Supplementary Information

A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries

Guangmin Zhou^{#a}, Da-Wei Wang^{#b}, Feng Li^{*a}, Peng-Xiang Hou^a, Lichang Yin^a, Chang Liu^a,

Gao Qing (Max) Lu^b, Ian R. Gentle^c, Hui-Ming Cheng^{*a}

^aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China.

^bARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia.

^cSchool of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia.

[#] G.M.Z. and D.-W.W. are equal main contributors.

Correspondence should be addressed to H. M. C. Email: cheng@imr.ac.cn

Fig. S1 N₂ adsorption/desorption isotherm and pore size distribution of the S-CNT-23. Pore size distribution plots were obtained by the Barrett-Joyner-Halenda method.

Fig. S2 XRD patterns of the S-CNT-23 and CNTs.

Fig. S3 HRTEM image of the S-CNT showing pores (circled) that host sulphur.

Fig. S4 (a) EDS analysis of the S-CNT-23, showing the presence of carbon and sulphur. (b-d) EDS line scans across the S-CNT-23, showing elemental composition as a function of beam position.

Fig. S5 SEM image of a cross-sectional view of the S-CNT-23 membrane.

Fig. S6 Apparatus for bending conductivity test.

Fig. S7 (a, b) SEM images of the S-CNT-50 membrane cathode after 100 charge/discharge cycles.

Fig. S8 Thermogravimetric curve of the S-CNTs in Ar with a heating rate of $10 \,^{\circ}\text{C min}^{-1}$, indicating the sulphur content of 23.0 and 50.0 wt%.