted 

in this research is given by the fact that the straight lines are 

predominant. In addition, such straight lines generally intersect 

in orthogonal way. For this reason, once the contour points are 

found, the dominant edge directions are identified by using a 

sequential RANSAC implementation aimed at extracting linear 

features similar to the one presented for the detection of planes 

(see Sect. 3). Once dominant lines are extracted, inlier points 

are removed and replaced with a straight line. The remaining 

contour edges are then evaluated. Indeed, sometimes, small 

occlusions on a façade or segmentation errors may cause 

irregular edges on the generated outline. 

 

 

 
 

Figure 4. Workflow of the developed edge smoothing and 

regularization process. 

 

 

These irregular edges should be removed by observing that they 

form short segments, which result in a gap on the outline. If the 

left long edge (w.r.t. the gap) and the right long edge belong to 

the same line, the gap will be filled by connecting a line 

segment. If both edges are parallel, a line segment which is 

perpendicular to both will be generated, and the edges extended 

to reach the perpendicular segment. Finally, in the case the two 

initial edges are orthogonal, they will be extended or shortened 

until they intersect at a point to fill the gap (Fig. 5). Edge filling 

intersection constraints not only re-establish the topology 

between objects but also increase the accuracy of detected 

breaklines. Indeed, by means of surface intersection constraints, 

breaklines are calculated as the intersection of planes which are 

estimated from a large set of points. 

 

 
 

Figure 5. Filling of boundaries for different edge configurations. 

 

 

5. SCAN COMPLETION 

As previously discussed, TLS devices often produce noisy and 

incomplete data sets due to occlusion, unfavorable surface 

reflectance properties, or geometric restrictions in the scanner 

setup. This problem is even more serious in the case of MLS 

where there is a lower flexibility in the choice of the scanning 

position.  

Model-based approaches are used to cope with occlusions in 

façade modelling (Becker and Haala 2009; Koutsourakiset al. 

2009). In particular, they assume that the occluded region is 

part of a repeated pattern. However, while in recent years many 

techniques have been developed to detect repeated parts in 

models (Mitra et al. 2006; Pauly et al. 2008), most of these 

research works do not investigate how to optimize the use of 

strong regularity in 3D scans, specifically in urban buildings. 

Moreover, most techniques are applied in image space by 

analyzing photometric 2D images sampled over an underlying 

regular domain. Only few attempts have been made towards 

detection of regularity directly on 3D geometry (e.g., Pauly et 

al. 2008; Bokeloh et al. 2009). These state-of-the-art techniques 

focused on detecting repeated elements in 3D models, but do 

not investigate how to use the detected structures for extensive 

data improvement or completion. 

Even though the occlusion problem is more severe in indoor 

scan, few approaches exist to cope with this situation. In Okron 

et al. (2010) and Adan and Huber (2011) a method for dealing 

with occlusions on the basis of a ray-tracing approach is 

presented. However, a quite coarse voxelization of the room 

space and a long voxel labelling is carried out. 

To cope with occlusions both for indoor and outdoor scenes we 

present a novel approach which allows obtaining a complete 

and consistent 3D model representation from such incomplete 

surface scans. As previously anticipated, two main completion 

strategies have been designed: RPDC (Subsect. 5.1) and VAC 

(Subsect. 5.2).  

 

5.1 Repeated Pattern Detection and Completion 

Once façade elements are detected and vectorized the scan 

completion procedure is based on the identification of repeated 
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patterns in the building façade (see Previtali et al. 2013). 

Indeed, façades of buildings are generally built in a modular 

way: a set of few basic elements is organized into a regular 

pattern which generally sets up a regular grid. The recognition 

of these patterns can be used to recover missing elements and 

complete the final building model. However, the identification 

of repeated patterns in a point cloud features at least two main 

problems: (1) to define a measure to identify similarity between 

detected objects in the point cloud; and (2) to set up a procedure 

to identify the regular grid formed by objects, which is robust 

against lacks, outliers and noise. 

These problems are overcome along with two different stages. 

First, similarity is evaluated between pairs of patches derived 

from the previous segmentation and vectorization steps. Once 

two different patches are aligned by means of a standard 

Iterative Closest Point procedure (Besl and McKay, 1992) 

similarity between them is evaluated in a quantized space in 

order to tolerate poor quality input data. In particular, each 

point cloud patch is embedded into a volumetric grid composed 

of voxels whose size is fixed a little bit larger than the mean 

sampling distance of the point cloud. In each resulting voxel the 

number of points contained in it is stored. Then the similarity 

measure (SM) between two patches (Si and Sj) is defined as: 
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and K is the total number of cells in the voxel space. The 

adopted measure defined in Eq. (1) represents a local similarity 

measure of point distributions in the overlapping region 

between the two considered objects. In particular, SM may 

range from -1 (full inverse correlation) to 1 (full direct 

correlation). For this reason we can assume that SM values close 

to 1 indicate high similarity between patches while in the case 

SM is close to zero or negative, these are assumed to be 

different. Once the similarity is measured for each pair of slices, 

the ones having the maximum similarity are automatically 

clustered by using a bottom-up method as far as no more 

clusters can be created. 

Once similar objects are detected in the point cloud, the regular 

grid they form has to be estimated in a robust way. The 

unknown grid position for a lattice structure of M rows and N 

columns are represented by the row coordinates Xgi(i=1,2,…,M) 

and column coordinates Ygj(j=1,2,…,N). The input data are the 

centres cij(Xci,Ycj) of the similar object clusters detected in the 

previous step. 

To find the unknown grid positions gij, we applied an 

optimization scheme combining two energy terms. The first one 

takes into account the distance between the grid location gij to 

the closer object cij(Xci, Ycj): 
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The continuous variable αij is a weight measuring how reliably a 

grid location is mapped to a façade object and vice versa. They 

are included as additional unknowns in the optimization process 

accounting for holes and outliers. Indeed, values of αij close to 

zero indicate a hole or an outlier, while values close to 1 

represent a reliable matching between a façade element and a 

grid location.  

The second energy term is aimed at maximizing the number of 

valid correspondences between grid location and façade 

elements: 
22
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The final objective function to be minimized is defined as: 

 

αγγ EEE C ⋅−+⋅= )1(  (5) 

 

where γ balances the two energy terms. In order to find repeated 

similarity in the grid structure, the spacing between consecutive 

columns and rows is calculated and clustered. In the case 

repetitive spacing are found some additional constraint 

equations are added in the minimization. 

In Figure 6 results of RPDC algorithm for both façades of 

building in Figure 3 are reported. 

 

a.  b.  

 

Figure 6. Results of RPDC algorithm for both façades of the 

building in Fig. 3: the repeated pattern for the two analysed 

façades superimposed to the point cloud (a-b). Each recognized 

pattern is represented by a different colour. 

 

5.2 Visibility Analysis Completion 

In the case of indoor scans some walls may have not been 

sensed during scanning and may miss in the point cloud. For 

this reason a proper completion procedure is necessary to 

reconstruct in a plausible way these pending walls and derive 

the floor plan. Indeed, in indoor modelling applications a single 

pending small wall may jeopardize the entire reconstruction of 

the floor plan. In the developed strategy, such gaps are filled by 

incorporating additional, unseen ‘pending’ walls (Chauve at al. 

2010). In particular, in indoor environment it is possible to 

observe that generally walls intersect orthogonally. For this 

reason ‘pending’ walls are guessed to be orthogonal to detected 

walls and are derived from the boundary of detected walls 

(Fig.7a-b).  

To obtain a continuous floor plan from ‘detected’ and ‘pending’ 

walls, a procedure based on cell complex labelling is applied. A 

2D arrangement (Edelsbrunner et al. 1986) is set up, which 

generates a partitioning of the original space domain into 

convex polygonal cells (Fig. 7c). Once the cell complex is 

derived, the floor plan reconstruction problem can be 

formulated as an optimal binary labelling of cells in the 

complex. Each cell is labelled as ‘empty’ or ‘occupied,’ and the 

floor plan can be extracted as the union of all facets separating 

an occupied cell to an ‘empty’ one, obtaining this way an 

intersection-free boundary. This labelling problem is handled 

within the framework of minimum s-t cut (Reif 1983) on the 
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cell-adjacency graph G = (V,E) of the partitioning, where the 

vertices V are the cells of the polygonal cell complex and the 

edges E link adjacent cells, i.e., they correspond to the facets of 

the complex. Starting from the available data some cells can be 

directly categorized as ‘occupied’. In particular, all cells 

occupied by points belonging to the ceiling can be directly 

assigned as ‘occupied’. Weights of remaining edges between 

cells are fixed equal to the length of the edge between the cells. 

This means that the s–t cut problem is aimed at minimizing the 

length of guessed walls segments. Once all surfaces of the room 

‘box’ are detected, the presence of openings is investigated. 

Indeed, occlusions and clutter produce significant holes in the 

point cloud which may be erroneously classified as openings. 

To identify these situations the ray-tracing labelling is applied 

and an occupancy map is generated (Adan and Huber 2011). 

The idea behind this method is that if a surface is occluded, this 

means that there is another object closer to the scanner resulting 

in a shadowing effect. For this reason, each wall element 

detected in the previous step is discretized into cells of size β x 

β. Then each cell is tested to verify if it is occupied, occluded or 

represent an opening (e.g., window or door). In order to 

scrutinize between these different situations, the ray tracing 

method is used for every scan position in the room. A first 

occupancy map (denoted as M0) is generated on the basis on 

whether inlier points are detected at each cell location or not. 

Starting from this map for each scan position, a labelling Lk is 

generated by tracing a ray from the scan location to each pixel 

Pi(x,y,z) labelled as ‘empty’ in M0. Having defined the cell 

location in spherical coordinates, the 20-nearest neighbour 

points for Pi can be easily defined. As a measuring distance 

between Pi and other points, vertical or nadir angle α and 

horizontal or azimuth angle θ measured by the scanning 

instrument are used. In the case the 20-nearest neighbour points 

have angular distance (θ, α) far larger than the predefined 

angular scanning resolution, this would mean that no reflected 

signal returned back to the laser scanner due to the presence of 

an opening. In this case, the pixel Pi is labelled as ‘empty.’ 

Conversely, if the angular distance is compatible with the 

predefined scanning resolution, the mean distance of the nearest 

neighbours is evaluated dmean = mean (d1, d2,..., d20). In 

particular, in the case the mean distance is lower than the 

distance from cell Pi, this would mean that Pi is occluded by 

some points in the scan and the cell is consequently labelled. 

On the other hand, if the mean distance is larger than the 

distance from Pi, the cell is labelled as ‘empty.’ After ray-

tracing labelling for any scans, K labels for each pixel are 

obtained (Fig. 7d). Then all labels are combined together in a 

final occupancy map LF adopting the following labelling rule: 

 

a. b. c.  

 

Figure 7. Results of VAC algorithm: some wall portions are 

missing (red circles) due to occlusions (a) and missing walls are 

added (b); induced ‘cell complex’ (c). 
occludediLKjoccludediLandemptyiLIf Fj ==>=∀== )(,...,2,1,)()(0

  

 

In other words, a cell is considered as ‘occluded’ if it is 

occluded in any scans. Having obtained the occupancy map, 

openings can be easily detected by identifying the labels of the 

cells (Fig. 9).  

 

 

a.  b.  

 

Figure 8. Occupancy map for a wall: reflectance image (a) and 

cell labelling results (b).  

 

 

6. SEMANTIC INTERPRETATION 

Once all objects are detected and completed, building’s 

architectural elements need to be further classified according to 

their functionalities (e.g., walls, windows, doors, etc.). This step 

is important to add semantic content to the geometric model. In 

order to perform this task some attributes for each object are 

defined and a set of classification rules are formulated and 

organized in a hierarchical classification tree. For a detailed 

description the reader is addressed to Silla and Freitas (2011).   

In particular for outdoors (Fig. 9a), the classification starts with 

evaluating both area and position of any detected objects. First, 

the ground is detected because it is the horizontal (or pseudo-

horizontal) object at the lower level. Then the main façade 

planes are extracted since they are objects perpendicular to the 

ground and have the largest area with respect to any other 

objects. Indeed, the wall area in a façade is generally much 

larger than the one covered by other objects like windows or 

doors. Then flat-like objects over walls protruding out of the 

façade are classified as roof. For all non-classified objects their 

position with respect to the main façade plane is evaluated. 

Objects in front of the façade are extrusion objects and 

classified in a general way as wall attachments, while others are 

classified as intrusions. These can be further distinguished in 

sidewalls, windows and doors. Sidewalls differ from other 

intrusions because their orientation is perpendicular to the 

frontal face of the walls and for this reason they can be easily 

recognized. In order to distinguish between doors and windows 

it is assumed that doors are only at bottom floor. In addition in 

correspondence of a door the main façade plan has a 

characteristic gap having an inverted ‘U shape’ while in 

correspondence of windows the gap has an ‘O shape.’ Starting 

from these considerations, doors are sought for only at the 

ground floor and in correspondence of inverted ‘U shape’ gaps 

in the main wall face. Other intrusions parallel to the façade 

plane are classified as windows.  

 

 

a.  b.  

 

Figure 9. Hierarchical classification tree for building’s outdoor 

(a) and for indoor rooms (b). 
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For indoor environments five semantics features extracted are 

defined, i.e., wall, window, door, floor and ceiling. In this case 

the ceiling can be designed as the non-vertical plane having the 

lower height while the roof is the one at higher height. Then 

openings are classified as doors when they intersect with ground 

floor, otherwise they are defined as windows. The 

corresponding classification tree is shown in Figure 9b. 

 

 

7. APPLICATIONS 

Two examples are illustrated here to present possible 

applications of the developed modelling procedure. The first 

test concerns an outdoor scene including two façades facing a 

courtyard, while the second an office room. A phase-shift TLS 

FARO-FOCUS 3D (www.faro.com) was adopted.  

In the first experiment, the scanned scene presents a quite high 

number of clutters generating occlusions on the building 

façades and resulting in large missing parts (Fig. 10a). First step 

of the developed methodology is façade segmentation (Fig. 

10b). Adopted input parameter values are reported in Table 3. 

 

 
 ‘Courtyard’ 

‘Office’ 

RANSAC plane threshold ε 1 cm 

RANSAC normal threshold α 20 ° 

Bitmap cell size β 1 cm 

RANSAC dominant line threshold ε 0.7 cm 

Table 3. Parameters used for segmentation of outdoor data set. 

 

 

In Figure 10c the detected repeated patterns are shown. In 

particular, it is possible to observe that the developed algorithm 

can efficiently detect missing objects (like windows) also in the 

case of severe occlusions. Detected regularities are used to 

complete the building model (Fig. 10d). The results achieved by 

the proposed approach were checked in order to quantify the 

geometric accuracy of the obtained vector models. In order to 

do that a manual reconstruction of the same data set was 

performed, which is considered in the literature as the most 

precise method to extract a vector model from a point cloud 

(Nex and Rinaudo, 2009). The ‘manual’ model was compared 

to the automatically generated. In particular, for each edge the 

absolute modelling error is defined as the absolute magnitude 

of the difference between the ground truth and the model 

position. An edge is considered as correctly detected if the 

distance between the manually generated edge and the closest 

automatically generated edge is lower than a predefined 

threshold T. As expected, the numbers of correctly detected 

edges decreases as the tolerance increases. However, this drop 

presents a significant discontinuity in correspondence of T = 3.0 

mm. In particular, up to this tolerance the correspondence 

between automatic and manual derived breaklines is close to 

98%. This means that the accuracy of the detected edge is about 

this order of magnitude. However, an important factor needs to 

be observed. Manual modelling of a point cloud is indeed 

influenced by human interpretation and the definition of 

breaklines with accuracy higher than 2.0 – 3.0 mm is almost 

impossible also for a skilled operator. 

The second example consists in the modelling of an office-room 

characterized by a complex ground plane contour. The 

segmentation parameters adopted in the previous example have 

been used here again (Tab.3). In Figure 11 a summary of the 

main processing step for this data set are shown. Also in this 

case the derived model was compared to the output of ‘manual’ 

modelling. In particular, the accuracy of the wall and opening 

boundaries is similar to the one obtainable with manual 

modelling of the point cloud up to a tolerance (T) of 2 mm, 

confirming the previously discussed results. 

 

 

a. b.  

c.  

d   

 

Figure 10. Outdoor data set: original point cloud (a); 

segmentation results (b); detected repeated patterns (c); and 

final completed model (d). 

 

a.  b.  

c.  d.   

 

Figure 11. Geometric reconstruction of indoor data set: (a) 

segmentation results; (b) induced cell complex; (c) wireframe 

model with overlaid the original point cloud; and (d) final 3D 

model. 

 

8. CONCLUSIONS AND FUTURE WORKS 

This paper presented a novel automated method to derive 3D 

vector model of building indoors and outdoors from massive 

unstructured point clouds affected by occlusions and clutter.  
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In particular a flexible completion strategy was presented in 

order to obtain a final model completed in reliable way. The 

major advantage of this methodology is given by the fact that 

outdoor and indoor reconstruction can be performed in a single 

framework giving this way the chance to generate in an 

automatic way a building model at LoD 4. Up to now indoor 

and outdoor modelling, even if they are performed 

simultaneously, proceed in a quite independent way. However, 

in our future works we are planning to share information 

between the two process in order to exploit in an efficient way 

data redundancy, e.g. in the case an element (like a window) is 

occlude from outside this can be recovered from inside data or 

vice versa. Moreover, the automatic integration of indoor and 

outdoor models needs further investigations in order to provide 

LoD 5 models.  

Finally, the proposed procedure has been successfully validated 

on different buildings but all of them followed a Legoland 

structures. Extension of the methodology to deal with a larger 

number of building geometry is devised. 
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